KR102685903B1 - Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium - Google Patents
Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium Download PDFInfo
- Publication number
- KR102685903B1 KR102685903B1 KR1020217019468A KR20217019468A KR102685903B1 KR 102685903 B1 KR102685903 B1 KR 102685903B1 KR 1020217019468 A KR1020217019468 A KR 1020217019468A KR 20217019468 A KR20217019468 A KR 20217019468A KR 102685903 B1 KR102685903 B1 KR 102685903B1
- Authority
- KR
- South Korea
- Prior art keywords
- containing gas
- processing chamber
- oxygen
- gas
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012545 processing Methods 0.000 title claims abstract description 145
- 239000000758 substrate Substances 0.000 title claims abstract description 63
- 239000004065 semiconductor Substances 0.000 title claims description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000007789 gas Substances 0.000 claims abstract description 216
- 238000000034 method Methods 0.000 claims abstract description 41
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 37
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000001301 oxygen Substances 0.000 claims abstract description 36
- 230000008569 process Effects 0.000 claims abstract description 34
- 229910052751 metal Inorganic materials 0.000 claims abstract description 18
- 239000002184 metal Substances 0.000 claims abstract description 18
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 13
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 13
- 239000011261 inert gas Substances 0.000 claims description 10
- 239000010955 niobium Substances 0.000 claims description 5
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052735 hafnium Inorganic materials 0.000 claims description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- 239000001272 nitrous oxide Substances 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 5
- 239000010408 film Substances 0.000 description 82
- 235000012431 wafers Nutrition 0.000 description 68
- SEQDDYPDSLOBDC-UHFFFAOYSA-N Temazepam Chemical compound N=1C(O)C(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 SEQDDYPDSLOBDC-UHFFFAOYSA-N 0.000 description 21
- 239000002994 raw material Substances 0.000 description 18
- 238000003860 storage Methods 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000003779 heat-resistant material Substances 0.000 description 5
- 238000010926 purge Methods 0.000 description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical group [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910004356 Ti Raw Inorganic materials 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910010282 TiON Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229910007875 ZrAlO Inorganic materials 0.000 description 1
- 229910006501 ZrSiO Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- MNWRORMXBIWXCI-UHFFFAOYSA-N tetrakis(dimethylamido)titanium Chemical compound CN(C)[Ti](N(C)C)(N(C)C)N(C)C MNWRORMXBIWXCI-UHFFFAOYSA-N 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- GIRKRMUMWJFNRI-UHFFFAOYSA-N tris(dimethylamino)silicon Chemical compound CN(C)[Si](N(C)C)N(C)C GIRKRMUMWJFNRI-UHFFFAOYSA-N 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/0228—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45557—Pulsed pressure or control pressure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02164—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
Abstract
기판 상에 형성되는 금속산화막의 막 두께 균일성을 향상시키는 기술을 제공한다.
(a) 처리실 내의 복수 매의 기판에 대하여 금속 함유 가스를 공급하는 공정; 및 (b) 상기 처리실 내의 상기 복수 매의 기판에 대하여 상기 기판의 중앙부에서의 산소 함유 가스의 유속을 7.0m/s 이상 8.5m/s 이하로 하고 상기 산소 함유 가스의 분압을 9.0Pa 이상 12.0Pa 이하로 하여 상기 산소 함유 가스를 상기 처리실 내의 하부 영역으로부터 상기 처리실의 상부 영역까지 연재하도록 설치되는 노즐로부터 공급하는 공정을 포함하는 기술이 제공된다.A technology for improving the film thickness uniformity of a metal oxide film formed on a substrate is provided.
(a) a process of supplying a metal-containing gas to a plurality of substrates in a processing chamber; and (b) for the plurality of substrates in the processing chamber, the flow rate of the oxygen-containing gas at the center of the substrate is 7.0 m/s or more and 8.5 m/s or less, and the partial pressure of the oxygen-containing gas is 9.0 Pa or more and 12.0 Pa. Hereinafter, a technology is provided including a step of supplying the oxygen-containing gas from a nozzle installed to extend from a lower region in the processing chamber to an upper region of the processing chamber.
Description
본 개시(開示)는 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체에 관한 것이다.This disclosure relates to a semiconductor device manufacturing method, substrate processing apparatus, and recording medium.
최근 반도체 디바이스의 미세화, 고밀도화에 따라 게이트 절연막으로서 금속산화막[고유전율(High-k) 절연막]이 이용되기 시작했다. 또한 DRAM 커패시터의 용량을 증대시키기 위해서 커패시터 절연막으로의 금속산화막의 적용도 진행되고 있다. 이들 금속산화막에는 저온에서의 성막이 요구되고, 또한 표면의 평탄성, 요부(凹部) 매입성, 스텝 커버리지성이 뛰어나고, 또한 이물(異物)이 적은 성막 방법이 요구되고 있다. 금속산화막을 형성하는 기법 중 하나로서 처리실 내에 공급하는 처리 가스의 흐름을 분산시켜서 기판 상에 지르코늄산화막 등의 박막을 형성하는 방법이 있다(예컨대 특허문헌 1).Recently, with the miniaturization and high density of semiconductor devices, metal oxide films (high-k insulating films) have begun to be used as gate insulating films. Additionally, in order to increase the capacity of DRAM capacitors, the application of metal oxide films as capacitor insulating films is also in progress. These metal oxide films are required to be formed at low temperatures, and a film formation method that has excellent surface flatness, recessed part embedding, step coverage, and less foreign matter is required. One of the techniques for forming a metal oxide film is a method of forming a thin film such as a zirconium oxide film on a substrate by dispersing the flow of processing gas supplied into the processing chamber (for example, patent document 1).
하지만 처리 가스의 흐름을 분산시키면 기판의 중심에 충분한 양의 처리 가스를 공급하지 못하는 경우가 있어 막 두께 균일성이 악화되는 경우가 있다. 본 개시의 목적은 기판 상에 형성되는 금속산화막의 막 두께 균일성을 향상시키는 기술을 제공하는 데 있다.However, if the flow of processing gas is dispersed, a sufficient amount of processing gas may not be supplied to the center of the substrate, and film thickness uniformity may deteriorate. The purpose of the present disclosure is to provide a technology for improving the film thickness uniformity of a metal oxide film formed on a substrate.
본 개시의 일 형태에 따르면, (a) 처리실 내의 복수 매의 기판에 대하여 금속 함유 가스를 공급하는 공정; 및 (b) 상기 처리실 내의 상기 복수 매의 기판에 대하여 상기 기판의 중앙부에서의 산소 함유 가스의 유속을 7.0m/s 이상 8.5m/s 이하로 하고 상기 산소 함유 가스의 분압을 9.0Pa 이상 12.0Pa 이하로 하여 상기 산소 함유 가스를 상기 처리실 내의 하부 영역으로부터 상기 처리실의 상부 영역까지 연재하도록 설치되는 노즐로부터 공급하는 공정을 포함하는 기술이 제공된다.According to one aspect of the present disclosure, (a) a process of supplying a metal-containing gas to a plurality of substrates in a processing chamber; and (b) for the plurality of substrates in the processing chamber, the flow rate of the oxygen-containing gas at the center of the substrate is 7.0 m/s or more and 8.5 m/s or less, and the partial pressure of the oxygen-containing gas is 9.0 Pa or more and 12.0 Pa. Hereinafter, a technology is provided including a step of supplying the oxygen-containing gas from a nozzle installed to extend from a lower region in the processing chamber to an upper region of the processing chamber.
본 개시에 따르면, 기판 상에 형성되는 금속산화막의 막 두께 균일성을 향상시키는 기술을 제공하는 것이 가능해진다.According to the present disclosure, it becomes possible to provide a technology for improving the film thickness uniformity of a metal oxide film formed on a substrate.
도 1은 본 개시의 실시 형태에서 바람직하게 이용되는 기판 처리 장치의 처리로의 개략 구성도이며, 처리로 부분을 종단면도(縱斷面圖)로 도시하는 도면.
도 2는 도 1의 A-A선을 따른 개략적인 횡단면도(橫斷面圖).
도 3은 도 1에 도시하는 기판 처리 장치가 포함하는 컨트롤러의 구성을 도시하는 블록도.
도 4는 본 개시의 실시 형태에서의 성막 시퀀스를 도시하는 도면.
도 5는 종래와 본 개시의 실시 형태에서의 웨이퍼 면내(面內)와 평균 막 두께와의 관계를 도시하는 도면.1 is a schematic configuration diagram of a processing furnace of a substrate processing apparatus preferably used in an embodiment of the present disclosure, and is a diagram showing a portion of the processing furnace in longitudinal section.
Figure 2 is a schematic cross-sectional view taken along line AA in Figure 1.
FIG. 3 is a block diagram showing the configuration of a controller included in the substrate processing apparatus shown in FIG. 1.
4 is a diagram showing a film forming sequence in an embodiment of the present disclosure.
FIG. 5 is a diagram showing the relationship between the wafer surface and the average film thickness in the prior art and the embodiment of the present disclosure.
<본 개시의 일 실시 형태><One embodiment of the present disclosure>
이하, 본 개시의 일 실시 형태에 대해서 도 1 내지 도 5를 참조하면서 설명한다. 기판 처리 장치(10)는 반도체 장치의 제조 공정에서 사용되는 장치의 일례로서 구성된다.Hereinafter, an embodiment of the present disclosure will be described with reference to FIGS. 1 to 5. The
(1) 기판 처리 장치의 구성(1) Configuration of substrate processing equipment
기판 처리 장치(10)는 가열 수단(가열 기구, 가열계)으로서의 히터(207)가 설치된 처리로(202)를 구비한다. 히터(207)는 원통 형상이며, 보지판(保持板)으로서의 히터 베이스(미도시)에 지지되는 것에 의해 수직으로 설치된다.The
히터(207)의 내측에는 히터(207)와 동심원 형상으로 반응 용기(처리 용기)를 구성하는 아우터 튜브(203)가 배설(配設)된다. 아우터 튜브(203)는 예컨대 석영(SiO2), 탄화실리콘(SiC) 등의 내열성 재료에 의해 구성되고, 상단이 폐색(閉塞)되고 하단이 개구(開口)된 원통 형상으로 형성된다. 아우터 튜브(203)의 하방(下方)에는 아우터 튜브(203)와 동심원 형상으로, 매니폴드(인렛 플랜지)(209)가 배설된다. 매니폴드(209)는 예컨대 스텐레스(SUS) 등의 금속에 의해 구성되고, 상단 및 하단이 개구된 원통 형상으로 형성된다. 매니폴드(209)의 상단부와, 아우터 튜브(203) 사이에는 씰 부재로서의 O링(미도시)이 설치된다. 매니폴드(209)가 히터 베이스에 지지되는 것에 의해 아우터 튜브(203)는 수직으로 설치된 상태가 된다.Inside the
아우터 튜브(203)의 내측에는 반응 용기를 구성하는 이너 튜브(204)가 배설된다. 이너 튜브(204)는 예컨대 석영이나 SiC 등의 내열성 재료에 의해 구성되고, 상단이 폐색되고 하단이 개구된 원통 형상으로 형성된다. 주로 아우터 튜브(203)와 이너 튜브(204)와 매니폴드(209)에 의해 처리 용기(반응 용기)가 구성된다. 처리 용기의 통중공부(筒中空部)[이너 튜브(204)의 내측]에는 처리실(201)이 형성된다.An
처리실(201)은 기판으로서의 웨이퍼(200)를 후술하는 보트(217)에 의해 수평 자세로 연직 방향에 다단으로 배열된 상태로 수용 가능하도록 구성된다.The
처리실(201) 내에는 노즐(410, 420, 430, 440)이 매니폴드(209)의 측벽 및 이너 튜브(204)를 관통하도록 설치된다. 노즐(410, 420, 430, 440)에는 가스 공급관(310, 320, 330, 340)이 각각 접속된다. 단, 본 실시 형태의 처리로(202)는 전술한 형태에 한정되지 않는다. 노즐 등의 개수는 필요에 따라 적절히 변경된다.In the
가스 공급관(310, 320, 330, 340)에는 상류측부터 순서대로 유량 제어기(유량 제어부)인 매스 플로우 컨트롤러(MFC)(312, 322, 332, 342),개폐 밸브인 밸브(314, 324, 334, 344)가 각각 설치된다. 가스 공급관(310, 320, 330, 340)의 밸브(314, 324, 334, 344)의 하류측에는 불활성 가스를 공급하는 가스 공급관(510, 520, 530, 540)이 각각 접속된다. 가스 공급관(510, 520, 530, 540)에는 상류측부터 순서대로 유량 제어기(유량 제어부)인 MFC(512, 522, 532, 542) 및 개폐 밸브인 밸브(514, 524, 534, 544)가 각각 설치된다.In the gas supply pipes (310, 320, 330, 340), in order from the upstream side, mass flow controllers (MFC) (312, 322, 332, 342), which are flow rate controllers (flow control units), and valves (314, 324, 334), which are open and close valves. , 344) are installed respectively. Gas supply pipes 510, 520, 530, and 540 supplying inert gas are connected to the downstream side of the valves 314, 324, 334, and 344 of the
노즐(410, 420, 430, 440)은 L자형의 노즐로서 구성되고, 그 수평부는 매니폴드(209)의 측벽 및 이너 튜브(204)를 관통하도록 설치된다. 노즐(410, 420, 430, 440)의 수직부는 이너 튜브(204)의 지름 방향 외향으로 돌출되고, 또한 연직 방향으로 연재되도록 형성된 채널 형상(홈[溝] 형상)의 예비실(201a)의 내부에 설치되고, 예비실(201a) 내에서 이너 튜브(204)의 내벽을 따라 상방(上方)[웨이퍼(200)의 배열 방향 상방]을 향하여 설치된다.The
노즐(410, 420, 430, 440)은 처리실(201)의 하부 영역으로부터 처리실(201)의 상부 영역까지 연재되도록 설치되고, 웨이퍼(200)와 대향되는 위치에 각각 복수의 가스 공급공(410a, 420a, 430a, 440a)이 설치된다. 이에 의해 노즐(410, 420, 430, 440)의 가스 공급공(410a, 420a, 430a, 440a)으로부터 각각 웨이퍼(200)에 처리 가스를 공급한다. 이 가스 공급공(410a, 420a, 430a, 440a)은 이너 튜브(204)의 하부로부터 상부에 걸쳐서 복수 설치되고, 각각 동일한 개구 면적을 가지고, 또한 동일한 개구 피치로 설치된다. 단, 가스 공급공(410a, 420a, 430a, 440a)은 전술한 형태에 한정되지 않는다. 예컨대 이너 튜브(204)의 하부로부터 상부를 향하서 개구 면적을 서서히 크게 해도 좋다. 이에 의해 가스 공급공(410a, 420a, 430a, 440a)으로부터 공급되는 가스의 유량을 보다 균일화하는 것이 가능해진다.The
노즐(410, 420, 430, 440)의 가스 공급공(410a, 420a, 430a, 440a)은 후술하는 보트(217)의 하부로부터 상부까지의 높이의 위치에 복수 설치된다. 그렇기 때문에 노즐(410, 420, 430)의 가스 공급공(410a, 420a, 430a, 440a)으로부터 처리실(201) 내에 공급된 처리 가스는 보트(217)의 하부로부터 상부까지 수용된 웨이퍼(200), 즉 보트(217)에 수용된 웨이퍼(200)의 모든 영역에 공급된다. 노즐(410, 420, 430, 440)은 처리실(201)의 하부 영역으로부터 상부 영역까지 연재되도록 설치되면 좋지만, 보트(217)의 천장 부근까지 연재되도록 설치되는 것이 바람직하다.A plurality of
가스 공급관(310)으로부터는 처리 가스로서 금속 함유 가스(금속 함유 원료 가스)가 MFC(312), 밸브(314), 노즐(410)을 개재하여 처리실(201) 내에 공급된다. 금속 함유 가스로서는 유기계 원료이며, 예컨대 지르코늄(Zr)을 포함하는 테트라키스에틸메틸아미노지르코늄{TEMAZ, Zr[N(CH3)C2H5]4}을 이용할 수 있다. TEMAZ는 상온상압에서 액체이며, 미도시의 기화기로 기화해서 기화 가스인 TEMAZ 가스로서 이용된다.A metal-containing gas (metal-containing raw material gas) as a processing gas is supplied from the
가스 공급관(320 내지 340)으로부터는 산화 가스로서 산소 함유 가스(산소 함유 가스, O 함유 가스)가 MFC(322, 332, 342), 밸브(324, 334, 344), 노즐(420, 430, 440)을 개재하여 가스 공급공(410a, 420a, 430a, 440a)으로부터 처리실(201) 내에 공급된다. 산소 함유 가스로서는 예컨대 오존(O3) 등이 이용된다.From the
주로 가스 공급관(310, 320, 330, 340), MFC(312, 322, 332, 342), 밸브(314, 324, 334, 344), 노즐(410, 420, 430, 440)에 의해 처리 가스 공급계가 구성되지만, 노즐(410, 420, 430, 440)만을 처리 가스 공급계로 생각해도 좋다. 처리 가스 공급계를 단순히 가스 공급계라고도 부를 수 있다. 가스 공급관(310)으로부터 금속 함유 가스를 흘리는 경우, 주로 가스 공급관(310), MFC(312), 밸브(314)에 의해 금속 함유 가스 공급계가 구성되지만, 노즐(410)을 금속 함유 가스 공급계에 포함시켜서 생각해도 좋다. 가스 공급관(320, 330, 340)으로부터 산소 함유 가스를 흘리는 경우, 주로 가스 공급관(320), MFC(322), 밸브(324), 가스 공급관(330), MFC(332), 밸브(334), 가스 공급관(340), MFC(342), 밸브(344)에 의해 산소 함유 가스 공급계가 구성되지만, 노즐(420, 430, 440)을 산소 함유 가스 공급계에 포함시켜서 생각해도 좋다. 산소 함유 가스 공급계는 O3 가스 공급계라고도 부른다. 또한 주로 가스 공급관(510, 520, 530, 540), MFC(512, 522, 532, 542), 밸브(514, 524, 534, 544)에 의해 불활성 가스 공급계가 구성된다. 불활성 가스 공급계를 퍼지 가스 공급계, 희석 가스 공급계 또는 캐리어 가스 공급계라고도 부를 수 있다.Process gas is supplied mainly by gas supply pipes (310, 320, 330, 340), MFC (312, 322, 332, 342), valves (314, 324, 334, 344), and nozzles (410, 420, 430, 440). Although the system is configured, only the
본 실시 형태에서의 가스 공급의 방법은 이너 튜브(204)의 내벽과 복수 매의 웨이퍼(200)의 단부에 의해 정의되는 원환(圓環) 형상의 세로로 긴 공간 내, 즉 원통 형상의 공간 내의 예비실(201a) 내에 배치한 노즐(410, 420, 430, 440)을 경유해서 가스를 반송한다. 그리고 노즐(410, 420, 430, 440)의 웨이퍼와 대향되는 위치에 설치된 복수의 가스 공급공(410a, 420a, 430a, 440a)으로부터 이너 튜브(204) 내에 가스를 분출시킨다.The method of gas supply in this embodiment is within a vertically elongated space defined by the inner wall of the
배기공(배기구)(204a)은 이너 튜브(204)의 측벽이며 노즐(410, 420, 430, 440)에 대향된 위치, 즉 예비실(201a)과는 180℃ 반대측의 위치에 형성된 관통공이며, 예컨대 연직 방향으로 가늘고 길게 개설(開設)된 슬릿 형상의 관통공이다. 그렇기 때문에 노즐(410, 420, 430, 440)의 가스 공급공(410a, 420a, 430a, 440a)으로부터 처리실(201) 내에 공급되어, 웨이퍼(200)의 표면상을 흐른 가스, 즉 잔류하는 가스(잔류 가스)는 배기공(204a)을 개재하여 이너 튜브(204)와 아우터 튜브(203) 사이에 형성된 극간으로 이루어지는 배기로(206) 내에 흐른다. 그리고 배기로(206) 내에 흐른 가스는 배기관(231) 내에 흐르고, 처리로(202) 외로 배출된다.The exhaust hole (exhaust hole) 204a is a through hole formed on the side wall of the
배기공(204a)은 복수의 웨이퍼(200)와 대향되는 위치[바람직하게는 보트(217)의 상부로부터 하부와 대향되는 위치]에 설치되고, 가스 공급공(410a, 420a, 430a, 440a)으로부터 처리실(201) 내의 웨이퍼(200)의 근방에 공급된 가스는 수평 방향, 즉 웨이퍼(200)의 표면과 평행 방향을 향하여 흐른 뒤, 배기공(204a)을 개재하여 배기로(206) 내에 흐른다. 즉 처리실(201)에 잔류하는 가스는 배기공(204a)을 개재하여 웨이퍼(200)의 주면에 대하여 평행하게 배기된다. 또한 배기공(204a)은 슬릿 형상의 관통공으로서 구성되는 경우에 한정되지 않고, 복수 개의 공에 의해 구성되어도 좋다.The
매니폴드(209)에는 처리실(201) 내의 분위기를 배기하는 배기관(231)이 설치된다. 배기관(231)에는 상류측부터 순서대로 처리실(201) 내의 압력을 검출하는 압력 검출기(압력 검출부)로서의 압력 센서(245), APC(Auto Pressure Controller) 밸브(231a), 진공 배기 장치로서의 진공 펌프(246)가 접속된다. APC 밸브(231a)는 진공 펌프(246)를 작동시킨 상태에서 밸브를 개폐하는 것에 의해 처리실(201) 내의 진공 배기 및 진공 배기 정지를 수행할 수 있고, 또한 진공 펌프(246)를 작동시킨 상태에서 밸브의 개도(開度)를 조절하는 것에 의해 처리실(201) 내의 압력을 조정할 수 있다. 주로 배기공(204a), 배기로(206), 배기관(231), APC 밸브(231a) 및 압력 센서(245)에 의해 배기계, 즉 배기 라인이 구성된다. 또한 진공 펌프(246)를 배기계에 포함시켜서 생각해도 좋다.An
매니폴드(209)의 하방에는 매니폴드(209)의 하단 개구를 기밀하게 폐색 가능한 노구(爐口) 개체(蓋體)로서의 씰 캡(219)이 설치된다. 씰 캡(219)은 매니폴드(209)의 하단에 연직 방향 하측으로부터 당접(當接)되도록 구성된다. 씰 캡(219)은 예컨대 SUS 등의 금속에 의해 구성되고, 원반 형상으로 형성된다. 씰 캡(219)의 상면에는 매니폴드(209)의 하단과 당접되는 씰 부재로서의 O링(미도시)이 설치된다. 씰 캡(219)에서의 처리실(201)의 반대측에는 웨이퍼(200)를 수용하는 보트(217)를 회전시키는 회전 기구(267)가 설치된다. 회전 기구(267)의 회전축(255)은 씰 캡(219)을 관통해서 보트(217)에 접속된다. 회전 기구(267)는 보트(217)를 회전시키는 것에 의해 웨이퍼(200)를 회전시키도록 구성된다. 씰 캡(219)은 아우터 튜브(203)의 외부에 수직으로 설치된 승강 기구로서의 보트 엘리베이터(115)에 의해 연직 방향으로 승강되도록 구성된다. 보트 엘리베이터(115)는 씰 캡(219)을 승강시키는 것에 의해 보트(217)를 처리실(201) 내외로 반입 및 반출하는 것이 가능하도록 구성된다. 보트 엘리베이터(115)는 보트(217) 및 보트(217)에 수용된 웨이퍼(200)를 처리실(201) 내외로 반송하는 반송 장치(반송 기구)로서 구성된다.A
기판 지지구로서의 보트(217)는 복수 매, 예컨대 25매 내지 200매의 웨이퍼(200)를 수평 자세로, 또한 서로 중심을 맞춘 상태에서 연직 방향으로 정렬시켜서 다단으로 지지하도록, 즉 간격을 두고 배열시키도록 구성된다. 보트(217)는 예컨대 석영이나 SiC 등의 내열성 재료에 의해 구성된다. 보트(217)의 하부에는 예컨대 석영이나 SiC 등의 내열성 재료에 의해 구성되는 단열판(218)이 수평 자세로 다단(미도시)으로 지지된다. 이 구성에 의해 히터(207)로부터의 열이 씰 캡(219)측에 전달되기 어렵도록 이루어진다. 단, 본 실시 형태는 전술한 형태에 한정되지 않는다. 예컨대 보트(217)의 하부에 단열판(218)을 설치하지 않고, 석영이나 SiC 등의 내열성 재료에 의해 구성되는 통 형상의 부재로서 구성된 단열통을 설치해도 좋다.The
이너 튜브(204) 내에는 온도 검출기로서의 온도 센서(263)가 설치되고, 온도 센서(263)에 의해 검출된 온도 정보에 기초하여 히터(207)로의 통전량을 조정하는 것에 의해 처리실(201) 내의 온도가 원하는 온도 분포가 되도록 구성된다. 온도 센서(263)는 노즐(410, 420, 430, 440)과 마찬가지로 L자형으로 구성되고, 이너 튜브(204)의 내벽을 따라 설치된다.A
제어부(제어 수단)인 컨트롤러(280)는 CPU(Central Processing Unit)(280a), RAM(Random Access Memory)(280b), 기억 장치(280c), I/O 포트(280d)를 구비한 컴퓨터로서 구성된다. RAM(280b), 기억 장치(280c), I/O 포트(280d)는 내부 버스를 개재하여 CPU(280a)과 데이터 교환 가능하도록 구성된다. 컨트롤러(280)에는 예컨대 터치패널 등으로서 구성된 입출력 장치(282)가 접속된다.The
기억 장치(280c)는 예컨대 플래시 메모리, HDD(Hard Disk Drive) 등으로 구성된다. 기억 장치(280c) 내에는 기판 처리 장치의 동작을 제어하는 제어 프로그램, 후술하는 반도체 장치의 제조 방법의 순서나 조건 등이 기재된 프로세스 레시피등이 판독 가능하도록 격납된다. 프로세스 레시피는 후술하는 반도체 장치의 제조 방법에서의 각 공정(각 스텝)을 컨트롤러(280)에 실행시켜 소정의 결과를 얻을 수 있도록 조합된 것이며, 프로그램으로서 기능한다. 이하, 이 프로세스 레시피, 제어 프로그램 등을 총칭하여 단순히 프로그램이라고도 부른다. 본 명세서에서 프로그램이라는 단어를 사용한 경우는 프로세스 레시피 단체(單體)만을 포함하는 경우, 제어 프로그램 단체만을 포함하는 경우 또는 프로세스 레시피 및 제어 프로그램의 조합을 포함하는 경우가 있다. RAM(280b)은 CPU(280a)에 의해 판독된 프로그램이나 데이터 등이 일시적으로 보지되는 메모리 영역(work area)으로서 구성된다.The
I/O 포트(280d)는 전술한 MFC(312, 322, 332, 342, 512, 522, 532, 542), 밸브(314, 324, 334, 344, 514, 524, 534, 544), 압력 센서(245), APC 밸브(231a), 진공 펌프(246), 히터(207), 온도 센서(263), 회전 기구(267), 보트 엘리베이터(115) 등에 접속된다.The I/O port (280d) includes the aforementioned MFC (312, 322, 332, 342, 512, 522, 532, 542), valve (314, 324, 334, 344, 514, 524, 534, 544), and pressure sensor. (245),
CPU(280a)은 기억 장치(280c)로부터 제어 프로그램을 판독해서 실행하는 것과 함께, 입출력 장치(282)로부터의 조작 커맨드의 입력 등에 따라 기억 장치(280c)로부터 레시피 등을 판독하도록 구성된다. CPU(280a)은 판독한 레시피의 내용을 따르도록 MFC(312, 322, 332, 342, 512, 522, 532, 542)에 의한 각종 가스의 유량 조정 동작, 밸브(314, 324, 334, 344, 514, 524, 534, 544)의 개폐 동작, APC 밸브(231a)의 개폐 동작 및 APC 밸브(231a)에 의한 압력 센서(245)에 기초하는 압력 조정 동작, 온도 센서(263)에 기초하는 히터(207)의 온도 조정 동작, 진공 펌프(246)의 기동 및 정지, 회전 기구(267)에 의한 보트(217)의 회전 및 회전 속도 조절 동작, 보트 엘리베이터(115)에 의한 보트(217)의 승강 동작, 보트(217)로의 웨이퍼(200)의 수용 동작 등을 제어하도록 구성된다.The
컨트롤러(280)는 외부 기억 장치[예컨대 자기(磁氣) 테이프, 플렉시블 디스크나 하드 디스크 등의 자기 디스크, CD나 DVD 등의 광(光) 디스크, MO 등의 광자기 디스크, USB 메모리나 메모리 카드 등의 반도체 메모리](283)에 격납된 전술한 프로그램을 컴퓨터에 인스톨하는 것에 의해 구성할 수 있다. 기억 장치(280c)나 외부 기억 장치(283)는 컴퓨터 판독 가능한 기록 매체로서 구성된다. 이하, 이들을 총칭하여 단순히 기록 매체라고도 부른다. 본 명세서에서 기록 매체는 기억 장치(280c) 단체만을 포함하는 경우, 외부 기억 장치(283) 단체만을 포함하는 경우 또는 그 양방(兩方)을 포함하는 경우가 있다. 또한 컴퓨터로의 프로그램의 제공은 외부 기억 장치(283)를 이용하지 않고, 인터넷이나 전용 회선 등의 통신 수단을 이용하여 수행해도 좋다.The
(2) 기판 처리 공정(2) Substrate processing process
반도체 장치(디바이스)의 제조 공정의 일 공정으로서 기판에 대하여 금속 함유 가스와 산소 함유 가스를 공급해서 기판 상에 금속산화막을 형성하는 성막 공정을 수행하는 시퀀스 예에 대해서 도 4를 이용하여 설명한다. 성막 공정은 전술한 기판 처리 장치(10)의 처리로(202)를 이용해서 실행된다. 이하의 설명에서 기판 처리 장치(10)를 구성하는 각(各) 부(部)의 동작은 컨트롤러(280)에 의해 제어된다.An example of a sequence in which a film formation process of forming a metal oxide film on a substrate by supplying a metal-containing gas and an oxygen-containing gas to the substrate as a step in the manufacturing process of a semiconductor device (device) is performed will be described using FIG. 4. The film forming process is performed using the
본 실시 형태에서는 기판으로서 복수의 웨이퍼(200)가 적재된 상태에서 수용된 처리실(201)을 소정 온도로 가열하면서 처리실(201)에, 노즐(410)에 개구되는 복수의 가스 공급공(410a)으로부터 원료 가스로서 TEMAZ 가스를 공급하는 공정과, 노즐(420, 430, 440)에 개구되는 가스 공급공(420a, 430a, 440a)으로부터 반응 가스를 공급하는 공정을 소정 횟수(n회) 수행하는 것에 의해 웨이퍼(200) 상에 Zr 및 O를 포함하는 지르코늄산화막(ZrO막)을 형성한다.In this embodiment, the
또한 본 명세서에서 「웨이퍼」라는 단어를 사용한 경우는 「웨이퍼 그 자체」를 의미하는 경우나, 「웨이퍼와 그 표면에 형성된 소정의 층이나 막 등과의 적층체(집합체)」를 의미하는 경우(즉 표면에 형성된 소정의 층이나 막 등을 포함시켜서 웨이퍼라고 부르는 경우)가 있다. 또한 본 명세서에서 「웨이퍼의 표면」이라는 단어를 사용한 경우는 「웨이퍼 그 자체의 표면(노출면)」을 의미하는 경우나, 「웨이퍼 상에 형성된 소정의 층이나 막 등의 표면, 즉 적층체로서의 웨이퍼의 최표면(最表面)」을 의미하는 경우가 있다. 또한 본 명세서에서 「기판」이라는 단어를 사용한 경우도 「웨이퍼」라는 단어를 사용한 경우와 같은 의미이다.In addition, when the word “wafer” is used in this specification, it means either “the wafer itself” or “a laminate (aggregate) of a wafer and a predetermined layer or film formed on its surface” (i.e. There are cases where it is called a wafer including a predetermined layer or film formed on the surface. In addition, when the word “wafer surface” is used in this specification, it means “the surface (exposed surface) of the wafer itself,” or “the surface of a certain layer or film formed on the wafer, that is, as a laminate.” In some cases, it means “the outermost surface of the wafer.” Additionally, the use of the word “substrate” in this specification has the same meaning as the use of the word “wafer.”
(웨이퍼 반입)(Wafer brought in)
복수 매의 웨이퍼(200)를 처리실(201) 내에 반입(보트 로드)한다. 구체적으로는 복수 매의 웨이퍼(200)가 보트(217)에 장전(裝塡)(웨이퍼 차지)되면, 도 1에 도시되는 바와 같이 복수 매의 웨이퍼(200)를 지지한 보트(217)는 보트 엘리베이터(115)에 의해 들어 올려져 처리실(201) 내에 반입된다. 이 상태에서 씰 캡(219)은 O링을 개재하여 반응관(203)의 하단 개구를 폐색한 상태가 된다.A plurality of
(압력 조정 및 온도 조정)(pressure adjustment and temperature adjustment)
처리실(201) 내가 원하는 압력(진공도)이 되도록 진공 펌프(246)에 의해 진공 배기된다. 이때 처리실(201) 내의 압력은 압력 센서(245)로 측정되고, 이 측정된 압력 정보에 기초하여 APC 밸브(231a)가 피드백 제어된다(압력 조정). 진공 펌프(246)는 적어도 웨이퍼(200)에 대한 처리가 완료될 때까지의 동안은 상시 작동시킨 상태를 유지한다. 또한 처리실(201) 내가 원하는 온도가 되도록 히터(207)에 의해 가열된다. 이때 처리실(201) 내가 원하는 온도 분포가 되도록 온도 센서(263)가 검출한 온도 정보에 기초하여 히터(207)로의 통전량이 피드백 제어된다(온도 조정). 히터(207)에 의한 처리실(201) 내의 가열은 적어도 웨이퍼(200)에 대한 처리가 완료될 때까지의 동안은 계속해서 수행된다.The
[성막 공정][Film formation process]
웨이퍼(200) 상에 금속산화막으로서 고유전율 산화막인 ZrO막을 형성하는 스텝을 실행한다.A step of forming a ZrO film, which is a high dielectric constant oxide film, as a metal oxide film on the
(TEMAZ 가스 공급 스텝)(TEMAZ gas supply step)
밸브(314)를 열고 가스 공급관(310) 내에 처리 가스로서 원료 가스인 TEMAZ 가스를 흘린다. TEMAZ 가스는 MFC(312)에 의해 유량 조정되고, 노즐(410)의 가스 공급공(410a)으로부터 처리실(201) 내에 공급되고, 배기관(231)으로부터 배기된다. 이때 웨이퍼(200)에 대하여 TEMAZ 가스가 공급된다. 이때 동시에 밸브(514)를 열고 가스 공급관(510) 내에 N2 가스를 흘린다. 가스 공급관(510) 내를 흐른 N2 가스는 MFC(512)에 의해 유량 조정된다. N2 가스는 TEMAZ 가스와 함께 노즐(410)의 공급공(410a)으로부터 처리실(201) 내에 공급되고, 배기관(231)으로부터 배기된다.The valve 314 is opened and TEMAZ gas, which is a raw material gas, flows as a processing gas into the
또한 노즐(420, 430, 440) 내로의 TEMAZ 가스의 침입을 방지하기 위해서 밸브(524, 534, 544)를 열고 가스 공급관(520, 530, 540) 내에 N2 가스를 흘린다. N2 가스는 가스 공급관(320, 330, 340), 노즐(420, 430, 440)을 개재하여 처리실(201) 내에 공급되고, 배기관(231)으로부터 배기된다.Additionally, in order to prevent TEMAZ gas from entering the
이때 APC 밸브(231a)를 적절히 조정하여 처리실(201) 내의 압력을 예컨대 20Pa 내지 500Pa의 범위 내의 압력으로 한다. 본 명세서에서 「20Pa 내지 500Pa」와 같은 수치 범위의 표기는 하한값 및 상한값이 그 범위에 포함되는 것을 의미한다. 따라서 예컨대 「20Pa 내지 500Pa」란 20Pa 이상 500Pa 이하를 의미한다. 그 외의 수치 범위에 대해서도 마찬가지이다. MFC(312)로 제어하는 TEMAZ 가스의 공급 유량은 예컨대 0.1g/분 내지 5.0g/분의 범위 내의 유량으로 한다. 웨이퍼(200)를 TEMAZ에 노출하는 시간, 즉 가스 공급 시간[조사(照射) 시간]은 예컨대 10초 내지 300초간의 범위 내의 시간으로 한다. 이때 히터 유닛(207)의 온도는 웨이퍼(200)의 온도가 예컨대 150℃ 내지 300℃의 범위 내의 온도가 될 수 있는 온도로 설정한다. TEMAZ 가스의 공급에 의해 웨이퍼(200) 상에 Zr 함유층이 형성된다. Zr 함유층에는 TEMAZ 가스에 유래되는 유기물[탄소(C), 수소(H), 질소(N) 등]이 잔류 원소로서 근소하게 잔류한다.At this time, the
(잔류 가스 제거 스텝)(Residual gas removal step)
TEMAZ 가스를 소정 시간 공급한 후, 밸브(314)를 닫고 TEMAZ 가스의 공급을 정지한다. 이때 배기관(231)의 APC 밸브(231a)는 연 상태로 하여 진공 펌프(246)에 의해 처리실(201) 내를 진공 배기하여 처리실(201) 내에 잔류하는 미반응 또는 반응에 기여한 후의 TEMAZ 가스를 처리실(201) 내로부터 배제한다. 이때 밸브(524, 534, 544)는 연 상태로 하여 N2 가스의 처리실(201) 내로의 공급을 유지한다. N2 가스는 퍼지 가스로서 작용하고, 처리실(201) 내에 잔류하는 미반응 또는 반응에 기여한 후의 TEMAZ 가스를 처리실(201) 내로부터 배제하는 효과를 높일 수 있다.After supplying the TEMAZ gas for a predetermined period of time, the valve 314 is closed and the supply of the TEMAZ gas is stopped. At this time, the
(O3 가스 공급 스텝)(O 3 gas supply step)
처리실(201) 내의 잔류 가스를 제거한 후, 밸브(324, 334, 344)를 열고 가스 공급관(320, 330, 340) 내에 산소 함유 가스인 O3 가스를 흘린다. O3 가스는 MFC(322, 332, 342)에 의해 유량 조정되어 노즐(420, 430, 440)의 가스 공급공(420a, 430a, 440a)으로부터 처리실(201) 내에 공급되고, 배기관(231)으로부터 배기된다. 이때 웨이퍼(200)에 대하여 O3 가스가 공급된다. 이때 동시에 밸브(524, 534, 544)를 열고 가스 공급관(520, 530, 540) 내에 N2 가스 등의 불활성 가스를 흘린다. 가스 공급관(520, 530, 540) 내를 흐른 N2 가스는 MFC(522, 532 542)에 의해 유량 조정되어 O3 가스와 함께 처리실(201) 내에 공급되고, 배기관(231)으로부터 배기된다. 또한 이때 노즐(410) 내로의 O3 가스의 침입을 방지하기 위해서 밸브(514)를 열고 가스 공급관(510) 내에 N2 가스를 흘린다. N2 가스는 가스 공급관(310) 노즐(410)을 개재하여 처리실(201) 내에 공급되고, 배기관(231)으로부터 배기된다.After removing the residual gas in the
O3 가스를 흘릴 때는 APC 밸브(231a)를 적절히 조정해서 처리실(201) 내의 압력은 예컨대 110Pa로 한다. MFC(322, 332, 342)로 제어하는 3개의 노즐(420, 430, 440)로부터 공급하는 O3 가스의 총 공급 유량은 예컨대 70slm으로 한다. MFC(322, 332, 342) 및 APC 밸브(231a)로 제어하는 O3 가스의 웨이퍼(200)의 중심부에서의 유속은 예컨대 7.0m/s 내지 8.5m/s의 범위 내의 유속으로 한다. O3 가스의 분압은 예컨대 9.0Pa[처리실(201) 내의 압력의 약 8.0%] 내지 12.0Pa[처리실(201) 내의 압력의 약 11.0%], 보다 바람직하게는 11.0Pa[처리실(201) 내의 압력의 10.0%]의 압력으로 한다. 오존 발생기로부터 처리실(201) 내에 공급되는 O3 가스의 농도는 예컨대 150g/Nm3 내지 300g/Nm3, 보다 바람직하게는 250g/Nm3로 한다. O3 가스의 농도가 150g/Nm3 미만이면 가스의 농도가 낮아서 막 중의 불순물(C, 카본)의 농도가 많아져 막질이 저하되는 경우가 있다. 또한 O3 가스의 농도가 300g/Nm3을 초과하면, 가스의 농도가 높아져 형성되는 ZrO층의 하지(下地)까지 산화되는 경우가 있다. 구체적으로는 DRAM 커패시터의 경우, 하지는 TiN막(티타늄질화막)이며, TiN막으로 구성되는 전극이 산화되면 TiO, TiON의 경계면의 산화막이 증가하기 때문에 EOT(등가산화 막 두께)이 증가하는 것이나, 이상 산화에 의해 응력이 발생해 TiN 전극이 무너지는 경우가 있다. 또한 Logic의 게이트 산화막의 경우, 하지는 Si막(실리콘막)이 되고, Si 경계면이 산화되면 SiO막이 증가하기 때문에 EOT가 증가하는 경우가 있다. O3 가스의 농도를 150g/Nm3 내지 300g/Nm3로 하는 것에 의해 막 중의 불순물의 농도가 높아지는 것을 억제하여 막질을 저하시키지 않고, 또한 형성되는 막의 하지까지 산화시키지 않고 ZrO막을 형성하는 것이 가능해진다. O3 가스에 웨이퍼(200)를 노출하는 시간, 즉 가스 공급 시간(조사 시간)은 예컨대 30초 내지 120초간의 범위 내의 시간으로 한다. 이때의 히터 유닛(207)의 온도는 스텝(S101)과 마찬가지의 온도로 한다. O3 가스의 공급에 의해 웨이퍼(200) 상에 형성된 Zr 함유층이 산화되어 ZrO층이 형성된다. 이때 ZrO층에는 TEMAZ 가스에 유래되는 유기물[탄소(C), 수소(H), 질소(N) 등]이 근소하게 잔류한다.When flowing O 3 gas, the
또한 본 실시 형태에서는 3개의 노즐(420, 430, 440)을 이용해서 O3 가스를 공급하지만 노즐의 개수는 한정되지 않고, 예컨대 1개의 노즐로 O3 가스를 공급해도 상관없다.Additionally, in this embodiment, O 3 gas is supplied using three
O3 가스 공급의 처리 조건으로서 특히 O3 가스의 유속을 7.0m/s 내지 8.5m/s의 범위 내의 소정의 유속으로 하고, O3 가스의 분압을 9.0Pa[처리실(201)의 압력의 약 8.0%] 내지 12.0Pa[처리실의 압력의 약 11.0%]의 범위 내의 소정의 분압으로서 O3 가스 공급 스텝을 실행하는 것에 의해 웨이퍼의 중앙부까지 도달하는 O3 가스의 공급량이 충분해져 웨이퍼 면내에서의 산화가 충분히 수행되고, 웨이퍼 면내에서의 막 두께 균일성을 향상시킬 수 있다. 도 5에 웨이퍼 면내의 웨이퍼의 중앙부로부터 에지부까지의 사이에서의 같은 거리의 원주상 각각에서 복수 점의 막 두께를 측정하고, 그것들을 평균하여 얻어진 평균 막 두께를 도시한다. 도 5의 실선(602)로 도시하는 종래의 기법에 의한 평균 막 두께에 비해, 실선(601)로 도시하는 본 실시 형태의 기법에 의한 평균 막 두께에서는 평균 막 두께가 가장 작은 위치[실선(601)에서는 웨이퍼의 중앙부]에서의 막 두께와 평균 막 두께가 가장 큰 위치[실선(601)에서는 웨이퍼의 에지부]에서의 막 두께와의 막 두께 차이(ΔThickness)가 작게 이루어진다. 즉 도 5로부터 고유전율 산화막인 ZrO막의 웨이퍼의 면내 막 두께 균일성을 향상시키는 것이 가능해짐을 알 수 있다.As processing conditions for supplying O 3 gas, in particular, the flow rate of O 3 gas is set to a predetermined flow rate within the range of 7.0 m/s to 8.5 m/s, and the partial pressure of O 3 gas is set to 9.0 Pa [about the pressure of the processing chamber 201]. By executing the O 3 gas supply step at a predetermined partial pressure within the range of [8.0%] to 12.0 Pa [approximately 11.0% of the pressure of the processing chamber], the supply amount of O 3 gas reaching the center of the wafer becomes sufficient, thereby reducing the pressure within the wafer surface. Oxidation is sufficiently performed, and film thickness uniformity within the wafer plane can be improved. FIG. 5 shows the average film thickness obtained by measuring the film thickness at a plurality of points on the circumference of the wafer at the same distance from the center to the edge of the wafer plane and averaging them. Compared to the average film thickness by the conventional technique shown by the
또한 O3 가스의 유속이 7.0m/s미만이면, 웨이퍼의 중앙부에 도달하는 O3 가스의 공급량이 부족하여 웨이퍼의 중앙부에서의 막 두께가 얇아지고, 웨이퍼 면내 막 두께 균일성이 소정의 분포가 되지 않는 경우가 있다. 또한 O3 가스의 유속이 8.5m/s를 초과하면, 노즐의 가스 공급공에 가스의 소용돌이가 발생하기 쉬워지기 때문에 웨이퍼의 에지 부분에서의 막 두께가 두꺼워져 웨이퍼 면내 막 두께 균일성이 소정의 분포가 되지 않는 경우가 있다. O3 가스의 분압이 9.0Pa 미만이면 산화가 불충분해지기 때문에 웨이퍼 면내 막 두께 균일성이 소정의 분포가 되지 않는 경우가 있다. 또한 O3 가스의 분압이 12.0Pa를 초과하면 성막 시에 하지 과산화에 의해, 특히 웨이퍼의 에지 부분에서의 막 두께가 두꺼워져 웨이퍼 면내 막 두께 균일성이 소정의 분포가 되지 않는 경우가 있다.Additionally, if the flow rate of O 3 gas is less than 7.0 m/s, the supply amount of O 3 gas reaching the center of the wafer is insufficient, so the film thickness at the center of the wafer becomes thin, and the film thickness uniformity within the wafer surface is not distributed at a predetermined level. There are cases where it doesn't work. In addition, when the flow rate of O 3 gas exceeds 8.5 m/s, gas vortices are likely to occur in the gas supply hole of the nozzle, so the film thickness at the edge of the wafer becomes thick, and the film thickness uniformity within the wafer surface is reduced to a predetermined level. There are cases where distribution is not possible. If the partial pressure of the O 3 gas is less than 9.0 Pa, oxidation becomes insufficient, so the film thickness uniformity within the wafer plane may not be distributed as desired. Additionally, if the partial pressure of O 3 gas exceeds 12.0 Pa, the film thickness becomes thick, especially at the edge portion of the wafer, due to base peroxidation during film formation, and the film thickness uniformity within the wafer surface may not be distributed as desired.
(잔류 가스 제거 스텝)(Residual gas removal step)
ZrO층이 형성된 후, 밸브(324)를 닫고 O3 가스의 공급을 정지한다. 그리고 O3 가스 공급 스텝 전의 잔류 가스 제거 스텝과 마찬가지의 처리 순서에 의해 처리실(201) 내에 잔류하는 미반응 또는 ZrO층 형성에 기여한 후의 O3 가스를 처리실(201) 내로부터 배제한다.After the ZrO layer is formed, the valve 324 is closed and the supply of O 3 gas is stopped. Then, the unreacted O 3 gas remaining in the
(소정 횟수 실시)(Performed a certain number of times)
전술한 스텝을 순서대로 수행하는 사이클을 1회 이상[소정 횟수(n회)] 수행하는 것에 의해 웨이퍼(200) 상에 소정의 두께의 ZrO막이 형성된다. 전술한 사이클은 복수 회 반복하는 것이 바람직하다. 이와 같이 ZrO막을 형성하는 경우에는 TEMAZ 가스와 O3 가스를 서로 혼합하지 않도록(시분할하여) 교호(交互)적으로 웨이퍼(200)에 대하여 공급한다.A ZrO film of a predetermined thickness is formed on the
(애프터 퍼지 및 대기압 복귀)(After purge and return to atmospheric pressure)
성막 스텝이 종료되면, 밸브(514, 524, 534, 544)를 열고 가스 공급관(510, 520, 530, 540)의 각각으로부터 N2 가스를 처리실(201) 내에 공급하고, 배기관(231)으로부터 배기한다. N2 가스는 퍼지 가스로서 작용하고, 이에 의해 처리실(201) 내가 불활성 가스로 퍼지되어 처리실(201) 내에 잔류하는 가스나 부생성물이 처리실(201) 내로부터 제거된다(애프터 퍼지). 그 후, 처리실(201) 내의 분위기가 불활성 가스로 치환되고(불활성 가스 치환), 처리실(201) 내의 압력이 상압으로 복귀된다(대기압 복귀).When the film formation step is completed, the
(웨이퍼 반출)(wafer removal)
그 후, 보트 엘리베이터(115)에 의해 씰 캡(219)이 하강되어 반응관(203)의 하단이 개구된다. 그리고 처리 완료된 웨이퍼(200)가 보트(217)에 지지된 상태에서 반응관(203)의 하단으로부터 반응관(203)의 외부에 반출(보트 언로드)된다. 그 후 처리 완료된 웨이퍼(200)는 보트(217)로부터 취출(取出)된다(웨이퍼 디스차지).Afterwards, the
이상, 본 개시의 실시 형태에 대해서 구체적으로 설명했다. 하지만 본 개시는 전술한 실시 형태에 한정되지 않고, 그 요지를 일탈하지 않는 범위에서 다양한지 변경이 가능하다.Above, embodiments of the present disclosure have been described in detail. However, the present disclosure is not limited to the above-described embodiments, and various changes can be made without departing from the gist.
전술한 실시 형태에서는 고유전율 산화막으로서 ZrO막을 예시하지만, 이에 한정되지 않고, ZrO의 결합 에너지보다 낮은 또는 Zr 염화물의 증기압보다 높은 산화물(혼합 산화물을 포함한다)이면 좋다. 예컨대 고유전율 산화물로서 ZrOy, HfOy, AlxOy, HfSixOy, HfAlxOy, ZrSiOy, ZrAlOy, TixOy, TaxOy(x 및 y는 0보다 큰 정수 또는 소수이다.)가 이용된 경우에도 마찬가지로 적용 가능하다. 즉 지르코늄산화막, 하프늄산화막, 알루미늄산화막, 티타늄산화막, 탄탈산화막, 니오브산화막에도 적용가능하다.In the above-described embodiment, a ZrO film is exemplified as a high dielectric constant oxide film, but the film is not limited to this, and any oxide (including mixed oxides) lower than the binding energy of ZrO or higher than the vapor pressure of Zr chloride may be used. For example, as high dielectric constant oxides, ZrO y , HfO y , Al x O y , HfSi x O y , HfAl x O y , ZrSiO y , ZrAlO y , Ti x O y , Ta x O y (x and y are integers greater than 0 The same applies even when (or is a prime number) is used. That is, it can be applied to zirconium oxide film, hafnium oxide film, aluminum oxide film, titanium oxide film, tantalum oxide film, and niobium oxide film.
또한 전술한 실시 형태에서는 유기계 원료로서 TEMAZ를 예시하지만 이에 한정되지 않고, 그 외의 원료도 적용 가능하다. 예컨대 테트라키스에틸메틸아미노하프늄{Hf[N(CH3)CH2CH3]4, TEMAH} 등의 유기계 Hf 원료(유기계 Hf 원료를 포함하는 하프늄 함유 가스), 트리메틸알루미늄[(CH3)3Al, TMA] 등의 유기계 Al 원료(유기계 Al 원료를 포함하는 알루미늄 함유 가스), 트리스디메틸아미노실란{SiH[N(CH3)2]3, TDMAS} 등의 유기계 Si 원료(유기계 Si 원료를 포함하는 실리콘 함유 가스), 테트라키스디메틸아미노티타늄{Ti[N(CH3)2]4, TDMAT} 등의 유기계 Ti 원료(유기계 Ti 원료를 포함하는 티타늄 함유 가스), 펜타키스디메틸아미노탄탈{Ta[N(CH3)2]5, PDMAT} 등의 유기계 Ta 원료(유기계 Ta 원료를 포함하는 탄탈 함유 가스), 트리스디메틸아미노터셔리부틸이미노니오브{(tert-C4H9)N=Nb[N(C2H5)2]3, TBTDEN} 등의 유기계 Nb 원료(유기계 Nb 원료를 포함하는 니오브 함유 가스) 등도 적용 가능하다.In addition, in the above-described embodiment, TEMAZ is exemplified as an organic raw material, but it is not limited to this, and other raw materials are also applicable. For example, organic Hf raw materials such as tetrakisethylmethylaminohafnium {Hf[N(CH 3 )CH 2 CH 3 ] 4 , TEMAH} (hafnium-containing gas including organic Hf raw materials), trimethyl aluminum [(CH 3 ) 3 Al , TMA], etc. (aluminum-containing gas containing organic Al raw materials), organic Si raw materials such as trisdimethylaminosilane {SiH[N(CH 3 ) 2 ] 3 , TDMAS} (containing organic Si raw materials) Silicon-containing gas), organic Ti raw materials such as tetrakisdimethylaminotitanium {Ti[N(CH 3 ) 2 ] 4 , TDMAT} (titanium-containing gas containing organic Ti raw materials), pentakisdimethylaminotantanium {Ta[N (CH 3 ) 2 ] 5 , PDMAT} and other organic Ta raw materials (tantalum-containing gas containing organic Ta raw materials), trisdimethylaminotertibutyliminoniobe {(tert-C 4 H 9 )N=Nb[N Organic Nb raw materials (niobium-containing gas containing organic Nb raw materials) such as (C 2 H 5 ) 2 ] 3 and TBTDEN are also applicable.
또한 전술한 실시 형태에서는 성막 공정에서 O3 가스를 사용하는 예를 제시하지만 이에 한정되지 않고, 산소 함유 가스라면 기타의 원료도 적용 가능하다. 예컨대 산소(O2), O2 플라즈마, 수증기(H2O), 과산화수소(H2O2), 아산화질소(N2O) 등도 적용 가능하다.In addition, the above-described embodiment presents an example of using O 3 gas in the film forming process, but the present invention is not limited to this, and other raw materials can be applied as long as they are oxygen-containing gases. For example, oxygen (O 2 ), O 2 plasma, water vapor (H 2 O), hydrogen peroxide (H 2 O 2 ), nitrous oxide (N 2 O), etc. are also applicable.
또한 불활성 가스로서는 N2 가스 외에 Ar 가스, He 가스, Ne 가스, Xe 가스 등의 희가스를 이용해도 좋다.Additionally, as an inert gas, in addition to N 2 gas, rare gases such as Ar gas, He gas, Ne gas, and Xe gas may be used.
이들 각종 박막의 형성에 이용되는 프로세스 레시피(처리 순서나 처리 조건 등이 기재된 프로그램)는 기판 처리 등의 내용(형성하는 박막의 막종, 조성비, 막질, 막 두께, 처리 순서 처리 조건 등)에 따라 각각 개별로 준비(복수 준비)하는 것이 바람직하다. 그리고 기판 처리 등을 시작할 때, 기판 처리 등의 내용에 따라 복수의 프로세스 레시피 등의 중으로부터 적절한 프로세스 레시피 등을 적절히 선택하는 것이 바람직하다. 구체적으로는 기판 처리 등의 내용에 따라 개별로 준비된 복수의 프로세스 레시피 등을 전기 통신 회선이나 상기 프로세스 레시피 등을 기록한 기록 매체[외부 기억 장치(283)]를 개재하여 기판 처리 장치가 구비하는 기억 장치(280c) 내에 미리 격납(인스톨)해두는 것이 바람직하다. 그리고 기판 처리를 시작할 때 기판 처리 장치가 구비하는 CPU(280a)이 기억 장치(280c) 내에 격납된 복수의 프로세스 레시피 등의 중으로부터 기판 처리의 내용에 따라 적절한 프로세스 레시피 등을 적절히 선택하는 것이 바람직하다. 이와 같이 구성하는 것에 의해 1대(臺)의 기판 처리 장치로 다양한 막종, 조성비, 막질, 막 두께의 박막을 범용적으로 또한 재현성 좋게 형성할 수 있게 된다. 또한 오퍼레이터의 조작 부담(처리 순서나 처리 조건 등의 입력 부담 등)을 저감할 수 있고, 조작 실수를 회피하면서 기판 처리를 신속하게 시작할 수 있게 된다.The process recipe (program that describes the processing sequence and processing conditions, etc.) used to form these various thin films varies depending on the content of the substrate processing (film type, composition ratio, film quality, film thickness, processing order, processing conditions, etc. of the thin film to be formed). It is advisable to prepare individually (multiple preparations). When starting substrate processing, etc., it is desirable to appropriately select an appropriate process recipe, etc. from among a plurality of process recipes, etc., depending on the content of substrate processing, etc. Specifically, a storage device provided in the substrate processing apparatus to store a plurality of process recipes, etc. individually prepared according to the contents of substrate processing, etc., via an electrical communication line or a recording medium (external storage device 283) on which the process recipes, etc. are recorded. It is desirable to store (install) it in advance within (280c). Also, when starting substrate processing, it is desirable for the
또한 본 개시는 예컨대 기존의 기판 처리 장치의 프로세스 레시피 등을 변경하는 것으로도 실현된다. 프로세스 레시피 등을 변경하는 경우에는 본 개시에 따른 프로세스 레시피 등을 전기 통신 회선이나 상기 프로세스 레시피 등을 기록한 기록 매체를 개재하여 기존의 기판 처리 장치에 인스톨하거나, 또한 기존의 기판 처리 장치의 입출력 장치를 조작하고, 그 프로세스 레시피 등의 자체를 본 개시에 따른 프로세스 레시피 등에 변경하는 것도 가능하다.Additionally, the present disclosure can also be realized by, for example, changing the process recipe of an existing substrate processing apparatus. When changing the process recipe, etc., the process recipe, etc. according to the present disclosure must be installed in an existing substrate processing device through a telecommunication line or a recording medium recording the process recipe, etc., or the input/output device of the existing substrate processing device can be installed. It is also possible to operate and change the process recipe, etc. itself according to the present disclosure.
10: 기판 처리 장치 280: 컨트롤러
200: 웨이퍼(기판) 201: 처리실10: substrate processing device 280: controller
200: Wafer (substrate) 201: Processing room
Claims (14)
(b) 상기 처리실 내의 상기 복수 매의 기판에 대하여 상기 기판의 중앙부에서의 산소 함유 가스의 유속을 7.0m/s 이상 8.5m/s 이하로 하고 상기 산소 함유 가스의 분압을 9.0Pa 이상 12.0Pa 이하로 하여 상기 산소 함유 가스를 상기 처리실 내의 하부 영역으로부터 상기 처리실의 상부 영역까지 연재하도록 설치되는 노즐로부터 공급하는 공정
을 포함하는 반도체 장치의 제조 방법.(a) a process of supplying a metal-containing gas to a plurality of substrates in a processing chamber; and
(b) With respect to the plurality of substrates in the processing chamber, the flow rate of the oxygen-containing gas at the center of the substrate is 7.0 m/s or more and 8.5 m/s or less, and the partial pressure of the oxygen-containing gas is 9.0 Pa or more and 12.0 Pa or less. A process of supplying the oxygen-containing gas from a nozzle installed to extend from a lower region in the processing chamber to an upper region of the processing chamber.
A method of manufacturing a semiconductor device comprising:
(a)와 (b)를 소정 횟수 반복 수행하는 것에 의해 상기 기판 상에 금속산화막을 형성하는 반도체 장치의 제조 방법.According to paragraph 1,
A method of manufacturing a semiconductor device in which a metal oxide film is formed on the substrate by repeating (a) and (b) a predetermined number of times.
(a)와 (b) 사이에 상기 처리실을 배기하는 공정을 수행하는 반도체 장치의 제조 방법.According to paragraph 1,
A method of manufacturing a semiconductor device, comprising performing a process of exhausting the processing chamber between (a) and (b).
(b) 후에 상기 처리실을 배기하는 공정을 수행하는 반도체 장치의 제조 방법.According to paragraph 1,
(b) A method of manufacturing a semiconductor device that later performs a process of exhausting the processing chamber.
(a)와 (b)를 소정 횟수 수행한 후에 상기 처리실 내에 불활성 가스를 공급하는 공정을 수행하는 반도체 장치의 제조 방법.According to paragraph 1,
A method of manufacturing a semiconductor device comprising performing (a) and (b) a predetermined number of times and then supplying an inert gas into the processing chamber.
(b)에서는 상기 산소 함유 가스의 농도를 150g/Nm3 이상 300g/Nm3 이하로 하는 반도체 장치의 제조 방법.According to paragraph 1,
In (b), a semiconductor device manufacturing method in which the concentration of the oxygen-containing gas is set to 150 g/Nm 3 or more and 300 g/Nm 3 or less.
상기 금속 함유 가스는 지르코늄 함유 가스, 하프늄 함유 가스, 알루미늄 함유 가스, 실리콘 함유 가스, 티타늄 함유 가스, 탄탈 함유 가스 및 니오브 함유 가스 중 어느 하나인 반도체 장치의 제조 방법.According to paragraph 1,
The metal-containing gas is any one of zirconium-containing gas, hafnium-containing gas, aluminum-containing gas, silicon-containing gas, titanium-containing gas, tantalum-containing gas, and niobium-containing gas.
상기 산소 함유 가스는 오존, 산소, 산소 플라즈마, 수증기, 과산화수소 및 아산화질소 중 어느 하나인 반도체 장치의 제조 방법.According to paragraph 1,
A method of manufacturing a semiconductor device wherein the oxygen-containing gas is any one of ozone, oxygen, oxygen plasma, water vapor, hydrogen peroxide, and nitrous oxide.
(b)에서는 상기 산소 함유 가스는 처리실 내에 설치되는 복수 개의 노즐로부터 공급되는 반도체 장치의 제조 방법.According to paragraph 1,
In (b), the oxygen-containing gas is supplied from a plurality of nozzles installed in the processing chamber.
상기 금속산화막은 고유전율 산화막인 반도체 장치의 제조 방법.According to paragraph 2,
A method of manufacturing a semiconductor device wherein the metal oxide film is a high dielectric constant oxide film.
상기 기판은 연직 방향에 다단으로 복수 매, 기판 보지구(保持具)에 보지되고,
복수 매의 상기 기판 상에 상기 금속산화막이 형성되는 반도체 장치의 제조 방법.According to paragraph 2,
The substrate is arranged in multiple layers in a vertical direction and is held in a substrate holding device,
A method of manufacturing a semiconductor device in which the metal oxide film is formed on a plurality of the substrates.
상기 기판 상에 형성되는 상기 금속산화막의 하지(下地)에는 티타늄질화막 또는 실리콘막이 형성되는 반도체 장치의 제조 방법.According to paragraph 2,
A method of manufacturing a semiconductor device in which a titanium nitride film or a silicon film is formed on the metal oxide film formed on the substrate.
상기 처리실 내의 기판에 대하여 금속 함유 가스를 공급하는 금속 함유 가스 공급계;
상기 처리실 내의 기판에 대하여 산소 함유 가스를 상기 처리실 내의 하부 영역으로부터 상기 처리실의 상부 영역까지 연재하도록 설치되는 노즐로부터 공급하는 산소 함유 가스 공급계;
상기 처리실 내를 배기하는 배기계;
상기 처리실 내의 압력을 조정하는 압력 조정부; 및
(a) 상기 처리실 내의 상기 복수 매의 기판에 대하여 상기 금속 함유 가스를 공급하는 처리와, (b) 상기 처리실 내의 상기 기판에 대하여 상기 기판의 중앙부에서의 상기 산소 함유 가스의 유속을 7.0m/s 이상 8.5m/s 이하로 하고 상기 산소 함유 가스의 분압을 9.0Pa 이상 12.0Pa 이하로 하여 상기 산소 함유 가스를 상기 노즐로부터 공급하는 처리를 수행하는 것이 가능하도록, 상기 금속 함유 가스 공급계, 상기 산소 함유 가스 공급계, 상기 배기계 및 상기 압력 조정부를 제어하도록 구성되는 제어부
를 포함하는 기판 처리 장치.A processing room for processing a plurality of substrates;
a metal-containing gas supply system that supplies metal-containing gas to the substrates in the processing chamber;
an oxygen-containing gas supply system that supplies oxygen-containing gas to the substrates in the processing chamber from a nozzle installed to extend the oxygen-containing gas from a lower region within the processing chamber to an upper region of the processing chamber;
an exhaust system that exhausts the inside of the processing chamber;
a pressure regulator that adjusts the pressure within the processing chamber; and
(a) a process of supplying the metal-containing gas to the plurality of substrates in the processing chamber, and (b) a flow rate of the oxygen-containing gas at the center of the substrate to 7.0 m/s with respect to the substrates in the processing chamber. To enable the process of supplying the oxygen-containing gas from the nozzle by setting the partial pressure of the oxygen-containing gas to 8.5 m/s or less and the partial pressure of the oxygen-containing gas to be 9.0 Pa or more and 12.0 Pa or less, the metal-containing gas supply system and the oxygen A control unit configured to control the contained gas supply system, the exhaust system, and the pressure adjustment unit.
A substrate processing device comprising:
(b) 상기 처리실 내의 상기 복수 매의 기판에 대하여 상기 기판의 중앙부에서의 산소 함유 가스의 유속을 7.0m/s 이상 8.5m/s 이하로 하고 상기 산소 함유 가스의 분압을 9.0Pa 이상 12.0Pa 이하로 하여 상기 산소 함유 가스를 상기 처리실 내의 하부 영역으로부터 상기 처리실의 상부 영역까지 연재하도록 설치되는 노즐로부터 공급하는 순서
를 컴퓨터에 의해 상기 기판 처리 장치에 실행시키는 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체.(a) Procedure for supplying metal-containing gas to a plurality of substrates in the processing chamber of the substrate processing apparatus; and
(b) With respect to the plurality of substrates in the processing chamber, the flow rate of the oxygen-containing gas at the center of the substrate is 7.0 m/s or more and 8.5 m/s or less, and the partial pressure of the oxygen-containing gas is 9.0 Pa or more and 12.0 Pa or less. A sequence of supplying the oxygen-containing gas from a nozzle installed to extend from a lower region in the processing chamber to an upper region of the processing chamber.
A computer-readable recording medium recording a program that is executed by a computer on the substrate processing device.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019034074 | 2019-02-27 | ||
JPJP-P-2019-034074 | 2019-02-27 | ||
PCT/JP2020/007335 WO2020175427A1 (en) | 2019-02-27 | 2020-02-25 | Semiconductor device production method, substrate processing device, and program |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210093337A KR20210093337A (en) | 2021-07-27 |
KR102685903B1 true KR102685903B1 (en) | 2024-07-16 |
Family
ID=72238299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020217019468A Active KR102685903B1 (en) | 2019-02-27 | 2020-02-25 | Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7175375B2 (en) |
KR (1) | KR102685903B1 (en) |
CN (1) | CN113454762B (en) |
WO (1) | WO2020175427A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010239103A (en) * | 2008-08-29 | 2010-10-21 | Tokyo Electron Ltd | Activated gas injector, film forming apparatus and film forming method |
WO2012060379A1 (en) | 2010-11-04 | 2012-05-10 | 株式会社日立国際電気 | Method for manufacturing semiconductor device, method for processing substrate and apparatus for processing substrate |
WO2012066977A1 (en) | 2010-11-19 | 2012-05-24 | 株式会社日立国際電気 | Method for producing semiconductor device, method for substrate treatment, and device for substrate treatment |
JP2014165494A (en) * | 2013-02-22 | 2014-09-08 | Imec | Oxygen monolayer on semiconductor |
JP2018166142A (en) | 2017-03-28 | 2018-10-25 | 株式会社日立国際電気 | Semiconductor device manufacturing method, substrate processing apparatus, and program |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000016388A1 (en) * | 1998-09-16 | 2000-03-23 | Torrex Equipment Corporation | High rate silicon dioxide deposition at low pressures |
JP2006160555A (en) * | 2004-12-07 | 2006-06-22 | Oyo Kogaku Kenkyusho | Liquid column type excited oxygen generation unit |
JP4704894B2 (en) | 2005-11-16 | 2011-06-22 | 国立大学法人京都大学 | Film forming method and film forming apparatus |
JP2014067783A (en) | 2012-09-25 | 2014-04-17 | Hitachi Kokusai Electric Inc | Substrate processing apparatus, semiconductor device manufacturing method and substrate processing method |
JP6024962B2 (en) * | 2012-10-29 | 2016-11-16 | 株式会社明電舎 | Semiconductor device manufacturing method |
JP6128969B2 (en) * | 2013-06-03 | 2017-05-17 | 株式会社日立国際電気 | Substrate processing apparatus, semiconductor device manufacturing method, and program |
WO2018179251A1 (en) * | 2017-03-30 | 2018-10-04 | 株式会社日立国際電気 | Method for producing semiconductor device |
-
2020
- 2020-02-25 JP JP2021502235A patent/JP7175375B2/en active Active
- 2020-02-25 KR KR1020217019468A patent/KR102685903B1/en active Active
- 2020-02-25 WO PCT/JP2020/007335 patent/WO2020175427A1/en active Application Filing
- 2020-02-25 CN CN202080016017.XA patent/CN113454762B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010239103A (en) * | 2008-08-29 | 2010-10-21 | Tokyo Electron Ltd | Activated gas injector, film forming apparatus and film forming method |
WO2012060379A1 (en) | 2010-11-04 | 2012-05-10 | 株式会社日立国際電気 | Method for manufacturing semiconductor device, method for processing substrate and apparatus for processing substrate |
WO2012066977A1 (en) | 2010-11-19 | 2012-05-24 | 株式会社日立国際電気 | Method for producing semiconductor device, method for substrate treatment, and device for substrate treatment |
JP2014165494A (en) * | 2013-02-22 | 2014-09-08 | Imec | Oxygen monolayer on semiconductor |
JP2018166142A (en) | 2017-03-28 | 2018-10-25 | 株式会社日立国際電気 | Semiconductor device manufacturing method, substrate processing apparatus, and program |
Also Published As
Publication number | Publication date |
---|---|
CN113454762A (en) | 2021-09-28 |
WO2020175427A1 (en) | 2020-09-03 |
CN113454762B (en) | 2024-10-25 |
JP7175375B2 (en) | 2022-11-18 |
KR20210093337A (en) | 2021-07-27 |
JPWO2020175427A1 (en) | 2021-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102046219B1 (en) | Substrate processing apparatus, method of manufacturing semiconductor device, program and precursor gas nozzle | |
US10707074B2 (en) | Method for manufacturing semiconductor device, non-transitory computer-readable recording medium, and substrate processing apparatus | |
US12365987B2 (en) | Method of processing substrate, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium | |
US9437421B2 (en) | Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium | |
KR101520844B1 (en) | Method of manufacturing semiconductor device, substrate processing method and apparatus, non-transitory computer readable recording medium, and semiconductor device | |
US10640869B2 (en) | Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium | |
US12234550B2 (en) | Vaporizer, processing apparatus and method of manufacturing semiconductor device | |
KR102204507B1 (en) | Method of manufacturing semiconductor device, substrate processing apparatus and program | |
US20200411330A1 (en) | Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium | |
KR20230050451A (en) | Substrate processing method, semiconductor device manufacturing method, program and substrate processing device | |
WO2020066800A1 (en) | Method for manufacturing semiconductor device, substrate processing apparatus, and program | |
KR102685903B1 (en) | Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium | |
WO2019188037A1 (en) | Substrate treatment device, method for manufacturing semiconductor device, and program | |
JP2021048233A (en) | Raw material storage system, substrate processing apparatus, cleaning method and program | |
US12249502B2 (en) | Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium | |
US11898247B2 (en) | Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium | |
JP7179962B2 (en) | Semiconductor device manufacturing method, substrate processing method, substrate processing apparatus, and program | |
US20220165565A1 (en) | Method of processing substrate, recording medium, and substrate processing apparatus | |
US11961733B2 (en) | Method of manufacturing semiconductor device, substrate processing method, substrate processing apparatus, and recording medium | |
KR20240162500A (en) | Substrate processing device, substrate processing method, semiconductor device manufacturing method, program and gas supply unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0105 | International application |
Patent event date: 20210623 Patent event code: PA01051R01D Comment text: International Patent Application |
|
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20210623 Comment text: Request for Examination of Application |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20230619 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20240417 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20240712 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20240712 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |