KR102680032B1 - Solid electrolyte for lithium secondary battery, method for preparing the same and lithium secondary battery including the solid electrolyte - Google Patents
Solid electrolyte for lithium secondary battery, method for preparing the same and lithium secondary battery including the solid electrolyte Download PDFInfo
- Publication number
- KR102680032B1 KR102680032B1 KR1020190027141A KR20190027141A KR102680032B1 KR 102680032 B1 KR102680032 B1 KR 102680032B1 KR 1020190027141 A KR1020190027141 A KR 1020190027141A KR 20190027141 A KR20190027141 A KR 20190027141A KR 102680032 B1 KR102680032 B1 KR 102680032B1
- Authority
- KR
- South Korea
- Prior art keywords
- lithium secondary
- lithium
- secondary battery
- solid electrolyte
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 70
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 64
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 58
- 238000000034 method Methods 0.000 title claims description 18
- -1 salt compound Chemical class 0.000 claims abstract description 50
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 40
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 40
- 150000001875 compounds Chemical class 0.000 claims abstract description 35
- 239000011244 liquid electrolyte Substances 0.000 claims abstract description 35
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims abstract description 25
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 claims abstract description 13
- 150000007524 organic acids Chemical class 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 20
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 14
- 238000002156 mixing Methods 0.000 claims description 13
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 11
- JMCRETWEZLOFQT-UHFFFAOYSA-M trimethyl(3-triethoxysilylpropyl)azanium;chloride Chemical compound [Cl-].CCO[Si](OCC)(OCC)CCC[N+](C)(C)C JMCRETWEZLOFQT-UHFFFAOYSA-M 0.000 claims description 11
- 239000003795 chemical substances by application Substances 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 9
- 239000011259 mixed solution Substances 0.000 claims description 9
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 8
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 7
- 239000006227 byproduct Substances 0.000 claims description 7
- 235000019253 formic acid Nutrition 0.000 claims description 7
- 235000005985 organic acids Nutrition 0.000 claims description 7
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 claims description 6
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 6
- KTQDYGVEEFGIIL-UHFFFAOYSA-N n-fluorosulfonylsulfamoyl fluoride Chemical compound FS(=O)(=O)NS(F)(=O)=O KTQDYGVEEFGIIL-UHFFFAOYSA-N 0.000 claims description 5
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 claims description 5
- ZXMGHDIOOHOAAE-UHFFFAOYSA-N 1,1,1-trifluoro-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical compound FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F ZXMGHDIOOHOAAE-UHFFFAOYSA-N 0.000 claims description 4
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 claims description 4
- XGEGHDBEHXKFPX-UHFFFAOYSA-N N-methyl urea Chemical compound CNC(N)=O XGEGHDBEHXKFPX-UHFFFAOYSA-N 0.000 claims description 4
- 150000001450 anions Chemical class 0.000 claims description 4
- 150000001768 cations Chemical class 0.000 claims description 4
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims description 4
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- YBBLOADPFWKNGS-UHFFFAOYSA-N 1,1-dimethylurea Chemical compound CN(C)C(N)=O YBBLOADPFWKNGS-UHFFFAOYSA-N 0.000 claims description 2
- 229940057054 1,3-dimethylurea Drugs 0.000 claims description 2
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 claims description 2
- 239000001263 FEMA 3042 Substances 0.000 claims description 2
- MGJKQDOBUOMPEZ-UHFFFAOYSA-N N,N'-dimethylurea Chemical compound CNC(=O)NC MGJKQDOBUOMPEZ-UHFFFAOYSA-N 0.000 claims description 2
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 claims description 2
- 239000004202 carbamide Substances 0.000 claims description 2
- 235000015165 citric acid Nutrition 0.000 claims description 2
- LRBQNJMCXXYXIU-QWKBTXIPSA-N gallotannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@H]2[C@@H]([C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-QWKBTXIPSA-N 0.000 claims description 2
- 229910052736 halogen Inorganic materials 0.000 claims description 2
- 235000006408 oxalic acid Nutrition 0.000 claims description 2
- 235000015523 tannic acid Nutrition 0.000 claims description 2
- 229940033123 tannic acid Drugs 0.000 claims description 2
- 229920002258 tannic acid Polymers 0.000 claims description 2
- ZUEKXCXHTXJYAR-UHFFFAOYSA-N tetrapropan-2-yl silicate Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)OC(C)C ZUEKXCXHTXJYAR-UHFFFAOYSA-N 0.000 claims description 2
- NVFOGLOANNIJTD-UHFFFAOYSA-N trimethyl(3-triethoxysilylpropyl)azanium Chemical compound CCO[Si](OCC)(OCC)CCC[N+](C)(C)C NVFOGLOANNIJTD-UHFFFAOYSA-N 0.000 claims description 2
- 229930000044 secondary metabolite Natural products 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 24
- 239000003792 electrolyte Substances 0.000 abstract description 21
- 239000000741 silica gel Substances 0.000 abstract description 13
- 229910002027 silica gel Inorganic materials 0.000 abstract description 13
- 239000007787 solid Substances 0.000 abstract description 7
- 239000002131 composite material Substances 0.000 abstract description 6
- 239000007788 liquid Substances 0.000 abstract description 5
- 239000011230 binding agent Substances 0.000 description 25
- 239000000499 gel Substances 0.000 description 17
- 239000004020 conductor Substances 0.000 description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 239000007774 positive electrode material Substances 0.000 description 12
- 239000002904 solvent Substances 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 239000002002 slurry Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 239000011149 active material Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000001879 gelation Methods 0.000 description 4
- 229910010272 inorganic material Inorganic materials 0.000 description 4
- 239000011147 inorganic material Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 150000003949 imides Chemical class 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 3
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 description 3
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 229910000733 Li alloy Inorganic materials 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000001989 lithium alloy Substances 0.000 description 2
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 2
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- ROGIWVXWXZRRMZ-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1 ROGIWVXWXZRRMZ-UHFFFAOYSA-N 0.000 description 1
- 239000006245 Carbon black Super-P Substances 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910000925 Cd alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 229910002986 Li4Ti5O12 Inorganic materials 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910010093 LiAlO Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013372 LiC 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011294 coal tar pitch Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000157 electrochemical-induced impedance spectroscopy Methods 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 229910052730 francium Inorganic materials 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- YQNQTEBHHUSESQ-UHFFFAOYSA-N lithium aluminate Chemical compound [Li+].[O-][Al]=O YQNQTEBHHUSESQ-UHFFFAOYSA-N 0.000 description 1
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- 229910001537 lithium tetrachloroaluminate Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- QWGCQZJUWQYRGZ-UHFFFAOYSA-M lithium;difluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)F QWGCQZJUWQYRGZ-UHFFFAOYSA-M 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002931 mesocarbon microbead Substances 0.000 description 1
- 239000011302 mesophase pitch Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- MPDOUGUGIVBSGZ-UHFFFAOYSA-N n-(cyclobutylmethyl)-3-(trifluoromethyl)aniline Chemical compound FC(F)(F)C1=CC=CC(NCC2CCC2)=C1 MPDOUGUGIVBSGZ-UHFFFAOYSA-N 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000007763 reverse roll coating Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- GATMMPLPWMZYAP-UHFFFAOYSA-N triethoxy-[3-(3-methylimidazol-3-ium-1-yl)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCC[N+]=1C=CN(C)C=1 GATMMPLPWMZYAP-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/08—Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0085—Immobilising or gelification of electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
- H01M2300/0091—Composites in the form of mixtures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
Abstract
기계적 강도가 우수한 실리카겔 기반의 고체상 복합 전해질을 리튬 이차전지에 적용함으로써, 전지 내에서의 누액 현상 및 형상 변형을 방지하는 등 전지의 안정성을 개선시킬 수 있는, 리튬 이차전지용 고체 전해질, 그 제조방법 및 상기 고체 전해질을 포함한 리튬 이차전지가 개시된다. 상기 리튬 이차전지용 고체 전해질은, 아미노실란계 염 화합물; 실리케이트계 화합물; 및 리튬염 함유 액상 전해질;을 포함한다.By applying a silica gel-based solid composite electrolyte with excellent mechanical strength to a lithium secondary battery, a solid electrolyte for a lithium secondary battery that can improve the stability of the battery, such as preventing liquid leakage and shape deformation within the battery, a method of manufacturing the same, and A lithium secondary battery including the solid electrolyte is disclosed. The solid electrolyte for a lithium secondary battery includes an aminosilane-based salt compound; silicate-based compounds; and a lithium salt-containing liquid electrolyte.
Description
본 발명은 리튬 이차전지에 적용 가능한 실리카겔 기반의 리튬 이차전지용 고체 전해질, 그 제조방법 및 상기 고체 전해질을 포함한 리튬 이차전지에 관한 것으로서, 더욱 상세하게는, 기계적 강도가 우수한 실리카겔 기반의 고체상 복합 전해질을 리튬 이차전지에 적용함으로써, 전지 내에서의 누액 현상 및 형상 변형을 방지하는 등 전지의 안정성을 개선시킬 수 있는, 리튬 이차전지용 고체 전해질, 그 제조방법 및 상기 고체 전해질을 포함한 리튬 이차전지에 관한 것이다.The present invention relates to a silica gel-based solid electrolyte for lithium secondary batteries applicable to lithium secondary batteries, a manufacturing method thereof, and a lithium secondary battery containing the solid electrolyte. More specifically, it relates to a silica gel-based solid composite electrolyte with excellent mechanical strength. The present invention relates to a solid electrolyte for a lithium secondary battery that can improve the stability of the battery by preventing liquid leakage and shape deformation within the battery by applying it to a lithium secondary battery, a method of manufacturing the same, and a lithium secondary battery containing the solid electrolyte. .
에너지 저장 기술에 대한 관심이 갈수록 높아짐에 따라, 휴대폰, 태블릿(tablet), 랩탑(laptop) 및 캠코더, 나아가서는 전기 자동차(EV) 및 하이브리드 전기 자동차(HEV)의 에너지까지 적용분야가 확대되면서, 전기화학소자에 대한 연구 및 개발이 점차 증대되고 있다. 전기화학소자는 이러한 측면에서 가장 주목을 받고 있는 분야이고, 그 중에서도 충방전이 가능한 리튬-황 전지 등의 리튬계 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 비 에너지를 향상시키기 위하여, 새로운 전극과 전지의 설계에 대한 연구개발로 이어지고 있다.As interest in energy storage technology grows, its application areas expand to include energy from mobile phones, tablets, laptops and camcorders, and even electric vehicles (EVs) and hybrid electric vehicles (HEVs). Research and development on chemical devices is gradually increasing. Electrochemical devices are the field that is receiving the most attention in this regard, and among them, the development of lithium-based secondary batteries such as lithium-sulfur batteries that can be charged and discharged has become the focus of attention. Recently, capacity has been considered in the development of these batteries. To improve density and specific energy, research and development is being conducted on new electrode and battery designs.
이와 같은 리튬 이차전지는 크게 양극, 음극, 분리막 및 전해질로 구성되며, 이 중, 리튬 이차전지용 전해질로서 액체상의 전해질이 큰 비중을 차지하고 있다. 상기 액체상 전해질은 높은 이온전도도를 제공한다는 장점을 가지고 있지만, 높은 증기압, 전지 외부로의 누액 가능성 및 낮은 발화점으로 인하여 전지의 안정성을 떨어뜨리는 문제점도 함께 가지고 있다.Such lithium secondary batteries are largely composed of a positive electrode, a negative electrode, a separator, and an electrolyte, and among these, the liquid electrolyte accounts for a large portion as the electrolyte for lithium secondary batteries. Although the liquid electrolyte has the advantage of providing high ionic conductivity, it also has the problem of reducing the stability of the battery due to high vapor pressure, possibility of liquid leaking to the outside of the battery, and low ignition point.
이와 같이 단점으로 지적되어 온 리튬 이차전지의 안정성을 개선시키기 위하여, 당업계에서는 다양한 소재를 이용한 액체상 전해질이나 다공성 실리카겔 무기소재와 액체상 전해질의 복합체 등을 적용하고 있으나, 아직까지 뚜렷한 효과를 발현시키지는 못하고 있는 실정이다. 특히, 다공성 실리카겔 무기소재와 액체상 전해질을 이용한 복합체의 경우, 매트릭스(Matrix)가 되는 실리카겔 무기소재의 기계적 특성에 따라 담지되어 있는 액체상 전해질의 누액 현상 발생 여부와 전지의 조립 공정 수월성이 달라지기 때문에, 실리카겔 무기소재의 기계적 특성을 향상시킬 수 있는 방안이 요구되고 있다.In order to improve the stability of lithium secondary batteries, which have been pointed out as a disadvantage, the industry is applying liquid electrolytes using various materials or complexes of porous silica gel inorganic materials and liquid electrolytes, but they have not yet shown a clear effect. There is a situation. In particular, in the case of a composite using a porous silica gel inorganic material and a liquid electrolyte, the occurrence of leakage of the supported liquid electrolyte and the ease of the battery assembly process vary depending on the mechanical properties of the silica gel inorganic material that serves as the matrix. There is a need for methods to improve the mechanical properties of silica gel inorganic materials.
따라서, 본 발명의 목적은, 기계적 강도가 우수한 실리카겔 기반의 고체상 복합 전해질을 리튬 이차전지에 적용함으로써, 전지 내에서의 누액 현상 및 형상 변형을 방지하는 등 전지의 안정성을 개선시킬 수 있는, 리튬 이차전지용 고체 전해질, 그 제조방법 및 상기 고체 전해질을 포함한 리튬 이차전지를 제공하는 것이다.Therefore, the purpose of the present invention is to develop a lithium secondary battery that can improve the stability of the battery, such as preventing liquid leakage and shape deformation within the battery, by applying a silica gel-based solid composite electrolyte with excellent mechanical strength to the lithium secondary battery. To provide a solid electrolyte for a battery, a manufacturing method thereof, and a lithium secondary battery containing the solid electrolyte.
상기 목적을 달성하기 위하여, 본 발명은, 아미노실란계 염 화합물; 실리케이트계 화합물; 및 리튬염 함유 액상 전해질;을 포함하는 겔 성상의 리튬 이차전지용 고체 전해질을 제공한다.In order to achieve the above object, the present invention includes an aminosilane-based salt compound; silicate-based compounds; and a lithium salt-containing liquid electrolyte. It provides a gel-like solid electrolyte for a lithium secondary battery including a lithium salt-containing liquid electrolyte.
또한, 본 발명은, (a) 아미노실란계 염 화합물, 실리케이트계 화합물, 유기산 및 리튬염 함유 액상 전해질을 혼합하는 단계; (b) 상기 혼합액을 방치하여 겔화하는 단계; (c) 상기 겔을 열처리하여 유기산 및 부산물을 제거하는 단계; 및 (d) 상기 열처리된 겔을 건조시켜 잔여 수분을 제거하는 단계;를 포함하는 리튬 이차전지용 고체 전해질의 제조방법을 제공한다.In addition, the present invention includes the steps of (a) mixing an aminosilane-based salt compound, a silicate-based compound, an organic acid, and a lithium salt-containing liquid electrolyte; (b) gelling the mixed solution by leaving it alone; (c) heat treating the gel to remove organic acids and by-products; and (d) drying the heat-treated gel to remove residual moisture.
또한, 본 발명은, 양극; 음극; 상기 양극와 음극의 사이에 개재되는 리튬 이차전지용 고체 전해질; 및 분리막;을 포함하는 리튬 이차전지를 제공한다.In addition, the present invention, an anode; cathode; A solid electrolyte for a lithium secondary battery interposed between the positive electrode and the negative electrode; It provides a lithium secondary battery including a separator.
본 발명에 따른 리튬 이차전지용 고체 전해질, 그 제조방법 및 상기 고체 전해질을 포함한 리튬 이차전지는, 기계적 강도가 우수한 실리카겔 기반의 고체상 복합 전해질을 리튬 이차전지에 적용함으로써, 전지 내에서의 누액 현상 및 형상 변형을 방지하는 등 전지의 안정성을 개선시킬 수 있는 장점을 가지고 있다.The solid electrolyte for a lithium secondary battery, the manufacturing method thereof, and the lithium secondary battery including the solid electrolyte according to the present invention are achieved by applying a silica gel-based solid composite electrolyte with excellent mechanical strength to the lithium secondary battery, thereby causing the leakage phenomenon and shape in the battery. It has the advantage of improving the stability of the battery, such as preventing deformation.
도 1은 압력 받기 이전의 고체 전해질의 형상을 보여주는 이미지이다.Figure 1 is an image showing the shape of a solid electrolyte before being subjected to pressure.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명에 따른 리튬 이차전지용 고체 전해질은, 겔 성상으로서, 아미노실란계 염 화합물, 실리케이트계 화합물 및 리튬염 함유 액상 전해질을 포함한다.The solid electrolyte for a lithium secondary battery according to the present invention is in a gel state and includes an aminosilane-based salt compound, a silicate-based compound, and a lithium salt-containing liquid electrolyte.
상기 본 발명에 따른 겔 성상(性狀, 또는 겔 타입)의 리튬 이차전지용 고체 전해질은, 기계적 강도가 우수한 실리카겔 기반의 고체상 복합 전해질로서, 이를 리튬 이차전지에 적용함으로써 전지 내에서의 누액 현상 및 형상 변형을 방지하는 등 전지의 안정성을 개선시킬 수 있는 고유의 발명이라 할 수 있다.The gel-type (or gel-type) solid electrolyte for lithium secondary batteries according to the present invention is a silica gel-based solid composite electrolyte with excellent mechanical strength, and by applying it to lithium secondary batteries, leakage and shape deformation within the battery are prevented. It can be said to be a unique invention that can improve the stability of the battery by preventing
상기 아미노실란계 염 화합물은 전해질의 기계적 강도를 향상시킴으로써, 전지 내에서의 누액 현상 및 형상 변형을 방지하는 등 전지의 안정성을 개선시키는 역할을 하는 유기 실리콘(Organosilicon)이다. 상기 아미노실란계 염 화합물은 양이온과 음이온을 함께 포함하고 있으며, 상기 양이온을 제공하는 화합물로는 트리메틸[3-(트리에톡시실릴)프로필]암모늄(Trimethyl[3-(triethoxysilyl)propyl]ammonium), 3-메틸-1-(3-트리에톡시실릴)프로필)-이미다졸륨(3-methyl-1-(3-(triethoxysilyl)propyl)-imidazolium), 3-에틸-1-(3-트리에톡시실릴)프로필)-이미다졸륨(3-ethyl-1-(3-(triethoxysilyl)propyl)-imidazolium) 및 N-(3-트리에톡시실릴)프로필-피리디늄(N-[3-(triethoxysilyl)propyl]-pyridinium) 등을 예시할 수 있다. 또한, 상기 음이온을 제공하는 화합물로는 할로겐족 음이온(ex: Br-, Cl-, I-), 비스(트리플루오로메틸설포닐)이미드(bis(trifluoromethylsulfonyl)imide; TFSI-) 및 비스(플루오로설포닐)이미드(bis(fluorosulfonyl)imide; FSI-) 등을 예시할 수 있다.The aminosilane salt compound is an organosilicon that improves the stability of the battery by improving the mechanical strength of the electrolyte and preventing leakage and shape deformation within the battery. The aminosilane salt compound contains both cations and anions, and compounds that provide the cations include trimethyl[3-(triethoxysilyl)propyl]ammonium, 3-methyl-1-(3-triethoxysilyl)propyl)-imidazolium (3-methyl-1-(3-(triethoxysilyl)propyl)-imidazolium), 3-ethyl-1-(3-triethyl Toxysilyl)propyl)-imidazolium (3-ethyl-1-(3-(triethoxysilyl)propyl)-imidazolium) and N-(3-triethoxysilyl)propyl-pyridinium (N-[3-(triethoxysilyl) )propyl]-pyridinium), etc. can be exemplified. In addition, compounds that provide the anion include halogen anions (ex: Br-, Cl-, I-), bis(trifluoromethylsulfonyl)imide (TFSI-), and bis(fluoromethylsulfonyl)imide (TFSI-). Examples include rosulfonyl)imide (bis(fluorosulfonyl)imide; FSI-).
즉, 상기 아미노실란계 염 화합물은 상기 양이온 제공 화합물 1종 이상과 음이온 제공 화합물 1종 이상의 혼합물로서, 하기 화학식 1로 표시되는 트리메틸[3-(트리에톡시실릴)프로필]염화암모늄(Trimethyl[3-(triethoxysilyl)propyl]ammonium chloride; TPAC), 3-에틸-1-(3-트리에톡시실릴)프로필)-이미다졸륨 비스(트리플루오로메틸설포닐)이미드(3-ethyl-1-(3-(triethoxysilyl)propyl)-imidazolium bis(trifluoromethylsulfonyl)imide), 3-메틸-1-(3-트리에톡시실릴)프로필)-이미다졸륨 비스(플루오로설포닐)이미드(3-methyl-1-(3-(triethoxysilyl)propyl)-imidazolium bis(fluorosulfonyl)imide) 및 이들 중 2종 이상의 혼합물 등을 예시할 수 있다.That is, the aminosilane salt compound is a mixture of at least one cation-donating compound and at least one anion-donating compound, and is trimethyl[3-(triethoxysilyl)propyl]ammonium chloride (Trimethyl[3) represented by the following formula 1: -(triethoxysilyl)propyl]ammonium chloride; 3-ethyl-1-(3-triethoxysilyl)propyl)-imidazolium bis(trifluoromethylsulfonyl)imide (3-ethyl-1- (3-(triethoxysilyl)propyl)-imidazolium bis(trifluoromethylsulfonyl)imide), 3-methyl-1-(3-triethoxysilyl)propyl)-imidazolium bis(fluorosulfonyl)imide (3-methyl Examples include -1-(3-(triethoxysilyl)propyl)-imidazolium bis(fluorosulfonyl)imide) and mixtures of two or more of these.
[화학식 1][Formula 1]
상기 아미노실란계 염 화합물의 함량은, 본 발명의 리튬 이차전지용 고체 전해질 총 중량에 대하여 0.01 내지 6 중량%, 바람직하게는 0.05 내지 4 중량%, 더욱 바람직하게는 2.7 내지 3.3 중량%이다. 상기 아미노실란계 염 화합물의 함량이 리튬 이차전지용 고체 전해질 총 중량에 대하여 0.01 중량% 미만이면, 아미노실란계 염 화합물을 사용함으로써 얻을 수 있는 전해질의 기계적 강도가 저하될 수 있고, 상기 아미노실란계 염 화합물의 함량이 6 중량%를 초과하면, 더 이상의 기계적 강도 향상 효과가 없을 수 있다.The content of the aminosilane salt compound is 0.01 to 6% by weight, preferably 0.05 to 4% by weight, and more preferably 2.7 to 3.3% by weight, based on the total weight of the solid electrolyte for a lithium secondary battery of the present invention. If the content of the aminosilane-based salt compound is less than 0.01% by weight based on the total weight of the solid electrolyte for a lithium secondary battery, the mechanical strength of the electrolyte obtained by using the aminosilane-based salt compound may decrease, and the aminosilane-based salt If the content of the compound exceeds 6% by weight, there may be no further effect of improving mechanical strength.
다음으로, 상기 실리케이트계 화합물은 전해질의 겔화(Gelation) 시간을 단축시키는 역할을 하기 위하여 추가로 적용 가능한 성분으로서, 상기 실리케이트계 화합물로는 테트라에틸 오르쏘실리케이트(Tetraethyl orthosilicate; TEOS), 테트라메틸 오르쏘실리케이트(Tetramethyl orthosilicate; TMOS, 테트라이소프로필 오르쏘실리케이트 (Tetra(iso-propyl) orthosilicate) 및 이들 중 2종 이상의 혼합물 등을 예시할 수 있다.Next, the silicate-based compound is an additional ingredient that can be applied to shorten the gelation time of the electrolyte. The silicate-based compound includes tetraethyl orthosilicate (TEOS) and tetramethyl orthosilicate. Examples include tetramethyl orthosilicate (TMOS), tetra(iso-propyl) orthosilicate, and mixtures of two or more of these.
상기 실리케이트계 화합물의 함량(또는, 실리케이트계 화합물의 반응에 의해 생성되는 물질(ex: SiO2 등)의 함량)은, 본 발명의 리튬 이차전지용 고체 전해질 총 중량에 대하여 4 내지 10 중량%, 바람직하게는 5 내지 9 중량%, 더욱 바람직하게는 8 내지 9 중량%일 수 있다. 상기 실리케이트계 화합물의 함량이 리튬 이차전지용 고체 전해질 총 중량에 대하여 5 중량% 미만이면, 겔화가 일어나지 않는 문제가 발생할 우려가 있고, 상기 실리케이트계 화합물의 함량이 10 중량%를 초과하면, 기계적 강도가 저하되는 문제가 발생할 수 있다.The content of the silicate-based compound (or the content of the material (ex: SiO 2 , etc.) produced by the reaction of the silicate-based compound) is preferably 4 to 10% by weight based on the total weight of the solid electrolyte for a lithium secondary battery of the present invention. It may be 5 to 9% by weight, more preferably 8 to 9% by weight. If the content of the silicate-based compound is less than 5% by weight based on the total weight of the solid electrolyte for a lithium secondary battery, there is a risk that gelation will not occur, and if the content of the silicate-based compound exceeds 10% by weight, the mechanical strength may decrease. Deterioration problems may occur.
다음으로, 상기 리튬염 함유 액상 전해질은 전지의 용량을 극대화시키기 위하여 사용되는 액화제와 리튬염의 함유물로서, 리튬 금속을 포함하는 것이라면 특별한 제한 없이 사용될 수 있다. 이와 같은 리튬염으로는 리튬비스트리플루오로메탄술포닐이미드(LiTFSI; lithium bis(trifluoromethane sulfonyl)imide), 리튬비스플루오로술포닐이미드(LiFSI; Lithium bis(fluorosulfonyl)imide), 리튬퍼클로레이트(LiClO4; Lithium perchlorate), 리튬헥사플루오로알세네이트(LiAsF6; Lithium hexafluoroarsenate), 리튬테트라플루오로보레이트(LiBF4; Lithium tetrafluoroborate), 리튬헥사플루오로포스페이트(LiPF6; Lithium hexafluorophosphate), 리튬헥사플루오로안티모네이트(LiSbF6), 리튬디플루오로메탄설포네이트(LiC4F9SO3), 리튬알루미네이트(LiAlO2), 리튬테트라클로로알루미네이트(LiAlCl4), 염화리튬(LiCl), 요오드화리튬(LiI), 리튬 비스옥살레이토 보레이트(LiB(C2O4)2), 리튬트리플루오로메탄설포닐이미드(LiN(CxF2x+1SO2)(CyF2y+1SO2), (여기서, x 및 y는 자연수이다)), 이들의 유도체 및 이들의 혼합물 중에서 선택되는 1종 이상을 예시할 수 있다.Next, the lithium salt-containing liquid electrolyte contains a liquefying agent and a lithium salt used to maximize the capacity of the battery, and can be used without particular restrictions as long as it contains lithium metal. Such lithium salts include lithium bis(trifluoromethane sulfonyl)imide (LiTFSI), lithium bis(fluorosulfonyl)imide (LiFSI), and lithium perchlorate (Lithium bis(fluorosulfonyl)imide). LiClO 4 ; Lithium perchlorate, LiAsF 6 ; Lithium hexafluoroarsenate, LiBF 4 ; Lithium tetrafluoroborate, LiPF 6 ; Lithium hexafluorophosphate. Roantimonate (LiSbF 6 ), lithium difluoromethanesulfonate (LiC 4 F 9 SO 3 ), lithium aluminate (LiAlO 2 ), lithium tetrachloroaluminate (LiAlCl 4 ), lithium chloride (LiCl), iodide Lithium (LiI), lithium bisoxalatoborate (LiB(C 2 O 4 ) 2 ), lithium trifluoromethanesulfonylimide (LiN(C x F 2x+1 SO 2 )(C y F 2y+1 SO 2 ), (where x and y are natural numbers)), derivatives thereof, and mixtures thereof may be exemplified.
한편, 상기 액화제(deep eutectic solvent)는 상온에서 단독으로는 고체상이지만, 리튬염과 혼합되었을 시에는 액상으로 성상이 변화될 수 있는 물질로서, N-메틸아세트아미드(NMAC), 우레아, 아세트아마이드, 1-메틸 우레아, 1,3-디메틸 우레아, 1,1-디메틸 우레아, 티오우레아, 이들 중 2종 이상을 포함한 혼합물 및 이들과 유사한 성질을 가지는 물질 등을 예시할 수 있다.Meanwhile, the liquefying agent (deep eutectic solvent) is a substance that is solid at room temperature alone, but can change into a liquid state when mixed with lithium salt, and includes N-methylacetamide (NMAC), urea, and acetamide. , 1-methyl urea, 1,3-dimethyl urea, 1,1-dimethyl urea, thiourea, mixtures containing two or more of these, and substances having properties similar to these.
상기 리튬염 함유 액상 전해질의 함량은 리튬염이나 다른 성분들의 종류에 따라 상이해질 수 있어 특정하는 것은 용이하지 않으나, 예를 들어, 본 발명의 리튬 이차전지용 고체 전해질 총 중량에 대하여 50 내지 95 중량%, 바람직하게는 80 내지 95 중량%, 더욱 바람직하게는 85 내지 90 중량%일 수 있다. 상기 리튬염 함유 액상 전해질의 함량이 상기 범위를 벗어날 경우에는, 이온 전도가 원활하지 않거나 리튬염이 용매에 해리되지 않는 문제가 발생할 수 있다.The content of the lithium salt-containing liquid electrolyte may vary depending on the type of lithium salt or other components, so it is not easy to specify, but for example, it is 50 to 95% by weight based on the total weight of the solid electrolyte for a lithium secondary battery of the present invention. , preferably 80 to 95% by weight, more preferably 85 to 90% by weight. If the content of the lithium salt-containing liquid electrolyte is outside the above range, problems may occur in which ion conduction is not smooth or the lithium salt does not dissociate in the solvent.
이상의 성분들을 포함하는 본 발명의 실리카 겔 기반 리튬 이차전지용 고체 전해질은, 기존 실리카 겔 기반의 전해질이 그 합성 시 실리카 매트릭스(matrix)의 재료로써 테트라에틸 오르쏘실리케이트(TEOS, 실리케이트계 화합물)만을 적용했던 것에 반해, 트리메틸[3-(트리에톡시실릴)프로필]염화암모늄(TPAC) 등의 아미노실란계 염 화합물을 실리카 매트릭스의 재료로 적용한 것으로서, 이를 통하여 기존 실리카 겔 기반 전해질 대비 우수한 기계적 강도를 가지기 때문에, 압력을 받는 조건 하에서도 누액 현상이 발생하지 않으며, 그 형태가 비교적 온전하게 유지될 수 있는 장점을 가진다.The solid electrolyte for a silica gel-based lithium secondary battery of the present invention containing the above components uses only tetraethyl orthosilicate (TEOS, a silicate-based compound) as a material for the silica matrix when synthesizing the existing silica gel-based electrolyte. In contrast, aminosilane-based salt compounds such as trimethyl[3-(triethoxysilyl)propyl]ammonium chloride (TPAC) were applied as materials for the silica matrix, thereby achieving superior mechanical strength compared to existing silica gel-based electrolytes. Therefore, it has the advantage that leakage does not occur even under pressure conditions and its shape can be maintained relatively intact.
한편, 상기 실리카 매트릭스란, 한쪽 면으로부터 반대쪽 면까지 연속적인 통로를 가지고 있는 다공성의 실리카 구조를 의미하며, 이와 같은 구조에 의하여 액상 전해질이 기공에 충분하게 담지 되었을 때 양 방향으로의 이온 수송이 가능하다. 또한, 실리카 매트릭스가 액상 전해질을 수용한 상태로 존재하기 때문에 겉보기 성질이 고체와 같게 된다.Meanwhile, the silica matrix refers to a porous silica structure with a continuous passage from one side to the other side, and this structure allows ion transport in both directions when the liquid electrolyte is sufficiently contained in the pores. do. Additionally, because the silica matrix exists in a state containing a liquid electrolyte, its apparent properties are the same as those of a solid.
다음으로, 본 발명에 따른 리튬 이차전지용 고체 전해질의 제조방법에 대하여 설명한다. 상기 리튬 이차전지용 고체 전해질의 제조방법은, (a) 아미노실란계 염 화합물, 실리케이트계 화합물, 유기산 및 리튬염 함유 액상 전해질을 혼합하는 단계, (b) 상기 혼합액을 방치하여 겔화하는 단계, (c) 상기 겔을 열처리하여 유기산 및 부산물을 제거하는 단계 및 (d) 상기 열처리된 겔을 건조시켜 잔여 수분을 제거하는 단계를 포함한다.Next, a method for manufacturing a solid electrolyte for a lithium secondary battery according to the present invention will be described. The method for producing a solid electrolyte for a lithium secondary battery includes the steps of (a) mixing an aminosilane-based salt compound, a silicate-based compound, an organic acid, and a lithium salt-containing liquid electrolyte, (b) leaving the mixed solution to gel, (c) ) heat-treating the gel to remove organic acids and by-products; and (d) drying the heat-treated gel to remove residual moisture.
먼저, 상기 (a) 단계에서 첨가 사용되는 유기산은, 상기 아미노실란계 염 화합물 및 실리케이트계 화합물과의 화학반응을 통하여 이들을 실리카 매트릭스 구조로 겔화시킬 수 있는 성분이다. 이와 같은 유기산으로는 포름산(formic acid), 시트르산(citric acid), 옥살산(oxalic acid), 타닌산(tannic acid) 및 이들의 혼합물 등 통상의 유기산을 예시할 수 있으며, 끓는점이 낮아 건조과정에서 제거가 용이한 점을 고려하여 포름산을 유기산으로서 적용하는 것이 바람직할 수 있다.First, the organic acid added in step (a) is a component that can gel the aminosilane-based salt compound and the silicate-based compound into a silica matrix structure through a chemical reaction. Examples of such organic acids include common organic acids such as formic acid, citric acid, oxalic acid, tannic acid, and mixtures thereof, and have low boiling points, making them difficult to remove during the drying process. Considering convenience, it may be desirable to apply formic acid as an organic acid.
상기 (a) 단계에서 첨가 사용되는 리튬염 함유 액상 전해질(Deep eutectic solution; DES)은 리튬염과 액화제를 포함한 액상 전해질로서, 본 발명의 리튬 이차전지용 고체 전해질에 리튬염을 제공하는 역할을 한다. 그밖에, 상기 아미노실란계 염 화합물, 실리케이트계 화합물 및 리튬염 함유 액상 전해질에 대한 설명은 전술한 바로 대체한다.The lithium salt-containing liquid electrolyte (deep eutectic solution; DES) used in step (a) is a liquid electrolyte containing a lithium salt and a liquefying agent, and serves to provide lithium salt to the solid electrolyte for a lithium secondary battery of the present invention. . In addition, the description of the aminosilane-based salt compound, silicate-based compound, and lithium salt-containing liquid electrolyte is replaced with the above.
상기 리튬염 함유 액상 전해질은, 상기 리튬염과 액화제를 일정 비율로 혼합한 후, 질소 퍼징(N2 purging) 조건 하에서 1 내지 5 시간, 바람직하게는 2 내지 4 시간 동안 교반시킴으로써 제조될 수 있다. 상기 리튬염 함유 액상 전해질에 있어서, 상기 액화제와 리튬염의 혼합비는, 몰비로서 3 내지 5 : 1, 바람직하게는 3.5 내지 4.5 : 1로서, 상기 액화제와 리튬염의 혼합비가 상기 범위를 벗어나는 경우, 액화되지 않은 조성물이 잔존하는 문제점이 발생할 수 있다.The lithium salt-containing liquid electrolyte can be prepared by mixing the lithium salt and the liquefying agent at a certain ratio and then stirring for 1 to 5 hours, preferably 2 to 4 hours, under nitrogen purging (N 2 purging) conditions. . In the liquid electrolyte containing the lithium salt, the mixing ratio of the liquefying agent and the lithium salt is 3 to 5:1 in molar ratio, preferably 3.5 to 4.5:1, and if the mixing ratio of the liquefying agent and the lithium salt is outside the above range, Problems may arise where unliquefied composition remains.
한편, 상기 리튬염 함유 액상 전해질은, 상기 (a) 단계 이전에 제조될 수도 있고 (a) 단계와 동시에 제조될 수도 있는 등, 상기 아미노실란계 염 화합물, 실리케이트계 화합물 및 유기산과 적절하게 혼합될 수만 있다면 그 제조 순서에는 특별한 제한이 없다.Meanwhile, the lithium salt-containing liquid electrolyte may be prepared before step (a) or simultaneously with step (a), and may be appropriately mixed with the aminosilane salt compound, silicate compound, and organic acid. There are no particular restrictions on the manufacturing order, as long as it is possible.
상기 리튬 이차전지용 고체 전해질을 제조하기 위해서는, 먼저, 아미노실란계 염 화합물, 실리케이트계 화합물, 유기산 및 리튬염 함유 액상 전해질을 혼합하여야 한다(a 단계). 상기 아미노실란계 염 화합물, 실리케이트계 화합물, 유기산 및 리튬염 함유 액상 전해질의 혼합비는, 몰비로서 0.05 ~ 0.5 : 0.5 ~ 0.95 : 5 ~ 13 : 3 ~ 7일 수 있으며, 상기 아미노실란계 염 화합물, 실리케이트계 화합물, 유기산 및 리튬염 함유 액상 전해질의 혼합비가 상기 범위를 벗어나는 경우, 겔화가 되지 않거나 기계적 강도가 저하되는 문제점이 발생할 수 있다.To manufacture the solid electrolyte for a lithium secondary battery, first, an aminosilane-based salt compound, a silicate-based compound, an organic acid, and a lithium salt-containing liquid electrolyte must be mixed (step a). The mixing ratio of the aminosilane-based salt compound, silicate-based compound, organic acid, and lithium salt-containing liquid electrolyte may be 0.05 to 0.5:0.5 to 0.95:5 to 13:3 to 7 in molar ratio, and the aminosilane-based salt compound, If the mixing ratio of the silicate compound, organic acid, and lithium salt-containing liquid electrolyte is outside the above range, problems such as failure to gel or decreased mechanical strength may occur.
상기와 같이 아미노실란계 염 화합물, 실리케이트계 화합물, 유기산 및 리튬염 함유 액상 전해질을 균일하게 혼합한 후에는, 상기 혼합액을 방치하여 겔화(gelation)하는 단계가 수행된다(b 단계). 즉, 상기 아미노실란계 염 화합물, 실리케이트계 화합물, 유기산 및 리튬염 함유 액상 전해질이 균일하게 혼합된 혼합액은, 목적으로 하는 고체 전해질의 형상을 가진 몰드(mold)에 공급되어, 상온에서 15 내지 30 시간, 바람직하게는 20 내지 28 시간, 더욱 바람직하게는 약 24 시간 동안 방치될 수 있다. 다만 일정 형상을 형성시킬 수 있는 기재라면 몰드 이외에도 적용 가능하며, 방치 온도나 시간은 공정 조건 등에 따라 다양하게 가변될 수 있음을 명시한다.After uniformly mixing the aminosilane-based salt compound, silicate-based compound, organic acid, and lithium salt-containing liquid electrolyte as described above, the mixed solution is allowed to stand and gelation is performed (step b). That is, the mixed solution in which the aminosilane-based salt compound, silicate-based compound, organic acid, and lithium salt-containing liquid electrolyte are uniformly mixed is supplied to a mold having the shape of the desired solid electrolyte, and is heated for 15 to 30 hours at room temperature. It may be left for an hour, preferably 20 to 28 hours, more preferably about 24 hours. However, it is specified that any substrate that can form a certain shape can be applied other than molds, and the leaving temperature or time can vary depending on process conditions, etc.
상기 혼합액을 방치하여 겔화시킨 후에는, 상기 혼합액이 겔화됨으로써 형성된 겔을 열처리하여 유기산 및 부산물을 제거하는 단계가 수행된다(c 단계). 상기 열처리는 30 내지 60 ℃, 바람직하게는 40 내지 50 ℃, 더욱 바람직하게는 약 45 ℃에서 48 내지 100 시간, 바람직하게는 60 내지 90 시간, 더욱 바람직하게는 70 내지 80 시간 동안 수행될 수 있으며, 이를 통하여, 상기 겔화에 기여한 유기산은 물론, 그밖에 반응 시 생성될 수 있는 에탄올, 에틸 포르메이트 등의 기타 부산물이 제거될 수 있다.After the mixed solution is left to gel, the gel formed by gelling the mixed solution is heat treated to remove organic acids and by-products (step c). The heat treatment may be performed at 30 to 60°C, preferably 40 to 50°C, more preferably at about 45°C for 48 to 100 hours, preferably 60 to 90 hours, and more preferably 70 to 80 hours. , Through this, the organic acids that contributed to the gelation as well as other by-products such as ethanol and ethyl formate that may be generated during the reaction can be removed.
상기 열처리에 의하여 유기산과 부산물이 제거되면, 마지막으로, 상기 열처리된 겔을 건조시켜 잔여 수분을 제거함으로써(d 단계), 본 발명에 따른 리튬 이차전지용 고체 전해질이 제조된다. 상기 건조는 70 내지 90 ℃, 바람직하게는 75 내지 85 ℃, 더욱 바람직하게는 약 80 ℃에서 8 내지 24 시간, 바람직하게는 12 내지 20 시간, 더욱 바람직하게는 약 16 시간 동안 진공 건조 등을 통하여 수행될 수 있으며, 이를 통하여, 겔 내에 잔존하고 있던 수분을 완전히 제거함으로써 고체상의 전해질이 제조된다.When the organic acid and by-products are removed through the heat treatment, the heat-treated gel is dried to remove remaining moisture (step d), thereby producing a solid electrolyte for a lithium secondary battery according to the present invention. The drying is carried out by vacuum drying at 70 to 90°C, preferably 75 to 85°C, more preferably about 80°C for 8 to 24 hours, preferably 12 to 20 hours, more preferably about 16 hours. This can be performed, and through this, a solid electrolyte is produced by completely removing the moisture remaining in the gel.
한편, 본 발명은, 양극, 음극, 상기 양극와 음극의 사이에 개재되는 상기 리튬 이차전지용 고체 전해질 및 분리막을 포함하는 리튬 이차전지를 제공하며, 여기서 리튬 이차전지란, 리튬 메탈 전지, 리튬 황 전지 및 리튬 공기 전지 등 당업계에 알려진 모든 리튬 이차전지를 일컫는 것으로 해석하는 것이 바람직하다. 그밖에, 기존에는 전지(특히, 코인-셀)의 제작 또는 조립 시 내부의 전해질이 압력을 받게 되어 누액 현상과 으스러짐 현상이 발생하는 경우가 빈번하였으나, 본 발명은 이와 달리 고체 전해질의 누액 현상이 발생하지 않고, 그 형태 또한 잘 유지되는 장점을 가진다.Meanwhile, the present invention provides a lithium secondary battery including a positive electrode, a negative electrode, a solid electrolyte for a lithium secondary battery and a separator interposed between the positive electrode and the negative electrode, where the lithium secondary battery refers to a lithium metal battery, a lithium sulfur battery, and It is desirable to interpret it as referring to all lithium secondary batteries known in the art, such as lithium air batteries. In addition, in the past, when manufacturing or assembling a battery (particularly a coin-cell), the internal electrolyte was subjected to pressure, which often resulted in leakage and crushing, but the present invention, unlike this, prevents the leakage of the solid electrolyte. It has the advantage of not forming and maintaining its shape well.
더 나아가, 본 발명은, 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩의 제공 또한 가능하다. 상기 전지모듈 또는 전지팩은 파워 툴(Power tool); 전기자동차(Electric vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in hybrid electric vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.Furthermore, the present invention can also provide a battery module including a lithium secondary battery as a unit cell and a battery pack including the same. The battery module or battery pack includes a power tool; Electric vehicles, including electric vehicles (EV), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEV); Alternatively, it can be used as a power source for any one or more mid- to large-sized devices among power storage systems.
이하, 본 발명에 따른 리튬 이차전지에 적용되는 양극, 음극 및 분리막에 대한 설명을 부가한다.Hereinafter, a description of the positive electrode, negative electrode, and separator applied to the lithium secondary battery according to the present invention will be added.
양극anode
본 발명에 사용되는 양극에 관하여 설명하면, 양극 활물질, 도전재 및 바인더를 포함하는 양극 조성물을 제조한 후, 이를 소정의 용매(분산매)에 희석하여 제조된 슬러리를 양극 집전체 상에 직접 코팅 및 건조함으로써 양극층을 형성할 수 있다. 또는, 상기 슬러리를 별도의 지지체 상에 캐스팅한 후, 상기 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션하여 양극층을 제조할 수 있다. 이외에도, 당해 기술 분야에서 통상의 지식을 가지는 기술자들에게 널리 알려진 방법을 사용하여 다양한 방식으로 양극을 제조할 수 있다.Regarding the positive electrode used in the present invention, a positive electrode composition containing a positive electrode active material, a conductive material, and a binder is prepared, and then the slurry prepared by diluting the positive electrode composition in a predetermined solvent (dispersion medium) is directly coated on the positive electrode current collector and An anode layer can be formed by drying. Alternatively, the positive electrode layer can be manufactured by casting the slurry on a separate support and then peeling the slurry from the support and laminating the obtained film onto the positive electrode current collector. In addition, the anode can be manufactured in various ways using methods widely known to those skilled in the art.
상기 도전재(Conducting material)는 양극 집전체로부터 전자가 양극 활물질까지 이동하는 경로의 역할을 하여 전자 전도성을 부여할 뿐만 아니라, 전해질과 양극 활물질을 전기적으로 연결시켜 주어 전해질 내 리튬 이온(Li+)이 황까지 이동하여 반응하게 하는 경로의 역할을 동시에 하게 된다. 따라서, 도전재의 양이 충분하지 않거나 역할을 제대로 수행하지 못하게 되면 전극 내 황 중 반응하지 못하는 부분이 증가하게 되고, 결국은 용량 감소를 일으키게 된다. 또한, 고율 방전 특성과 충방전 사이클 수명에도 악영향을 미치게 되므로, 적절한 도전재의 첨가가 필요하다. 상기 도전재의 함량은 양극 조성물 총 중량을 기준으로 0.01 내지 30 중량% 범위 내에서 적절히 첨가하는 것이 바람직하다.The conducting material not only provides electronic conductivity by acting as a path for electrons to move from the positive electrode current collector to the positive electrode active material, but also electrically connects the electrolyte and the positive electrode active material to prevent lithium ions (Li+) in the electrolyte. At the same time, it acts as a path that moves to sulfur and causes it to react. Therefore, if the amount of the conductive material is insufficient or does not perform its role properly, the unreacted portion of the sulfur in the electrode increases, ultimately causing a decrease in capacity. In addition, since it has a negative effect on high-rate discharge characteristics and charge-discharge cycle life, it is necessary to add an appropriate conductive material. The content of the conductive material is preferably added within the range of 0.01 to 30% by weight based on the total weight of the positive electrode composition.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예컨대, 그라파이트; 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙 및 서머 블랙 등의 카본 블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄 및 니켈 분말 등의 금속 분말; 산화아연 및 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 시판 중인 도전재의 구체적인 예로는, 아세틸렌 블랙 계열인 쉐브론 케미칼 컴퍼니(Chevron Chemical Company)나 덴카 블랙(Denka Singapore Private Limited), 걸프 오일 컴퍼니(Gulf Oil Company) 제품, 케첸 블랙(Ketjenblack), EC 계열 아르막 컴퍼니(Armak Company) 제품, 불칸(Vulcan) XC-72 캐보트 컴퍼니(Cabot Company) 제품 및 슈퍼-피(Super-P; Timcal 사 제품) 등이 사용될 수 있다.The conductive material is not particularly limited as long as it has conductivity without causing chemical changes in the battery. For example, graphite; Carbon black such as Denka Black, Acetylene Black, Ketjen Black, Channel Black, Furnace Black, Lamp Black and Summer Black; Conductive fibers such as carbon fiber and metal fiber; metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used. Specific examples of commercially available conductive materials include acetylene black products from Chevron Chemical Company, Denka Singapore Private Limited, Gulf Oil Company products, Ketjenblack, and EC-based Armak. Armak Company products, Vulcan XC-72 Cabot Company products, and Super-P (Timcal Company products) can be used.
상기 바인더는 양극 활물질을 집전체에 잘 부착시키기 위한 것으로서, 용매에 잘 용해되어야 하며, 양극 활물질과 도전재와의 도전 네크워크를 잘 구성해주어야 할 뿐만 아니라, 전해액의 함침성도 적당히 가져야 한다. 상기 바인더는 당해 업계에서 공지된 모든 바인더들일 수 있고, 구체적으로는, 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVdF) 또는 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE)을 포함하는 불소 수지계 바인더; 스티렌-부타디엔 고무, 아크릴로니트릴-부티디엔 고무, 스티렌-이소프렌 고무를 포함하는 고무계 바인더; 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈를 포함하는 셀룰로오스계 바인더; 폴리 알코올계 바인더; 폴리에틸렌, 폴리프로필렌를 포함하는 폴리 올레핀계 바인더; 폴리 이미드계 바인더, 폴리 에스테르계 바인더, 실란계 바인더;로 이루어진 군에서 선택된 1종 이상의 혼합물이거나 공중합체일 수 있으나, 이에 제한되지는 않는다.The binder is used to properly attach the positive electrode active material to the current collector, and must be well soluble in a solvent, form a conductive network between the positive electrode active material and the conductive material, and also have adequate impregnability of the electrolyte solution. The binder may be any binder known in the art, and specifically, a fluororesin binder containing polyvinylidene fluoride (PVdF) or polytetrafluoroethylene (PTFE); Rubber-based binders including styrene-butadiene rubber, acrylonitrile-butadiene rubber, and styrene-isoprene rubber; Cellulose-based binders including carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, and regenerated cellulose; polyalcohol-based binder; Polyolefin-based binders including polyethylene and polypropylene; It may be a mixture or copolymer of one or more types selected from the group consisting of polyimide-based binder, polyester-based binder, and silane-based binder, but is not limited thereto.
상기 바인더의 함량은 양극 조성물 총 중량을 기준으로 0.5 내지 30 중량%일 수 있으나, 이에 한정되는 것은 아니다. 상기 바인더 수지의 함량이 0.5 중량% 미만인 경우에는, 양극의 물리적 성질이 저하되어 양극 활물질과 도전재가 탈락할 수 있고, 30 중량%를 초과하는 경우에는 양극에서 활물질과 도전재의 비율이 상대적으로 감소되어 전지 용량이 감소될 수 있으며, 저항 요소로 작용하여 효율이 저하될 수 있다.The content of the binder may be 0.5 to 30% by weight based on the total weight of the positive electrode composition, but is not limited thereto. If the content of the binder resin is less than 0.5% by weight, the physical properties of the positive electrode may deteriorate and the positive electrode active material and the conductive material may fall off, and if it exceeds 30% by weight, the ratio of the active material and the conductive material in the positive electrode is relatively reduced. Battery capacity may be reduced, and efficiency may be reduced by acting as a resistance element.
상기 양극 활물질, 도전재 및 바인더를 포함하는 양극 조성물은 소정의 용매에 희석되어, 양극 집전체 상에 당업계에 알려진 통상의 방법을 이용하여 코팅할 수 있다. 먼저, 양극 집전체를 준비한다. 상기 양극 집전체는 일반적으로 3 내지 500 ㎛의 두께를 사용한다. 이와 같은 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소결 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.The positive electrode composition containing the positive electrode active material, conductive material, and binder may be diluted in a predetermined solvent and coated on the positive electrode current collector using a conventional method known in the art. First, prepare the positive electrode current collector. The positive electrode current collector is generally used to have a thickness of 3 to 500 ㎛. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery, for example, stainless steel, aluminum, nickel, titanium, sintered carbon, or aluminum or stainless steel. Surface treatment of steel with carbon, nickel, titanium, silver, etc. can be used. The current collector can increase the adhesion of the positive electrode active material by forming fine irregularities on its surface, and can be in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven materials.
다음으로, 상기 양극 집전체 상에 양극 활물질, 도전재 및 바인더를 포함하는 양극 조성물을 용매에 희석한 슬러리를 도포한다. 전술한 양극 활물질, 도전재 및 바인더를 포함하는 양극 조성물을 소정의 용매와 혼합하여 슬러리로 제조할 수 있다. 이때 용매는 건조가 용이해야 하며, 바인더를 잘 용해시킬 수 있으되, 양극 활물질 및 도전재는 용해시키지 않고 분산 상태로 유지시킬 수 있는 것이 가장 바람직하다. 용매가 양극 활물질을 용해시킬 경우에는 슬러리에서 황의 비중(D = 2.07)이 높기 때문에 황이 슬러리에서 가라앉게 되어 코팅 시 집전체에 황이 몰려 도전 네트워크에 문제가 생겨, 전지의 작동에 문제가 발생하는 경향이 있다. 상기 용매(분산매)는 물 또는 유기 용매가 가능하며, 상기 유기 용매는 디메틸포름아미드, 이소프로필알콜 또는 아세토니트릴, 메탄올, 에탄올, 테트라하이드로퓨란 군으로부터 선택되는 1종 이상일 수 있다.Next, a slurry obtained by diluting a positive electrode composition containing a positive electrode active material, a conductive material, and a binder in a solvent is applied onto the positive electrode current collector. The positive electrode composition containing the above-described positive electrode active material, conductive material, and binder can be mixed with a predetermined solvent to prepare a slurry. At this time, the solvent must be easy to dry and be able to dissolve the binder well, but it is most desirable to maintain the positive electrode active material and the conductive material in a dispersed state without dissolving them. When the solvent dissolves the positive electrode active material, the specific gravity of sulfur in the slurry (D = 2.07) is high, so the sulfur settles in the slurry, causing sulfur to concentrate on the current collector during coating, causing problems in the conductive network and tending to cause problems in battery operation. There is. The solvent (dispersion medium) may be water or an organic solvent, and the organic solvent may be one or more selected from the group of dimethylformamide, isopropyl alcohol, acetonitrile, methanol, ethanol, and tetrahydrofuran.
계속해서, 상기 슬러리 상태의 양극 조성물을 도포하는 방법에는 특별한 제한이 없으며, 예컨대, 닥터 블레이드 코팅(Doctor blade coating), 딥 코팅(Dip coating), 그라비어 코팅(Gravure coating), 슬릿 다이 코팅(Slit die coating), 스핀 코팅(Spin coating), 콤마 코팅(Comma coating), 바 코팅(Bar coating), 리버스 롤 코팅(Reverse roll coating), 스크린 코팅(Screen coating), 캡 코팅(Cap coating) 방법 등을 수행하여 제조할 수 있다. 이와 같은 코팅 과정을 거친 양극 조성물은, 이후 건조 과정을 통해 용매(분산매)의 증발, 코팅막의 조밀성 및 코팅막과 집전체와의 밀착성 등이 이루어진다. 이때, 건조는 통상적인 방법에 따라 실시되며, 이를 특별히 제한하지는 않는다.Continuing, there is no particular limitation on the method of applying the positive electrode composition in the slurry state, for example, doctor blade coating, dip coating, gravure coating, and slit die coating. coating, spin coating, comma coating, bar coating, reverse roll coating, screen coating, cap coating, etc. It can be manufactured. The positive electrode composition that has undergone this coating process undergoes a subsequent drying process to achieve evaporation of the solvent (dispersion medium), density of the coating film, and adhesion between the coating film and the current collector. At this time, drying is carried out according to a conventional method and is not particularly limited.
음극cathode
음극으로는 리튬이온을 흡장 및 방출할 수 있는 것을 모두 사용할 수 있으며, 예를 들어, 리튬 금속, 리튬 합금 등의 금속재와, 저결정 탄소, 고결정성 탄소 등의 탄소재를 예시할 수 있다. 저결정성 탄소로는 연화탄소(Soft carbon) 및 경화탄소(Hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시 흑연(Kish graphite), 열분해 탄소(Pyrolytic carbon), 액정 피치계 탄소섬유(Mesophase pitch based carbon fiber), 탄소 미소구체(Meso-carbon microbeads), 액정피치(Mesophase pitches) 및 석유와 석탄계 코크스(Petroleum orAny cathode that can occlude and release lithium ions can be used. For example, metal materials such as lithium metal and lithium alloy, and carbon materials such as low-crystalline carbon and high-crystalline carbon can be used. Representative low-crystalline carbons include soft carbon and hard carbon, and high-crystalline carbons include natural graphite, Kish graphite, pyrolytic carbon, and liquid crystal pitch carbon fiber. (Mesophase pitch based carbon fiber), carbon microspheres (Meso-carbon microbeads), liquid crystal pitches (Mesophase pitches) and petroleum or coal-based coke (Petroleum or
coal tar pitch derived cokes) 등의 고온 소성 탄소가 대표적이다. 이 외에, 실리콘이 포함된 얼로이 계열이나 Li4Ti5O12 등의 산화물도 잘 알려진 음극이다. High-temperature fired carbon such as coal tar pitch derived cokes is a representative example. In addition, alloys containing silicon and oxides such as Li4Ti5O12 are also well-known cathodes.
이때, 음극은 결착제를 포함할 수 있으며, 결착제로는 폴리비닐리덴플루오라이드(Polyvinylidenefluoride, PVDF), 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리아크릴로니트릴(Polyacrylonitrile), 폴리메틸메타크릴레이트(Polymethylmethacrylate), 스티렌-부타디엔 고무(SBR) 등, 다양한 종류의 바인더 고분자가 사용될 수 있다.At this time, the cathode may include a binder, and the binder includes polyvinylidenefluoride (PVDF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), and polyacrylonitrile. Various types of binder polymers can be used, such as polyacrylonitrile, polymethylmethacrylate, and styrene-butadiene rubber (SBR).
상기 음극은 상기 음극 활물질 및 바인더를 포함하는 음극 활성층의 지지를 위한 음극 집전체를 선택적으로 더 포함할 수도 있다. 상기 음극 집전체는 구체적으로 구리, 스테인리스스틸, 티타늄, 은, 팔라듐, 니켈, 이들의 합금 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있다. 상기 스테인리스스틸은 카본, 니켈, 티탄 또는 은으로 표면 처리될 수 있으며, 상기 합금으로는 알루미늄-카드뮴 합금이 사용될 수 있다. 그 외에도 소성 탄소, 도전제로 표면 처리된 비전도성 고분자, 또는 전도성 고분자 등이 사용될 수도 있다.The negative electrode may optionally further include a negative electrode current collector to support the negative electrode active layer containing the negative electrode active material and a binder. The negative electrode current collector may be specifically selected from the group consisting of copper, stainless steel, titanium, silver, palladium, nickel, alloys thereof, and combinations thereof. The stainless steel may be surface treated with carbon, nickel, titanium, or silver, and an aluminum-cadmium alloy may be used as the alloy. In addition, calcined carbon, a non-conductive polymer surface-treated with a conductive agent, or a conductive polymer may be used.
상기 바인더는 음극 활물질의 페이스트화, 활물질간 상호 접착, 활물질과 집전체와의 접착, 활물질 팽창 및 수축에 대한 완충 효과 등의 역할을 한다. 구체적으로 상기 바인더는 앞서 양극의 바인더에서 설명한 바와 동일하다. 또한 상기 음극은 리튬 금속 또는 리튬 합금일 수 있다. 비제한적인 예로, 음극은 리튬 금속의 박막일 수도 있으며, 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al 및 Sn으로 이루어진 군으로부터 선택되는 1종 이상의 금속과의 합금일 수 있다.The binder plays the role of pasting the negative electrode active material, mutual adhesion between active materials, adhesion between the active material and the current collector, and a buffering effect against expansion and contraction of the active material. Specifically, the binder is the same as previously described for the binder of the positive electrode. Additionally, the negative electrode may be lithium metal or lithium alloy. As a non-limiting example, the cathode may be a thin film of lithium metal, lithium and one selected from the group consisting of Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al and Sn. It may be an alloy with the above metals.
분리막separator
양극과 음극 사이는 통상적인 분리막이 개재될 수 있다. 상기 분리막은 전극을 물리적으로 분리하는 기능을 갖는 물리적인 분리막으로서, 통상의 분리막으로 사용되는 것이라면 특별한 제한 없이 사용 가능하며, 특히 전해질의 이온 이동에 대하여 저 저항이면서 전해질 함습 능력이 우수한 것이 바람직하다. 또한, 상기 분리막은 양극과 음극을 서로 분리 또는 절연시키면서 양극과 음극 사이에 리튬 이온의 수송을 가능하게 한다. 이러한 분리막은 다공성이고 비전도성 또는 절연성인 물질로 이루어질 수 있다. 상기 분리막은 필름과 같은 독립적인 부재이거나, 또는 양극 및 음극 중 어느 하나 이상에 부가된 코팅층일 수 있다. 구체적으로는, 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어, 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.A conventional separator may be interposed between the anode and the cathode. The separator is a physical separator that has the function of physically separating electrodes, and can be used without particular restrictions as long as it is used as a normal separator. In particular, it is desirable to have low resistance to ion movement in the electrolyte and excellent electrolyte moisture ability. Additionally, the separator separates or insulates the positive and negative electrodes from each other and enables the transport of lithium ions between the positive and negative electrodes. These separators are porous and may be made of non-conductive or insulating materials. The separator may be an independent member such as a film, or may be a coating layer added to one or more of the anode and cathode. Specifically, porous polymer films, for example, porous polymer films made of polyolefin polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer. It can be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, etc., can be used, but is not limited thereto.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Preferred examples are presented below to aid understanding of the present invention. However, the following examples are merely illustrative of the present invention, and it is obvious to those skilled in the art that various changes and modifications are possible within the scope and spirit of the present invention. It is natural that such changes and modifications fall within the scope of the attached patent claims.
[실시예 1] 고체 전해질의 제조 [Example 1] Preparation of solid electrolyte
먼저, 액화제로서 N-메틸아세트아미드(NMAC)와 리튬염인 LiTFSI를 4 : 1의 몰비로 혼합한 후, 질소 퍼징을 하며 3 시간 동안 자석 교반을 수행하여 리튬염 함유 액상 전해질을 제조하였다. 이어서, 상기 제조된 리튬염 함유 액상 전해질과, 아미노실란계 염 화합물인 트리메틸[3-(트리에톡시실릴)프로필]염화암모늄(TPAC), 실리케이트계 화합물인 테트라에틸 오르쏘실리케이트(TEOS) 및 포름산을 균일하게 혼합한 후, 혼합액을 몰드에 붓고 상온에서 24 시간 동안 방치하여 겔화시켰다. 계속해서, 상기 혼합액을 겔화시켜 제조된 겔을 45 ℃에서 72 시간 동안 열처리하여 포름산과 부산물을 제거하였으며, 마지막으로, 상기 열처리된 겔을 80 ℃에서 16 시간 동안 진공 건조시켜 겔 내에 함유되어 있던 잔여 수분을 제거하여 리튬 이차전지용 고체 전해질을 제조하였다. 한편, 상기 아미노실란계 염 화합물, 실리케이트계 화합물, 포름산, 액화제 및 리튬염의 혼합비는, 몰비로서 0.1 : 0.9 : 8.7 : 4 : 1로 하였으며, 도 1은 압력 받기 이전의 고체 전해질(즉, 상기 실시예 1에서 제조된 고체 전해질)의 형상을 보여주는 이미지이다.First, N-methylacetamide (NMAC) as a liquefying agent and LiTFSI, a lithium salt, were mixed at a molar ratio of 4:1, and then purged with nitrogen and magnetically stirred for 3 hours to prepare a lithium salt-containing liquid electrolyte. Next, the prepared lithium salt-containing liquid electrolyte, the aminosilane salt compound trimethyl[3-(triethoxysilyl)propyl]ammonium chloride (TPAC), the silicate compound tetraethyl orthosilicate (TEOS), and formic acid. After mixing uniformly, the mixed solution was poured into a mold and left at room temperature for 24 hours to gel. Subsequently, the gel prepared by gelling the mixture was heat-treated at 45°C for 72 hours to remove formic acid and by-products. Finally, the heat-treated gel was vacuum dried at 80°C for 16 hours to remove the remaining gel contained in the gel. A solid electrolyte for a lithium secondary battery was prepared by removing moisture. Meanwhile, the mixing ratio of the aminosilane-based salt compound, silicate-based compound, formic acid, liquefying agent, and lithium salt was set to 0.1:0.9:8.7:4:1 as a molar ratio, and Figure 1 shows the solid electrolyte before being subjected to pressure (i.e., the above-mentioned electrolyte). This is an image showing the shape of the solid electrolyte prepared in Example 1.
[실시예 2] 고체 전해질의 제조 [Example 2] Preparation of solid electrolyte
아미노실란계 염 화합물로서, 트리메틸[3-(트리에톡시실릴)프로필]염화암모늄(TPAC) 대신 3-에틸-1-(3-트리에톡시실릴)프로필)-이미다졸륨 비스(트리플루오로메틸설포닐)이미드를 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 고체 전해질을 제조하였다.As an aminosilane salt compound, instead of trimethyl[3-(triethoxysilyl)propyl]ammonium chloride (TPAC), 3-ethyl-1-(3-triethoxysilyl)propyl)-imidazolium bis(trifluoro) A solid electrolyte was prepared in the same manner as in Example 1, except that methylsulfonyl)imide was used.
[비교예 1] 고체 전해질의 제조 [Comparative Example 1] Preparation of solid electrolyte
아미노실란계 염 화합물인 트리메틸[3-(트리에톡시실릴)프로필]염화암모늄(TPAC)을 사용하지 않은 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 고체 전해질을 제조하였다. 한편, 실리케이트계 화합물, 포름산, 액화제 및 리튬염의 혼합비는, 몰비로서 1 : 8.7 : 4 : 1로 하였다.A solid electrolyte was prepared in the same manner as in Example 1, except that trimethyl[3-(triethoxysilyl)propyl]ammonium chloride (TPAC), an aminosilane salt compound, was not used. Meanwhile, the mixing ratio of the silicate-based compound, formic acid, liquefying agent, and lithium salt was set to 1:8.7:4:1 as a molar ratio.
[실시예 3~4, 비교예 2] 코인-셀의 제조 [Examples 3-4, Comparative Example 2] Production of coin-cell
상기 실시예 1, 2 및 비교예 1에서 제조된 고체 전해질을 0.3 mm 두께의 SUS 전극 사이에 개재시켜 2032 타입의 코인-셀(coin cell)을 각각 제조하였다.A 2032 type coin cell was manufactured by interposing the solid electrolytes prepared in Examples 1 and 2 and Comparative Example 1 between 0.3 mm thick SUS electrodes.
[실험예 1] 고체 전해질의 이온전도도 평가 [Experimental Example 1] Evaluation of ionic conductivity of solid electrolyte
상기 실시예 3, 4 및 비교예 2에서 제조된 코인-셀을 25 ℃로 유지되는 상온 챔버에 2 전극 시스템으로 연결한 후, 1 Hz ~ 7 MHz의 범위로 10 mV의 AC 전압을 가하여, 전기화학 임피던스(Electrochemical Impedance Spectroscopy) 분석을 수행하였다(이때, 측정된 임피던스를 nyquist plot(극좌표 선도 또는 나이퀴스트 선도)으로 도시하고, 첫 번째 반원 또는 반원의 일부가 실수 임피던스(real impedance) 축과 만나는 오른쪽 끝 지점을 전해질의 저항값으로 사용하였다). 전기화학 임피던스 분석 후에는, 코인-셀을 분해하여 고체 전해질 막의 두께를 측정하였고, 하기 수식 1을 이용하여 이온전도도를 계산하였으며(하기 수식 1에 있어서, t는 전해질 두께를 의미하고, S는 전극의 면적을 의미하며, Rb는 전해질 저항(또는, 이온 저항)을 의미한다), 그 결과를 하기 표 1에 나타내었다.The coin-cells manufactured in Examples 3 and 4 and Comparative Example 2 were connected with a two-electrode system to a room temperature chamber maintained at 25°C, and then an AC voltage of 10 mV was applied in the range of 1 Hz to 7 MHz to generate electricity. Chemical impedance (Electrochemical Impedance Spectroscopy) analysis was performed (at this time, the measured impedance was plotted as a nyquist plot (polar coordinate diagram or Nyquist diagram), and the first semicircle or part of the semicircle met the real impedance axis. The right end point was used as the resistance value of the electrolyte). After electrochemical impedance analysis, the coin-cell was disassembled to measure the thickness of the solid electrolyte membrane, and ionic conductivity was calculated using Equation 1 below (in Equation 1 below, t refers to the electrolyte thickness, and S is the electrode means the area, and R b means electrolyte resistance (or ion resistance)), and the results are shown in Table 1 below.
[수식 1][Formula 1]
상기와 같은 측정 방법을 통하여 상기 실시예 3, 4 및 비교예 2에서 제조된 코인-셀의 이온전도도 값을 각각 측정한 결과, 모든 코인-셀의 이온전도도 값은 매우 유사하였으며(실시예 4의 경우 실시예 3의 이온전도도 값과 매우 유사하였다), 이를 통하여, 본 발명과 같이 전해질 재료로서 아미노실란계 염 화합물까지 적용하더라도 이온전도도에는 별다른 영향을 미치지 않는다는 것을 알 수 있었다.As a result of measuring the ionic conductivity values of the coin cells manufactured in Examples 3 and 4 and Comparative Example 2 using the above measurement method, the ionic conductivity values of all coin cells were very similar (Example 4 In this case, it was very similar to the ionic conductivity value of Example 3), through which it was found that even if an aminosilane salt compound was applied as an electrolyte material as in the present invention, there was no significant effect on ionic conductivity.
[실험예 2] 고체 전해질의 기계적 물성 평가 [Experimental Example 2] Evaluation of mechanical properties of solid electrolyte
상기 실시예 3, 4 및 비교예 2를 통하여 코인-셀을 제작하는 과정에서 고체 전해질은 압력을 받게 되며, 이에 따른 각 고체 전해질의 누액 현상과 으스러짐 현상의 발생 여부를 육안 관찰하였다. 상기의 관찰 결과, 비교예 2의 코인-셀에 적용된 고체 전해질은 누액 현상과 으스러짐 현상 모두 발생한 반면, 실시예 3 및 4의 코인-셀에 적용된 본 발명의 고체 전해질은, 기계적 성질의 향상으로 인하여 누액 현상이 발생하지 않았고, 그 형태 또한 잘 유지하고 있는 것을 확인할 수 있었다.In the process of manufacturing the coin-cell through Examples 3 and 4 and Comparative Example 2, the solid electrolyte was subjected to pressure, and the occurrence of leakage and crushing of each solid electrolyte was visually observed. As a result of the above observation, the solid electrolyte applied to the coin-cell of Comparative Example 2 caused both leakage and crushing, while the solid electrolyte of the present invention applied to the coin-cell of Examples 3 and 4 showed improvement in mechanical properties. As a result, it was confirmed that no leakage occurred and that the shape was maintained well.
Claims (15)
실리케이트계 화합물; 및
리튬염 함유 액상 전해질;을 포함하는 겔 성상의 리튬 이차전지용 고체 전해질.Aminosilane salt compounds;
silicate-based compounds; and
A gel-like solid electrolyte for a lithium secondary battery containing a lithium salt-containing liquid electrolyte.
상기 음이온을 제공하는 화합물은 할로겐족 음이온, 비스(트리플루오로메틸설포닐)이미드, 비스(플루오로설포닐)이미드로 이루어진 군으로부터 선택되는 1종 이상이며,
상기 아미노실란계 염 화합물은 상기 양이온 제공 화합물 1종 이상과 음이온 제공 화합물 1종 이상의 혼합물인 것을 특징으로 하는, 리튬 이차전지용 고체 전해질.The method of claim 2, wherein the compound providing the cation is trimethyl[3-(triethoxysilyl)propyl]ammonium, 3-methyl-1-(3-triethoxysilyl)propyl)-imidazolium, 3-ethyl -1-(3-triethoxysilyl)propyl)-imidazolium, N-(3-triethoxysilyl)propyl-pyridinium, at least one selected from the group consisting of,
The compound providing the anion is at least one selected from the group consisting of halogen anion, bis(trifluoromethylsulfonyl)imide, and bis(fluorosulfonyl)imide,
A solid electrolyte for a lithium secondary battery, wherein the aminosilane salt compound is a mixture of at least one cation-donating compound and at least one anion-providing compound.
(b) 상기 혼합액을 방치하여 겔화하는 단계;
(c) 상기 겔을 열처리하여 유기산 및 부산물을 제거하는 단계; 및
(d) 상기 열처리된 겔을 건조시켜 잔여 수분을 제거하는 단계;를 포함하는 리튬 이차전지용 고체 전해질의 제조방법.(a) mixing an aminosilane-based salt compound, a silicate-based compound, an organic acid, and a lithium salt-containing liquid electrolyte;
(b) gelling the mixed solution by leaving it alone;
(c) heat treating the gel to remove organic acids and by-products; and
(d) drying the heat-treated gel to remove remaining moisture.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190027141A KR102680032B1 (en) | 2019-03-08 | 2019-03-08 | Solid electrolyte for lithium secondary battery, method for preparing the same and lithium secondary battery including the solid electrolyte |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190027141A KR102680032B1 (en) | 2019-03-08 | 2019-03-08 | Solid electrolyte for lithium secondary battery, method for preparing the same and lithium secondary battery including the solid electrolyte |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200107661A KR20200107661A (en) | 2020-09-16 |
KR102680032B1 true KR102680032B1 (en) | 2024-06-28 |
Family
ID=72669546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190027141A Active KR102680032B1 (en) | 2019-03-08 | 2019-03-08 | Solid electrolyte for lithium secondary battery, method for preparing the same and lithium secondary battery including the solid electrolyte |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102680032B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017010784A (en) | 2015-06-22 | 2017-01-12 | 旭化成株式会社 | Polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100969011B1 (en) * | 2008-02-20 | 2010-07-09 | 현대자동차주식회사 | High Temperature Polymer Blend Electrolyte Membrane and Its Manufacturing Method |
KR101994261B1 (en) * | 2012-12-12 | 2019-06-28 | 삼성에스디아이 주식회사 | Solid electrolyte containing ionic liquid |
KR102311682B1 (en) * | 2017-06-02 | 2021-10-12 | 삼성전자주식회사 | Composite solide electrolyte comprising a silane compound and lithium battery comprising the same |
-
2019
- 2019-03-08 KR KR1020190027141A patent/KR102680032B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017010784A (en) | 2015-06-22 | 2017-01-12 | 旭化成株式会社 | Polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell |
Also Published As
Publication number | Publication date |
---|---|
KR20200107661A (en) | 2020-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9843045B2 (en) | Negative electrode active material and method for producing the same | |
RU2668970C2 (en) | Reduction of gassing in lithium titanate cells | |
US20160260963A1 (en) | Method for producing electrode body | |
KR20170111743A (en) | Negative electrode for secondary battery and secondary battery comprising the same | |
EP3510654B1 (en) | Porous silicon materials and conductive polymer binder electrodes | |
CN110663126A (en) | Method for preparing positive electrode for secondary battery, positive electrode for secondary battery prepared thereby, and lithium secondary battery comprising the same | |
CN107112581A (en) | Lithium Ion Battery | |
US12347848B2 (en) | Method for preparing positive electrode active material for lithium secondary battery and positive electrode active material prepared thereby | |
KR101964068B1 (en) | Method for preparing conductive material, conductive material prepared thereby and lithium secondary battery comprising the same | |
EP4071875A1 (en) | Solid-state battery, battery module, battery pack, and related device thereof | |
KR102622332B1 (en) | Positive electrode active material and manufacturing method of the same | |
KR102017112B1 (en) | An all solid lithium-polymer secondary battery and method of manufacturing them a secondary battery including a positive electrode | |
CN115053368A (en) | Positive electrode material for lithium secondary battery, and positive electrode and lithium secondary battery comprising same | |
CN113795464B (en) | Method for manufacturing positive electrode active material for lithium secondary battery and positive electrode active material manufactured by the method | |
CN114024035B (en) | Battery with a battery cell | |
CN114242942A (en) | A composite buffer layer with stable anode interface and its solid-state lithium metal battery | |
KR20160112748A (en) | Method for preparing negative electrode composition of lithium secondary battery, and negative electrode and lithium secondary battery prepared by using the same | |
KR20190060719A (en) | Anode Having Double Active Material Layers, Method of Preparing the Same, and Secondary Battery Comprising the Same | |
KR20210038075A (en) | Positive electrode material for lithium secondary battery, method for preparing the same and lithium secondary battery including the positive electrode material | |
CN113678287B (en) | Positive electrode active material for secondary battery, preparation method thereof, and lithium secondary battery comprising the positive electrode active material | |
KR20240056393A (en) | Negative active material, negative electrode and lithium secondary battery comprising thereof | |
EP3817103B1 (en) | Positive electrode active material for lithium rechargeable battery, manufacturing method therefor and lithium rechargeable battery comprising same | |
KR20220059125A (en) | Negative electrode for secondary battery and secondary battery including the same | |
KR102680032B1 (en) | Solid electrolyte for lithium secondary battery, method for preparing the same and lithium secondary battery including the solid electrolyte | |
CN113454812B (en) | Positive electrode with increased hardness for improving safety, method for manufacturing same, and secondary battery comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20190308 |
|
PG1501 | Laying open of application | ||
PN2301 | Change of applicant |
Patent event date: 20211102 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20240408 |
|
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20240626 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20240626 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |