KR102691713B1 - choncrete using coarse aggregate of waste glass with surface coating for slip prevention and manufacturing method thereof - Google Patents
choncrete using coarse aggregate of waste glass with surface coating for slip prevention and manufacturing method thereof Download PDFInfo
- Publication number
- KR102691713B1 KR102691713B1 KR1020220142642A KR20220142642A KR102691713B1 KR 102691713 B1 KR102691713 B1 KR 102691713B1 KR 1020220142642 A KR1020220142642 A KR 1020220142642A KR 20220142642 A KR20220142642 A KR 20220142642A KR 102691713 B1 KR102691713 B1 KR 102691713B1
- Authority
- KR
- South Korea
- Prior art keywords
- waste glass
- aggregate
- mixed
- particle size
- portland cement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011521 glass Substances 0.000 title claims abstract description 157
- 239000002699 waste material Substances 0.000 title claims abstract description 148
- 239000011248 coating agent Substances 0.000 title claims description 15
- 238000000576 coating method Methods 0.000 title claims description 15
- 230000002265 prevention Effects 0.000 title claims description 9
- 238000004519 manufacturing process Methods 0.000 title description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 119
- 239000004576 sand Substances 0.000 claims abstract description 67
- 239000004567 concrete Substances 0.000 claims abstract description 61
- 239000002245 particle Substances 0.000 claims abstract description 49
- 239000000843 powder Substances 0.000 claims abstract description 46
- 239000011398 Portland cement Substances 0.000 claims abstract description 41
- 239000002893 slag Substances 0.000 claims abstract description 26
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 25
- 239000011247 coating layer Substances 0.000 claims abstract description 24
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 21
- 239000010881 fly ash Substances 0.000 claims abstract description 19
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims abstract description 18
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000006243 chemical reaction Methods 0.000 claims abstract description 12
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims abstract description 11
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000000292 calcium oxide Substances 0.000 claims abstract description 10
- 230000007774 longterm Effects 0.000 claims abstract description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 7
- 150000003839 salts Chemical class 0.000 claims abstract description 6
- 238000006703 hydration reaction Methods 0.000 claims abstract description 4
- 239000000395 magnesium oxide Substances 0.000 claims abstract description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims abstract description 4
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229920005989 resin Polymers 0.000 claims description 72
- 239000011347 resin Substances 0.000 claims description 72
- 229920001187 thermosetting polymer Polymers 0.000 claims description 29
- 239000003822 epoxy resin Substances 0.000 claims description 25
- 229920000647 polyepoxide Polymers 0.000 claims description 25
- 238000002156 mixing Methods 0.000 claims description 21
- 239000003795 chemical substances by application Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 15
- 239000004848 polyfunctional curative Substances 0.000 claims description 14
- 238000001035 drying Methods 0.000 claims description 12
- 238000009826 distribution Methods 0.000 claims description 11
- 238000007654 immersion Methods 0.000 claims description 11
- 238000003475 lamination Methods 0.000 claims description 5
- 239000010419 fine particle Substances 0.000 claims description 4
- 230000020169 heat generation Effects 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000004568 cement Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 6
- 229920003986 novolac Polymers 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 5
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 5
- 239000000920 calcium hydroxide Substances 0.000 description 5
- 235000011116 calcium hydroxide Nutrition 0.000 description 5
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000012783 reinforcing fiber Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 3
- 229930185605 Bisphenol Natural products 0.000 description 3
- 235000019738 Limestone Nutrition 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- 150000008065 acid anhydrides Chemical class 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 229930003836 cresol Natural products 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000006028 limestone Substances 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- -1 tiles Substances 0.000 description 3
- MUTGBJKUEZFXGO-OLQVQODUSA-N (3as,7ar)-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1CCC[C@@H]2C(=O)OC(=O)[C@@H]21 MUTGBJKUEZFXGO-OLQVQODUSA-N 0.000 description 2
- KMOUUZVZFBCRAM-OLQVQODUSA-N (3as,7ar)-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C=CC[C@@H]2C(=O)OC(=O)[C@@H]21 KMOUUZVZFBCRAM-OLQVQODUSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 2
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000002956 ash Substances 0.000 description 2
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 2
- 239000010883 coal ash Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- VYKXQOYUCMREIS-UHFFFAOYSA-N methylhexahydrophthalic anhydride Chemical compound C1CCCC2C(=O)OC(=O)C21C VYKXQOYUCMREIS-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 229920003987 resole Polymers 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- LTVUCOSIZFEASK-MPXCPUAZSA-N (3ar,4s,7r,7as)-3a-methyl-3a,4,7,7a-tetrahydro-4,7-methano-2-benzofuran-1,3-dione Chemical compound C([C@H]1C=C2)[C@H]2[C@H]2[C@]1(C)C(=O)OC2=O LTVUCOSIZFEASK-MPXCPUAZSA-N 0.000 description 1
- KNDQHSIWLOJIGP-UMRXKNAASA-N (3ar,4s,7r,7as)-rel-3a,4,7,7a-tetrahydro-4,7-methanoisobenzofuran-1,3-dione Chemical compound O=C1OC(=O)[C@@H]2[C@H]1[C@]1([H])C=C[C@@]2([H])C1 KNDQHSIWLOJIGP-UMRXKNAASA-N 0.000 description 1
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical class [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- WJQOZHYUIDYNHM-UHFFFAOYSA-N 2-tert-Butylphenol Chemical compound CC(C)(C)C1=CC=CC=C1O WJQOZHYUIDYNHM-UHFFFAOYSA-N 0.000 description 1
- MWSKJDNQKGCKPA-UHFFFAOYSA-N 6-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1CC(C)=CC2C(=O)OC(=O)C12 MWSKJDNQKGCKPA-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- IFVTZJHWGZSXFD-UHFFFAOYSA-N biphenylene Chemical group C1=CC=C2C3=CC=CC=C3C2=C1 IFVTZJHWGZSXFD-UHFFFAOYSA-N 0.000 description 1
- 239000010882 bottom ash Substances 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Inorganic materials [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 239000011083 cement mortar Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000011456 concrete brick Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000010791 domestic waste Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- FPVGTPBMTFTMRT-NSKUCRDLSA-L fast yellow Chemical compound [Na+].[Na+].C1=C(S([O-])(=O)=O)C(N)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 FPVGTPBMTFTMRT-NSKUCRDLSA-L 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000000887 hydrating effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000004579 marble Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000010812 mixed waste Substances 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 239000010742 number 1 fuel oil Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000012716 precipitator Substances 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000011134 resol-type phenolic resin Substances 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000010517 secondary reaction Methods 0.000 description 1
- 229910021487 silica fume Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000000021 stimulant Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/16—Waste materials; Refuse from building or ceramic industry
- C04B18/165—Ceramic waste
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/06—Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
- C04B18/08—Flue dust, i.e. fly ash
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/14—Waste materials; Refuse from metallurgical processes
- C04B18/141—Slags
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/0076—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials characterised by the grain distribution
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/02—Treatment
- C04B20/026—Comminuting, e.g. by grinding or breaking; Defibrillating fibres other than asbestos
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/10—Coating or impregnating
- C04B20/1018—Coating or impregnating with organic materials
- C04B20/1029—Macromolecular compounds
- C04B20/1037—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/10—Coating or impregnating
- C04B20/1055—Coating or impregnating with inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/10—Coating or impregnating
- C04B20/12—Multiple coating or impregnating
- C04B20/123—Multiple coatings, for one of the coatings of which at least one alternative is described
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/04—Portland cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00241—Physical properties of the materials not provided for elsewhere in C04B2111/00
- C04B2111/00362—Friction materials, e.g. used as brake linings, anti-skid materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Civil Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
경제성이 개선되도록, 본 발명은 물과 혼합시 경화되며 산화칼슘, 이산화규소, 산화알루미늄이 함유된 포틀랜드 시멘트; 상기 포틀랜드 시멘트에 혼합되되, 잠재수경성을 가지며 수화반응시 발열량이 저감되고 경화시 염화물이온을 고정하는 프리델씨염을 생성하며 경화 콘크리트의 장기압축강도가 증가되도록 혼합되며 산화칼슘, 이산화규소, 산화알루미늄, 및 산화마그네슘이 함유된 고로슬래그; 상기 포틀랜드 시멘트에 혼합되되, 가공성이 개선되고 경화열이 완화됨과 동시에 포졸란 반응으로 장기 압축강도 및 수밀성이 향상되도록 혼합되며 이산화규소, 산화알루미늄, 및 산화철이 함유된 플라이애시; 상기 포틀랜드 시멘트에 혼합되되, 경화된 콘크리트의 강도가 증가되도록 혼합되는 잔골재; 및 상기 포틀랜드 시멘트에 혼합되되, 표면에 기설정된 입도 범위를 갖는 모래 미립분 코팅층이 다단 적층 형성되며, 유리 재질의 분쇄폐유리로 구성되는 폐유리골재를 포함하는 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트를 제공한다.To improve economic efficiency, the present invention provides Portland cement that hardens when mixed with water and contains calcium oxide, silicon dioxide, and aluminum oxide; It is mixed with the Portland cement, has latent hydraulic properties, reduces the amount of heat generated during the hydration reaction, produces Friedel's salt that fixes chloride ions during hardening, and is mixed to increase the long-term compressive strength of the hardened concrete. Calcium oxide, silicon dioxide, and aluminum oxide are added. , and blast furnace slag containing magnesium oxide; Fly ash containing silicon dioxide, aluminum oxide, and iron oxide mixed with the Portland cement to improve processability and alleviate curing heat while improving long-term compressive strength and watertightness through pozzolanic reaction; Fine aggregate mixed with the Portland cement to increase the strength of the hardened concrete; and surface-coated waste glass aggregate for anti-slip use, which is mixed with the Portland cement and has a multi-stage coating layer of sand fine powder having a preset particle size range formed on the surface, and which includes waste glass aggregate made of crushed waste glass made of glass. Provides used concrete.
Description
본 발명은 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트 및 그의 제조방법에 관한 것으로, 보다 상세하게는 경제성이 개선되는 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트 및 그의 제조방법에 관한 것이다.The present invention relates to concrete using waste glass aggregate coated with an anti-slip surface and a method for manufacturing the same. More specifically, it relates to concrete using waste glass aggregate with an anti-slip surface coating that improves economic efficiency and a method for manufacturing the same.
일반적으로 생활폐기물로 발생되는 폐유리의 약 50% 정도만이 재활용되고 있으며 건설용 대체재료로서의 재활용은 거의 없는 실정이다. 또한, 건설폐기물로 발생되는 폐유리는 혼합폐기물로 발생되어 분리 수거만 가능하면 재활용이 가능하지만 이의 재활용은 거의 이루어지지 못하고 있다.In general, only about 50% of waste glass generated as household waste is recycled, and recycling as an alternative material for construction is rare. In addition, waste glass generated as construction waste is generated as mixed waste and can be recycled as long as it can be collected separately, but recycling is rarely achieved.
여기서, 종래의 폐유리 재활용도는 블록원료, 그라스 대리석, 그라스타일, 유리섬유, 발포용 경량골재, 차선도색용 안료에 혼합되어 재활용되고 있으며, 선진외국의 경우에도 폐유리를 샌드블라스팅에 사용되는 실리카 대체물질, 진흙이나 타일, 콘크리트 벽돌 등의 첨가물로 이용하는 정도이나 무기재료인 시멘트 콘크리트에 사용하는 경우, 폐유리의 주성분인 반응성 실리카인 SiO2와 콘크리트중이 알카리 금속이온인 Na+, K+이 반응하여 알카리 규산염겔을 생성하고 물을 흡수하여 팽창하는 알카리 실리카 반응에 의한 균열발생으로 콘크리트를 급격히 열화시키는 문제등으로 인하여 사용이 극히 제한되고 있다. Here, the conventional waste glass is recycled by mixing it with block raw materials, grass marble, grass style, glass fiber, lightweight foam aggregate, and pigment for lane painting. Even in developed countries, waste glass is used for sandblasting. It is used as a substitute for silica and as an additive for mud, tiles, concrete bricks, etc., but when used in cement concrete, which is an inorganic material, SiO2, a reactive silica, the main component of waste glass, and Na+, K+, alkali metal ions in the concrete, react. Its use is extremely limited due to the problem of rapid deterioration of concrete due to cracks caused by the reaction of alkali silica, which produces an alkaline silicate gel and expands by absorbing water.
또한, 콘크리트 제조용 골재 부족의 해결 방안으로 폐유리를 분쇄하여 폐유리골재를 굵은골재의 대용으로 활용하였으나, 폐유리골재의 표면과 시멘트 몰탈 계면에서 슬립현상이 발생하여 콘크리트 강도발현에 문제점이 있었다. In addition, as a solution to the shortage of aggregate for concrete production, waste glass was crushed and the waste glass aggregate was used as a substitute for coarse aggregate, but there was a problem in developing concrete strength because a slip phenomenon occurred at the interface between the surface of the waste glass aggregate and the cement mortar.
즉, 폐유리골재의 매끄러운 표면으로 인해 시멘트에 혼합시 결합력이 저하됨에 따라 콘크리트의 강도가 저하되는 문제점이 있었다. In other words, due to the smooth surface of the waste glass aggregate, there was a problem that the strength of the concrete decreased as the bonding force decreased when mixed with cement.
상기와 같은 문제점을 해결하기 위하여, 본 발명은 경제성이 개선되는 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트 및 그의 제조방법를 제공하는 것을 해결과제로 한다.In order to solve the above problems, the present invention aims to provide concrete and a manufacturing method thereof using waste glass aggregate with an anti-slip surface coating that improves economic efficiency.
상기의 과제를 해결하기 위하여, 본 발명은 물과 혼합시 경화되며 산화칼슘, 이산화규소, 산화알루미늄이 함유된 포틀랜드 시멘트; 상기 포틀랜드 시멘트에 혼합되되, 잠재수경성을 가지며 수화반응시 발열량이 저감되고 경화시 염화물이온을 고정하는 프리델씨염을 생성하며 경화 콘크리트의 장기압축강도가 증가되도록 혼합되며 산화칼슘, 이산화규소, 산화알루미늄, 및 산화마그네슘이 함유된 고로슬래그; 상기 포틀랜드 시멘트에 혼합되되, 가공성이 개선되고 경화열이 완화됨과 동시에 포졸란 반응으로 장기 압축강도 및 수밀성이 향상되도록 혼합되며 이산화규소, 산화알루미늄, 및 산화철이 함유된 플라이애시; 상기 포틀랜드 시멘트에 혼합되되, 경화된 콘크리트의 강도가 증가되도록 혼합되는 잔골재; 및 상기 포틀랜드 시멘트에 혼합되되, 표면에 기설정된 입도 범위를 가지되 적층을 위한 열경화성수지 및 경화제가 1.5~2.5:1의 중량비 비율로 혼합되어 형성된 에폭시수지에 침지된 표면에 모래 미립분 코팅층이 다단 적층 형성되며, 유리 재질의 분쇄폐유리로 구성되는 폐유리골재를 포함하되, 상기 폐유리골재의 입도 범위는 5~25mm로 설정되고, 상기 폐유리골재는 10mm의 직경을 갖는 체거름망을 통과시 10~30%의 통과율을 가지며, 20mm의 직경을 갖는 체거름망을 통과시 30~70%의 통과율을 갖는 입도분포로 설정되며, 상기 잔골재의 입도 범위는 0.1~5mm로 설정되며, 상기 모래 미립분의 입도는 0.01~0.10mm로 설정됨을 특징으로 하는 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트를 제공한다.In order to solve the above problems, the present invention provides Portland cement that hardens when mixed with water and contains calcium oxide, silicon dioxide, and aluminum oxide; It is mixed with the Portland cement, has latent hydraulic properties, reduces the amount of heat generated during the hydration reaction, produces Friedel's salt that fixes chloride ions during hardening, and is mixed to increase the long-term compressive strength of the hardened concrete. Calcium oxide, silicon dioxide, and aluminum oxide are added. , and blast furnace slag containing magnesium oxide; Fly ash containing silicon dioxide, aluminum oxide, and iron oxide mixed with the Portland cement to improve processability and alleviate curing heat while improving long-term compressive strength and watertightness through pozzolanic reaction; Fine aggregate mixed with the Portland cement to increase the strength of the hardened concrete; and a multi-stage sand fine coating layer on the surface immersed in an epoxy resin mixed with the Portland cement, having a particle size range preset on the surface, and formed by mixing a thermosetting resin and a hardener for lamination at a weight ratio of 1.5 to 2.5:1. It is formed by lamination and includes waste glass aggregate composed of crushed waste glass made of glass, the particle size range of the waste glass aggregate is set to 5 to 25 mm, and the waste glass aggregate is passed through a sieve with a diameter of 10 mm. It has a passing rate of 10 to 30% and is set to a particle size distribution with a passing rate of 30 to 70% when passing through a sieve with a diameter of 20 mm. The particle size range of the fine aggregate is set to 0.1 to 5 mm, and the sand fine powder Provides concrete using waste glass aggregate with an anti-slip surface coating, wherein the particle size is set to 0.01 to 0.10 mm.
한편, 본 발명은 유리 재질로 구비되는 폐유리가 기설정된 입도 범위를 갖도록 분쇄되어 분쇄폐유리가 준비되고, 기설정된 입도 범위를 갖는 모래 미립분이 기설정된 건조시간동안 건조되는 제1단계; 상기 분쇄폐유리가 열경화성수지 및 경화제가 혼합된 수지에 기설정된 침지시간동안 침지되는 제2단계; 상기 열경화성수지 및 상기 경화제가 혼합된 상기 수지에 침지된 상기 분쇄폐유리의 표면에 건조된 상기 모래 미립분이 복수회 적층되어 모래 미립분 코팅층이 다단 형성되어 폐유리골재가 제조되는 제3단계; 및 물, 포틀랜드 시멘트, 고로슬래그, 플라이애시, 잔골재 및 상기 폐유리골재가 혼합 및 경화되어 콘크리트가 제조되는 제4단계를 포함하되, 상기 제1단계에서, 상기 모래 미립분의 입도 범위는 0.01~0.10mm로 설정되고, 상기 건조시간은 20~30시간으로 설정되고, 상기 제2단계에서, 에폭시수지로서 구비된 상기 열경화성수지 및 경화제가 1.5~2.5:1의 중량비 비율로 기설정된 혼합시간동안 혼합되어 상기 수지가 준비되는 단계를 포함하되, 상기 혼합시간은 3~8분으로 설정되며, 상기 침지시간은 0.5~2분으로 설정되며, 상기 제3단계에서, 상기 폐유리골재의 입도 범위는 5~25mm로 설정되고, 상기 폐유리골재는 10mm의 직경을 갖는 체거름망을 통과시 10~30%의 통과율을 가지며, 20mm의 직경을 갖는 체거름망을 통과시 30~70%의 통과율을 갖는 입도분포로 설정되며, 상기 제4단계에서, 상기 잔골재의 입도 범위는 0.1~5mm로 설정됨을 특징으로 하는 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트의 제조방법을 제공한다.Meanwhile, the present invention includes a first step in which waste glass made of glass is pulverized to have a preset particle size range to prepare pulverized waste glass, and sand fine particles having a preset particle size range are dried for a preset drying time; A second step in which the crushed waste glass is immersed in a resin mixed with a thermosetting resin and a hardener for a preset immersion time; A third step in which the dried sand fine powder is stacked multiple times on the surface of the crushed waste glass immersed in the resin mixed with the thermosetting resin and the hardener to form a multi-stage sand fine powder coating layer to produce waste glass aggregate; And a fourth step in which concrete is produced by mixing and curing water, Portland cement, blast furnace slag, fly ash, fine aggregate, and the waste glass aggregate, wherein in the first step, the particle size range of the sand fine powder is 0.01 ~ It is set to 0.10 mm, the drying time is set to 20 to 30 hours, and in the second step, the thermosetting resin and the curing agent provided as an epoxy resin are mixed for a preset mixing time at a weight ratio of 1.5 to 2.5:1. and preparing the resin, wherein the mixing time is set to 3 to 8 minutes, the soaking time is set to 0.5 to 2 minutes, and in the third step, the particle size range of the waste glass aggregate is 5. It is set to ~25mm, and the waste glass aggregate has a pass rate of 10 to 30% when passing through a sieve with a diameter of 10 mm, and a particle size distribution with a pass rate of 30 to 70% when passing through a sieve with a diameter of 20 mm. It is set to, and in the fourth step, the particle size range of the fine aggregate is set to 0.1 to 5 mm. It provides a method of manufacturing concrete using waste glass aggregate coated with a surface for preventing slip.
상기의 해결 수단을 통하여, 본 발명은 다음과 같은 효과를 제공한다.Through the above solutions, the present invention provides the following effects.
첫째, 유리 재질의 분쇄폐유리 표면에 기설정된 입도 범위를 갖는 모래 미립분 코팅층이 다단 적층 형성된 폐유리골재가 포틀랜드 시멘트에 혼합시 증가된 표면 마찰에 의해 결합력이 증가되어 콘크리트의 강도가 현저히 개선될 수 있다. First, when waste glass aggregate, which is formed by layering a multi-stage coating layer of sand fine powder with a preset particle size range on the surface of crushed waste glass made of glass, is mixed with Portland cement, the bonding force increases due to increased surface friction, thereby significantly improving the strength of concrete. You can.
둘째, 열경화성수지 및 경화제가 1.5~2.5:1의 중량비 비율로 혼합된 수지가 침지된 분쇄폐유리의 표면에 건조된 모래 미립분이 1회 적층되되, 분쇄폐유리의 표면에 1차 적층된 모래 미립분에 다른 모래 미립분이 2차 적층되어 모래 미립분 코팅층이 형성되므로 시멘트의 혼합시에도 폐유리골재의 표면 마찰력이 안정적으로 유지될 수 있다. Second, dried sand fines are layered once on the surface of crushed waste glass immersed in a resin mixed with a thermosetting resin and hardener at a weight ratio of 1.5 to 2.5:1, and the sand fines are first layered on the surface of the crushed waste glass. Since other sand fines are secondarily layered to form a sand fine powder coating layer, the surface friction of the waste glass aggregate can be maintained stably even when mixed with cement.
셋째, 분쇄폐유리 표면에 모래 미립분 코팅층을 형성하여 분쇄폐유리를 굵은골재를 대체하여 포틀랜드 시멘트에 혼합하여 사용 가능하므로 경제적인 비용으로 동일한 강도를 발현하는 콘크리트를 제공할 수 있어 경제성 및 친환경성이 현저히 개선될 수 있다. Third, by forming a sand fine particle coating layer on the surface of the crushed waste glass, the crushed waste glass can be mixed with Portland cement as a substitute for coarse aggregate, thereby providing concrete that exhibits the same strength at an economical cost, and thus significantly improving economic efficiency and environmental friendliness.
도 1은 본 발명의 일실시예에 따른 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트의 제조방법을 나타낸 흐름도.
도 2는 본 발명의 일실시예에 따른 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트에서 폐유리골재를 나타낸 단면도.
도 3은 본 발명의 일실시예에 따른 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트에서 폐유리골재를 나타낸 예시도.
도 4는 본 발명의 일실시예에 따른 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트의 제조방법에서 분쇄폐유리를 나타낸 예시도.
도 5는 본 발명의 일실시예에 따른 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트의 제조방법에서 분쇄폐유리가 열경화성수지 및 경화제가 혼합된 수지에 침지되는 과정을 나타낸 예시도.
도 6은 본 발명의 일실시예에 따른 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트의 제조방법에서 분쇄폐유리의 표면에 건조된 모래 미립분이 적층되어 모래 미립분 코팅층이 형성되는 과정을 나타낸 예시도.
도 7은 본 발명의 일실시예에 따른 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트의 제조방법을 통해 제조된 폐유리골재를 나타낸 예시도.
도 8은 본 발명의 일실시예에 따른 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트의 제조방법을 통해 제조된 폐유리골재의 체의 호칭지수에 따른 통과량을 나타낸 그래프.
도 9는 본 발명에 따른 굵은골재의 입도분포곡선을 나타낸 그래프. Figure 1 is a flow chart showing a method of manufacturing concrete using waste glass aggregate coated with a surface for preventing slip according to an embodiment of the present invention.
Figure 2 is a cross-sectional view showing waste glass aggregate in concrete using waste glass aggregate surface-coated for slip prevention according to an embodiment of the present invention.
Figure 3 is an exemplary view showing waste glass aggregate in concrete using waste glass aggregate surface-coated for slip prevention according to an embodiment of the present invention.
Figure 4 is an exemplary view showing crushed waste glass in a method of manufacturing concrete using waste glass aggregate with a surface coating for slip prevention according to an embodiment of the present invention.
Figure 5 is an exemplary diagram showing a process in which crushed waste glass is immersed in a resin mixed with a thermosetting resin and a hardener in a method of manufacturing concrete using waste glass aggregate coated with a surface for preventing slip according to an embodiment of the present invention.
Figure 6 is an example showing the process in which dried sand fines are deposited on the surface of crushed waste glass to form a sand fine coating layer in the method of producing concrete using waste glass aggregate coated with a surface for preventing slip according to an embodiment of the present invention. do.
Figure 7 is an exemplary view showing waste glass aggregate manufactured through a method of producing concrete using waste glass aggregate with a surface coating for slip prevention according to an embodiment of the present invention.
Figure 8 is a graph showing the passage amount according to the nominal index of the sieve of waste glass aggregate produced through a method of producing concrete using waste glass aggregate with a surface coating for slip prevention according to an embodiment of the present invention.
Figure 9 is a graph showing the particle size distribution curve of coarse aggregate according to the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트 및 그의 제조방법를 상세히 설명한다.Hereinafter, with reference to the attached drawings, concrete using waste glass aggregate coated with a surface for preventing slip according to a preferred embodiment of the present invention and its manufacturing method will be described in detail.
도 1은 본 발명의 일실시예에 따른 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트의 제조방법을 나타낸 흐름도이고, 도 2는 본 발명의 일실시예에 따른 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트에서 폐유리골재를 나타낸 단면도이며, 도 3은 본 발명의 일실시예에 따른 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트에서 폐유리골재를 나타낸 예시도이고, 도 4는 본 발명의 일실시예에 따른 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트의 제조방법에서 분쇄폐유리를 나타낸 예시도이며, 도 5는 본 발명의 일실시예에 따른 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트의 제조방법에서 분쇄폐유리가 열경화성수지 및 경화제가 혼합된 수지에 침지되는 과정을 나타낸 예시도이고, 도 6은 본 발명의 일실시예에 따른 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트의 제조방법에서 분쇄폐유리의 표면에 건조된 모래 미립분이 적층되어 모래 미립분 코팅층이 형성되는 과정을 나타낸 예시도이며, 도 7은 본 발명의 일실시예에 따른 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트의 제조방법을 통해 제조된 폐유리골재를 나타낸 예시도이다. Figure 1 is a flow chart showing a method of manufacturing concrete using waste glass aggregate coated with a surface for preventing slip according to an embodiment of the present invention, and Figure 2 is a flow chart showing a method of manufacturing waste glass aggregate with a surface coating for preventing slip according to an embodiment of the present invention. It is a cross-sectional view showing waste glass aggregate in used concrete, Figure 3 is an exemplary view showing waste glass aggregate in concrete using waste glass aggregate with a surface coating for slip prevention according to an embodiment of the present invention, and Figure 4 is an example of waste glass aggregate according to an embodiment of the present invention. An exemplary diagram showing crushed waste glass in a method of manufacturing concrete using waste glass aggregate coated with a surface for preventing slip according to an embodiment of the present invention, and Figure 5 is a concrete using waste glass aggregate with a surface coating for preventing slip according to an embodiment of the present invention. An example diagram showing the process in which crushed waste glass is immersed in a resin mixed with a thermosetting resin and a hardener in the manufacturing method of , and Figure 6 shows the manufacturing of concrete using waste glass aggregate coated with a surface for preventing slip according to an embodiment of the present invention. In the method, dried sand fines are deposited on the surface of crushed waste glass to form a sand fine powder coating layer. Figure 7 is an illustration showing the process of forming a sand fine coating layer using waste glass aggregate with a surface coating for preventing slip according to an embodiment of the present invention. This is an example diagram showing waste glass aggregate manufactured through a concrete manufacturing method.
도 1 내지 도 7에서 보는 바와 같이, 본 발명의 일실시예에 따른 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트의 제조방법은 폐유리가 분쇄되어 분쇄폐유리가 준비되고, 모래 미립분이 건조(s10), 분쇄폐유리가 열경화성수지 및 경화제가 혼합된 수지에 침지(s20), 열경화성수지 및 경화제가 혼합된 수지에 침지된 분쇄폐유리의 표면에 건조된 모래 미립분이 적층되어 모래 미립분 코팅층이 형성되어 폐유리골재가 제조(s30), 물, 포틀랜드 시멘트, 고로슬래그, 플라이애시, 잔골재 및 폐유리골재가 혼합 및 경화되어 콘크리트가 제조(s40)되는 일련의 단계를 포함한다. As shown in Figures 1 to 7, in the method of manufacturing concrete using waste glass aggregate coated with a surface for preventing slip according to an embodiment of the present invention, the waste glass is pulverized to prepare crushed waste glass, and the sand fine powder is dried ( s10), crushed waste glass is immersed in a resin mixed with a thermosetting resin and a hardener (s20), dried sand fines are deposited on the surface of the crushed waste glass immersed in a resin mixed with a thermosetting resin and a hardener, forming a coating layer of sand fines. It includes a series of steps in which waste glass aggregate is formed (s30), and water, Portland cement, blast furnace slag, fly ash, fine aggregate, and waste glass aggregate are mixed and hardened to produce concrete (s40).
먼저, 유리 재질로 구비되는 폐유리가 기설정된 입도 범위를 갖도록 분쇄되어 분쇄폐유리(11)가 준비되고, 기설정된 입도 범위를 갖는 모래 미립분(12A)이 기설정된 건조시간동안 건조된다(s10). First, waste glass made of glass is pulverized to have a preset particle size range to prepare crushed waste glass 11, and sand fine powder 12A having a preset particle size range is dried for a preset drying time (s10) ).
여기서, 상기 분쇄폐유리(11)는 이산화규소(SiO2)를 포함하는 유리 재질로 구비되는 폐유리가 기설정된 입도 범위를 갖도록 분쇄되어 복수개 구비됨이 바람직하다. 이때, 상기 입도라 함은 상기 폐유리의 평균 지름을 의미한다. Here, the crushed waste glass 11 is preferably made of a glass material containing silicon dioxide (SiO 2 ) and is provided in plural pieces by being crushed to have a predetermined particle size range. At this time, the particle size means the average diameter of the waste glass.
또한, 상기 분쇄폐유리(11)의 입도 범위는 4.90~24.99mm로 설정될 수 있으며, 상기 모래 미립분(12A)의 입도 범위는 0.01~0.10mm로 설정됨이 바람직하다. 이에 따라, 후술되는 폐유리골재(10)의 입도 범위가 5~25mm로 설정되고, 상기 폐유리골재(10)는 10mm의 직경을 갖는 체거름망을 통과시 10~30%의 통과율을 가지며, 20mm의 직경을 갖는 체거름망을 통과시 30~70%의 통과율을 갖는 입도분포로 설정될 수 있다.In addition, the particle size range of the crushed waste glass 11 may be set to 4.90 to 24.99 mm, and the particle size range of the sand fine powder 12A is preferably set to 0.01 to 0.10 mm. Accordingly, the particle size range of the waste glass aggregate 10, which will be described later, is set to 5 to 25 mm, and the waste glass aggregate 10 has a passage rate of 10 to 30% when passing through a sieve with a diameter of 10 mm, and 20 mm When passing through a sieve with a diameter of , the particle size distribution can be set to have a passing rate of 30 to 70%.
그리고, 상기 모래 미립분(12A)이 기설정된 건조시간동안 건조되어 준비됨이 바람직하다. 이때, 상기 건조시간은 20~30시간으로 설정됨이 바람직하다. 이때, 상기 건조시간이 20시간 미만으로 설정되면 상기 모래 미립분(12A)에 흡착된 수분에 의해 상기 모래 미립분(12A)과 상기 분쇄폐유리(11) 간의 결합력이 저하될 우려가 있다. 반면에, 상기 건조시간이 30시간 초과로 설정되면 콘크리트 제조에 소요되는 시간이 증가되어 생산성 및 경제성이 저하될 우려가 있다. 따라서, 상기 건조시간은 20~30시간으로 설정됨에 따라 상기 모래 미립분(12A)에 흡착된 수분이 제거되면서 경제성이 개선될 수 있다. In addition, it is preferable that the sand fine powder (12A) is prepared by drying for a preset drying time. At this time, the drying time is preferably set to 20 to 30 hours. At this time, if the drying time is set to less than 20 hours, there is a risk that the bonding force between the sand fine powder (12A) and the crushed waste glass 11 may be reduced due to moisture adsorbed on the sand fine powder (12A). On the other hand, if the drying time is set to exceed 30 hours, the time required to manufacture concrete increases, which may reduce productivity and economic efficiency. Therefore, as the drying time is set to 20 to 30 hours, the moisture adsorbed on the sand fine powder 12A is removed, thereby improving economic efficiency.
한편, 상기 분쇄폐유리(11)가 열경화성수지 및 경화제가 혼합된 수지(13)에 기설정된 침지시간동안 침지된다(s20).Meanwhile, the crushed waste glass 11 is immersed in the resin 13 mixed with a thermosetting resin and a hardener for a preset immersion time (s20).
이때, 본 발명의 일실시예에서 상기 열경화성수지는 에폭시수지로서 구비됨이 바람직하다. 여기서, 상기 에폭시수지가 주제로서 사용되며, 상기 에폭시수지는 한번 경화된 이후에는 어떤 용매나 열을 가해도 녹지 않는 열경화성수지를 의미하는 것으로서 분자 내에 2개 이상의 에폭시기를 포함할 수 있다. 예를 들어, 상기 에폭시수지는 비스페놀 A형 에폭시수지, 비스페놀 F형 에폭시수지, 비스페놀 S형 에폭시 수지, 지환식 에폭시수지, 크레졸 노볼락형 에폭시수지, 및 비페닐형 에폭시수지를 포함하는 그룹으로부터 선택된 것이 바람직하며, 그 중에서도 비스페놀 A형 에폭시수지, 크레졸 노볼락형 에폭시수지가 더 바람직하다.At this time, in one embodiment of the present invention, the thermosetting resin is preferably provided as an epoxy resin. Here, the epoxy resin is used as the subject, and the epoxy resin refers to a thermosetting resin that does not melt even when applied to any solvent or heat once cured, and may contain two or more epoxy groups in the molecule. For example, the epoxy resin is selected from the group including bisphenol A-type epoxy resin, bisphenol F-type epoxy resin, bisphenol S-type epoxy resin, alicyclic epoxy resin, cresol novolak-type epoxy resin, and biphenyl-type epoxy resin. is preferable, and among them, bisphenol A type epoxy resin and cresol novolac type epoxy resin are more preferable.
그리고, 상기 경화제는 산 무수물 경화제 및 페놀계 경화제를 포함하여 구비될 수 있다. 이때, 산 무수물 경화제의 예에는 프탈산 무수물, 말레산 무수물, 트리멜리트산 무수물, 파이로멜리트산 무수물, 헥사히드로프탈산 무수물, 테트라히드로 프탈산 무수물, 메틸나딕산 무수물, 나딕산 무수물(nadic anhydride), 글루타르산 무수물, 메틸헥사히드로프탈산 무수물 및 메틸테트라히드로프탈산 무수물이 포함된다. 이들은 단독으로 또는 이들 중 2종 이상이 조합되어 사용될 수 있다. 이 산 무수물 경화제들 중 바람직한 것은 프탈산 무수물, 헥사히드로프탈산 무수물, 테트라히드로프탈산 무수물 및 메틸헥사히드로프탈산 무수물이다. 또한, 무색 또는 담황색인 산 무수물 경화제가 바람직하다. 그리고, 페놀계 경화제의 예에는 레졸형 페놀계 수지, 노볼락형 페놀계 수지 및 폴리히드록시스테린 수지가 포함된다. 이때, 레졸형 페놀계 수지의 예에는 아닐린 변성 레졸 수지 및 멜라민 변성 레졸 수지가 포함된다. 노볼락형 페놀계 수지의 예에는 페놀 노볼락 수지, 크레졸 노볼락 수지, tert-부틸페놀 노볼락 수지, 노닐페놀 노볼락 수지, 나프톨 노볼락 수지, 디시클로펜타디엔 변성 페놀 수지, 테르펜 변성 페놀계 수지, 트리페놀-메탄형 수지, (페닐렌 골격, 디페닐렌 골격 등을 갖는) 페놀 아르알킬 수지, 및 나프톨 아르알킬 수지가 포함된다. 폴리히드록시스티렌 수지의 예에는 폴리(p-히드록시스티렌)가 포함된다.Additionally, the curing agent may include an acid anhydride curing agent and a phenol-based curing agent. At this time, examples of acid anhydride curing agents include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylnadic anhydride, nadic anhydride, and glue. Included are taric anhydride, methylhexahydrophthalic anhydride, and methyltetrahydrophthalic anhydride. These may be used alone or in combination of two or more of them. Preferred among these acid anhydride curing agents are phthalic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride and methylhexahydrophthalic anhydride. Additionally, colorless or light yellow acid anhydride curing agents are preferred. And, examples of phenol-based curing agents include resol-type phenol-based resins, novolak-type phenol-based resins, and polyhydroxysterine resins. At this time, examples of the resol-type phenolic resin include aniline-modified resol resin and melamine-modified resol resin. Examples of novolak-type phenolic resins include phenol novolak resin, cresol novolak resin, tert-butylphenol novolak resin, nonylphenol novolak resin, naphthol novolak resin, dicyclopentadiene-modified phenol resin, and terpene-modified phenolic resin. Resins, triphenol-methane type resins, phenol aralkyl resins (having a phenylene skeleton, diphenylene skeleton, etc.), and naphthol aralkyl resins are included. Examples of polyhydroxystyrene resins include poly(p-hydroxystyrene).
또한, 에폭시수지로서 구비된 상기 열경화성수지 및 상기 경화제가 1.5~2.5:1의 중량비 비율로 기설정된 혼합시간동안 혼합되어 상기 수지(13)가 준비되는 단계를 포함하되, 상기 혼합시간은 3~8분으로 설정됨이 바람직하다. 예컨대, 에폭시수지로서 구비된 상기 열경화성수지 및 상기 경화제가 2.0:1의 비율로 기설정된 혼합시간동안 혼합되되, 상기 혼합시간은 5분으로 설정될 수 있다. In addition, it includes the step of preparing the resin 13 by mixing the thermosetting resin provided as an epoxy resin and the curing agent at a weight ratio of 1.5 to 2.5:1 for a preset mixing time, wherein the mixing time is 3 to 8. It is desirable to set it in minutes. For example, the thermosetting resin provided as an epoxy resin and the curing agent are mixed at a ratio of 2.0:1 for a preset mixing time, and the mixing time may be set to 5 minutes.
여기서, 상기 열경화성수지 및 상기 경화제가 1.5:1 미만의 중량비 비율로 혼합되거나 2.5:1를 초과하는 중량비 비율로 혼합되는 경우 상기 열경화성수지 또는 상기 경화제 중 어느 하나의 일부가 화학반응되지 않고 잔여되어 상기 모래 미립분(12A)과 상기 분쇄폐유리(11) 간의 결합력이 저하될 우려가 있다. 따라서, 상기 열경화성수지 및 상기 경화제가 1.5~2.5:1의 중량비 비율로 혼합되어 상기 수지(13)가 준비됨에 따라 상기 모래 미립분(12A)과 상기 분쇄폐유리(11) 간의 결합력이 현저히 개선될 수 있다. Here, when the thermosetting resin and the curing agent are mixed at a weight ratio of less than 1.5:1 or mixed at a weight ratio exceeding 2.5:1, a portion of either the thermosetting resin or the curing agent remains without chemical reaction and remains. There is a risk that the bonding force between the sand fine powder 12A and the crushed waste glass 11 may decrease. Therefore, as the thermosetting resin and the curing agent are mixed at a weight ratio of 1.5 to 2.5:1 to prepare the resin 13, the bonding force between the sand fine powder 12A and the crushed waste glass 11 will be significantly improved. You can.
또한, 상기 분쇄폐유리(11)가 상기 에폭시수지로서 구비된 상기 열경화성수지 및 상기 경화제가 혼합된 상기 수지(13)에 기설정된 침지시간동안 침지되되, 상기 침지시간은 0.5~2분으로 설정됨이 바람직하다. 예컨대, 상기 분쇄폐유리(11)가 상기 에폭시수지로서 구비된 상기 열경화성수지 및 상기 경화제가 혼합된 상기 수지(13)에 기설정된 침지시간동안 침지되되, 상기 침지시간이 1분으로 설정될 수 있다.In addition, the crushed waste glass 11 is immersed in the resin 13, which is a mixture of the thermosetting resin provided as the epoxy resin and the curing agent, for a preset immersion time, and the immersion time is set to 0.5 to 2 minutes. This is desirable. For example, the crushed waste glass 11 is immersed in the resin 13, which is a mixture of the thermosetting resin provided as the epoxy resin and the curing agent, for a preset immersion time, and the immersion time may be set to 1 minute. .
이때, 상기 침지시간이 0.5분 미만으로 설정되는 경우 상기 분쇄폐유리(11) 표면에 상기 수지가 흡착되지 않아 상기 모래 미립분(12A)과 상기 분쇄폐유리(11) 간의 결합력이 저하될 우려가 있다. 반면에, 상기 침지시간이 2분을 초과하는 경우 상기 수지가 경화됨에 따라 상기 모래 미립분(12A)과 상기 분쇄폐유리(11) 간의 결합력이 저하될 우려가 있다. 따라서, 상기 침지시가이 0.5~2분으로 설정됨에 따라 상기 분쇄폐유리(11) 표면에 흡착된 상기 수지를 매개로 상기 모래 미립분(12A)과 상기 분쇄폐유리(11) 간의 결합력이 현저히 개선될 수 있다. At this time, if the immersion time is set to less than 0.5 minutes, the resin is not adsorbed on the surface of the crushed waste glass 11, and there is a risk that the bonding force between the sand fine powder 12A and the crushed waste glass 11 may be reduced. there is. On the other hand, if the immersion time exceeds 2 minutes, there is a risk that the bonding force between the sand fine powder 12A and the crushed waste glass 11 may decrease as the resin hardens. Therefore, as the immersion time is set to 0.5 to 2 minutes, the bonding force between the sand fine powder 12A and the crushed waste glass 11 will be significantly improved through the resin adsorbed on the surface of the crushed waste glass 11. You can.
한편, 에폭시수지로서 구비된 상기 열경화성수지 및 상기 경화제가 혼합된 상기 수지(13)에 침지된 상기 분쇄폐유리(11A)의 표면에 건조된 상기 모래 미립분(12A)이 복수회 적층되어 모래 미립분 코팅층(12)이 다단 형성되어 폐유리골재(10)가 제조된다(s30). Meanwhile, the dried sand fine powder 12A is laminated multiple times on the surface of the crushed waste glass 11A immersed in the resin 13, which is a mixture of the thermosetting resin and the curing agent provided as an epoxy resin, to form sand fines. The powder coating layer 12 is formed in multiple stages to produce waste glass aggregate 10 (s30).
예컨대, 에폭시수지로서 구비된 상기 열경화성수지 및 상기 경화제가 혼합된 상기 수지(13)에 침지된 상기 분쇄폐유리(11A)의 표면에 건조된 상기 모래 미립분(12A)이 1회 적층된 후, 상기 분쇄폐유리(11A)의 표면에 1차 적층된 상기 모래 미립분(12A)에 다른 모래 미립분(12A)이 2차 적층되는 과정이 반복 수행됨에 따라 상기 모래 미립분 코팅층(12)이 다단 형성될 수 있다. For example, after the dried sand fine powder 12A is laminated once on the surface of the crushed waste glass 11A immersed in the resin 13, which is a mixture of the thermosetting resin and the curing agent provided as an epoxy resin, As the process of secondarily stacking other sand particles (12A) on the sand particles (12A) primarily deposited on the surface of the crushed waste glass (11A) is repeated, the sand particle coating layer (12) is formed in multiple stages. can be formed.
이때, 상기 수지(13)가 침지되지 않은 상기 분쇄폐유리(11A)가 도 4 및 도 5에서 11로 표시되며, 상기 수지(13)가 침지된 상기 분쇄폐유리(11A)가 도 6에서 11A로 표시됨으로 이해함이 바람직하다. 또한, 상기 모래 미립분(12A)이 도 6에서 12A로 표시되며, 상기 모래 미립분 코팅층(12)이 도 2에서 12로 표시됨으로 이해함이 바람직하다. At this time, the crushed waste glass 11A in which the resin 13 is not immersed is indicated by 11 in FIGS. 4 and 5, and the crushed waste glass 11A in which the resin 13 is immersed is indicated by 11A in FIG. 6. It is desirable to understand it as indicated by . In addition, it is preferable to understand that the sand fine powder 12A is indicated by 12A in FIG. 6, and the sand fine powder coating layer 12 is indicated by 12 in FIG. 2.
여기서, 상기 폐유리골재(10)의 입도 범위는 5~25mm로 설정되고, 상기 폐유리골재(10)는 10mm의 직경을 갖는 체거름망을 통과시 10~30%의 통과율을 가지며, 20mm의 직경을 갖는 체거름망을 통과시 30~70%의 통과율을 갖는 입도분포로 설정될 수 있다. 이러한 상기 폐유리골재(10)는 일반적으로 사용되는 천연의 굵은골재와 외관상으로도 비슷하면서 동일한 재질로 구성될 수 있다.Here, the particle size range of the waste glass aggregate 10 is set to 5 to 25 mm, and the waste glass aggregate 10 has a passage rate of 10 to 30% when passing through a sieve with a diameter of 10 mm, and a diameter of 20 mm. When passing through a sieve with , the particle size distribution can be set to have a passing rate of 30 to 70%. The waste glass aggregate 10 is similar in appearance to the commonly used natural coarse aggregate and may be made of the same material.
한편, 물, 포틀랜드 시멘트, 고로슬래그, 플라이애시, 잔골재 및 상기 폐유리골재(10)가 혼합 및 경화되어 콘크리트가 제조된다(s40).Meanwhile, water, Portland cement, blast furnace slag, fly ash, fine aggregate, and the waste glass aggregate 10 are mixed and hardened to produce concrete (s40).
상세히, 또한, 본 발명의 일실시예에 따른 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트는 시멘트, 고로슬래그, 플라이애시, 잔골재 및 폐유리골재(10)를 포함할 수 있다. In detail, concrete using waste glass aggregate coated with a surface for preventing slip according to an embodiment of the present invention may include cement, blast furnace slag, fly ash, fine aggregate, and waste glass aggregate (10).
여기서, 상기 포틀랜드 시멘트는 물과 혼합시 경화되며 산화칼슘(CaO,calcium oxide), 이산화규소(실리카(Si02),silicon dioxide), 산화알루미늄(알루미나(Al2O3), Aluminum oxide), 및 산화철((Fe2O3),iron oxide)이 함유되어 구비될 수 있다. 여기서, 본 발명의 일실시예에 따른 상기 포틀랜드 시멘트는 1종 보통 포틀랜드 시멘트(OPC,ordinary portland cement)로 구비될 수 있다. 이때, 상기 포틀랜드 시멘트는 일반적으로 석회석과 추가첨가물을 일정 비율로 혼합되어 미분쇄된 후 로터리 킬른(rotary kiln) 등에 의하여 소성됨에 따라 형성된 작은 덩어리에 응결조절제 등을 첨가하여 미분쇄하는 과정을 통해 제조될 수 있다. 또한, 상기 포틀랜드 시멘트의 주원료는 산화칼슘, 이산화규소, 산화알루미늄 및 산화철을 포함함이 바람직하다. 특히, 상기 산화칼슘의 공급을 위해 석회석이 전체 원료의 약 85% 정도를 차지함이 바람직하다.Here, the Portland cement hardens when mixed with water and consists of calcium oxide (CaO), silicon dioxide (silica (Si0 2 ), silicon dioxide), aluminum oxide (Al 2 O 3 ), and It may be provided containing iron oxide ((Fe 2 O 3 ), iron oxide). Here, the Portland cement according to an embodiment of the present invention may be provided as a type of ordinary Portland cement (OPC). At this time, the Portland cement is generally manufactured through a process of mixing limestone and additional additives at a certain ratio and finely pulverizing them, then adding a setting regulator, etc. to the small lumps formed as they are fired by a rotary kiln, etc., and finely pulverizing them. It can be. In addition, the main raw materials of the Portland cement preferably include calcium oxide, silicon dioxide, aluminum oxide, and iron oxide. In particular, for the supply of calcium oxide, it is preferable that limestone accounts for about 85% of the total raw materials.
그리고, 상기 고로슬래그는 상기 포틀랜드 시멘트에 혼합되되, 잠재수경성을 가지며 수화반응시 발열량이 저감되고 경화시 염화물이온을 고정하는 프리델씨염을 생성하며 경화 콘크리트의 장기압축강도가 증가되도록 혼합되며 산화칼슘, 이산화규소, 산화알루미늄, 및 산화마그네슘이 함유되어 구비될 수 있다. In addition, the blast furnace slag is mixed with the Portland cement, has latent hydraulic properties, reduces the amount of heat generated during the hydration reaction, generates Friedel's salt that fixes chloride ions during hardening, and is mixed to increase the long-term compressive strength of the hardened concrete, and calcium oxide is added. , silicon dioxide, aluminum oxide, and magnesium oxide may be contained.
여기서, 고로슬래그란 제철소 고로(高爐)에서 선철을 제조하는 과정에서 발생하는 생성물을 의미하며 주원료인 철광석과 부원료인 코크스 및 석회석의 회분에 존재하는 이산화규소와 산화알루미늄 등이 고온에서 석회와 반응하여 생성된다. Here, blast furnace slag refers to a product generated during the process of manufacturing pig iron in a steel mill blast furnace. Silicon dioxide and aluminum oxide present in the ash of iron ore, which is the main raw material, and coke and limestone, which are secondary raw materials, react with lime at high temperature. is created.
이때, 일반적으로 상기 고로슬래그 전체 성분 중 약 30%가 이산화규소로 구성되며, 상기 고로슬래그는 상기 포틀랜드 시멘트와 비교하여 산화칼슘의 함유량이 상대적으로 적고, 이산화규소 및 산화알루미늄이 각각 약 10% 정도 더 함유되는 특징이 있다.At this time, generally, about 30% of the total components of the blast furnace slag are composed of silicon dioxide, and the blast furnace slag has a relatively low calcium oxide content compared to the Portland cement, and about 10% each of silicon dioxide and aluminum oxide. There are more features included.
또한, 고로슬래그의 구성 원소는 일반 암석과 같고 성분은 시멘트와 유사하며 냉각방식에 따라 급냉슬래그 및 서냉슬래그로 구분된다. 상세히, 급냉슬래그의 경우 화학성분이 포틀랜드 시멘트와 유사한 수경성으로 슬래그 시멘트의 원료로 사용되며, 급냉슬래그는 비료, 도로 및 토목용 골재 등의 활용을 통한 자원화률 증대로 국내자원의 절약, 환경오염 저감 등 경제적, 환경적 측면에서 커다란 효용을 창출하는 환경친화적 재료이다. In addition, the constituent elements of blast furnace slag are the same as those of ordinary rocks and its composition is similar to cement, and it is divided into quick-cooled slag and slow-cooled slag depending on the cooling method. In detail, in the case of quenched slag, the chemical composition is similar to Portland cement and is used as a raw material for slag cement. The quenched slag increases the resource conversion rate through the use of fertilizers, road and civil engineering aggregates, etc., thereby saving domestic resources and reducing environmental pollution. It is an environmentally friendly material that creates great benefits in economic and environmental terms.
그리고, 고로슬래그 미분말은 철을 생산하는 용광로 속에서 철광석의 암석성분이 녹아 쇳물 위에 부유하게 되는데, 이것을 흘러내리게 하여 물 또는 공기로 급격히 냉각시켜 작은 모래 입자 모양으로 만든 다음 이것을 미분쇄기(roller mill)로 미분말이 되도록 분쇄하여 제조된 미분말을 의미한다. In addition, the fine powder of blast furnace slag is made by melting the rock components of iron ore in a furnace that produces iron and floating on the molten iron. This is allowed to flow down and rapidly cooled with water or air to form small sand particles, which are then placed in a roller mill. It refers to a fine powder manufactured by pulverizing it into a fine powder.
이러한 고로슬래그는 잠재수경성을 가지고 있으며, 그 자체로 경화하는 성질은 미약하지만, 알칼리 자극으로 경화하는 특징이 있다. 또한, 고로슬래그는 포틀랜드 시멘트와 혼합할 경우 수산화칼슘이나 황산염의 작용에 의해 경화가 촉진되고 포틀랜드 시멘트만으로는 얻을 수 없는 우수한 콘크리트의 특성을 얻을 수 있다. 이때, 잠재수경성은 수산화기를 포함하는 알칼리시제가 소석회, 황산염 등의 자극을 받으면 박막이 파괴되며 이온이 용출됨에 따라 경화되는 특징을 의미한다.This blast furnace slag has latent hydraulic properties, and although its hardening property itself is weak, it has the characteristic of hardening with alkali stimulation. In addition, when blast furnace slag is mixed with Portland cement, hardening is accelerated by the action of calcium hydroxide or sulfate, and excellent concrete properties that cannot be obtained with Portland cement alone can be obtained. At this time, potential hydraulic hardening refers to the characteristic that when an alkaline reagent containing a hydroxyl group is stimulated by slaked lime, sulfate, etc., the thin film is destroyed and hardened as ions are eluted.
또한, 고로슬래그는 경화시 치밀한 조직으로 경화되어 염화물이온의 침투를 억제하며, 산화알루미늄 성분이 작용하여 염화물이온을 고정하는 프리델씨염(3CaO·Al2O3·CaCl2·10H20)를 생성한다.In addition, blast furnace slag hardens into a dense structure when hardened, suppressing the penetration of chloride ions, and contains Friedel's salt (3CaO·Al 2 O 3 ·CaCl 2 ·10H 2 0), which fixes chloride ions through the action of aluminum oxide. Create.
그리고, 상기 플라이애시는 상기 포틀랜드 시멘트에 혼합되되, 가공성이 개선되고 경화열이 완화됨과 동시에 포졸란 반응으로 장기 압축강도 및 수밀성이 향상되도록 혼합되며 이산화규소, 산화알루미늄, 및 산화철이 함유되어 구비될 수 있다. In addition, the fly ash is mixed with the Portland cement to improve processability, alleviate curing heat, and improve long-term compressive strength and watertightness through pozzolanic reaction, and may contain silicon dioxide, aluminum oxide, and iron oxide. there is.
여기서, 상기 플라이애시는 석탄의 연소시 잔류되는 불연성분으로 일반적으로 화력발전소 등에서 사용되는 석탄재로부터 추출되며, 이때 석탄재는 플라이애시(fly ash)와 바텀애시(bottom ash)로 구분된다. 상세히, 상기 플라이애시는 석탄이나 중유를 보일러 연료로 사용하는 화력발전소에서 연료의 연소과정에서 발생되는 회분을 굴뚝에서 전기 집진기로 포집한 연소재로서, 구상(球狀)인 입자 크기는 시멘트와 같은 정도이며 이산화규소 및 산화알루미늄이 주성분이고 산화철이 함유될 수 있다. 이러한 플라이애시는 상기 포틀랜드 시멘트에 혼합되어 사용하면 가공성이 개선되고 경화열이 완화됨과 더불어 포졸란 반응으로 장기적인 강도 및 수밀성이 향상되는 것으로 알려져 있다. Here, the fly ash is a non-combustible component remaining during combustion of coal and is generally extracted from coal ash used in thermal power plants, etc. At this time, coal ash is divided into fly ash and bottom ash. In detail, the fly ash is a combustion material obtained by collecting ash generated during the combustion process of fuel in a thermal power plant using coal or heavy oil as boiler fuel in the chimney using an electric precipitator. The fly ash is a spherical particle size similar to that of cement. The main ingredients are silicon dioxide and aluminum oxide, and may contain iron oxide. It is known that when such fly ash is used mixed with the Portland cement, processability is improved, curing heat is alleviated, and long-term strength and watertightness are improved through pozzolanic reaction.
여기서, 포졸란 반응은 포졸란 물질에서 용출된 이산화규소 및 산화알루미늄과 같은 가용성분이 시멘트 구성 화합물(C3S, C2S 등)에 수화시 생성된 수산화칼슘(Ca(OH)2)과 서서히 반응하여 불용성 칼슘실리케이트 수화물(C-S-H gel) 이나 칼슘알루미네이트 수화물(C-A-H gel)을 형성하여 그 조직을 더욱 치밀하게 만드는 반응을 의미한다. 그리고, 포졸란 물질은 그 자신만으로는 수경성을 갖지 않지만, 물에 용해 되어 있는 수산화칼슘과 상온에서 서서히 반응하여 물에 녹지 않는 화합물을 만들 수 있는 미분상태의 물질을 일컫는다. 이러한 포졸란 물질에는 응회암, 규조토와 같은 자연에서 얻을 수 있는 천연 포졸란과, 소성 점토, 실리카 겔, 실리카 흄, 플라이애시 등과 같이 인공적으로 만들어진 인공 포졸란이 있다. 이때, 고로슬래그의 잠재수경성과 플라이애시의 포졸란 반응은 물과 접촉하여 경화되는 공통점이 있으나, 잠재수경성은 소석회, 황산염 등의 알카리자극제와 반응하여 경화되고, 포졸란 반응은 수산화칼슘과 2차 반응하여 경화되는 차이점이 있다.Here, the pozzolanic reaction occurs when soluble components such as silicon dioxide and aluminum oxide eluted from the pozzolanic material slowly react with calcium hydroxide (Ca(OH)2) generated when hydrating cement constituent compounds (C3S, C2S, etc.) to form insoluble calcium silicate hydrate ( It refers to a reaction that makes the tissue more dense by forming C-S-H gel or calcium aluminate hydrate (C-A-H gel). In addition, pozzolanic materials do not have hydraulic properties on their own, but refer to materials in a finely divided state that can slowly react with calcium hydroxide dissolved in water at room temperature to create compounds that are insoluble in water. These pozzolanic materials include natural pozzolans that can be obtained from nature, such as tuff and diatomaceous earth, and artificial pozzolans that are made artificially, such as calcined clay, silica gel, silica fume, and fly ash. At this time, the latent hydraulic hardening of blast furnace slag and the pozzolanic reaction of fly ash have something in common: hardening by contact with water. However, the latent hydraulic hardening hardens by reacting with alkaline stimulants such as slaked lime and sulfate, and the pozzolanic reaction hardens by secondary reaction with calcium hydroxide. There is a difference.
그리고, 상기 잔골재는 상기 포틀랜드 시멘트에 혼합되되, 경화된 콘크리트의 강도가 증가되도록 혼합될 수 있으며, 상기 잔골재의 입도 범위는 0.1~5mm로 설정될 수 있다. 이때, 상기 잔골재는 국내산 부순 잔골재와 세척사를 혼합하여 구비될 수 있다.Additionally, the fine aggregate may be mixed with the Portland cement to increase the strength of the hardened concrete, and the particle size range of the fine aggregate may be set to 0.1 to 5 mm. At this time, the fine aggregate may be provided by mixing domestically produced crushed fine aggregate and washed sand.
또한, 상기 폐유리골재(10)는 상기 포틀랜드 시멘트에 혼합되되, 표면에 기설정된 입도 범위를 갖는 상기 모래 미립분 코팅층(12)이 다단 적층 형성되며, 유리 재질의 분쇄폐유리(11)로 구성됨이 바람직하다. In addition, the waste glass aggregate 10 is mixed with the Portland cement, and the sand fine powder coating layer 12 having a preset particle size range is formed on the surface by lamination in multiple stages, and is composed of crushed waste glass 11 made of glass. This is desirable.
이때, 상기 모래 미립분 코팅층(12)은 상기 모래 미립분(12A)의 적층을 위한 열경화성수지 및 경화제가 혼합된 수지(13)를 포함하며, 상기 모래 미립분 코팅층(12)은 상기 수지(13)가 침지된 상기 분쇄폐유리(11)의 표면에 상기 모래 미립분(12A)이 다단으로 적층 형성됨이 바람직하다. At this time, the sand fine powder coating layer 12 includes a resin 13 mixed with a thermosetting resin and a hardener for stacking the sand fine powder 12A, and the sand fine powder coating layer 12 includes the resin 13. ) It is preferable that the sand fine powder 12A is laminated in multiple stages on the surface of the crushed waste glass 11 immersed.
이때, 상기 열경화성수지는 에폭시수지로서 구비되며, 상기 수지(13)는 상기 열경화성수지 및 경화제가 1.5~2.5:1의 비율로 혼합되어 형성됨이 바람직하다.At this time, the thermosetting resin is provided as an epoxy resin, and the resin 13 is preferably formed by mixing the thermosetting resin and the curing agent in a ratio of 1.5 to 2.5:1.
그리고, 상기 폐유리골재(10)의 입도 범위는 5~25mm로 설정되고, 상기 폐유리골재는 10mm의 직경을 갖는 체거름망을 통과시 10~30%의 통과율을 가지며, 20mm의 직경을 갖는 체거름망을 통과시 30~70%의 통과율을 갖는 입도분포로 설정됨이 바람직하다. 또한, 상기 모래 미립분의 입도는 0.01~0.10mm로 설정됨이 바람직하다. In addition, the particle size range of the waste glass aggregate 10 is set to 5 to 25 mm, and the waste glass aggregate has a passage rate of 10 to 30% when passing through a sieve with a diameter of 10 mm, and a sieve with a diameter of 20 mm. It is desirable to set the particle size distribution to have a passing rate of 30 to 70% when passing through the filter. Additionally, the particle size of the sand fine powder is preferably set to 0.01 to 0.10 mm.
더욱이, 본 발명에 따른 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트는 혼화제를 더 포함할 수 있다. 이때, 상기 혼화제는 상기 포틀랜드 시멘트, 상기 고로슬래그, 상기 플라이애시, 및 상기 보강골재가 혼합된 혼합물의 입자를 분산시켜 유동성을 제공하며 콘크리트에 침투되는 염화물이온에 의한 부식이 억제되도록 혼합될 수도 있다. 이때, 상기 혼화제는 유연첨가제와, 염분흡착제와, 방청제와, 탄산리튬을 포함할 수 있다. Moreover, concrete using waste glass aggregate with a surface coating for preventing slip according to the present invention may further include an admixture. At this time, the admixture disperses the particles of the mixture of the Portland cement, the blast furnace slag, the fly ash, and the reinforcing aggregate to provide fluidity and may be mixed to suppress corrosion caused by chloride ions penetrating into the concrete. . At this time, the admixture may include a softening additive, a salt adsorbent, a rust preventive, and lithium carbonate.
또한, 본 발명에 따른 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트는 20~55kg/㎥의 내부식성 보강섬유를 더 포함하되, 상기 보강섬유는 가장 바람직하게는 콘크리트에 혼입시 콘크리트의 인성(toughness) 및 내구성을 증가시키는 비정질의 강섬유로 구비됨이 바람직하다. 이때, 상기 강섬유는 0.4~0.8mm의 직경으로 형성되는 원통 형상으로 구비될 수 있으며, 상기 강섬유의 길이방향 양단부는 포틀랜드 시멘트, 고로슬래그, 플라이애시, 잔골재, 굵은골재와의 상호간 접촉면적이 증가되도록 기설정된 형태로 절곡 형성될 수 있다. 이에 따라, 상기 보강섬유가 상기 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트에 포함되어 상기 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트의 각 구성요소와 접착 및 경화됨에 따라 최종 제조되는 콘크리트의 결착력이 증가될 수 있다. In addition, the concrete using waste glass aggregate coated with an anti-slip surface according to the present invention further contains 20 to 55 kg/㎥ of corrosion-resistant reinforcing fibers, and the reinforcing fibers most preferably affect the toughness of concrete when mixed into concrete. ) and is preferably provided with amorphous steel fibers that increase durability. At this time, the steel fiber may be provided in a cylindrical shape with a diameter of 0.4 to 0.8 mm, and both longitudinal ends of the steel fiber are adjusted to increase the mutual contact area with Portland cement, blast furnace slag, fly ash, fine aggregate, and coarse aggregate. It can be bent and formed into a preset shape. Accordingly, the reinforcing fibers are included in the concrete using the waste glass aggregate coated with the anti-slip surface, and are bonded and hardened with each component of the concrete using the waste glass aggregate with the anti-slip surface coated, resulting in the cohesion of the final manufactured concrete. This can be increased.
그리고, 본 발명에 따른 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트는 상기 포틀랜드 시멘트 5~15 중량%와, 상기 고로슬래그 30~50 중량%와, 상기 플라이애시 10~30 중량%와, 상기 잔골재 7~9 중량%와, 상기 폐유리골재 9~15 중량%와, 상기 보강섬유 1~7 중량%와, 상기 혼화제 4.25~7.75 중량%를 포함할 수 있다. In addition, the concrete using waste glass aggregate coated with an anti-slip surface according to the present invention includes 5 to 15% by weight of Portland cement, 30 to 50% by weight of blast furnace slag, 10 to 30% by weight of fly ash, and the fine aggregate. It may include 7 to 9% by weight, 9 to 15% by weight of the waste glass aggregate, 1 to 7% by weight of the reinforcing fiber, and 4.25 to 7.75% by weight of the admixture.
한편, 도 8은 본 발명의 일실시예에 따른 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트의 제조방법을 통해 제조된 폐유리골재의 체의 호칭지수에 따른 통과량을 나타낸 그래프이고, 도 9는 본 발명에 따른 굵은골재의 입도분포곡선을 나타낸 그래프이다. Meanwhile, Figure 8 is a graph showing the passage amount according to the nominal index of the sieve of waste glass aggregate manufactured through a method of producing concrete using waste glass aggregate with a surface coating for slip prevention according to an embodiment of the present invention, and Figure 9 is a graph showing the particle size distribution curve of the coarse aggregate according to the present invention.
도 8 내지 도 9에서 보는 바와 같이, 상기 폐유리골재(10)는 10mm의 직경을 갖는 메쉬가 구비된 체거름망을 통과시 10~30%의 통과율을 가지며, 20mm의 직경을 갖는 체거름망을 통과시 30~70%의 통과율을 갖는 입도분포로 설정될 수 있다. 또는, 상기 폐유리골재(10)는 10mm의 직경을 갖는 메쉬가 구비된 체거름망을 통과시 40~60%의 통과량을 가지며, 20mm의 직경을 갖는 체거름망을 통과시 80~90%의 통과량을 갖는 입도분포로 설정될 수 있다.As shown in Figures 8 and 9, the waste glass aggregate 10 has a passage rate of 10 to 30% when passing through a sieve with a mesh having a diameter of 10 mm, and passes through a sieve with a diameter of 20 mm. It can be set to a particle size distribution with a pass rate of 30 to 70%. Alternatively, the waste glass aggregate 10 has a passage rate of 40 to 60% when passing through a sieve mesh with a diameter of 10 mm, and 80 to 90% of the waste glass aggregate 10 passes through a sieve mesh with a diameter of 20 mm. It can be set to a particle size distribution with a certain amount.
이처럼, 본 발명은 유리 재질의 분쇄폐유리 표면에 기설정된 입도 범위를 갖는 모래 미립분 코팅층이 다단 적층 형성된 폐유리골재가 포틀랜드 시멘트에 혼합시 증가된 표면 마찰에 의해 결합력이 증가되어 경화된 콘크리트의 강도가 현저히 개선될 수 있다. In this way, the present invention is a waste glass aggregate formed by multi-layering a coating layer of sand fine particles having a preset particle size range on the surface of crushed waste glass made of glass, and when mixed with Portland cement, the bonding force is increased due to increased surface friction, thereby forming the hardened concrete. Strength can be significantly improved.
또한, 에폭시수지로서 구비된 열경화성수지 및 경화제가 1.5~2.5:1의 비율로 기설정된 혼합시간동안 혼합된 수지에 기설정된 침지시간동안 침지된 분쇄폐유리의 표면에 기설정된 건조시간동안 건조된 모래 미립분을 복수회 적층하여 모래 미립분 코팅층이 다단 형성될 수 있다. 즉, 상기 수지가 침지된 분쇄폐유리의 표면에 건조된 모래 미립분이 1회 적층되되, 분쇄폐유리의 표면에 1차 적층된 모래 미립분에 다른 모래 미립분이 2차 적층되어 모래 미립분 코팅층이 형성될 수 있다. 따라서, 포틀랜드 시멘트의 혼합시에도 폐유리골재의 표면 마찰력이 안정적으로 유지될 수 있다. In addition, sand dried for a preset drying time on the surface of crushed waste glass immersed in the resin mixed for a preset mixing time with a thermosetting resin and hardener provided as an epoxy resin for a preset mixing time of 1.5 to 2.5:1. A sand fine powder coating layer can be formed in multiple stages by stacking the fine powder multiple times. That is, dried sand fines are laminated once on the surface of the crushed waste glass in which the resin is immersed, and other sand fines are secondarily laminated on the sand fines first laminated on the surface of the crushed waste glass to form a sand fine coating layer. can be formed. Therefore, the surface friction of the waste glass aggregate can be stably maintained even when mixing with Portland cement.
그리고, 분쇄폐유리 표면에 모래 미립분 코팅층을 형성하여 분쇄폐유리를 굵은골재를 대체하여 포틀랜드 시멘트에 혼합하여 사용 가능하므로 경제적인 비용으로 동일한 강도를 발현하는 콘크리트를 제공할 수 있어 경제성 및 친환경성이 현저히 개선될 수 있다. In addition, by forming a coating layer of sand fine powder on the surface of the crushed waste glass, the crushed waste glass can be used by mixing it with Portland cement as a replacement for coarse aggregate, so it is possible to provide concrete with the same strength at an economical cost, making it economical and eco-friendly. This can be significantly improved.
이때, 이상에서 기재된 "포함하다", "구성하다" 또는 "구비하다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재할 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.At this time, terms such as “include,” “comprise,” or “equipped” described above mean that the corresponding component may be present, unless specifically stated to the contrary, excluding other components. It should be interpreted as being able to include other components. All terms, including technical or scientific terms, unless otherwise defined, have the same meaning as generally understood by a person of ordinary skill in the technical field to which the present invention pertains. Commonly used terms, such as terms defined in a dictionary, should be interpreted as consistent with the contextual meaning of the related technology, and should not be interpreted in an idealized or overly formal sense unless explicitly defined in the present invention.
이상 설명한 바와 같이, 본 발명은 상술한 각 실시예에 한정되는 것은 아니며, 본 발명의 청구항에서 청구하는 범위를 벗어남 없이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 변형 실시되는 것은 가능하며, 이러한 변형 실시는 본 발명의 범위에 속한다.As explained above, the present invention is not limited to the above-described embodiments, and modifications and implementations can be made by those skilled in the art without departing from the scope of the claims of the present invention. And such modifications fall within the scope of the present invention.
10: 폐유리골재 11: 분쇄폐유리
12: 모래 미립분 코팅층10: Waste glass aggregate 11: Crushed waste glass
12: Sand fine powder coating layer
Claims (10)
상기 포틀랜드 시멘트에 혼합되되, 잠재수경성을 가지며 수화반응시 발열량이 저감되고 경화시 염화물이온을 고정하는 프리델씨염을 생성하며 경화 콘크리트의 장기압축강도가 증가되도록 혼합되며 산화칼슘, 이산화규소, 산화알루미늄, 및 산화마그네슘이 함유된 고로슬래그;
상기 포틀랜드 시멘트에 혼합되되, 가공성이 개선되고 경화열이 완화됨과 동시에 포졸란 반응으로 장기 압축강도 및 수밀성이 향상되도록 혼합되며 이산화규소, 산화알루미늄, 및 산화철이 함유된 플라이애시;
상기 포틀랜드 시멘트에 혼합되되, 경화된 콘크리트의 강도가 증가되도록 혼합되는 잔골재; 및
상기 포틀랜드 시멘트에 혼합되되, 표면에 기설정된 입도 범위를 가지되 적층을 위한 열경화성수지 및 경화제가 1.5~2.5:1의 중량비 비율로 혼합되어 형성된 에폭시수지에 침지된 표면에 모래 미립분 코팅층이 다단 적층 형성되며, 유리 재질의 분쇄폐유리로 구성되는 폐유리골재를 포함하되,
상기 폐유리골재의 입도 범위는 5~25mm로 설정되고, 상기 폐유리골재는 10mm의 직경을 갖는 체거름망을 통과시 10~30%의 통과율을 가지며, 20mm의 직경을 갖는 체거름망을 통과시 30~70%의 통과율을 갖는 입도분포로 설정되며, 상기 잔골재의 입도 범위는 0.1~5mm로 설정되며,
상기 모래 미립분의 입도는 0.01~0.10mm로 설정됨을 특징으로 하는 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트.Portland cement, which hardens when mixed with water and contains calcium oxide, silicon dioxide, and aluminum oxide;
It is mixed with the Portland cement, has latent hydraulic properties, reduces heat generation during hydration reaction, produces Friedel's salt that fixes chloride ions during hardening, and is mixed to increase the long-term compressive strength of hardened concrete. Calcium oxide, silicon dioxide, and aluminum oxide are added. , and blast furnace slag containing magnesium oxide;
Fly ash containing silicon dioxide, aluminum oxide, and iron oxide mixed with the Portland cement to improve processability and alleviate curing heat while improving long-term compressive strength and watertightness through pozzolanic reaction;
Fine aggregate mixed with the Portland cement to increase the strength of the hardened concrete; and
A sand fine coating layer is laminated in multiple stages on a surface immersed in an epoxy resin mixed with the Portland cement, having a particle size range preset on the surface, and formed by mixing a thermosetting resin and a hardener for lamination at a weight ratio of 1.5 to 2.5:1. It is formed and includes waste glass aggregate composed of crushed waste glass made of glass,
The particle size range of the waste glass aggregate is set to 5 to 25 mm, and the waste glass aggregate has a passage rate of 10 to 30% when passing through a sieve with a diameter of 10 mm, and 30% when passing through a sieve with a diameter of 20 mm. The particle size distribution is set to have a passage rate of ~70%, and the particle size range of the fine aggregate is set to 0.1 to 5 mm,
Concrete using waste glass aggregate with a surface coating for slip prevention, characterized in that the particle size of the sand fine powder is set to 0.01 to 0.10 mm.
상기 모래 미립분 코팅층은 상기 에폭시수지가 침지된 상기 분쇄폐유리의 표면에 건조된 상기 모래 미립분이 1회 적층되되, 상기 분쇄폐유리의 표면에 1차 적층된 상기 모래 미립분에 다른 모래 미립분이 2차 적층되어 형성됨을 특징으로 하는 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트.According to claim 1,
The sand fine powder coating layer is formed by layering the dried sand fine powder once on the surface of the crushed waste glass immersed in the epoxy resin, and other sand fine powders are added to the sand fine powder first laminated on the surface of the crushed waste glass. Concrete using waste glass aggregate with an anti-slip surface coating, characterized in that it is formed by secondary lamination.
상기 분쇄폐유리가 열경화성수지 및 경화제가 혼합된 수지에 기설정된 침지시간동안 침지되는 제2단계;
상기 열경화성수지 및 상기 경화제가 혼합된 상기 수지에 침지된 상기 분쇄폐유리의 표면에 건조된 상기 모래 미립분이 복수회 적층되어 모래 미립분 코팅층이 다단 형성되어 폐유리골재가 제조되는 제3단계; 및
물, 포틀랜드 시멘트, 고로슬래그, 플라이애시, 잔골재 및 상기 폐유리골재가 혼합 및 경화되어 콘크리트가 제조되는 제4단계를 포함하되,
상기 제1단계에서, 상기 모래 미립분의 입도 범위는 0.01~0.10mm로 설정되고, 상기 건조시간은 20~30시간으로 설정되고,
상기 제2단계에서, 에폭시수지로서 구비된 상기 열경화성수지 및 경화제가 1.5~2.5:1의 중량비 비율로 기설정된 혼합시간동안 혼합되어 상기 수지가 준비되는 단계를 포함하되, 상기 혼합시간은 3~8분으로 설정되며, 상기 침지시간은 0.5~2분으로 설정되며,
상기 제3단계에서, 상기 폐유리골재의 입도 범위는 5~25mm로 설정되고, 상기 폐유리골재는 10mm의 직경을 갖는 체거름망을 통과시 10~30%의 통과율을 가지며, 20mm의 직경을 갖는 체거름망을 통과시 30~70%의 통과율을 갖는 입도분포로 설정되며,
상기 제4단계에서, 상기 잔골재의 입도 범위는 0.1~5mm로 설정됨을 특징으로 하는 슬립방지용 표면 코팅된 폐유리골재를 이용한 콘크리트의 제조방법. A first step in which waste glass made of glass is pulverized to have a preset particle size range to prepare pulverized waste glass, and sand fine particles having a preset particle size range are dried for a preset drying time;
A second step in which the crushed waste glass is immersed in a resin mixed with a thermosetting resin and a hardener for a preset immersion time;
A third step in which the dried sand fine powder is stacked multiple times on the surface of the crushed waste glass immersed in the resin mixed with the thermosetting resin and the hardener to form a multi-stage sand fine powder coating layer to produce waste glass aggregate; and
It includes a fourth step in which concrete is produced by mixing and curing water, Portland cement, blast furnace slag, fly ash, fine aggregate, and the waste glass aggregate,
In the first step, the particle size range of the sand fine powder is set to 0.01 to 0.10 mm, and the drying time is set to 20 to 30 hours,
In the second step, the thermosetting resin and the curing agent provided as an epoxy resin are mixed at a weight ratio of 1.5 to 2.5:1 for a preset mixing time to prepare the resin, and the mixing time is 3 to 8. It is set in minutes, and the immersion time is set at 0.5 to 2 minutes,
In the third step, the particle size range of the waste glass aggregate is set to 5 to 25 mm, and the waste glass aggregate has a passage rate of 10 to 30% when passing through a sieve with a diameter of 10 mm, and has a diameter of 20 mm. When passing through a sieve, the particle size distribution is set to have a passing rate of 30 to 70%.
In the fourth step, a method of producing concrete using waste glass aggregate coated with an anti-slip surface, characterized in that the particle size range of the fine aggregate is set to 0.1 to 5 mm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220142642A KR102691713B1 (en) | 2022-10-31 | 2022-10-31 | choncrete using coarse aggregate of waste glass with surface coating for slip prevention and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220142642A KR102691713B1 (en) | 2022-10-31 | 2022-10-31 | choncrete using coarse aggregate of waste glass with surface coating for slip prevention and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20240061216A KR20240061216A (en) | 2024-05-08 |
KR102691713B1 true KR102691713B1 (en) | 2024-08-05 |
Family
ID=91074059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220142642A Active KR102691713B1 (en) | 2022-10-31 | 2022-10-31 | choncrete using coarse aggregate of waste glass with surface coating for slip prevention and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102691713B1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000226248A (en) * | 1999-02-04 | 2000-08-15 | Nagaoka Tekkin Concrete Kk | Building material and method for producing the same |
JP2001010851A (en) * | 1999-06-22 | 2001-01-16 | Toray Ind Inc | Aggregate and its production |
JP2001241005A (en) * | 2000-03-01 | 2001-09-04 | Toray Ind Inc | Resin pavement material, resin pavement method, surface treatment method for asphalt pavement, and civil engineering and construction material |
KR100341021B1 (en) | 2000-11-13 | 2002-06-20 | 박승범 | Manufacturing Methods of Asphalt Concrete Mixture Using Waste Glass Aggregates |
KR20200091532A (en) * | 2019-01-22 | 2020-07-31 | 한국해양대학교 산학협력단 | concrete composition for ocean having salt-resistance |
-
2022
- 2022-10-31 KR KR1020220142642A patent/KR102691713B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000226248A (en) * | 1999-02-04 | 2000-08-15 | Nagaoka Tekkin Concrete Kk | Building material and method for producing the same |
JP2001010851A (en) * | 1999-06-22 | 2001-01-16 | Toray Ind Inc | Aggregate and its production |
JP2001241005A (en) * | 2000-03-01 | 2001-09-04 | Toray Ind Inc | Resin pavement material, resin pavement method, surface treatment method for asphalt pavement, and civil engineering and construction material |
KR100341021B1 (en) | 2000-11-13 | 2002-06-20 | 박승범 | Manufacturing Methods of Asphalt Concrete Mixture Using Waste Glass Aggregates |
KR20200091532A (en) * | 2019-01-22 | 2020-07-31 | 한국해양대학교 산학협력단 | concrete composition for ocean having salt-resistance |
Also Published As
Publication number | Publication date |
---|---|
KR20240061216A (en) | 2024-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102152603B1 (en) | Concrete composition comprising 3 components using ferro-nickel slag powder and concrete structures manufactured using the same | |
KR101492233B1 (en) | Preparation method of mortar composition with chemically resistant and fireproof properties, mortar composition with chemically resistant and fireproof properties prepared by the same, and construction method of concrete structure with fireproof properties using the same | |
KR101135175B1 (en) | Protective mortar using calcium aluminate and oraganic-inorganic hybrid coating agent | |
CN101815689A (en) | Composition based on phosphatic raw materials and method for producing the same | |
NL2008575C2 (en) | Binder composition comprising lignite fly ash. | |
KR102323780B1 (en) | Environmentally Friendly Mortar Composition for Repairing Concrete Structure Using Cold-Warm Slag Powder and Method for Repairing Concrete Structure Using the Same | |
EP3085676A1 (en) | Geopolymer cement produced from recycled glass and method for producing same | |
KR101787416B1 (en) | Artificial aggregates with self-hardening properties comprising mine powders with high specific gravity and fluidized-bed boiler ashes and Manufacturing method thereof | |
CN109503086B (en) | Wet-mixed mortar using nickel sand and phosphogypsum | |
CN113264715A (en) | Heavy metal curing baking-free brick based on household garbage incineration fly ash and preparation method thereof | |
KR101242568B1 (en) | Block composer using bottom ash and phospho-gypsum | |
Kumar et al. | Experimental study on strength properties of metakaolin and GGBS based geopolymer concrete | |
KR101263227B1 (en) | Geopolymer Composition having high strength and manufacturing method thereof | |
KR102445186B1 (en) | Eco-friendly polymer mortar composition and method for repairing and reinforcing structures using the same | |
KR102691713B1 (en) | choncrete using coarse aggregate of waste glass with surface coating for slip prevention and manufacturing method thereof | |
WO2019170963A1 (en) | Binder composition and hardenable mixture | |
KR102678921B1 (en) | Eco-friendly waterproof mortar composition for repairing and reinforcing concrete structure, and method of repairing and reinforcing concrete structure using the same | |
KR102565271B1 (en) | Concrete Composite for Ground Solidifying Agent Having Polysilicon Sludge | |
CN112456828A (en) | Green early-strength universal portland cement for prefabricated parts and preparation method thereof | |
KR100492621B1 (en) | Manufacture Method of Calcium Chloro-Aluminate Clinker Using Municipal Solid Waste Incineration Ash and Sewage Sludge | |
KR102449967B1 (en) | Low strenth surround fixing composition using industrial by-product and pile reclamation method using the same | |
KR102420658B1 (en) | High strength surround fixing composition using ferro-nickel slag powder and pile reclamation method using the same | |
KR101852483B1 (en) | Makinh method of Solidified agent using high-calcium fly ash | |
KR20190074575A (en) | Eco-friendly ultra rapid hardening mortar composition and manufacturing method using the same | |
CN115521109A (en) | Green environment-friendly concrete suitable for fabricated light wall board and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20221031 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20240325 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E90F | Notification of reason for final refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Final Notice of Reason for Refusal Patent event date: 20240529 Patent event code: PE09021S02D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20240730 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20240731 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20240731 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |