KR102671525B1 - Temperature And Oxidation Responsive Active Ingredient Delivery System Comprising Polar Cationic polymer, Non-polar Anionic compound And Gold Nanoparticles, and Pharmaceutical Composition Comprising The Same - Google Patents
Temperature And Oxidation Responsive Active Ingredient Delivery System Comprising Polar Cationic polymer, Non-polar Anionic compound And Gold Nanoparticles, and Pharmaceutical Composition Comprising The Same Download PDFInfo
- Publication number
- KR102671525B1 KR102671525B1 KR1020220018610A KR20220018610A KR102671525B1 KR 102671525 B1 KR102671525 B1 KR 102671525B1 KR 1020220018610 A KR1020220018610 A KR 1020220018610A KR 20220018610 A KR20220018610 A KR 20220018610A KR 102671525 B1 KR102671525 B1 KR 102671525B1
- Authority
- KR
- South Korea
- Prior art keywords
- ipsam
- temperature
- pei
- pta
- oxidation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 71
- 230000003647 oxidation Effects 0.000 title claims abstract description 68
- 239000004480 active ingredient Substances 0.000 title claims abstract description 38
- 150000001449 anionic compounds Chemical class 0.000 title claims abstract description 22
- 229920006317 cationic polymer Polymers 0.000 title claims abstract description 21
- 239000002105 nanoparticle Substances 0.000 title claims description 18
- 239000008194 pharmaceutical composition Substances 0.000 title claims description 16
- 239000010931 gold Substances 0.000 title claims description 12
- 229910052737 gold Inorganic materials 0.000 title claims description 12
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 title claims description 11
- 150000002500 ions Chemical class 0.000 claims abstract description 28
- 229920002873 Polyethylenimine Polymers 0.000 claims description 155
- IXOFPUCWZCAFJX-UHFFFAOYSA-N 2-phenylethanethioic s-acid Chemical compound SC(=O)CC1=CC=CC=C1 IXOFPUCWZCAFJX-UHFFFAOYSA-N 0.000 claims description 127
- 125000003277 amino group Chemical group 0.000 claims description 25
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 19
- 125000006833 (C1-C5) alkylene group Chemical group 0.000 claims description 3
- 125000006736 (C6-C20) aryl group Chemical group 0.000 claims description 3
- 206010028980 Neoplasm Diseases 0.000 abstract description 33
- 201000011510 cancer Diseases 0.000 abstract description 33
- 239000000693 micelle Substances 0.000 abstract description 19
- 230000001093 anti-cancer Effects 0.000 abstract description 15
- 238000001338 self-assembly Methods 0.000 abstract description 10
- 239000007864 aqueous solution Substances 0.000 abstract description 9
- 230000008901 benefit Effects 0.000 abstract description 5
- 230000012202 endocytosis Effects 0.000 abstract description 5
- 125000001165 hydrophobic group Chemical group 0.000 abstract description 4
- 238000011068 loading method Methods 0.000 abstract description 4
- 239000002245 particle Substances 0.000 abstract description 4
- 239000003446 ligand Substances 0.000 abstract description 3
- 230000007059 acute toxicity Effects 0.000 abstract description 2
- 231100000403 acute toxicity Toxicity 0.000 abstract description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 208
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 141
- 239000011724 folic acid Substances 0.000 description 115
- 235000019152 folic acid Nutrition 0.000 description 115
- 229960004679 doxorubicin Drugs 0.000 description 104
- 229940014144 folate Drugs 0.000 description 89
- 239000000243 solution Substances 0.000 description 79
- 210000004027 cell Anatomy 0.000 description 69
- 239000000725 suspension Substances 0.000 description 38
- VOFUROIFQGPCGE-UHFFFAOYSA-N nile red Chemical compound C1=CC=C2C3=NC4=CC=C(N(CC)CC)C=C4OC3=CC(=O)C2=C1 VOFUROIFQGPCGE-UHFFFAOYSA-N 0.000 description 37
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 26
- 229960000304 folic acid Drugs 0.000 description 26
- 230000003287 optical effect Effects 0.000 description 24
- 238000004458 analytical method Methods 0.000 description 23
- HPZOOQSXPMEJBV-ODCFVKFUSA-N Tirilazad mesylate Chemical compound CS(O)(=O)=O.O=C([C@@H]1[C@@]2(C)CC=C3[C@@]4(C)C=CC(=O)C=C4CC[C@H]3[C@@H]2C[C@H]1C)CN(CC1)CCN1C(N=1)=CC(N2CCCC2)=NC=1N1CCCC1 HPZOOQSXPMEJBV-ODCFVKFUSA-N 0.000 description 22
- 230000000694 effects Effects 0.000 description 22
- 230000007423 decrease Effects 0.000 description 19
- 239000000872 buffer Substances 0.000 description 17
- 238000002347 injection Methods 0.000 description 14
- 239000007924 injection Substances 0.000 description 14
- -1 polyvinylamine Polymers 0.000 description 13
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 12
- 230000008859 change Effects 0.000 description 12
- 230000002209 hydrophobic effect Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 12
- 230000003247 decreasing effect Effects 0.000 description 11
- 239000002953 phosphate buffered saline Substances 0.000 description 11
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 10
- 230000003993 interaction Effects 0.000 description 10
- 239000003937 drug carrier Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 9
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 230000010261 cell growth Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000002246 antineoplastic agent Substances 0.000 description 7
- 238000001218 confocal laser scanning microscopy Methods 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 7
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 6
- 239000011259 mixed solution Substances 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 5
- 239000000546 pharmaceutical excipient Substances 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- OAFQSZJQTKEEPK-UHFFFAOYSA-N 2-phenyl-1H-indole-3,4-dicarboximidamide dihydrochloride Chemical compound Cl.Cl.N1C2=CC=CC(C(N)=N)=C2C(C(=N)N)=C1C1=CC=CC=C1 OAFQSZJQTKEEPK-UHFFFAOYSA-N 0.000 description 4
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 4
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 4
- 238000005481 NMR spectroscopy Methods 0.000 description 4
- 239000011557 critical solution Substances 0.000 description 4
- 238000012377 drug delivery Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical compound N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 4
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 229940024606 amino acid Drugs 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 229940041181 antineoplastic drug Drugs 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000007853 buffer solution Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 150000001875 compounds Chemical group 0.000 description 3
- 238000006482 condensation reaction Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000000502 dialysis Methods 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 230000009881 electrostatic interaction Effects 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 239000012091 fetal bovine serum Substances 0.000 description 3
- 238000000684 flow cytometry Methods 0.000 description 3
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 3
- 102000006815 folate receptor Human genes 0.000 description 3
- 108020005243 folate receptor Proteins 0.000 description 3
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 238000010253 intravenous injection Methods 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000004043 responsiveness Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 150000003457 sulfones Chemical class 0.000 description 3
- 150000003462 sulfoxides Chemical class 0.000 description 3
- 238000004627 transmission electron microscopy Methods 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 108091006905 Human Serum Albumin Proteins 0.000 description 2
- 102000008100 Human Serum Albumin Human genes 0.000 description 2
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- GMPDOIGGGXSAPL-UHFFFAOYSA-N Phenyl vinyl sulfide Natural products C=CSC1=CC=CC=C1 GMPDOIGGGXSAPL-UHFFFAOYSA-N 0.000 description 2
- 239000012980 RPMI-1640 medium Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 239000003708 ampul Substances 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 238000009739 binding Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 150000002016 disaccharides Chemical class 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000001361 intraarterial administration Methods 0.000 description 2
- 238000010255 intramuscular injection Methods 0.000 description 2
- 239000007927 intramuscular injection Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 150000002772 monosaccharides Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 238000004098 selected area electron diffraction Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229960002920 sorbitol Drugs 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000005846 sugar alcohols Chemical class 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- PQEXLIRUMIRSAL-UHFFFAOYSA-N tert-butyl 4-(2-ethoxy-2-oxoethyl)piperidine-1-carboxylate Chemical compound CCOC(=O)CC1CCN(C(=O)OC(C)(C)C)CC1 PQEXLIRUMIRSAL-UHFFFAOYSA-N 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- 238000000733 zeta-potential measurement Methods 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical group C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 206010005908 Body temperature conditions Diseases 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical group C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical class CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- 239000005913 Maltodextrin Substances 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- SJUCACGNNJFHLB-UHFFFAOYSA-N O=C1N[ClH](=O)NC2=C1NC(=O)N2 Chemical compound O=C1N[ClH](=O)NC2=C1NC(=O)N2 SJUCACGNNJFHLB-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- HCBIBCJNVBAKAB-UHFFFAOYSA-N Procaine hydrochloride Chemical compound Cl.CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 HCBIBCJNVBAKAB-UHFFFAOYSA-N 0.000 description 1
- MUPFEKGTMRGPLJ-RMMQSMQOSA-N Raffinose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 MUPFEKGTMRGPLJ-RMMQSMQOSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229920006328 Styrofoam Polymers 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- MUPFEKGTMRGPLJ-UHFFFAOYSA-N UNPD196149 Natural products OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(COC2C(C(O)C(O)C(CO)O2)O)O1 MUPFEKGTMRGPLJ-UHFFFAOYSA-N 0.000 description 1
- COQLPRJCUIATTQ-UHFFFAOYSA-N Uranyl acetate Chemical compound O.O.O=[U]=O.CC(O)=O.CC(O)=O COQLPRJCUIATTQ-UHFFFAOYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 150000001408 amides Chemical group 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 230000002900 effect on cell Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000002073 fluorescence micrograph Methods 0.000 description 1
- 150000002224 folic acids Chemical class 0.000 description 1
- 239000008098 formaldehyde solution Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229940060367 inert ingredients Drugs 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 238000000185 intracerebroventricular administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 239000000644 isotonic solution Substances 0.000 description 1
- 239000000832 lactitol Substances 0.000 description 1
- 235000010448 lactitol Nutrition 0.000 description 1
- VQHSOMBJVWLPSR-JVCRWLNRSA-N lactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-JVCRWLNRSA-N 0.000 description 1
- 229960003451 lactitol Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229960004393 lidocaine hydrochloride Drugs 0.000 description 1
- YECIFGHRMFEPJK-UHFFFAOYSA-N lidocaine hydrochloride monohydrate Chemical compound O.[Cl-].CC[NH+](CC)CC(=O)NC1=C(C)C=CC=C1C YECIFGHRMFEPJK-UHFFFAOYSA-N 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000000845 maltitol Substances 0.000 description 1
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 1
- 235000010449 maltitol Nutrition 0.000 description 1
- 229940035436 maltitol Drugs 0.000 description 1
- 229940035034 maltodextrin Drugs 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 229960001855 mannitol Drugs 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229920001206 natural gum Polymers 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000083 poly(allylamine) Polymers 0.000 description 1
- 229920000962 poly(amidoamine) Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229940068968 polysorbate 80 Drugs 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 229960001309 procaine hydrochloride Drugs 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- MUPFEKGTMRGPLJ-ZQSKZDJDSA-N raffinose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)O1 MUPFEKGTMRGPLJ-ZQSKZDJDSA-N 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 229920013730 reactive polymer Polymers 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000006903 response to temperature Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000007974 sodium acetate buffer Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000008261 styrofoam Substances 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 150000004044 tetrasaccharides Chemical class 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 238000001106 transmission high energy electron diffraction data Methods 0.000 description 1
- 150000004043 trisaccharides Chemical class 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/107—Emulsions ; Emulsion preconcentrates; Micelles
- A61K9/1075—Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0052—Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/12—Carboxylic acids; Salts or anhydrides thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/20—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing sulfur, e.g. dimethyl sulfoxide [DMSO], docusate, sodium lauryl sulfate or aminosulfonic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/34—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
본 발명의 온도 및 산화 응답성 이온 복합체는 극성 양이온성 고분자와 소수성 잔기를 가지는 비극성 음이온성 화합물이 이온쌍을 이루어 양친매성을 가지므로 자가 조립체를 형성하는 특징이 있으며 수용액에 분산되면 음이온성 화합물의 소수성 잔기가 코어를 형성하고 양이온성 고분자의 사슬이 쉘을 형성하는 미셀(micelle) 입자로 제조되어 유효성분을 탑재할 수 있는 유효성분 전달체로 사용 가능한 특징이 있다.
본 발명의 온도 및 산화 응답성 이온 복합체는 주변 온도가 상승하거나 산화되면 복합체의 용해도가 증가하여 탑재물이 방출되는 장점이 있으며 암세포에 특이적인 리간드를 포함하여 암세포 특이적 엔도사이토시스가 수행된 후 세포 내부에서 탑재물을 방출하게 되므로 급성 독성을 일으키지 않으면서도 우수한 항암 효과를 보이는 장점이 있다. The temperature- and oxidation-responsive ionic complex of the present invention has amphiphilic properties through ion pairing of a polar cationic polymer and a non-polar anionic compound with a hydrophobic residue, so it has the characteristic of forming a self-assembly. When dispersed in an aqueous solution, the anionic compound is formed. It is manufactured as micelle particles in which hydrophobic residues form the core and chains of cationic polymers form the shell, so it has the characteristic of being used as an active ingredient carrier capable of loading active ingredients.
The temperature- and oxidation-responsive ionic complex of the present invention has the advantage that the solubility of the complex increases when the surrounding temperature rises or is oxidized, thereby releasing the payload, and after cancer cell-specific endocytosis is performed including a cancer cell-specific ligand. Since the payload is released from inside the cell, it has the advantage of showing excellent anticancer effects without causing acute toxicity.
Description
본 발명은 극성 양이온성 고분자, 비극성 음이온성 화합물 및 금나노입자를 포함하는 온도 및 산화 응답성 유효성분 전달체 및 이를 포함하는 약학적 조성물에 관한 것이다.The present invention relates to a temperature- and oxidation-responsive active ingredient carrier comprising a polar cationic polymer, a non-polar anionic compound, and gold nanoparticles, and a pharmaceutical composition containing the same.
양친매성 분자가 수용액에 분산되면 열역학 제2법칙(엔트로피 구동 과정)에 따라 자발적으로 자가 조립이 형성된다. 상기 자가 조립 구조는 구성 요소인 양친매성 분자의 모양에 의해 결정된다. 양친매성 분자의 모양은 패킹 매개변수(P)는 P=V/LA(여기서 V: 양친매성 분자의 소수성 꼬리의 부피, L: 소수성 꼬리의 길이, A: 친수성 헤드의 단면적)로 정의된다. 예를 들어, 상기 P값이 1에 가까우면 이중층 소포(bilayer vesicle)로 형성되고, 상기 P값이 1보다 크면 육각형상(hexagonal phase)으로 형성되고, 상기 P값이 1보다 작으면 미셀(micelle)이 형성된다.When amphipathic molecules are dispersed in an aqueous solution, they self-assemble spontaneously according to the second law of thermodynamics (entropy-driven process). The self-assembly structure is determined by the shape of the constituent amphipathic molecules. The shape of an amphipathic molecule is defined by the packing parameter (P) as P=V/LA (where V: the volume of the hydrophobic tail of the amphiphilic molecule, L: the length of the hydrophobic tail, and A: the cross-sectional area of the hydrophilic head). For example, if the P value is close to 1, bilayer vesicles are formed, if the P value is greater than 1, they are formed in a hexagonal phase, and if the P value is less than 1, micelles are formed. ) is formed.
상기 자가 조립은 구조 내에 친수성 약물 또는 소수성 약물을 수용할 수 있기 때문에 약물 전달체로서 사용가능하다. 약물 전달체는 생체 적합성, 은폐 기능, 표적화 특성, 효율적인 조직 침투, 높은 약물 보호 능력 및 적시 방출 특성이 필요하다. 약물 운반체는 부작용 없이 약물을 표적 부위에 도달하여 전달하여야 하며 적시에 방출되어야 한다. 약물운반체의 표적 부위 특이성 및 특이적 방출 특성을 획득하는 방법으로는 약물 전달 운반체에 자극 반응성을 부여하는 방법이 있다. 약물방출을 유발하는 자극으로는 온도, pH, 전기장, 자기장, 빛, 이온, 효소, 산화, 환원 등이 사용될 수 있다.The self-assembly can be used as a drug carrier because it can accommodate hydrophilic drugs or hydrophobic drugs in its structure. Drug carriers require biocompatibility, stealth function, targeting properties, efficient tissue penetration, high drug protection ability, and timely release characteristics. Drug carriers must deliver the drug to the target site without side effects and must be released in a timely manner. A method of obtaining target site specificity and specific release characteristics of a drug carrier includes a method of imparting stimulus responsiveness to the drug delivery carrier. Temperature, pH, electric field, magnetic field, light, ions, enzymes, oxidation, reduction, etc. can be used as stimuli that cause drug release.
다중 자극 반응성 약물 전달 운반체는 하나 이상의 자극에 반응하는 특성이 있는 약물 전달 운반체를 의미한다. 최근 연구에 따르면 약물전달체로서 온도와 산화에 반응하여 내용물을 방출할 수 있는 약물운반체가 개발되고 있다. A multistimulus-responsive drug delivery carrier refers to a drug delivery carrier that has the property of responding to more than one stimulus. According to recent research, drug carriers that can release their contents in response to temperature and oxidation are being developed.
예를 들어, 항암제인 독소루비신(doxorubicin, DOX)은 약물운반체의 산화 조건 및 고온 조건에서 방출이 촉진되는 것이 확인되었으며; 폴리하이드록시에틸 아크릴레이트-co-페닐 비닐 설파이드(polyhydroxyethyl acrylate-co-phenyl vinyl sulfide, P(HEA-co-PVS))는 이중 반응성 미셀의 제조를 위한 온도 및 산화 반응성 양친매성 공중합체로 개발된 바 있다. 또한 페닐 비닐 설파이드(phenyl vinyl sulfide, PVS)의 산화는 공중합체의 낮은 임계 용액 온도의 증가와 양친매성 특성의 손실을 유도하여 탈미셀화(de-micellization)를 초래하므로 산화유도방출을 촉진하는 것으로 알려져 있다. 그러나 이중 반응성 고분자 미셀의 제조는 미셀의 구성 성분인 공중합체가 복잡한 과정을 거쳐 합성 및 정제되기 때문에 기술적으로 어려움이 있는 실정이다.For example, it has been confirmed that the release of doxorubicin (DOX), an anticancer drug, is promoted under oxidizing conditions and high temperature conditions of the drug carrier; Polyhydroxyethyl acrylate-co-phenyl vinyl sulfide (P(HEA-co-PVS)) was developed as a temperature- and oxidation-responsive amphiphilic copolymer for the preparation of dual-responsive micelles. There is a bar. In addition, oxidation of phenyl vinyl sulfide (PVS) induces an increase in the low critical solution temperature of the copolymer and loss of amphiphilic properties, resulting in de-micellization, thereby promoting oxidation-induced release. It is known. However, the production of dual-reactive polymer micelles is technically difficult because the copolymer, which is a component of the micelle, is synthesized and purified through a complex process.
본 명세서에서 언급된 특허문헌 및 참고문헌은 각각의 문헌이 참조에 의해 개별적이고 명확하게 특정된 것과 동일한 정도로 본 명세서에 참조로 삽입된다. Patent documents and references mentioned herein are herein incorporated by reference to the same extent as if each individual document was individually and specifically identified by reference.
본 발명은 극성 양이온 고분자와 비극성 음이온성 화합물이 자가 조립되어 미셀(micelle)을 형성하므로 유효성분을 탑재하여 운반 전달체로 사용 가능하고 쉘에 엽산 및 금나노입자가 도입되어 암세포에 특이적인 엔도사이토시스(endocytosis)가 가능 할 뿐 아니라 온도 민감성이 향상된 온도 및 산화 응답성 이온 복합체, 상기 온도 및 산화 응답성 이온 복합체 및 소수성 유효성분을 포함하는 온도 및 산화 응답성 유효성분 전달체, 상기 온도 및 산화 응답성 유효성분 전달체를 포함하는 약학적 조성물을 제공하는 것을 목적으로 한다.In the present invention, polar cationic polymers and non-polar anionic compounds self-assemble to form micelles, so they can be used as transport vehicles by loading active ingredients, and folic acid and gold nanoparticles are introduced into the shell to induce endocytosis specific to cancer cells. A temperature and oxidation-responsive ion complex that not only enables (endocytosis) but also has improved temperature sensitivity, a temperature- and oxidation-responsive active ingredient carrier comprising the temperature and oxidation-responsive ion complex and a hydrophobic active ingredient, and the temperature and oxidation responsiveness. The purpose is to provide a pharmaceutical composition containing an active ingredient carrier.
본 발명의 다른 목적 및 기술적 특징은 이하의 발명의 상세한 설명, 청구의 범위 및 도면에 의해 보다 구체적으로 제시된다. Other objects and technical features of the present invention are presented in more detail by the following detailed description, claims, and drawings.
본 발명은 반복단위에 아미노기(amino group)를 포함하는 극성 양이온성 고분자 및 하기 화학식 1:The present invention relates to a polar cationic polymer containing an amino group in a repeating unit and the formula 1 below:
[화학식 1][Formula 1]
(상기 화학식에서 1에서, Ar은 C6-C20아릴, L2는 C1-C5알킬렌이며, x는 1 내지 3의 정수이다.):(In the above formula, Ar is C6-C20 aryl, L2 is C1-C5 alkylene, and x is an integer of 1 to 3.):
로 표시되는 비극성 음이온성 화합물;을 포함하는 이온 복합체를 제공한다.It provides an ionic complex containing a non-polar anionic compound represented by.
상기 극성 양이온성 고분자는 폴리에틸렌이민(polyethylene imine)이며 상기 비극성 음이온성 화합물은 페닐티오아세트산(phenylthioacetic acid)인 것을 특징으로 하며 상기 이온 복합체는 극성 양이온성 고분자의 아미노기와 비극성 음이온성 화합물의 카르복실기의 몰비율이 2:8 내지 5:5인 것을 특징으로 한다.The polar cationic polymer is polyethylene imine, the non-polar anionic compound is phenylthioacetic acid, and the ionic complex is a molar combination of the amino group of the polar cationic polymer and the carboxyl group of the non-polar anionic compound. It is characterized by a ratio of 2:8 to 5:5.
상기 이온 복합체는 금나노입자(gold nano particle)를 포함하며 엽산화(folated) 된 것을 특징으로 한다.The ionic complex contains gold nanoparticles and is characterized by being folated.
본 발명은 상기 이온 복합체 및 소수성 유효성분을 포함하는 온도 및 산화 응답성 유효성분 전달체를 제공한다.The present invention provides a temperature- and oxidation-responsive active ingredient carrier comprising the ionic complex and the hydrophobic active ingredient.
본 발명은 상기 온도 및 산화 응답성 유효성분 전달체를 포함하는 약학적 조성물 또는 화장료 조성물을 제공한다.The present invention provides a pharmaceutical composition or cosmetic composition containing the above temperature and oxidation-responsive active ingredient carrier.
본 발명의 온도 및 산화 응답성 이온 복합체는 극성 양이온성 고분자와 소수성 잔기를 가지는 비극성 음이온성 화합물이 이온쌍을 이루어 양친매성을 가지므로 자가 조립체를 형성하는 특징이 있으며 수용액에 분산되면 음이온성 화합물의 소수성 잔기가 코어를 형성하고 양이온성 고분자의 사슬이 쉘을 형성하는 미셀(micelle) 입자로 제조되어 유효성분을 탑재할 수 있는 유효성분 전달체로 사용 가능한 특징이 있다. The temperature and oxidation-responsive ionic complex of the present invention has the characteristic of forming a self-assembly because a polar cationic polymer and a non-polar anionic compound with a hydrophobic residue form an ion pair to form an amphipathic complex, and when dispersed in an aqueous solution, the anionic compound It is manufactured as micelle particles in which hydrophobic residues form the core and chains of cationic polymers form the shell, so it has the characteristic of being used as an active ingredient carrier capable of loading active ingredients.
본 발명의 온도 및 산화 응답성 이온 복합체는 주변 온도가 상승하거나 산화되면 복합체의 용해도가 증가하여 탑재물이 방출되는 장점이 있으며 암세포에 특이적인 리간드를 포함하여 암세포 특이적 엔도사이토시스가 수행된 후 세포 내부에서 탑재물을 방출하게 되므로 급성 독성을 일으키지 않으면서도 우수한 항암 효과를 보이는 장점이 있다. The temperature- and oxidation-responsive ionic complex of the present invention has the advantage that the solubility of the complex increases when the surrounding temperature rises or is oxidized, thereby releasing the payload, and after cancer cell-specific endocytosis is performed including a cancer cell-specific ligand. Since the payload is released from inside the cell, it has the advantage of showing excellent anticancer effects without causing acute toxicity.
도 1은 본 발명의 PEI/PTA용액의 광학밀도를 분석한 결과를 보여준다.
도 2는 본 발명의 PEI 용액, PTA 용액, PEI/PTA(3/7) 용액의 계면장력 및 나일 레드 방출로 인한 형광강도의 변화를 분석한 결과를 보여준다.
도 3은 본 발명의 PEI, PTA, 건조 PEI/PTA(3/7), PEI/PTA(3/7)(5mM H2O2)및 PEI/PTA(3/7)(5mM H2O2)의 FT-IR 스펙트럼 분석결과를 보여준다.
도 4는 본 발명의 PEI/PTA(a/b) 용액의 수소핵자기공명 스펙트럼을 보여준다.
도 5는 다양한 온도 조건에서 본 발명의 IPSAM(3/7)에 탑재된 나일 레드가 방출된 프로파일을 보여준다.
도 6은 본 발명의 IPSAM(3/7), 엽산화 IPSAM(3/7) 및 엽산화 IPSAM(3/7)/GNP의 투과전자현미경 결과를 보여준다.
도 7의 패널(A)는 본 발명의 IPSAM(3/7)에 대한 근적외선 조사에 따른 현탁액의 온도 변화 프로파일과 IPSAM(3/7)에 탑재된 나일 레드의 방출 프로파일을 보여준다.
도 8은 본 발명의 엽산화 IPSAM(3/7), 유리 DOX(free DOX), 엽산화 IPSAM(3/7)/DOX, 엽산화 IPSAM(3/7)/GNP 및 엽산화 IPSAM(3/7)/DOX/GNP의 근적외선 조사에 따른 in vitro KB 세포 활성 변화를 보여준다.
도 9는 본 발명의 유리 DOX, 엽산화 IPSAM(3/7)/DOX 및 엽산화 IPSAM(3/7)/DOX/GNP로 처리한 KB 세포에 대한 유세포 분석 결과를 보여준다.
도 10은 본 발명의 유리 DOX, 엽산화 IPSAM(3/7)/DOX, 엽산화 IPSAM(3/7)/DOX/GNP를 처리한 KB 세포의 공초점 레이저 주사 현미경 이미지를 보여준다.
도 11은 본 발명의 온도 및 산화 응답성 유효성분 전달체의 작용기전을 보여준다.Figure 1 shows the results of analyzing the optical density of the PEI/PTA solution of the present invention.
Figure 2 shows the results of analyzing the change in fluorescence intensity due to interfacial tension and Nile red emission of the PEI solution, PTA solution, and PEI/PTA (3/7) solution of the present invention.
Figure 3 shows PEI, PTA, dry PEI/PTA (3/7), PEI/PTA (3/7) (5mM H 2 O 2 ), and PEI/PTA (3/7) (5mM H 2 O 2 ) of the present invention. ) shows the FT-IR spectrum analysis results.
Figure 4 shows the hydrogen nuclear magnetic resonance spectrum of the PEI/PTA (a/b) solution of the present invention.
Figure 5 shows the emission profile of Nile Red mounted on the IPSAM (3/7) of the present invention under various temperature conditions.
Figure 6 shows transmission electron microscopy results of IPSAM (3/7), folate IPSAM (3/7), and folate IPSAM (3/7)/GNP of the present invention.
Panel (A) of Figure 7 shows the temperature change profile of the suspension upon near-infrared irradiation of the IPSAM (3/7) of the present invention and the release profile of Nile Red loaded on the IPSAM (3/7).
Figure 8 shows folate IPSAM (3/7), free DOX, folate IPSAM (3/7)/DOX, folate IPSAM (3/7)/GNP, and folate IPSAM (3/) of the present invention. 7) Shows changes in in vitro KB cell activity following near-infrared irradiation of /DOX/GNP.
Figure 9 shows the results of flow cytometry analysis of KB cells treated with free DOX, folate IPSAM(3/7)/DOX, and folate IPSAM(3/7)/DOX/GNP of the present invention.
Figure 10 shows confocal laser scanning microscopy images of KB cells treated with free DOX, folate IPSAM(3/7)/DOX, and folate IPSAM(3/7)/DOX/GNP of the present invention.
Figure 11 shows the mechanism of action of the temperature- and oxidation-responsive active ingredient carrier of the present invention.
본 발명은 반복단위에 아미노기(amino group)를 포함하는 극성 양이온성 고분자 및 하기 화학식 1:The present invention relates to a polar cationic polymer containing an amino group in a repeating unit and the formula 1 below:
[화학식 1][Formula 1]
(상기 화학식에서 1에서, Ar은 C6-C20아릴, L2는 C1-C5알킬렌이며, x는 1 내지 3의 정수이다.):로 표시되는 비극성 음이온성 화합물;을 포함하는 온도 및 산화 응답성 이온 복합체를 제공한다.(In the above formula, Ar is C6-C20 aryl, L2 is C1-C5 alkylene, and x is an integer of 1 to 3.) Non-polar anionic compound represented by: Temperature and oxidation responsiveness including Provides an ionic complex.
상기 극성 양이온성 고분자는 극성 및 양이온성을 가지는 고분자를 의미하며 상기 아미노기(아민기)가 반복단위에 포함되되 주쇄, 측쇄 또는 말단에 포함될 수 있다. 상기 아민기를 포함하는 양이온성 고분자는 폴리에틸렌이민(Polyethyleneimine: PEI), 폴리비닐아민(Polyvinylamine), 폴리아미도아민(Polyamidoamine), 폴리알릴아민(Polyallylamine), 폴리라이신(Poly-Llysine), 키토산(Chitosan), 아민화 메틸셀룰로오스 및 아민화 에틸셀룰로오스 군으로부터 선택된 하나 또는 둘 이상의 고분자일 수 있으며, 바람직하게는 폴리에틸렌이민(polyethyleneimine, PEI)이다.The polar cationic polymer refers to a polymer that has polar and cationic properties, and the amino group (amine group) is included in the repeating unit and may be included in the main chain, side chain, or terminal. Cationic polymers containing the amine group include polyethyleneimine (PEI), polyvinylamine, polyamidoamine, polyallylamine, poly-Llysine, and chitosan. , may be one or two or more polymers selected from the group of aminated methylcellulose and aminated ethylcellulose, and is preferably polyethyleneimine (PEI).
상기 비극성 음이온성 화합물은 비극성인 잔기를 포함하는 음이온성 화합물로서 상기 화학식 1로 표현도리 수 있다. 상기 ‘아릴’은 수소, 탄소 원자 및 적어도 1개의 방향족 고리를 포함하는 탄화수소 고리계 라디칼을 지칭하는 것으로, 6 내지 20의 탄소원자, 바람직하게 6 내지 12개의 탄소원자를 가질 수 있으며 상기 ‘알킬렌’은 1 내지 10개 바람직하게는 1 내지 8개, 보다 바람직하게는 1 내지 6개의 탄소 원자를 갖는 분자쇄 또는 직쇄 알킬의 라디칼을 의미할 수 있다. 바람직하게는 본 발명의 비극성 음이온성 화합물은 페닐티오아세트산(phenylthioacetic acid)이다.The non-polar anionic compound is an anionic compound containing a non-polar residue and can be expressed by Formula 1 above. The 'aryl' refers to a hydrocarbon ring radical containing hydrogen, a carbon atom, and at least one aromatic ring, and may have 6 to 20 carbon atoms, preferably 6 to 12 carbon atoms, and the 'alkylene' may mean a molecular or straight-chain alkyl radical having 1 to 10 carbon atoms, preferably 1 to 8 carbon atoms, and more preferably 1 to 6 carbon atoms. Preferably, the non-polar anionic compound of the present invention is phenylthioacetic acid.
본 발명의 온도 및 산화 응답성 이온 복합체는 수용액상에서 상기 극성 양이온성 고분자와 비극성 음이온성 화합물이 이온쌍을 이루어 자가 조립체를 형성하는 특징이 있다. 바람직하게는 극성 양이온성 고분자의 아미노기와 비극성 음이온성 화합물의 카르복실기가 2:8 내지 5:5의 몰비율로 이온쌍을 이루어 자가조립체를 형성하며 보다 바람직하게는 극성 양이온성 고분자의 아미노기와 비극성 음이온성 화합물의 카르복실기가 3:7의 몰비율로 이온쌍을 이루어 자가조립체를 형성한다. 가장 바람직하게는 극성 양이온성 고분자로서 폴리에틸렌이민(polyethyleneimine)을 사용하고 비극성 음이온성 화합물로서 페닐티오아세트산(phenylthioacetic acid)를 사용하되 상기 폴리에틸렌이민의 아미노기와 페닐티오아세트산의 카르복실기가 3:7의 몰비율로 이온쌍을 이루어 자가조립체를 형성한다.The temperature and oxidation-responsive ionic complex of the present invention has the characteristic that the polar cationic polymer and the non-polar anionic compound form self-assembly through ion pairing in an aqueous solution. Preferably, the amino group of the polar cationic polymer and the carboxyl group of the nonpolar anionic compound form self-assembly by ion pairing at a molar ratio of 2:8 to 5:5, and more preferably, the amino group of the polar cationic polymer and the nonpolar anion. The carboxyl groups of the compound form ion pairs at a molar ratio of 3:7 to form self-assembly. Most preferably, polyethyleneimine is used as a polar cationic polymer and phenylthioacetic acid is used as a non-polar anionic compound, and the amino group of polyethyleneimine and the carboxyl group of phenylthioacetic acid are used in a molar ratio of 3:7. Ion pairs form self-assembly.
본 발명의 온도 및 산화 응답성 이온 복합체는 상기 극성 양이온성 고분자의 아미노기와 상기 비극성 음이온성 화합물의 카르복실기가 이온결합하여 이온쌍을 이루게 되어 양친매성을 가지는 특징이 있다. 상기 양친매성이 감소하면 복합체의 용해도가 증가하게 되고 이는 온도 및 산화 응답성 이온 복합체가 분해된다는 것을 의미하므로 탑재된 유효성분의 방출증가로 이어지게 된다.The temperature and oxidation-responsive ionic complex of the present invention has the characteristic of being amphipathic in that the amino group of the polar cationic polymer and the carboxyl group of the non-polar anionic compound form an ion pair by ionic bonding. As the amphipathicity decreases, the solubility of the complex increases, which means that the temperature and oxidation-responsive ionic complex is decomposed, leading to increased release of the loaded active ingredient.
본 발명의 온도 및 산화 응답성 이온 복합체는 이온쌍 자가 조립체이므로 상한 임계 용액 온도(upper critical solution temperature, UCST) 특성을 가져 온도에 따라 용해도가 변하게 된다. 또한 본 발명의 온도 및 산화 응답성 이온 복합체는 상기 비극성 음이온성 화합물에 황성분이 포함되어 있어 산화 조건에 따라 설폭사이드(sulfoxide) 및 설폰(sulfone)으로 산화되므로 이온쌍의 양친매성이 감소되어 용해도가 변하게 된다. 정리하면 본 발명의 온도 및 산화 응답성 이온 복합체는 온도 및 산화 조건이 변화되면 용해도가 변하여 탑재물의 방출이 조절된다.Since the temperature and oxidation-responsive ionic complex of the present invention is an ion pair self-assembly, it has upper critical solution temperature (UCST) characteristics and its solubility changes depending on temperature. In addition, the temperature and oxidation-responsive ionic complex of the present invention contains a sulfur component in the non-polar anionic compound and is oxidized to sulfoxide and sulfone depending on oxidation conditions, so the amphiphilicity of the ion pair is reduced and the solubility is increased. It changes. In summary, the temperature and oxidation-responsive ionic complex of the present invention changes its solubility when the temperature and oxidation conditions change, thereby controlling the release of the payload.
본 발명의 온도 및 산화 응답성 이온 복합체는 금나노입자(gold nano particle)를 포함하는 것을 특징으로 한다. 상기 금나노입자는 근적외선(near-infrared, NIR)을 조사하게 되면 표면 플라즈몬 공명을 일으켜 열을 발생시키는 특징이 있다. 따라서 본 발명의 온도 및 산화 응답성 이온 복합체에 금나노입자를 도입하게 되면 근적외선을 조사하는 것만으로 복합체의 주변온도를 손쉽게 상승시킬 수 있는 장점이 있다. The temperature and oxidation responsive ionic complex of the present invention is characterized by containing gold nanoparticles. The gold nanoparticles have the characteristic of generating heat by causing surface plasmon resonance when irradiated with near-infrared (NIR) rays. Therefore, introducing gold nanoparticles into the temperature- and oxidation-responsive ionic complex of the present invention has the advantage of easily increasing the surrounding temperature of the complex simply by irradiating near-infrared rays.
본 발명의 온도 및 산화 응답성 이온 복합체는 엽산화(folated)된 것을 특징으로 한다. 상기 엽산(folic acid)이 온도 및 산화 응답성 이온 복합체에 도입되면 상기 엽산과 암세포의 수용체가 특이적으로 결합되어 암세포 내부로 엔도사이토시스(endocytosis)되므로 탑재물(유효성분)을 암세포 내부에 특이적으로 방출할 수 있게 된다. 상기 엽산화는 온도 및 산화 응답성 이온 복합체의 비극성 음이온성 화합물에 축합반응을 통해 결합되어 도입되는 것을 특징으로 하며 바람직하게는 상기 엽산이 폴리에틸렌이민(polyethyleneimine)에 축합반응을 통해 도입되는 것을 특징으로 한다.The temperature- and oxidation-responsive ionic complex of the present invention is characterized in that it is folated. When the folic acid is introduced into the temperature and oxidation-responsive ion complex, the folic acid and the receptor of the cancer cell specifically bind and are endocytized into the cancer cell, so the payload (active ingredient) is specifically placed inside the cancer cell. It can be released as an enemy. The folic acid is characterized in that it is introduced by binding to a non-polar anionic compound of a temperature and oxidation-responsive ionic complex through a condensation reaction. Preferably, the folic acid is introduced through a condensation reaction in polyethyleneimine. do.
본 발명은 상기 온도 및 산화 응답성 이온 복합체와 유효성분을 포함하는 온도 및 산화 응답성 유효성분 전달체를 제공한다.The present invention provides a temperature- and oxidation-responsive active ingredient carrier comprising the temperature- and oxidation-responsive ionic complex and an active ingredient.
상기 유효성분은 항암제, 항생제, 세포막 염료, 아미노산, 광과민제(photosensitiser), 및 유전자 복합체의 군으로부터 선택된 어느 하나 또는 이들의 혼합물일 수 있다. 상기 유효성분은 온도 및 산화 응답성 이온 복합체로부터 방출되어 복합체의 산화 조건을 강화시킬 수 있는 성분인 것이 바람직하며 이온성 또는 소수성의 제한이 없다. 바람직하게는 상기 유효성분은 항암제일 수 있으며 보다 바람직하게는 세포내에서 산화조건을 강화시키는 독소루비신(doxorubicin, DOX)이다.The active ingredient may be any one or a mixture thereof selected from the group of anticancer agents, antibiotics, cell membrane dyes, amino acids, photosensitisers, and gene complexes. The active ingredient is preferably an ingredient that can be released from the temperature and oxidation-responsive ionic complex to strengthen the oxidation conditions of the complex, and is not limited by ionicity or hydrophobicity. Preferably, the active ingredient may be an anticancer agent, and more preferably, it is doxorubicin (DOX), which strengthens oxidative conditions within cells.
본 발명은 상기 온도 및 산화 응답성 유효성분 전달체를 포함하는 약학적 조성물을 제공한다. 본 발명에 기재된 “조성물”은 활성 성분으로서 상기 온도 및 산화 응답성 유효성분 전달체와 함께 천연 또는 인공의 담체, 라벨 또는 탐지제와 같은 불활성 성분 또는 애주번트, 희석제, 결합제, 안정화제, 완충제, 염, 친지방성 용매, 보존제와 같은 활성 성분과의 조합을 의미하며, 약학적으로 허용 가능한 담체를 포함한다. The present invention provides a pharmaceutical composition comprising the temperature and oxidation responsive active ingredient carrier. The “composition” described in the present invention includes the temperature and oxidation-responsive active ingredient carrier as the active ingredient, as well as inert ingredients such as natural or artificial carriers, labels, or detection agents, or adjuvants, diluents, binders, stabilizers, buffers, and salts. , refers to a combination with active ingredients such as lipophilic solvents and preservatives, and includes pharmaceutically acceptable carriers.
상기 담체는 약학적 부형제 및 부가적인 단백질, 펩티드, 아미노산, 지질, 및 탄수화물 (예를 들어, 단당류; 이당류; 삼당류; 사당류; 올리고당류; 알디톨, 알돈산, 에스테르화된 설탕과 같은 설탕의 유도체, 폴리사카라이드, 또는 당 중합체 등)을 단독으로 또는 조합하여 포함할 수 있으며, 1 내지 99.99 중량% 또는 부피%로 포함할 수 있다. The carriers include pharmaceutical excipients and additional proteins, peptides, amino acids, lipids, and carbohydrates (e.g., monosaccharides; disaccharides; trisaccharides; tetrasaccharides; oligosaccharides; sugars such as alditols, aldonic acids, and esterified sugars). derivatives, polysaccharides, sugar polymers, etc.) may be included individually or in combination, and may be included in an amount of 1 to 99.99% by weight or volume.
단백질 부형제는 인간 혈청 알부민, 재조합 인간 알부민, 젤라틴, 카제인 등을 포함할 수 있으며 이에 제한되지 않는다. Protein excipients may include, but are not limited to, human serum albumin, recombinant human albumin, gelatin, casein, etc.
완충 역할을 할 수 있는 대표적인 아미노산 성분으로는 알라닌, 알기닌, 글리신, 베타인, 히스티딘, 글루탐산, 아스파르트산, 시스테인, 라이신, 루신, 아이소루신, 발린, 메티오닌, 페닐알라닌, 아스파탐 등을 포함할 수 있으며 이에 제한되지 않는다. Representative amino acid components that can act as a buffer include alanine, arginine, glycine, betaine, histidine, glutamic acid, aspartic acid, cysteine, lysine, leucine, isoleucine, valine, methionine, phenylalanine, and aspartame. Not limited.
탄수화물 부형제는 프룩토스, 말토스, 갈락토스, 글루코스, D-만노스, 솔보스와 같은 단당류; 락토스, 수크로스, 트레할로스, 셀로비오스와 같은 이당류, 라피노스, 말토덱스트린, 텍스트란, 전분과 같은 다당류, 및 만니톨, 자일리톨, 말티톨, 락티톨, 소르비톨, 및 마이오이노시톨과 같은 알디톨 등을 포함할 수 있으며 이에 제한되지 않는다. Carbohydrate excipients include monosaccharides such as fructose, maltose, galactose, glucose, D-mannose, and sorbose; Disaccharides such as lactose, sucrose, trehalose, cellobiose, polysaccharides such as raffinose, maltodextrin, textran, starch, and alditols such as mannitol, xylitol, maltitol, lactitol, sorbitol, and myoinositol. possible and is not limited to this.
본 발명의 온도 및 산화 응답성 유효성분 전달체를 포함하는 약학적 조성물은 당업자에 의해 공지의 방법으로 제제화할 수 있다. 본 발명의 약제학적 조성물은 필요에 따라서 물 또는 그 외의 약학적으로 허용되는 액과의 무균성 용액, 또는 현탁액제의 주사제의 형태로 비경구적으로 사용할 수 있으며 약학적으로 허용되는 담체 또는 매체, 구체적으로는, 멸균수나 생리 식염수, 식물유, 유화제, 현탁제, 계면활성제, 안정제, 부형제, 비히클(vehicle), 방부제, 결합제 등과 적당 조합하여, 일반적으로 인정된 제약 실시에 요구되는 단위 용량 형태로 혼화함으로써 제제화 할 수 있다. 상기 제제화에 있어서 유효성분량은 지시받은 범위의 적당한 용량을 얻을 수 있도록 하는 것을 의미한다. A pharmaceutical composition containing the temperature- and oxidation-responsive active ingredient carrier of the present invention can be formulated by a person skilled in the art by a known method. The pharmaceutical composition of the present invention can be used parenterally, if necessary, in the form of a sterile solution with water or other pharmaceutically acceptable liquid, or an injection of a suspension, and can be used parenterally in the form of a pharmaceutically acceptable carrier or medium, specifically For example, by appropriately combining with sterilized water, physiological saline, vegetable oil, emulsifiers, suspensions, surfactants, stabilizers, excipients, vehicles, preservatives, binders, etc., and mixing them into the unit dosage form required for generally accepted pharmaceutical practice. It can be formulated. In the above formulation, the amount of active ingredient is meant to obtain an appropriate dose within the indicated range.
본 발명의 온도 및 산화 응답성 유효성분 전달체를 포함하는 약학적 조성물을 주사를 위한 무균 조성물로서 제제화 하는 경우 주사용 증류수와 같은 부형액을 이용해 통상의 제제 실시에 따라 처방할 수 있다. 주사용의 수용액으로서는 생리 식염수, 포도당 및 그 외의 보조약을 포함한 등장용액 예를 들어, D-소르비톨, D-만노스, D-만니톨, 염화 나트륨을 사용할 수 있으며 적당한 용해 보조제 예를 들어, 에탄올류인 폴리 알코올, 프로필렌 글리콜, 및 폴리에틸렌 글리콜과 비이온성 계면활성제류인 폴리소르베이트 80(TM), 및HCO-50을 병용하여 사용 할 수 있다. 또한 유성액으로서 참기름, 콩기름을 사용 할 수 있으며 용해 보조제로서 안식향산벤질, 벤질 알코올과 병용하여 사용 할 수 있다. When the pharmaceutical composition containing the temperature- and oxidation-responsive active ingredient carrier of the present invention is formulated as a sterile composition for injection, it can be prescribed according to conventional formulation practices using an excipient such as distilled water for injection. As an aqueous solution for injection, an isotonic solution containing physiological saline, glucose, and other auxiliaries, such as D-sorbitol, D-mannose, D-mannitol, and sodium chloride, can be used, and an appropriate solubilizing auxiliary, such as polyethanol, can be used. Alcohol, propylene glycol, and polyethylene glycol can be used in combination with nonionic surfactants such as polysorbate 80(TM) and HCO-50. In addition, sesame oil and soybean oil can be used as an oily liquid, and as a solubilizing agent, it can be used in combination with benzyl benzoate and benzyl alcohol.
상기 주사제형의 예로서는 정맥내 주사제형, 동맥내 주사제형, 선택적 동맥내 주사제형, 근육내 주사제형, 복강내 주사제형, 피하주사제형, 뇌실내 주사제형, 뇌내 주사제형, 골수액강내 주사제형이 있으며 바람직하게는 상기 주사제형은 정맥내 주사제형이다.Examples of the injection formulation include intravenous injection, intraarterial injection, selective intraarterial injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, intracerebroventricular injection, intracerebral injection, and intramedullary injection. And preferably, the injection formulation is an intravenous injection formulation.
본 발명의 온도 및 산화 응답성 유효성분 전달체를 포함하는 약학적 조성물은 약제학적 유효량의 유효성분을 포함한다. 상기 유효량의 결정은 당해 기술 분야에서 통상의 지식을 가진 자가 본 명세서에 개시된 내용을 기반으로 용이하게 결정될 수 있다. The pharmaceutical composition comprising the temperature- and oxidation-responsive active ingredient carrier of the present invention contains a pharmaceutically effective amount of the active ingredient. Determination of the effective amount can be easily determined by a person skilled in the art based on the information disclosed herein.
일반적으로 상기 약제학적 유효량은 유효성분을 낮은 농도로 1차 투여한 후, 대상체에서 부작용이 없으면서도 요망되는 효과를 얻을 때까지 점진적으로 증량시키는 방법으로 결정된다. 본 발명의 온도 및 산화 응답성 유효성분 전달체를 포함하는 약학적 조성물의 적절한 투여량이나 투여 간격을 결정하는 방법은 Goodman and Gilman's The Pharmacological Basis of Therapeutics, Goodman et al., eds., 11th Edition, McGraw-Hill 2005, 및 Remington: The Science and Practice of Pharmacy, 20th and 21st Editions, Gennaro and University of the Sciences in Philadelphia, Eds., Lippencott Williams & Wilkins (2003 and 2005)에 상세히 설명되어 있다.In general, the pharmaceutically effective amount is determined by first administering the active ingredient at a low concentration and then gradually increasing the dose until the desired effect is achieved without side effects in the subject. A method for determining the appropriate dosage or administration interval of a pharmaceutical composition containing the temperature- and oxidation-responsive active ingredient carrier of the present invention is described in Goodman and Gilman's The Pharmacological Basis of Therapeutics, Goodman et al., eds., 11th Edition, McGraw. -Hill 2005, and Remington: The Science and Practice of Pharmacy, 20th and 21st Editions, Gennaro and University of the Sciences in Philadelphia, Eds., Lippencott Williams & Wilkins (2003 and 2005).
본 발명의 온도 및 산화 응답성 유효성분 전달체를 포함하는 약학적 조성물의 투여 방법은 질환의 종류, 환자의 나이, 체중, 성별, 의학적 상태, 질환의 중증도, 투여 경로, 및 별도로 투여되는 약물과 같은 다양한 인자를 고려하여 결정될 수 있다. 본 발명의 온도 및 산화 응답성 유효성분 전달체를 포함하는 약학적 조성물이 환자에 투여되는 양은 투여 방법, 환자의 건강 상태, 체중, 의사의 처방과 같은 많은 인자에 의하여 결정될 수 있으며, 이는 당해 기술 분야의 통상의 지식을 가진 자의 지식 범위 내에 있다. The method of administering a pharmaceutical composition containing the temperature and oxidation-responsive active ingredient carrier of the present invention includes the type of disease, the patient's age, weight, gender, medical condition, severity of the disease, route of administration, and separately administered drugs. It can be determined by considering various factors. The amount of the pharmaceutical composition containing the temperature- and oxidation-responsive active ingredient carrier of the present invention administered to the patient may be determined by many factors such as the administration method, patient's health condition, body weight, and doctor's prescription, which are known in the art. It is within the scope of knowledge of a person with ordinary knowledge.
상기 “약”은 당해 기술 분야에서 통상적으로 관용되는 범위, 예를 들어, 평균 표준 편차 범위 내로 이해될 수 있으며 언급된 값의 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, 또는 0.01% 이내로 이해될 수 있다.The term “about” can be understood as within the range commonly accepted in the art, for example, the average standard deviation range, and may be 50%, 45%, 40%, 35%, 30%, 25%, understood to be within 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01% It can be.
또한, 인산염 완충액, 및 초산나트륨 완충액과 같은 완충제, 염산 프로카인과 같은 무통화제, 벤질 알코올, 또는 페놀과 같은 안정제, 및 산화 방지제와 더 배합할 수 있다. 상기 조제된 주사액은 통상, 적당한 앰플에 충전시킨다. 현탁액 및 유탁액은, 담체로서, 천연 검, 한천, 알긴산 나트륨, 펙틴, 메틸셀룰로스, 카복시메틸셀룰로스, 또는 폴리비닐알코올을 함유할 수 있다. 근육 내 주사를 위한 현탁액 또는 용액은 활성 화합물과 함께, 약학적으로 허용되는 담체 예를 들어, 멸균수, 올리브 오일, 에틸 올레에이트, 글리콜류 및 적합한 양의 리도카인 염산염을 함유할 수 있다.In addition, it can be further combined with buffering agents such as phosphate buffer and sodium acetate buffer, analgesics such as procaine hydrochloride, stabilizers such as benzyl alcohol, or phenol, and antioxidants. The prepared injection solution is usually filled into an appropriate ampoule. Suspensions and emulsions may contain, as carriers, natural gum, agar, sodium alginate, pectin, methylcellulose, carboxymethylcellulose, or polyvinyl alcohol. Suspensions or solutions for intramuscular injection may contain the active compound together with a pharmaceutically acceptable carrier such as sterile water, olive oil, ethyl oleate, glycols and a suitable amount of lidocaine hydrochloride.
본 발명의 온도 및 산화 응답성 유효성분 전달체를 포함하는 약학적 조성물은 정맥 주사 (bolus injection) 또는 연속주입 (continuous infusion)으로 환자에 투여될 수 있다. 본 발명의 온도 및 산화 응답성 유효성분 전달체를 포함하는 약학적 조성물은 1시간 이하, 1시간 이상, 2시간 이상, 3시간 이상, 4시간 이상, 8시간 이상, 12시간 이상, 1일 이상, 2일 이상, 3일 이상, 4일 이상, 5일 이상, 6일 이상, 7일 이상, 2주 이상, 3주 이상, 4주 이상, 1개월 이상, 3개월 이상, 6개월 이상에 적어도 1회, 적어도 2회, 적어도 3회, 적어도 4회, 또는 적어도 5회에 걸쳐, 연속적으로, 또는 일정 시간 간격으로, 또는 임상적 판단에 의하여 결정된 시간 간격을 두고 투여될 수 있다. The pharmaceutical composition containing the temperature- and oxidation-responsive active ingredient carrier of the present invention may be administered to a patient by intravenous injection (bolus injection) or continuous infusion. The pharmaceutical composition containing the temperature and oxidation-responsive active ingredient carrier of the present invention can be used for 1 hour or less, 1 hour or more, 2 hours or more, 3 hours or more, 4 hours or more, 8 hours or more, 12 hours or more, 1 day or more, At least 1 for 2 days or more, 3 days or more, 4 days or more, 5 days or more, 6 days or more, 7 days or more, 2 weeks or more, 3 weeks or more, 4 weeks or more, 1 month or more, 3 months or more, 6 months or more It may be administered once, at least twice, at least three times, at least four times, or at least five times, continuously, at regular time intervals, or at time intervals determined by clinical judgment.
주사제는 앰플형으로, 또는 복수회 투여 용기의 단위 용량형으로 제형화 될 수 있다. 그러나 통상의 기술자는 본 발명에 따른 약학 조성물의 투여량은 환자의 나이, 체중, 키, 성별, 일반적 의학적 상태 및 기존 치료 이력과 같은 다양한 인자들에 따라 변경될 수 있음을 이해할 것이다.Injections may be formulated in ampoule form or in unit dose form in multiple dosage containers. However, those skilled in the art will understand that the dosage of the pharmaceutical composition according to the present invention may vary depending on various factors such as the patient's age, weight, height, gender, general medical condition, and previous treatment history.
하기 실시예를 통해 본 발명을 상세히 설명한다.The present invention will be described in detail through the following examples.
실시예 Example
1. 실험방법1. Experimental method
1.1. 실험재료1.1. experiment material
폴리에틸렌이민(polyethylene imine, PEI, 분지형, 평균분자량(MW): 2000), 염화금산(HAuCl4·3H2O), 독소루비신(doxorubicin, DOX), 엽산(folic acid, FA), 1-에틸3-(3-디메틸아미노프로필)카르보디이미드(1-ethyl3-(3-dimethylaminopropyl)carbodiimide, EDC), 디메틸술폭시드(dimethyl sulfoxide, DMSO), N-히드록시숙신이미드(N-hydroxysuccinimide, NHS), 에틸렌디아민테트라아세트산(ethylenediaminetetraacetic acid, EDTA), 디아미디노-2-페닐인돌 디히드로클로라이드(diamidino-2-phenylindole dihydrochloride, DAPI), 포름알데히드(formaldehyde), 트립신(trypsin), 트리즈마(trizma) 완충액, 인산완충식염수(PBS, 10배 농도, pH 7.4), 디메틸포름아미드(dimethylformamide, DMF) 및 3-(4,5-디메틸티아졸-2-일)-2-5-디페닐테트라졸륨 브로마이드(3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide, MTT)는 Sigma-Aldrich Co.(St. louis, MO)에서 구입하였다. KB 세포는 한국 세포주 은행(서울, 한국)에서 제공받았다. 과산화수소(H2O2, 30%)는 Daejung Chemicals & Metals Co.(한국 시흥)에서 구입하였다. 페닐티오아세트산(phenylthioacetic acid, PTA) 및 나일 레드(nile red)는 Tokyo Chemical Industry Co., Ltd.(Tokyo, Japan)에서 구입하였다. FBS(fetal bovine serum)가 없는 Roswell Park Memorial Institute(RPMI) 1640 배지는 GibcoTM(Dublin, Ireland)에서 구입하였다.Polyethylene imine (PEI, branched, average molecular weight (MW): 2000), chlorauric acid (HAuCl 4 3H 2 O), doxorubicin (DOX), folic acid (FA), 1-ethyl 3 -(3-dimethylaminopropyl)carbodiimide (1-ethyl3-(3-dimethylaminopropyl)carbodiimide, EDC), dimethyl sulfoxide (DMSO), N-hydroxysuccinimide (NHS) , ethylenediaminetetraacetic acid (EDTA), diamidino-2-phenylindole dihydrochloride (DAPI), formaldehyde, trypsin, trizma Buffer, phosphate-buffered saline (PBS, 10-fold concentration, pH 7.4), dimethylformamide (DMF), and 3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide. (3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide, MTT) was purchased from Sigma-Aldrich Co. (St. louis, MO). KB cells were provided by the Korea Cell Line Bank (Seoul, Korea). Hydrogen peroxide (H 2 O 2 , 30%) was purchased from Daejung Chemicals & Metals Co. (Siheung, Korea). Phenylthioacetic acid (PTA) and nile red were purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). Roswell Park Memorial Institute (RPMI) 1640 medium without fetal bovine serum (FBS) was purchased from GibcoTM (Dublin, Ireland).
1.2. 상한 임계 용액 온도 분석1.2. Upper critical solution temperature analysis
14.8㎎, 21.8㎎ 또는 30.5㎎의 PEI를 20㎖ 바이알에서 30mM Trizma 완충액(pH 7.0) 15㎖에 용해시켜 PEI 용액을 제조하였다. 상기 PEI 용액에 PTA 135.2㎎, 128.2㎎, 또는 119.5㎎를 첨가하여 PEI 및 PTA의 농도가 10㎎/㎖이고 아미노기와 카르복실기의 몰비가 3:7 또는 4:6 또는 5:5인 PEI/PTA 혼합 용액을 제조하였다. 상기 바이알을 실온에서 24시간 동안 롤러 믹서로 굴려 PEI/PTA 혼합 용액을 혼합하였다. 아미노기 대 카르복실기의 몰비가 a:b인 PEI/PTA 혼합 용액은 PEI/PTA(a/b)용액으로 칭하였으며 PEI/PTA(a/b) 용액에 포함된 PEI/PTA이온쌍 및 PEI/PTA이온쌍 자가조립체는 각각 IP(a/b) 및 IPSAM(a/b)으로 명명하였다.A PEI solution was prepared by dissolving 14.8 mg, 21.8 mg, or 30.5 mg of PEI in 15 ml of 30mM Trizma buffer (pH 7.0) in a 20 ml vial. Add 135.2 mg, 128.2 mg, or 119.5 mg of PTA to the PEI solution to prepare a PEI/PTA mixture in which the concentration of PEI and PTA is 10 mg/ml and the molar ratio of amino group to carboxyl group is 3:7, 4:6, or 5:5. A solution was prepared. The vial was rolled with a roller mixer at room temperature for 24 hours to mix the PEI/PTA mixed solution. The PEI/PTA mixed solution with the molar ratio of amino group to carboxyl group a:b was called PEI/PTA(a/b) solution, and the PEI/PTA ion pair and PEI/PTA ion contained in the PEI/PTA(a/b) solution were The paired self-assemblies were named IP(a/b) and IPSAM(a/b), respectively.
PEI/PTA(a/b) 용액 2.5㎖을 3㎖ 큐벳에 넣고 온도 조절기(CW-05G, Jeio Tech, 대한민국)의 항온 큐벳 홀더에 장착 한 후 2℃/min의 승온 속도로 20℃에서 50℃로 가열하면서 UV 분광 광도계(UK 6505 UV/Vis Spectrophotometer, JENWAY, UK)로 광학밀도(600㎚)를 측정하였다. Put 2.5 ml of PEI/PTA (a/b) solution into a 3 ml cuvette, place it in the constant temperature cuvette holder of the temperature controller (CW-05G, Jeio Tech, Korea), and then increase the temperature from 20℃ to 50℃ at a temperature increase rate of 2℃/min. While heating, the optical density (600 nm) was measured using a UV spectrophotometer (UK 6505 UV/Vis Spectrophotometer, JENWAY, UK).
PEI/PTA(3/7)용액의 산화에 따른 광학밀도의 변화를 확인하기 위하여 H2O2의 최종 농도가 0, 0.5, 1, 5, 20 및 100mM가 되도록 H2O2 용액을 처리하였다. PEI와 PTA는 총 10㎎/㎖가 되도록 하였으며 실온에서 롤러 믹서로 4시간 동안 굴려 혼합하였다. XmM H2O2용액으로 처리된 PEI/PTA(3/7) 용액은 PEI/PTA(3/7) 용액(XmM H2O2)으로 명명하였다. PEI/PTA(3/7) 용액(XmM H2O2)의 광학 밀도는 전술한 바와 같이 측정하였으며 상한 임계 용액 온도(upper critical slution temperature, UCST)는 정체기 영역(plateau region)의 데이터 점을 연결하는 접선과 감소 영역(decreasing region)의 데이터 점을 연결하는 접선의 교차점으로 정의하였다.To confirm the change in optical density due to oxidation of the PEI/PTA (3/7) solution, the H 2 O 2 solution was treated so that the final concentrations of H 2 O 2 were 0, 0.5, 1, 5, 20, and 100mM. . PEI and PTA were adjusted to a total of 10 mg/ml and mixed by rolling for 4 hours with a roller mixer at room temperature. The PEI/PTA (3/7) solution treated with the XmM H 2 O 2 solution was named PEI/PTA (3/7) solution (XmM H 2 O 2 ). The optical density of the PEI/PTA (3/7) solution (XmM H 2 O 2 ) was measured as described above, and the upper critical slution temperature (UCST) was calculated by connecting the data points in the plateau region. It was defined as the intersection of the tangent line connecting the data points of the decreasing region and the decreasing region.
1.3. 계면 장력 측정1.3. Interfacial tension measurements
IP(3/7)의 공기/물 계면활성에 대한 산화의 영향을 조사하기 위해 PEI/PTA(3/7)용액(XmM H2O2)에 대하여 링 방법을 적용하여 계면 장력을 측정하였다. PEI/PTA(3/7)용액(XmM H2O2)은 상기와 같이 제조하되 PEI와 PTA의 농도만을 달리하였다. PEI와 PTA의 총농도는 4㎎/㎖로 하였고 아미노기:카르복실기=3:7의 비율로 하였으며 완충액의 종류(Trizma 완충액 30mM, pH 7.0), H2O2 농도(0, 0.5, 1, 5, 20, 100mM) 및 혼합 방법(롤러 믹서, 4시간)은 모두 동일하게 하였다. PEI/PTA(3/7)용액(XmM H2O2)과 동일한 H2O2농도를 갖는 30mM Trizma 완충액(pH 7.0)으로 연속 2회 희석하였다. 대조군으로 PEI와 PTA를 각각 30mM Trizma 완충액 pH 7.0에 4㎎/㎖농도로 녹인 후 동일한 완충액으로 연속 2회 희석하여 순수한 PEI 용액과 순수한 PTA 용액을 얻었다. 용액의 표면장력은 계면장력계(DST 60, SEO Co., Suwon, South Korea)를 이용하여 링법으로 측정하였다.To investigate the effect of oxidation on the air/water interfacial activity of IP (3/7), the interfacial tension was measured by applying the ring method to PEI/PTA (3/7) solution (XmM H 2 O 2 ). PEI/PTA (3/7) solution (XmM H 2 O 2 ) was prepared as above, except that the concentrations of PEI and PTA were different. The total concentration of PEI and PTA was 4 mg/ml, and the ratio of amino group:carboxyl group = 3:7, and the type of buffer (Trizma buffer 30mM, pH 7.0) and H 2 O 2 concentration (0, 0.5, 1, 5, 20, 100mM) and mixing method (roller mixer, 4 hours) were all the same. The PEI/PTA (3/7) solution (XmM H 2 O 2 ) was serially diluted twice with 30mM Trizma buffer (pH 7.0) having the same H 2 O 2 concentration. As a control, PEI and PTA were each dissolved in 30mM Trizma buffer pH 7.0 at a concentration of 4 mg/ml and then diluted twice in succession with the same buffer solution to obtain a pure PEI solution and a pure PTA solution. The surface tension of the solution was measured by the ring method using an interfacial tensiometer (DST 60, SEO Co., Suwon, South Korea).
1.4. 임계 미셀 농도 측정1.4. Critical micelle concentration measurement
PEI/PTA(3/7) 용액(XmM H2O2)은 상기와 같이 제조하되 PEI와 PTA의 총농도만을 달리하였다. 임계 미셀 농도(critical micelle concentration, CMC)를 결정하기 위한 PEI+PTA의 농도는 20㎎/㎖이었으며 아미노기/카르복실기의 비율(3/7), 완충액의 종류(Trizma 완충 30mM, pH 7.0), H2O2 농도(0, 0.5, 1, 20mM), 및 혼합 기간(4시간)은 동일하였다.PEI/PTA (3/7) solution (XmM H 2 O 2 ) was prepared as above, except that the total concentrations of PEI and PTA were different. The concentration of PEI+PTA to determine critical micelle concentration (CMC) was 20 mg/ml, amino group/carboxyl group ratio (3/7), type of buffer (Trizma buffer 30mM, pH 7.0), H 2 O 2 concentration (0, 0.5, 1, 20mM) and mixing period (4 hours) were the same.
PEI/PTA 용액(XmM H2O2)을 동일한 H2O2 농도를 포함하는 30mM Trizma 완충액(pH 7.0)으로 연속 2회 희석하여 PEI+PTA의 최종 농도가 0, 0.0625, 1.25, 2.5, 5, 10, 15 및 20㎎/㎖이 되도록 하였다. 나일 레드(nile red) 10㎎을 20㎖ 바이알에 담긴 메탄올 10㎖에 용해시켜 나일 레드 용액을 제조하고 상기 나일 레드 용액(1㎎/㎖) 10㎕를 5㎖ 바이알에 담긴 PEI/PTA용액(XmM H2O2) 1㎖에 첨가하여 암조건 및 실온조건에서 12시간 동안 보관하였다. 상기 혼합 용액을 필터(0.45 μm)로 여과한 후, 형광 분광 광도계(Hitachi F2500, Hitachi, Japan)에서 여기 파장(556㎚)를 사용하여 나일 레드의 형광 강도(613㎚)를 측정하였다.The PEI/PTA solution (XmM H 2 O 2 ) was serially diluted twice with 30mM Trizma buffer (pH 7.0) containing the same H 2 O 2 concentration to obtain final concentrations of PEI+PTA of 0, 0.0625, 1.25, 2.5, and 5. , 10, 15, and 20 mg/ml. 10 mg of Nile red was dissolved in 10 ml of methanol in a 20 ml vial to prepare a Nile red solution, and 10 ㎕ of the Nile red solution (1 mg/ml) was dissolved in PEI/PTA solution (XmM) in a 5 ml vial. H 2 O 2 ) was added to 1 ml and stored for 12 hours under dark and room temperature conditions. After filtering the mixed solution through a filter (0.45 μm), the fluorescence intensity (613 nm) of Nile Red was measured using an excitation wavelength (556 nm) in a fluorescence spectrophotometer (Hitachi F2500, Hitachi, Japan).
1.5. FT-IR 분광기를 통한 PEI/PTA 이온쌍 및 산화 검사1.5. PEI/PTA ion pairing and oxidation examination by FT-IR spectroscopy
PEI/PTA(3/7) 용액과 PEI/PTA(3/7) 용액(5mM H2O2)을 동결건조한 후 PEI/PTA(3/7), PEI/PTA(3/7)(5mM H2O2), PEI 및 PTA를 각각 KBr과 혼합하여 혼합분말을 제조한 후 막자사발로 균질화하였다. 상기 균질화한 혼합분말을 틀에 넣고 프레스를 이용하여 압착한 후 푸리에 변환 적외선 분광광도계(FTIR, FT-3000-Excalibur, Varian Inc., CA, USA)를 이용하여 FT-IR 스펙트럼을 얻었다.After freeze-drying the PEI/PTA(3/7) solution and the PEI/PTA(3/7) solution (5mM H 2 O 2 ), PEI/PTA(3/7) and PEI/PTA(3/7)(5mM H 2 O 2 ), PEI, and PTA were each mixed with KBr to prepare a mixed powder and then homogenized with a mortar. The homogenized mixed powder was placed in a mold and compressed using a press, and then an FT-IR spectrum was obtained using a Fourier transform infrared spectrophotometer (FTIR, FT-3000-Excalibur, Varian Inc., CA, USA).
1.6. 1H NMR 분광법을 이용한 PEI/PTA 상호작용 분석1.6. Analysis of PEI/PTA interaction using 1H NMR spectroscopy
수소핵자기공명분광법을 이용하여 PEI와 PTA의 상호 작용을 분석하였다. PEI와 PTA의 이온 결합 반응은 D2O로 제조된 완충용액에서 수행되었으며 24시간 후 분석을 수행하였다. 수소핵자기공명스펙트럼은 Bruker Avance 400MHz 분광계(강원대학교 중앙연구소)를 이용하여 수득하였다.The interaction between PEI and PTA was analyzed using hydrogen nuclear magnetic resonance spectroscopy. The ion binding reaction between PEI and PTA was performed in a buffer solution prepared with D 2 O, and the analysis was performed 24 hours later. Hydrogen nuclear magnetic resonance spectra were obtained using a Bruker Avance 400MHz spectrometer (Kangwon National University Central Research Institute).
1.7. 온도 및 산화 반응 방출1.7. Temperature and oxidation reaction emissions
온도 및 산화반응성 방출 조사를 위해 나일 레드를 포함한 IPSAM(3/7)을 하였다. 1.5㎖ 30mM Trizma 완충액(pH7.0, H2O2농도: 0, 0.5, 1, 또는 5mM)을 큐벳(3㎖)에 넣은 후 상기 큐벳을 UV 분광광도계(UK 6505 UV /Vis 분광 광도계, JENWAY, 영국)에 장착하고 완충액의 온도를 25.5℃, 37℃, 또는 43℃로 조절하였다. 나일 레드를 포함하는 IPSAM(3/7) 현탁액 1㎖을 상기 온도가 조절된 Trizma 완충액이 들어 있는 큐벳에 주입한 후 형광 분광 광도계(Hitachi F2500, Hitachi, Japan)에서 여기 파장(556㎚)으로 실시간 파장(613㎚)을 측정하였다. 탑재물의 방출율(Release %)은 다음 식을 사용하여 계산하였다: Release%=(1-Ft/Fo)×100 (여기서, Ft는 특정 시간의 형광강도를 의미하며, Fo는 초기 형광강도를 의미한다).IPSAM (3/7) including Nile Red was performed to investigate temperature and oxidation-reactive emissions. Add 1.5 ml of 30mM Trizma buffer (pH7.0, H 2 O 2 concentration: 0, 0.5, 1, or 5mM) into a cuvette (3 ml) and then scan the cuvette on a UV spectrophotometer (UK 6505 UV/Vis spectrophotometer, JENWAY). , UK) and the temperature of the buffer was adjusted to 25.5°C, 37°C, or 43°C. 1 ml of IPSAM (3/7) suspension containing Nile red was injected into the cuvette containing the temperature-controlled Trizma buffer, and then measured in real time at an excitation wavelength (556 nm) in a fluorescence spectrophotometer (Hitachi F2500, Hitachi, Japan). The wavelength (613 nm) was measured. The release rate (Release %) of the payload was calculated using the following equation: Release%=(1-Ft/Fo)×100 (where Ft refers to the fluorescence intensity at a specific time and Fo refers to the initial fluorescence intensity) ).
1.8. 엽산화 PEI의 제조1.8. Preparation of folic acid PEI
엽산화 PEI는 알려진 축합 반응(condensation reaction)을 이용하여 제조하였다. 엽산(folic acid) 0.11g을 10㎖ 바이알에서 DMSO 5㎖에 용해시켜 엽산용액을 제조하였다. EDC 0.042g와 NHS 0.025g를 상기 엽산용액에 녹인 후 상온에서 3시간 동안 교반하여 카르복실기를 활성화하였다. PEI 1g을 50㎖ 바이알에서 증류수 25㎖에 용해시켜 PEI 용액을 제조하였다. 상기 활성화된 엽산 용액을 PEI 용액에 천천히 넣고 실온에서 밤새 교반하여 반응시켰으며 상기 반응 혼합물은 투석막(MWCO 1,000)을 이용하여 3일 동안 증류수로 투석하였다. 상기 합성한 엽산화 PEI는 D2O에 용해시켜 수소핵자기공명 스펙트럼(Bruker Avance 400MHz, 강원대학교 중앙연구소)을 얻었다. Folated PEI was prepared using a known condensation reaction. A folic acid solution was prepared by dissolving 0.11 g of folic acid in 5 ml of DMSO in a 10 ml vial. 0.042 g of EDC and 0.025 g of NHS were dissolved in the folic acid solution and stirred at room temperature for 3 hours to activate the carboxyl group. A PEI solution was prepared by dissolving 1 g of PEI in 25 ml of distilled water in a 50 ml vial. The activated folic acid solution was slowly added to the PEI solution and stirred overnight at room temperature to react, and the reaction mixture was dialyzed against distilled water using a dialysis membrane (MWCO 1,000) for 3 days. The synthesized folic acid PEI was dissolved in D2O to obtain a hydrogen nuclear magnetic resonance spectrum (Bruker Avance 400MHz, Kangwon National University Central Research Institute).
1.9. 금나노입자를 포함하는 엽산 IPSAM의 제조1.9. Preparation of folic acid IPSAM containing gold nanoparticles
온도 및 산화 반응성 방출 분석을 위하여 엽산화 IPSAM(3/7)을 제조하되 PEI와 엽산화 PEI의 총질량이 총 함량의 2%(w/w)가 되도록 하였다. 엽산화 PEI, PEI 및 PTA의 총농도는 20㎎/㎖이었으며 아미노기/카르복실기의 비율(몰비)은 약 3/7이었으며, 30mM Trizma 완충액(pH 7.0)을 사용하였다. in-situ 합성방법을 통해 금나노입자(GNP)를 엽산화 IPSAM(3/7)에 도입하였다. HAuCl4를 IPSAM 현탁액에 농도가 0.5mM이 되도록 용해한 후 실온에서 24시간 방치하여 GNP가 형성되어 엽산화 IPSAM(3/7)에 도입되도록 하였다. GNP가 도입된 IPSAM(3/7)은 IPSAM(3/7)/GNP로 지칭하였다.For temperature and oxidation reactive release analysis, folate IPSAM (3/7) was prepared so that the total mass of PEI and folate PEI was 2% (w/w) of the total content. The total concentration of folate PEI, PEI, and PTA was 20 mg/ml, the amino group/carboxyl group ratio (molar ratio) was about 3/7, and 30mM Trizma buffer (pH 7.0) was used. Gold nanoparticles (GNPs) were introduced into folate IPSAM (3/7) through an in-situ synthesis method. HAuCl 4 was dissolved in the IPSAM suspension to a concentration of 0.5mM and left at room temperature for 24 hours to form GNPs and be introduced into the folate-oxidized IPSAM (3/7). IPSAM(3/7) where GNP was introduced was referred to as IPSAM(3/7)/GNP.
1.10. 투과 전자 현미경1.10. transmission electron microscope
IPSAM(3/7) 현탁액, 엽산화 IPSAM(3/7) 현탁액 및 엽산화 IPSAM(3/7)/GNP 현탁액을 등량비로 우라닐 아세테이트(1.2%(w/v))와 혼합한 후 실온에서 어두운 조건에서 3시간 동안 방치하였다. 포릅바르/구리 코팅 그리드(Formvar/copper-coated grid)를 현탄액에 담그어 표면에 IPSAM(3/7), 엽산화 IPSAM(3/7), 엽산화 IPSAM(3/7)/GNP 나노입자가 증착되도록 한 후 실온에서 건조시켰다. 투과전자현미경(LEO-912AB OMEGA, LEO, Germany)을 이용하여 TEM 사진, SAED(selected area electron diffraction) 패턴, GNP의 고해상도 TEM(HR-TEM)을 수득하였다.IPSAM (3/7) suspension, folate IPSAM (3/7) suspension, and folate IPSAM (3/7)/GNP suspension were mixed in equal parts with uranyl acetate (1.2% (w/v)) at room temperature. It was left in dark conditions for 3 hours. A Formvar/copper-coated grid was immersed in the suspension, and IPSAM (3/7), folate IPSAM (3/7), and folate IPSAM (3/7)/GNP nanoparticles were added to the surface. It was allowed to deposit and then dried at room temperature. TEM images, selected area electron diffraction (SAED) patterns, and high-resolution TEM (HR-TEM) of GNPs were obtained using a transmission electron microscope (LEO-912AB OMEGA, LEO, Germany).
1.11. 엽산화 IPSAM/GNP에서 탑재물의 방출1.11. Release of payload from folate IPSAM/GNPs
탑재물(나일 레드 또는 DOX)을 엽산 IPSAM(3/7)/GNP에 탑재시켰다. 나일 레드는 근적외선조사에 따른 유도방출을 분석하기 위해 사용되었으며 DOX는 시험관 내 항암 효능을 분석하기 위해 사용되었다. 나일 레드 용액(1㎎/㎖, 메탄올) 또는 DOX 용액(10㎎/㎖, DMSO) 10㎕과 엽산화 IPSAM(3/7)/GNP 현탁액(20mg/ml) 1㎖을 5㎖ 바이알에 담은 후 실온에서 12시간 동안 암실에 두었다. DOX 용액과 엽산화 IPSAM(3/7)/GNP 현탁액의 혼합물을 투석막(MWCO 3000)을 사용하여 30mM Trizma 완충액(pH 7.4)으로 24시간 동안 투석하면서 탑재되지 않은 여분의 DOX를 제거하였다. 상기 투석 후, DOX가 탑재된 엽산화 IPSAM(3/7)/GNP 현탁액을 동결 건조하였다. DOX의 정확한 탑재량(%)을 확인하기 위해 상기 동결건조한 DOX 탑재 엽산화 IPSAM(3/7)/GNP 5㎎을 DMF 1㎖에 용해시키고 22,000rpm에서 30분 동안 초원심분리하여 상등액을 수득하였다. 상기 상층액에 대하여 형광분광광도계(Hitachi F2500, Hitachi, Japan) 분석을 실시하여 DOX의 형광강도를 분석하였다. 상기 형광분광광도계분석의 여기 및 방출 파장은 각각 485㎚ 및 550㎚이었다. DOX의 양은 보정 곡선을 통하여 결정되었다. 특정 DOX 탑재량(%)은 IPSAM에 로딩된 DOX의 질량 퍼센트로 정의하였다. DOX 탑재 엽산화 IPSAM(3/7)/GNP는 엽산화 IPSAM(3/7)/DOX/GNP로 명명하였다.Payloads (Nile Red or DOX) were loaded onto folic acid IPSAM(3/7)/GNP. Nile red was used to analyze stimulated release following near-infrared irradiation, and DOX was used to analyze anticancer efficacy in vitro. Put 10㎕ of Nile Red solution (1㎎/㎖, methanol) or DOX solution (10㎎/㎖, DMSO) and 1㎖ of folate IPSAM (3/7)/GNP suspension (20mg/ml) into a 5㎖ vial. It was kept in the dark at room temperature for 12 hours. The mixture of DOX solution and folate IPSAM (3/7)/GNP suspension was dialyzed against 30mM Trizma buffer (pH 7.4) for 24 hours using a dialysis membrane (MWCO 3000) to remove excess DOX that was not loaded. After the dialysis, the DOX-loaded folate IPSAM(3/7)/GNP suspension was freeze-dried. To confirm the exact loading amount (%) of DOX, 5 mg of the freeze-dried DOX-loaded folate IPSAM (3/7)/GNP was dissolved in 1 ml of DMF and ultracentrifuged at 22,000 rpm for 30 minutes to obtain a supernatant. The supernatant was analyzed with a fluorescence spectrophotometer (Hitachi F2500, Hitachi, Japan) to analyze the fluorescence intensity of DOX. The excitation and emission wavelengths of the fluorescence spectrophotometric analysis were 485 nm and 550 nm, respectively. The amount of DOX was determined through a calibration curve. The specific DOX payload (%) was defined as the mass percent of DOX loaded into the IPSAM. DOX-loaded folate IPSAM(3/7)/GNP was named folate IPSAM(3/7)/DOX/GNP.
1.12. 제타 전위 측정1.12. Zeta potential measurements
IPSAM(3/7), 엽산화 IPSAM(3/7), 엽산화 IPSAM(3/7)/DOX, 엽산화 IPSAM(3/7)/GNP 및 엽산화 IPSAM(3/7)/DOX/GNP 나노 입자의 표면 전위를 분석하기 위하여 제타 전위(zeta potential)를 측정하였다. 상기 IPSAM(3/7), 엽산화 IPSAM(3/7), 엽산화 IPSAM(3/7)/DOX, 엽산화 IPSAM(3/7)/GNP 또는 엽산화 IPSAM(3/7)/DOX/GNP의 현탁액을 30mM Trizma 완충액(pH 7.0)으로 희석하여 광산란 강도가 50 내지 100Kcps가 되도록 하였다. 제타 전위는 동적 광산란 장비(ZetaPlus 90, Brookhaven Instrument Co., U.S.A.)를 사용하여 실온(20-23℃)에서 측정하였다.IPSAM(3/7), folate IPSAM(3/7), folate IPSAM(3/7)/DOX, folate IPSAM(3/7)/GNP and folate IPSAM(3/7)/DOX/GNP To analyze the surface potential of nanoparticles, zeta potential was measured. The above IPSAM (3/7), folate IPSAM (3/7), folate IPSAM (3/7)/DOX, folate IPSAM (3/7)/GNP or folate IPSAM (3/7)/DOX/ The suspension of GNPs was diluted with 30mM Trizma buffer (pH 7.0) so that the light scattering intensity was 50 to 100 Kcps. Zeta potential was measured at room temperature (20-23°C) using a dynamic light scattering instrument (ZetaPlus 90, Brookhaven Instrument Co., U.S.A.).
1.13. 근적외선 유도 방출 분석1.13. Near-infrared stimulated emission analysis
시험관(직경 1㎝ 및 길이 10㎝)에 GNP가 포함된 나일 레드 IPSAM(3/7) 또는 GNP가 포함되지 않은 나일 레드 IPSAM(3/7) 현탁액 10㎖을 넣었다. PEI와 PTA의 총농도는 20㎎/㎖가 되도록 하였으며 GNP의 농도는 0.5mM으로 하였다. 상기 시험관을 스티로폼으로 절연한 후 현탁액 표면으로부터 22㎝ 떨어진 광원을 이용하여 근적외선(2W, 808㎚)을 조사하였으며 일정 시간 간격으로 현탁액의 온도를 측정하고 현탁액(0.6㎖)을 수득하였다. 상기 수득한 현탁액 시료는 22,000rpm에서 10분간 초원심분리한 후 상등액을 수득하여 나일 레드의 형광강도를 측정하고, 나일 레드의 방출율(%)을 결정하였다. 대조군으로서 근적외선 조사를 수행하지 않은 GNP가 포함된 나일 레드 IPSAM(3/7) 또는 GNP가 포함되지 않은 나일 레드 IPSAM(3/7) 현탁액의 방출율(%)을 사용하였다.10 ml of suspension of Nile Red IPSAM (3/7) containing GNP or Nile Red IPSAM (3/7) without GNP was added to a test tube (1 cm in diameter and 10 cm in length). The total concentration of PEI and PTA was set to 20 mg/ml, and the concentration of GNP was set to 0.5mM. After insulating the test tube with Styrofoam, near-infrared rays (2W, 808 nm) were irradiated using a light source 22 cm away from the surface of the suspension, and the temperature of the suspension was measured at regular time intervals to obtain a suspension (0.6 ml). The obtained suspension sample was ultracentrifuged at 22,000 rpm for 10 minutes, then the supernatant was obtained, the fluorescence intensity of Nile red was measured, and the release rate (%) of Nile red was determined. As a control, the release rate (%) of a suspension of Nile Red IPSAM (3/7) with GNPs or Nile Red IPSAM (3/7) without GNPs without near-infrared irradiation was used.
1.14. 항암 효능 평가1.14. Anticancer efficacy evaluation
엽산화 PSALM(3/7)/DOX 현탄액 또는 엽산화 PSALM(3/7)/DOX/GNP 현탁액을 10mM PBS(pH 7.4)로 희석하여 DOX 농도가 10㎍/㎖이 되도록 하였다. 양성 대조군으로서 엽산화 IPSAM(3/7) 및 엽산산 IPSAM(3/7)/GNP 현탁액을 사용하였으며 IPSAM의 농도는 엽산화 IPSAM(3/7)/DOX 및 엽산화 IPSAM(3/7)/DOX/GNP 현탁액과 동일하게 조절하였다. 다른 양성 대조군으로서 10㎍/㎖ 유리 DOX 용액(10mM PBS, pH7.4)을 사용하였으며 음성 대조군으로서 10mM PBS(pH 7.4)를 사용하였다. 1x104 cells/㎖ KB 세포(200㎕)을 96-well plate에 넣고 CO2 배양기에서 37℃의 조건으로 24시간 동안 배양하였다. 배지를 제거한 후 FBS가 포함되지 않은 RPMI 1640 배양 배지(180㎕)와 상기 시료(20㎕)를 각 well에 넣고 동일한 조건에서 12시간 동안 더 배양하였다. 상기 96-well plate로부터 30㎝ 떨어진 거리에서 근적외선을 1시간 동안 조사하고 추가로 12시간 동안 더 배양하였다. 배양 후 배지는 제거하고 10mM PBS(pH 7.4)로 세포를 세척한 후 5㎎/㎖ MTT 시약(20㎕)을 넣어 4시간 동안 배양하였다. 원심분리 후 각 well의 상층액을 제거하고 DMSO(200㎕)를 넣어 살아있는 세포에서 형성된 포르마잔(formazan)을 용해시켰다. 마이크로플레이트 판독기(N10588, Thermo Fisher Scientific, USA)에서 웰에 존재하는 포르마잔의 흡광도(540㎚)를 분석하였다. 세포 생존율은 완충 용액으로 얻은 포르마잔 흡광도에 대한 시험 시료 또는 대조군으로 얻은 포르마잔 흡광도를 비교하여 백분율로 나타내었다.The folate PSALM (3/7)/DOX suspension or folate PSALM (3/7)/DOX/GNP suspension was diluted with 10mM PBS (pH 7.4) so that the DOX concentration was 10 μg/ml. As positive controls, folate IPSAM (3/7) and folate IPSAM (3/7)/GNP suspension were used, and the concentrations of IPSAM were folate IPSAM (3/7)/DOX and folate IPSAM (3/7)/ It was adjusted in the same way as the DOX/GNP suspension. As another positive control, 10 μg/ml free DOX solution (10mM PBS, pH 7.4) was used, and as a negative control, 10mM PBS (pH 7.4) was used. 1x10 4 cells/ml KB cells (200 ㎕) were placed in a 96-well plate and cultured in a CO 2 incubator at 37°C for 24 hours. After removing the medium, RPMI 1640 culture medium (180 μl) without FBS and the sample (20 μl) were added to each well and cultured for another 12 hours under the same conditions. Near-infrared rays were irradiated for 1 hour at a distance of 30 cm from the 96-well plate, and cultured for an additional 12 hours. After incubation, the medium was removed, the cells were washed with 10mM PBS (pH 7.4), and 5 mg/ml MTT reagent (20 μl) was added and cultured for 4 hours. After centrifugation, the supernatant from each well was removed, and DMSO (200 ㎕) was added to dissolve formazan formed in living cells. The absorbance (540 nm) of formazan present in the wells was analyzed in a microplate reader (N10588, Thermo Fisher Scientific, USA). Cell viability was expressed as a percentage by comparing the formazan absorbance obtained with the test sample or control to the formazan absorbance obtained with the buffer solution.
1.15. DOX가 탑재된 엽산화 IPSAM과 암세포의 상호작용1.15. Interaction between DOX-loaded folate IPSAM and cancer cells
3x104 cells/㎖ KB 세포 현탁액(1㎖)을 12-well plate에 넣고 CO2 배양기에서 37℃의 조건으로 24시간 동안 배양하였다. 배양 후 배지를 제거하고 10mM PBS(pH 7.4)로 세포를 세척한 후 미레 제조한 FBS-free RPMI 1640 배양 배지(0.5㎖)와 시험시료(0.5㎖, free DOX 용액, 엽산 IPSAM(3/7)/DOX 및 엽산 IPSAM(3/7)/DOX/GNP)의 혼합액을 각 웰에 넣어 준 후 CO2 배양기에서 37℃의 조건으로 4시간 동안 더 배양하였다. 배양 후 배지를 제거하고 10mM PBS(pH 7.4)로 세포를 세척한 후, 트립신/EDTA 용액을 넣어 세포를 분리시켰다. 상기 세포 현탁액을 튜브에 넣고 원심분리하여 상층액을 제거하였다. 원심분리한 튜브에 침전된 세포는 10mM PBS(400㎕, pH 7.4, 4℃)을 넣어 현탁액으로 제조하고 유세포 분석기(fluorescence-activated cell sorting, FACS, Calibur, Becton Dickinson, USA; 강원대학교)를 사용하여 470㎚에서 여기 시키면서 에서 DOX의 형광 강도(560㎚)를 측정하였다. 공초점 레이저 주사 현미경(CLSM)을 이용하여 유리 DOX 또는 DOX 탑재 IPSAM과 KB 세포 사이의 상호작용을 분석하였다. 상기와 동일한 조건에서 세포를 배양한 후 세포가 유리 DOX 또는 DOX 탑재 IPSAM과 상호작용하도록 배양한 후 포름알데히드 용액(2.5%(v/v))을 사용하여 세포를 고정하였다. 고정된 세포는 10mM PBS(pH 7.4)로 세척한 후 DAPI염색을 수행하고 공초점 레이저 주사현미경(LSM 880 with Airyscan, Carl Zeiss; 강원대학교 중앙연구소)으로 형광 이미지를 촬영하였다.3x10 4 cells/ml KB cell suspension (1 ml) was placed in a 12-well plate and cultured in a CO 2 incubator at 37°C for 24 hours. After incubation, the medium was removed and the cells were washed with 10mM PBS (pH 7.4), followed by Mire-prepared FBS-free RPMI 1640 culture medium (0.5 ml) and test sample (0.5 ml, free DOX solution, folic acid IPSAM (3/7)) /DOX and folic acid (IPSAM (3/7)/DOX/GNP) mixture was added to each well and then cultured in a CO 2 incubator at 37°C for an additional 4 hours. After incubation, the medium was removed, the cells were washed with 10mM PBS (pH 7.4), and the cells were separated by adding trypsin/EDTA solution. The cell suspension was placed in a tube and centrifuged to remove the supernatant. The cells precipitated in the centrifuged tube were prepared as a suspension by adding 10mM PBS (400㎕, pH 7.4, 4℃) and used a flow cytometer (fluorescence-activated cell sorting, FACS, Calibur, Becton Dickinson, USA; Kangwon National University). The fluorescence intensity of DOX (560 nm) was measured while exciting at 470 nm. The interaction between free DOX or DOX-loaded IPSAM and KB cells was analyzed using confocal laser scanning microscopy (CLSM). After culturing the cells under the same conditions as above, the cells were cultured to interact with free DOX or DOX-loaded IPSAM, and then the cells were fixed using a formaldehyde solution (2.5% (v/v)). The fixed cells were washed with 10mM PBS (pH 7.4), then DAPI stained, and fluorescence images were taken with a confocal laser scanning microscope (LSM 880 with Airyscan, Carl Zeiss; Kangwon National University Central Research Institute).
2. 결과2. Results
2.1. 상한 임계 용액 온도 분석결과2.1. Upper critical solution temperature analysis results
도 1의 패널(A)는 본 발명의 PEI/PTA(5/5) 용액, PEI/PTA(4/6) 용액, PEI/PTA(3/7) 용액의 20 내지 50℃ 온도 범위에서의 광학밀도를 분석한 결과를 보여준다. Panel (A) of Figure 1 shows the optical measurements of the PEI/PTA (5/5) solution, PEI/PTA (4/6) solution, and PEI/PTA (3/7) solution of the present invention in the temperature range of 20 to 50°C. Shows the results of density analysis.
PEI/PTA(5/5) 용액의 광학 밀도는 23℃ 부근에서 감소하기 시작하여 36℃에서 0에 도달하는 것으로 확인되었다. PTA는 카르복실기를 포함하며 PEI는 아미노기를 포함하므로 PTA와 PEI는 이온결합이 가능하다. 상기 형성된 PEI/PTA 이온쌍(IP(5/5))은 PTA가 비극성(non-polar) 분자이고 PEI가 극성(polar) 분자이기 때문에 양친매성(amphiphilic)인 동시에 표면 활성(surface-active)을 가질 가능성이 높다. 저온에서 광학 밀도가 높은 이유는 이온쌍이 양친매성 특성으로 인하여 자가 조립되기 때문으로 판단된다. 이온쌍이 수용액에 분산되면 PTA의 페닐 그룹은 소수성 상호 작용을 통해 서로 결합하므로 코어가 형성되고 PEI 사슬은 상기 코어를 둘러싸는 쉘을 형성하는 방법으로 미셀 입자를 형성하게 된다. It was confirmed that the optical density of the PEI/PTA (5/5) solution began to decrease around 23°C and reached 0 at 36°C. Since PTA contains a carboxyl group and PEI contains an amino group, PTA and PEI can form an ionic bond. The formed PEI/PTA ion pair (IP(5/5)) is amphiphilic and surface-active because PTA is a non-polar molecule and PEI is a polar molecule. There is a high possibility of having it. The reason for the high optical density at low temperatures is believed to be because ion pairs self-assemble due to their amphipathic properties. When ion pairs are dispersed in an aqueous solution, the phenyl groups of PTA bind to each other through hydrophobic interactions, forming a core, and the PEI chains form a shell surrounding the core, thereby forming micelle particles.
가시광선은 상기 형성된 IPSAM(IPSAM(5/5))에 의해 산란되므로 높은 광학 밀도를 생성할 수 있다. 이온쌍 용액의 온도가 상승하게 되면 PTA의 용해도가 증가하고 PTA 분자의 페닐기 간의 소수성 인력이 약해져 IPSAM은 분해되기 쉬워진다. 상기와 같은 IPSAM의 온도 유도 분해는 온도가 증가함에 따라 광학 밀도가 감소하는 주요 원인인 것으로 판단된다.Visible light is scattered by the formed IPSAM (IPSAM(5/5)), so high optical density can be generated. As the temperature of the ion pair solution increases, the solubility of PTA increases and the hydrophobic attraction between the phenyl groups of the PTA molecule weakens, making IPSAM easier to decompose. The temperature-induced decomposition of IPSAM as described above is believed to be the main cause of the decrease in optical density as temperature increases.
광학 밀도는 온도가 증가함에 따라 현저하게 감소하며 특히 23℃ 부근에서 급격히 감소하기 시작한다. 따라서 PEI/PTA(5/5)용액의 이온쌍(IP(5/5))은 상한 임계 용액 온도(upper critical slution temperature, UCST) 거동을 보이는 것으로 판단되며 PEI/PTA(5/5)용액의 UCST는 약 23℃인 것으로 판단된다. PEI/PTA(4/6) 용액의 광학 밀도는 25℃에서 31℃로 증가하는 동안 약간 감소하였으며 31℃ 이후에 급격히 감소하였다. 따라서 PEI/PTA(4/6) 용액(IP(4/6))의 이온쌍은 31℃ 부근에서 UCST를 나타내는 것으로 판단된다. PEI/PTA(3/7) 용액의 광학 밀도 프로파일은 상기와 유사하게 27 내지 37℃ 범위에서 약간 감소한 후 급격히 감소하는 것으로 확인되었다. 따라서 PEI/PTA(3/7) 용액(IP(3/7))의 이온쌍은 약 37℃에서 UCST를 나타내는 것으로 분석되었다. The optical density decreases significantly with increasing temperature, and begins to decrease particularly rapidly around 23°C. Therefore, the ion pair (IP(5/5)) of the PEI/PTA(5/5) solution is judged to exhibit upper critical slution temperature (UCST) behavior, and the ion pair (IP(5/5)) of the PEI/PTA(5/5) solution UCST is judged to be approximately 23℃. The optical density of the PEI/PTA (4/6) solution decreased slightly while increasing from 25°C to 31°C and decreased sharply after 31°C. Therefore, it is believed that the ion pair of PEI/PTA(4/6) solution (IP(4/6)) exhibits UCST around 31°C. The optical density profile of the PEI/PTA (3/7) solution was found to decrease slightly and then rapidly decrease in the range of 27 to 37°C, similar to the above. Therefore, the ion pair of PEI/PTA(3/7) solution (IP(3/7)) was analyzed to exhibit UCST at about 37°C.
UCST는 PTA의 함량에 비례하는 것으로 확인되었다. PTA 함량이 증가할수록 PTA 분자의 페닐 그룹 사이의 소수성 인력이 더 광범위하게 작용하므로 IPSAM을 분해하는 데 더 많은 열에너지가 필요하게 된다. IP(3/7)의 UCST는 체온인 37℃와 유사하므로 IP(3/7)와 IPSAM(3/7)을 선택하여 추가적인 실험을 진행하였다.UCST was confirmed to be proportional to the content of PTA. As the PTA content increases, the hydrophobic attraction between the phenyl groups of the PTA molecule acts more extensively, so more heat energy is required to decompose IPSAM. Since the UCST of IP(3/7) is similar to body temperature of 37℃, IP(3/7) and IPSAM(3/7) were selected and additional experiments were conducted.
도 1의 패널(B)는 본 발명의 PEI/PTA(3/7) 용액(0mM, 0.5mM, 1mM, 5mM, 20mM 및 100mM H2O2)을 20 내지 50℃의 온도 범위에서 가열한 결과를 보여준다. 먼저 PEI/PTA 용액(0mM H2O2)은 온도가 25 내지 37℃로 증가하게 되면 광학 밀도가 점차적으로 감소하게 되고 37℃ 이후 급격히 감소하는 것으로 확인되었다. 따라서 H2O2 처리를 하지 않은 IP(3/7)의 UCST는 37℃ 부근인 것으로 판단된다. PEI/PTA(3/7) 용액(0.5mM H2O2)의 광학 밀도에 관한 온도 의존적 프로파일은 PEI/PTA(3/7) 용액(0mM H2O2)과 유사한 것으로 확인되었다. 그러나 PEI/PTA(3/7) 용액(0mM H2O2)의 광학 밀도가 급격히 감소하기 시작한 온도는 PEI/PTA(3/7) 용액(0.5mM H2O2)의 광학 밀도가 감소한 온도보다 약 4℃ 낮았다.Panel (B) of Figure 1 shows the results of heating the PEI/PTA (3/7) solution (0mM, 0.5mM, 1mM, 5mM, 20mM and 100mM H 2 O 2 ) of the present invention at a temperature range of 20 to 50°C. shows. First, it was confirmed that the optical density of the PEI/PTA solution (0mM H 2 O 2 ) gradually decreased as the temperature increased from 25 to 37°C, and rapidly decreased after 37°C. Therefore, the UCST of IP (3/7) without H 2 O 2 treatment is judged to be around 37°C. The temperature-dependent optical density profile of the PEI/PTA (3/7) solution (0.5mM H 2 O 2 ) was found to be similar to that of the PEI/PTA (3/7) solution (0mM H 2 O 2 ). However, the temperature at which the optical density of the PEI/PTA (3/7) solution (0mM H 2 O 2 ) began to rapidly decrease is the temperature at which the optical density of the PEI/PTA (3/7) solution (0.5mM H 2 O 2 ) began to decrease. It was about 4℃ lower than that of
PTA의 황화물은 H2O2에 의해 산화되어 설폭사이드(sulfoxide)와 설폰(sulfone)이 될 수 있다. PTA가 산화되면 극성과 물에 대한 용해도가 증가하여 더 낮은 온도에서도 쉽게 용해될 수 있다. 이러한 이유로 1mM H2O2 용액으로 처리한 IP(3/7)의 UCST는 H2O2를 처리하지 않은 IP(3/7)보다 더 낮을 것으로 판단되었다. 다른 1, 5 및 20mM H2O2 농도에서 처리된 PEI/PTA(3/7) 용액은 상기와 유사하게 온도가 증가함에 따라 광학 밀도가 변화하는 것으로 확인되었다. 본 발명의 분석결과 PEI/PTA(3/7) 용액(1mM H2O2), PEI/PTA(3/7) 용액(5mM H2O2), 및 PEI/PTA(3/7) 용액(20mM H2O2)에 함유된 IP(3/7)의 UCST는 약 31℃, 27℃, 23℃로 상기 예측과 일치하는 결과를 확인하였다. 이에 반하여, PEI/PTA(3/7) 용액(100mM H2O2)은 전체 온도 범위에서 광학 밀도가 거의 0에 가까웠다. 상기 결과는 100mM H2O2로 처리된 IP(3/7)의 UCST가 20℃보다 훨씬 낮기 때문으로 판단된다. The sulfide of PTA can be oxidized by H 2 O 2 to form sulfoxide and sulfone. When PTA is oxidized, its polarity and solubility in water increase, making it easily soluble even at lower temperatures. For this reason, the UCST of IP (3/7) treated with 1mM H 2 O 2 solution was judged to be lower than that of IP (3/7) not treated with H 2 O 2 . It was confirmed that the optical density of PEI/PTA (3/7) solutions treated at different concentrations of 1, 5, and 20mM H 2 O 2 changed as the temperature increased, similar to the above. As a result of the analysis of the present invention, PEI/PTA (3/7) solution (1mM H 2 O 2 ), PEI/PTA (3/7) solution (5mM H 2 O 2 ), and PEI/PTA (3/7) solution ( The UCST of IP (3/7) contained in 20mM H 2 O 2 ) was approximately 31°C, 27°C, and 23°C, a result consistent with the above prediction. In contrast, the optical density of the PEI/PTA (3/7) solution (100mM H 2 O 2 ) was close to 0 over the entire temperature range. The above results are believed to be because the UCST of IP (3/7) treated with 100mM H 2 O 2 is much lower than 20°C.
정리하면 IP(3/7)의 UCST는 H2O2 농도가 증가함에 따라 감소한다.In summary, the UCST of IP(3/7) decreases as the H 2 O 2 concentration increases.
2.2. 계면장력 분석결과2.2. Interfacial tension analysis results
도 2의 패널 (A)는 PEI 용액(0, 0.5, 1, 5, 20 또는 100mM H2O2), PTA 용액(0, 0.5, 1, 5, 20 또는 100mM H2O2) 및 PEI/PTA(3/7) 용액(0, 0.5, 1, 5, 20 또는 100mM H2O2)의 계면 장력을 분석한 결과를 보여준다. Panel (A) of Figure 2 shows PEI solution (0, 0.5, 1, 5, 20, or 100mM H 2 O 2 ), PTA solution (0, 0.5, 1, 5, 20, or 100 mM H 2 O 2 ), and PEI/ Shows the results of analyzing the interfacial tension of PTA (3/7) solutions (0, 0.5, 1, 5, 20, or 100mM H 2 O 2 ).
PEI 용액의 경우 계면 장력은 거의 변화가 없었으나 농도는 4㎎/㎖로 증가한 것이 확인되었다. PEI는 수용성 고분자로서 양친매성이 적어 계면활성을 거의 나타내지 않는다. PTA 용액의 계면 장력은 73에서 68 dyne/cm로 약간 감소한 반면 농도는 4㎎/㎖로 증가한 것이 확인되었다. PTA는 소수성 페닐기와 친수성 카르복실기를 가지고 있어 어느 정도의 계면활성을 가질 수 있다. H2O2 처리하지 않은 PEI/PTA 혼합용액의 계면 장력은 포화상태에서 46 dyne/cm로 감소한 반면, PEI와 PTA의 농도는 4㎎/㎖로 증가하였다. 포화 방식으로 계면 장력이 감소하는 것은 계면활성제의 전형적인 패턴이다. In the case of the PEI solution, there was little change in the interfacial tension, but the concentration was confirmed to have increased to 4 mg/ml. PEI is a water-soluble polymer and has low amphiphilic properties, showing little surface activity. It was confirmed that the interfacial tension of the PTA solution slightly decreased from 73 to 68 dyne/cm, while the concentration increased to 4 mg/ml. PTA has a hydrophobic phenyl group and a hydrophilic carboxyl group, so it can have a certain degree of surface activity. The interfacial tension of the PEI/PTA mixed solution without H 2 O 2 treatment decreased to 46 dyne/cm in the saturated state, while the concentration of PEI and PTA increased to 4 mg/ml. A decrease in interfacial tension in a saturating manner is a typical pattern for surfactants.
PTA는 카르복실기를 포함하고 있으며 PEI는 아미노기를 포함하고 있으므로 PTA와 PEI는 이온결합이 가능하다. 상기 생성된 PEI/PTA 이온쌍(IP(3/7))은 PTA가 비극성 분자이고 PEI가 극성 분자이기 때문에 양친매성 및 표면 활성을 가질 가능성이 높다. 상기 결과는 PTA/PEI 혼합 용액의 계면 장력이 농도가 증가함에 따라 효과적으로 감소하는 이유를 설명해 준다. H2O2 처리된 PEI/PTA 용액 예를 들어, PEI/PTA(3/7) 용액(0.5, 1, 5, 20, 또는 100mM H2O2))의 계면 장력은 상기와 유사한 방식으로 감소하였으나 PEI와 PTA의 농도는 4㎎/㎖으로 증가하는 것이 확인되었다. 그러나 계면 장력의 감소 정도는 H2O2 처리를 하지 않은 PEI/PTA 혼합용액보다 낮은 것으로 확인되었으며 H2O2의 농도에 반비례하는 것으로 확인되었다. 예를 들어, H2O2의 농도가 0mM, 0.5mM, 1mM, 5mM, 20mM 및 100mM인 경우 4㎎/㎖에서의 계면 장력은 각각 46dyne/㎝, 49.5dyne/㎝, 51.5dyne/㎝, 54.2dyne/㎝, 56dyne/㎝ 및 64dyne/㎝인 것으로 확인되었는데 이는 IP(3/7)의 계면활성이 H2O2의 농도가 증가함에 따라 감소한다는 것을 의미한다.PTA contains a carboxyl group and PEI contains an amino group, so PTA and PEI can form an ionic bond. The resulting PEI/PTA ion pair (IP(3/7)) is likely to have amphipathic properties and surface activity because PTA is a non-polar molecule and PEI is a polar molecule. The above results explain why the interfacial tension of the PTA/PEI mixed solution effectively decreases as the concentration increases. The interfacial tension of H 2 O 2 treated PEI/PTA solutions, e.g. PEI/PTA(3/7) solutions (0.5, 1, 5, 20, or 100mM H 2 O 2 ), was reduced in a similar manner as above. However, it was confirmed that the concentrations of PEI and PTA increased to 4 mg/ml. However, the degree of reduction in interfacial tension was confirmed to be lower than that of the PEI/PTA mixed solution without H 2 O 2 treatment and was confirmed to be inversely proportional to the concentration of H 2 O 2 . For example, when the concentrations of H 2 O 2 are 0mM, 0.5mM, 1mM, 5mM, 20mM and 100mM, the interfacial tension at 4mg/ml is 46dyne/cm, 49.5dyne/cm, 51.5dyne/cm and 54.2, respectively. dyne/cm, 56 dyne/cm, and 64 dyne/cm, which means that the surface activity of IP (3/7) decreases as the concentration of H 2 O 2 increases.
정리하면 H2O2의 농도가 높으면 PTA가 더 쉽게 산화될 수 있으므로 상기 IP(3/7)는 양친매성 및 계면 활성이 보다 낮아지게 되는 것이다.In summary, when the concentration of H 2 O 2 is high, PTA can be more easily oxidized, so the amphipathicity and interfacial activity of IP (3/7) become lower.
2.3. 임계 미셀 농도 분석2.3. Critical micelle concentration analysis
도 2의 패널(B)는 본 발명의 PEI와 PTA의 농도 변화에 따른 PEI/PTA(3/7) 용액(0, 0.5, 1, 20mM H2O2)에 함유된 나일 레드(nile red)의 형광 강도 변화를 보여준다.Panel (B) of Figure 2 shows Nile red contained in PEI/PTA (3/7) solution (0, 0.5, 1, 20mM H 2 O 2 ) according to the change in concentration of PEI and PTA of the present invention. shows the change in fluorescence intensity.
상기 형광 강도는 상대적으로 낮은 농도 범위에서는 보다 약한 것으로 확인되었으며 농도가 어느 정도 증가하더라도 형광 강도는 더 이상 증가하지 않고 거의 일정한 것으로 확인되었다. 상기 결과는 나일 레드가 저농도 범위의 극성 수용액에만 존재하고 비극성 환경에서는 존재하지 않는 다는 것을 의미한다. The fluorescence intensity was confirmed to be weaker in a relatively low concentration range, and even if the concentration increased to some extent, the fluorescence intensity did not increase any further and was confirmed to be almost constant. The above results mean that Nile red exists only in polar aqueous solutions in a low concentration range and does not exist in non-polar environments.
나일 레드는 극성(polar) 환경에서 형광을 나타내지 않는 것으로 알려져 있다. PEI+PTA의 농도가 증가하여 특정 값에 도달하게 되면 형광 강도가 증가하기 시작하는데 이는 해당 농도에서 비극성 환경이 형성된다는 것을 의미한다. IP(3/7)는 양친매성을 가지므로 특정 농도(임계 미셀 농도, critical micelle concentration, CMC)에서 미셀을 형성할 수 있으며 상기 형성된 미셀에서 PTA의 페닐기는 미셀 코어를 형성하게 되고 상기 코어는 비극성 환경을 제공할 수 있게 된다. 나일 레드는 미셀의 비극성 코어에 용해되어 들어가기 쉬우므로 강한 형광강도를 나타낸다. 따라서 형광이 증가하기 시작한 농도를 시료의 임계 미셀 농도(CMC)로 판단할 수 있다. 상기 CMC는 형광 상수 범위의 데이터 포인트를 연결하는 직선과 형광 증가 범위의 데이터 포인트를 연결하는 직선의 교차점에 있는 농도에 해당한다. 두 직선의 교점을 이용하여 얻은 CMC는 PEI/PTA(3/7) 용액의 H2O2 농도가 0mM, 0.5mM, 1mM일 때 각각 약 4.70㎎/㎖, 6.59㎎/㎖, 9.40㎎/㎖인 것으로 확인된다. H2O2 농도가 20mM인 경우 형광이 증가하는 범위에 해당하는 데이터 포인트가 1 내지 2개 밖에 없었기 때문에 직선을 그려 분석하는데 어려움이 있었으나 나일 레드의 형광값이 로그(log)값 1과 1.2 사이에서 증가하기 시작하면서 CMC가 10㎎/㎖에 해당한다는 것을 산출할 수 있었다.It is known that Nile Red does not fluoresce in a polar environment. When the concentration of PEI+PTA increases and reaches a certain value, the fluorescence intensity begins to increase, which means that a non-polar environment is formed at that concentration. Since IP(3/7) is amphipathic, it can form micelles at a certain concentration (critical micelle concentration, CMC), and in the formed micelles, the phenyl group of PTA forms a micelle core, and the core is nonpolar. environment can be provided. Nile Red easily dissolves in the non-polar core of micelles and thus exhibits strong fluorescence intensity. Therefore, the concentration at which fluorescence begins to increase can be judged as the critical micelle concentration (CMC) of the sample. The CMC corresponds to the concentration at the intersection of a straight line connecting data points in the fluorescence constant range and a straight line connecting data points in the fluorescence increase range. CMC obtained using the intersection of two straight lines is about 4.70 mg/ml, 6.59 mg/ml, and 9.40 mg/ml when the H 2 O 2 concentration of the PEI/PTA (3/7) solution is 0mM, 0.5mM, and 1mM, respectively. It is confirmed that it is. When the H 2 O 2 concentration was 20mM, there were only 1 or 2 data points corresponding to the range in which fluorescence increased, so it was difficult to draw a straight line and analyze it, but the fluorescence value of Nile Red was between log values 1 and 1.2. As it began to increase, it was possible to calculate that the CMC was equivalent to 10 mg/ml.
정리하면 PEI/PTA(3/7) 용액에 포함된 H2O2 농도가 증가하게 되면 CMC는 증가하게 되며 H2O2 농도가 증가함에 따라 PTA의 산화도가 증가하여 비극성이 감소하는 것으로 확인되었다. 따라서 산화 후 미셀이 형성되려면 더 많은 IP(3/7)가 필요할 것으로 판단된다.In summary, as the H 2 O 2 concentration in the PEI/PTA (3/7) solution increases, the CMC increases, and as the H 2 O 2 concentration increases, the oxidation degree of PTA increases and nonpolarity decreases. It has been done. Therefore, it is believed that more IP (3/7) is needed to form micelles after oxidation.
2.4. FT-IR 분광기를 통한 PEI/PTA 이온 쌍 및 산화 분석2.4. PEI/PTA ion pairing and oxidation analysis by FT-IR spectroscopy
도 3의 패널(A)는 본 발명의 PEI, PTA, 건조 PEI/PTA(3/7)의 FT-IR 스펙트럼 결과를 보여준다. PEI의 아미노기는 3300㎝-1 부근에서 강하고 넓은 피크로 확인되었으며 PTA 카르복실기의 카르보닐기는 1700㎝-1 부근에서 강하고 날카로운 피크로 확인되었다. PEI/PTA(3/7)의 스펙트럼에서는 아미노기의 신호가 거의 사라졌으며 카르복실기의 카르보닐기 신호 또한 그 강도가 현저히 낮아진 것이 확인되었으며 카르복실산염(COO-)의 신호가 1573 내지 1406㎝-1부근에서 나타난 것으로 확인되었다. 상기 결과는 PEI의 아미노기와 PTA의 카르복실기가 이온화 되었다는 것을 의미하며 PEI가 PTA와 상호 작용하여 이온쌍을 형성할 수 있다는 것을 의미한다. Panel (A) of Figure 3 shows the FT-IR spectrum results of PEI, PTA, and dry PEI/PTA (3/7) of the present invention. The amino group of PEI was confirmed as a strong and wide peak around 3300 cm -1 , and the carbonyl group of PTA carboxyl group was confirmed as a strong and sharp peak around 1700 cm -1 . In the spectrum of PEI/PTA (3/7), the signal of the amino group almost disappeared, and the intensity of the signal of the carbonyl group of the carboxyl group was also confirmed to be significantly lowered, and the signal of carboxylate (COO - ) appeared around 1573 to 1406 cm -1. It was confirmed that The above result means that the amino group of PEI and the carboxyl group of PTA are ionized, and that PEI can interact with PTA to form an ion pair.
도 3의 패널(B)는 PEI/PTA(3/7)(5mM H2O2)와 PEI/PTA(3/7)(5mM H2O2)의 FT-IR 스펙트럼을 보여준다. H2O2 처리로 인해 형성된 설폭사이드(sulfoxide)는 1034㎝-1에서 확인되며, 설폰(sulfone)은 1271㎝-1에서 발견되는데 이는 PTA가 H2O2에 의해 쉽게 산화된다는 것을 의미한다.Panel (B) of Figure 3 shows the FT-IR spectra of PEI/PTA(3/7) (5mM H 2 O 2 ) and PEI/PTA(3/7) (5mM H 2 O 2 ). Sulfoxide formed due to H 2 O 2 treatment is found at 1034 cm -1 , and sulfone is found at 1271 cm -1 , which means that PTA is easily oxidized by H 2 O 2 .
2.5. 수소핵자기공명분광법을 통한 PEI/PTA 이온쌍 분석2.5. PEI/PTA ion pair analysis using hydrogen nuclear magnetic resonance spectroscopy
도 4의 패널(A)는 본 발명의 PEI/PTA(a/b) 용액의 수소핵자기공명 스펙트럼을 보여준다. PTA의 방향족 양성자(proton)는 7.42ppm에서 7.27ppm으로 상향 이동하였고 메틸렌 양성자(methylene proton)는 3.75pp에서 3.65ppm으로 상향 이동하는 것이 확인된다. PTA 함량이 증가함에 따라 피크의 상향 이동 및 폭 변화가 더 분명해졌는데 이는 PTA의 페닐기 사이에 강한 소수성 상호작용이 일어났다는 것을 의미한다. 또한 PEI의 양성자가 2.65ppm에서 3.08ppm으로 하향 이동한 것이 관찰되었는데 이는 PEI와 PTA의 이온 상호 작용과 PTA 분자 간의 소수성 상호 작용 때문인 것으로 판단된다.Panel (A) of Figure 4 shows the hydrogen nuclear magnetic resonance spectrum of the PEI/PTA (a/b) solution of the present invention. It was confirmed that the aromatic proton of PTA moved upward from 7.42ppm to 7.27ppm, and the methylene proton moved upward from 3.75ppm to 3.65ppm. As the PTA content increased, the upward shift and width change of the peak became more obvious, indicating that a strong hydrophobic interaction occurred between the phenyl groups of PTA. Additionally, it was observed that the protons of PEI moved downward from 2.65 ppm to 3.08 ppm, which is believed to be due to the ionic interaction between PEI and PTA and the hydrophobic interaction between PTA molecules.
2.6. 온도 및 산화 반응 방출 분석2.6. Temperature and oxidation reaction release analysis
도 5의 패널(A)는 25.5℃ 조건에서 본 발명의 IPSAM(3/7)에 탑재된 나일 레드가 방출된 프로파일을 보여준다. Panel (A) of Figure 5 shows the emission profile of Nile Red mounted on the IPSAM (3/7) of the present invention at 25.5°C.
H2O2 농도가 0mM인 IPSAM(3/7)의 경우 나일 레드의 방출율은 거의 0%이었다. PEI/PTA(3/7) 용액에서 IP(3/7)의 UCST는 H2O2 농도가 0mM인 경우 약 37℃인 것으로 확인되었다(도 1의 패널(B) 참조). 따라서 사기 실험 조건은 UCST보다 훨씬 낮은 온도인 25.5℃이므로 IPSAM(3/7)은 무결성이 유지되어 나일 레드가 전혀 방출되지 않는 것으로 판단된다. 또한 상기 IPSAM(3/7)은 온도 25.5℃의 경우 모든 H2O2 농도 조건에서 탑재물의 방출이 거의 없는 것으로 확인되었다. In the case of IPSAM (3/7) with a H 2 O 2 concentration of 0mM, the release rate of Nile red was almost 0%. The UCST of IP(3/7) in PEI/PTA(3/7) solution was found to be about 37°C when the H 2 O 2 concentration was 0mM (see panel (B) of Figure 1). Therefore, since the experimental conditions are 25.5°C, which is much lower than UCST, it is judged that the integrity of IPSAM (3/7) is maintained and no Nile red is emitted at all. In addition, the IPSAM (3/7) was confirmed to have almost no release of payload under all H 2 O 2 concentration conditions at a temperature of 25.5°C.
도 5의 패널(B)는 37℃ 조건에서 본 발명의 IPSAM(3/7)에 탑재된 나일 레드가 방출되는 프로파일을 보여준다. H2O2 농도가 0mM인 경우 처음 2시간 동안 약 9.6%가 방출되었으며 그 이후에는 나일 레드의 방출이 거의 일정하게 유지되는 것이 확인되었다. PEI/PTA(3/7) 용액(0mM H2O2)에서 IP(3/7)의 UCST는 약 37℃였다(도 1의 패널(B) 참조). 따라서 H2O2 농도가 0mM인 조건이라 하여도 37℃에서는 IPSAM(3/7)이 어느 정도 분해되어 상당한 방출이 발생하게 되는데 이는 실험 온도가 UCST(약 37℃)와 거의 동일하기 때문으로 판단된다.Panel (B) of Figure 5 shows the emission profile of Nile Red mounted on the IPSAM (3/7) of the present invention at 37°C. When the H 2 O 2 concentration was 0mM, about 9.6% was released for the first 2 hours, and it was confirmed that the release of Nile Red remained almost constant thereafter. The UCST of IP(3/7) in PEI/PTA(3/7) solution (0mM H 2 O 2 ) was approximately 37°C (see panel (B) of Figure 1). Therefore, even under conditions where the H 2 O 2 concentration is 0mM, IPSAM (3/7) decomposes to some extent at 37°C and significant emissions occur. This is believed to be because the experimental temperature is almost the same as UCST (about 37°C). do.
H2O2 농도가 0.5mM인 IPSAM(3/7)의 경우 방출정도는 H2O2 농도 0mM에서와 같이 시간 경과에 따라 포화 방식으로 증가하는 것이 확인되었다. 그러나 최대 방출율은 약 30.4%로 0mM에서 관찰된 것보다 약 20% 더 높았다. IP(3/7)의 UCST는 0.5mM에서 약 33℃로 나타났으며, 방출배지(37℃)의 온도는 UCST보다 높았다(도 1의 패널(B) 참조). 실제로, H2O2 농도가 0.5mM인 경우 37℃의 광학 밀도는 약 45% 감소하여 IPSAM(3/7)이 상당히 분해된 것으로 확인되었다(도 1의 패널(B) 참조). In the case of IPSAM (3/7) with a H 2 O 2 concentration of 0.5mM, the degree of release was confirmed to increase in a saturated manner over time, as in the case of a H 2 O 2 concentration of 0mM. However, the maximum release rate was approximately 30.4%, approximately 20% higher than that observed at 0mM. The UCST of IP (3/7) was found to be about 33°C at 0.5mM, and the temperature of the release medium (37°C) was higher than the UCST (see panel (B) of Figure 1). In fact, when the H 2 O 2 concentration was 0.5mM, the optical density at 37°C decreased by about 45%, confirming that IPSAM (3/7) was significantly decomposed (see panel (B) of Figure 1).
광학 밀도는 IPSAM(3/7)의 양에 비례해야 하며 방출율은 광학 밀도의 감소 정도와 밀접한 관련이 있다. 상기 방출률은 H2O2 농도와 비례하여 증가하는 것으로 판단된다.The optical density should be proportional to the amount of IPSAM (3/7), and the emission rate is closely related to the degree of reduction of the optical density. The release rate is believed to increase in proportion to the H 2 O 2 concentration.
예를 들어, H2O2 농도가 1mM 및 5mM인 경우 최대 방출율은 각각 54.4% 및 69.9%인 것으로 확인되었다. UCST는 H2O2 농도가 증가함에 따라 감소하므로 IPSAM(3/7)은 H2O2 농도에 비례하여 산화 유도 분해가 증가할 것으로 판단된다. 실제로 H2O2 농도가 1 및 5mM인 경우 37℃에서 광학 밀도는 각각 약 72% 및 89% 감소했다.For example, when the H 2 O 2 concentration was 1mM and 5mM, the maximum release rates were found to be 54.4% and 69.9%, respectively. Since UCST decreases as H 2 O 2 concentration increases, it is believed that oxidation-induced decomposition of IPSAM (3/7) will increase in proportion to H 2 O 2 concentration. In fact, when the H 2 O 2 concentration was 1 and 5mM, the optical density decreased by about 72% and 89% at 37°C, respectively.
도 5의 패널(A)는 43℃ 조건에서 본 발명의 IPSAM(3/7)에 탑재된 나일 레드가 방출되는 프로파일을 보여준다. Panel (A) of Figure 5 shows the emission profile of Nile Red mounted on the IPSAM (3/7) of the present invention at 43°C.
43℃에서 관찰된 나일 레드의 방출율은 37℃에서 관찰된 것과 유사하게 시간이 경과함에 따라 포화 방식으로 증가하였으며 H2O2 농도에 비례하여 증가하였다. 예를 들어, H2O2 농도가 0mM, 0.5mM, 1mM 및 5mM인 경우 방출율은 각각 약 50.4%, 72%, 88% 및 92%였다. 상기에서 설명한 바와 같이 IPSAM은 H2O2 농도가 증가함에 따라 UCST가 감소하기 때문에 더 높은 H2O2 농도에서 더 쉽게 산화-유도 분해를 받게 될 것으로 판단된다(도 1의 패널(B) 참조). 모든 H2O2 농도에서 탑재물의 방출은 43℃>37℃>25.5℃의 순서로 광범위한 것으로 확인되었다.The release rate of Nile Red observed at 43°C increased in a saturated manner over time, similar to that observed at 37°C, and increased in proportion to the H 2 O 2 concentration. For example, when H 2 O 2 concentrations were 0mM, 0.5mM, 1mM, and 5mM, the release rates were about 50.4%, 72%, 88%, and 92%, respectively. As explained above, IPSAM is believed to be more susceptible to oxidation-induced degradation at higher H 2 O 2 concentrations because UCST decreases with increasing H 2 O 2 concentration (see panel (B) of Figure 1 ). At all H 2 O 2 concentrations, the payload release was found to be extensive in the order of 43°C > 37°C > 25.5°C.
IPSAM(3/7)은 IP(3/7)의 UCST 거동으로 인하여 온도가 높을수록 더 쉽게 분해될 가능성이 있다. 실제로 상기 광학 밀도는 H2O2 농도가 0mM, 0.5mM, 1mM, 및 5mM일 때 각각 약 62%, 89%, 96%, 및 99%만큼 감소하였는데 이는 IPSAM(3/7)이 43℃ 보다 더 낮은 온도에서 쉽게 용해된다는 것을 의미한다.IPSAM(3/7) is likely to decompose more easily at higher temperatures due to the UCST behavior of IP(3/7). In fact, the optical density decreased by about 62%, 89%, 96%, and 99% when the H 2 O 2 concentration was 0mM, 0.5mM, 1mM, and 5mM, respectively, which means that IPSAM(3/7) was lower than 43°C. This means that it dissolves easily at lower temperatures.
상기 결과는 온도 상승으로 인해 탑재물의 방출이 촉진된 이유를 설명해 준다. 체온조건인 경우 상기 방출은 H2O2 농도에 반응하여 수행된다. 그러나 IPSAM(3/7)에 탑재된 탑재물의 H2O2 농도에 대한 방출 민감성은 생체 내에서 작동할 만큼 높지 않은 것으로 판단되는데 그 이유는 생체내에서 산화를 유도할 수 있는 산화제의양이 방출을 유도하는 최소 H2O2 농도인 약 0.5mM 수분보다 훨씬 낮기 때문이다.The above results explain why the release of the payload was accelerated due to the increase in temperature. In the case of body temperature conditions, the release is carried out in response to the H 2 O 2 concentration. However, the emission sensitivity of the payload mounted on IPSAM (3/7) to H 2 O 2 concentration is not considered high enough to operate in vivo because the amount of oxidizing agent that can induce oxidation in vivo is released. This is because it is much lower than the minimum H 2 O 2 concentration that induces about 0.5mM moisture.
본 발명의 결과에 따르면 상기 탑재물의 방출은 산화 반응을 이용하기 보다는 온도 반응을 이용하는 것이 보다 나은 것으로 판단되는데 그 이유는 근적외선과 같은 외부 자극을 통해 IPSAM(3/7) 주변의 온도를 쉽게 증가시킬 수 있디 때문이다.According to the results of the present invention, it is judged that it is better to release the payload using a temperature reaction rather than an oxidation reaction because the temperature around the IPSAM (3/7) can be easily increased through external stimuli such as near-infrared rays. Because you can.
본 발명에서는 상기 IPSAM(3/7)에 금나노입자를 도입하였다. 또한 PEI를 엽산화하여 IPSAM이 수용체 매개 엔도사이토시스를 통해 암 세포에 침투 할 수 있도록 하였다.In the present invention, gold nanoparticles were introduced into the IPSAM (3/7). Additionally, PEI was foxidized to allow IPSAM to penetrate cancer cells through receptor-mediated endocytosis.
2.7. 엽산화 PEI의 수소핵자기공명 분석2.7. Hydrogen nuclear magnetic resonance analysis of folic acid PEI
엽산화 PEI의 수소핵자기공명 스펙트럼을 분석하였다. 분석결과 PEI의 에틸렌기는 2.40 내지 2.85ppm사이에서 확인되며, 엽산의 신호와 관련하여 아미드 결합 부근의 메틸렌 양성자는 2.05 및 2.15ppm에서 발견되며, 2차 아미노기에 인접한 메틸렌 양성자는4.3ppm에서 확인되며, 카르복실기 부근의 메틴 양성자는 4.6ppm에서 확인되며, 페닐 양성자는 6.83 및 7.73 ppm에서 확인되며, 아미드 양성자는 8.5ppm에서 확인되며 1차 아미노기의 양성자는 8.6ppm에서 확인되었다.The hydrogen nuclear magnetic resonance spectrum of folic acid PEI was analyzed. As a result of the analysis, the ethylene group of PEI was found between 2.40 and 2.85 ppm, and in relation to the signal of folic acid, the methylene proton near the amide bond was found at 2.05 and 2.15 ppm, and the methylene proton adjacent to the secondary amino group was found at 4.3 ppm. Methine protons near the carboxyl group were identified at 4.6ppm, phenyl protons were identified at 6.83 and 7.73 ppm, amide protons were identified at 8.5ppm, and protons of the primary amino group were identified at 8.6ppm.
PEI의 에틸렌 양성자 및 엽산의 메틴 양성자 피크의 적분값을 이용하여 PEI의 에틸렌 이민 단위에 대한 엽산의 몰비를 계산한 결과 1:0.022인 것으로 확인되었다. PEI에 도입된 엽산에 대한 PEI의 몰비는 약 1:0.92인 것으로 확인되었는데 이는 PEI의 평균 분자량이 1,800이기 때문으로 판단된다.The molar ratio of folic acid to the ethylene imine unit of PEI was calculated using the integral value of the ethylene proton of PEI and the methine proton peak of folic acid, and was found to be 1:0.022. The molar ratio of PEI to folic acid introduced into PEI was confirmed to be about 1:0.92, which is believed to be because the average molecular weight of PEI is 1,800.
2.8. 투과 전자 현미경 분석결과2.8. Transmission electron microscopy analysis results
도 6은 본 발명의 IPSAM(3/7), 엽산화 IPSAM(3/7) 및 엽산화 IPSAM(3/7)/GNP의 투과전자현미경 결과를 보여준다. Figure 6 shows transmission electron microscopy results of IPSAM (3/7), folate IPSAM (3/7), and folate IPSAM (3/7)/GNP of the present invention.
IPSAM(3/7)은 거의 원형에 가까운 형태인 것으로 확인되었으며 직경은 30 내지 40㎚인 것으로 확인되었다. 본 발명의 IP(3/7)는 양친매성 및 표면 활성을 가지며 엔트로피 구동 프로세스에 의해 수용액에서 구형 미셀로 자가 조립된다. 엽산화 IPSAM(3/7)은 IPSAM(3/7)와 모양과 크기가 유사한 것으로 확인되었으며 PEI의 2%만이 엽산화되어 물성 변화가 거의 없는 것으로 확인되었다.IPSAM (3/7) was confirmed to have a nearly circular shape and a diameter of 30 to 40 nm. The IP(3/7) of the present invention is amphipathic and surface active and self-assembles into spherical micelles in aqueous solution by an entropy-driven process. Folated IPSAM (3/7) was confirmed to be similar in shape and size to IPSAM (3/7), and only 2% of PEI was folate-oxidized, showing little change in physical properties.
금나노입자(GNP)는 작고 검은 점으로 확인된다(도 6의 패널(C) 및 (D) 참조). 금 이온은 환원제에 의해 GNP로 환원될 수 있다. 본 발명의 PEI 아미노기의 질소 원자의 경우 고립 전자쌍을 가지므로 PEI에 대한 환원제로 작용할 수 있디 따라서 실험을 위한 추가적인 환원제를 첨가할 필요가 없었다. GNP는 직경이 9㎚ 미만이었으며 대부분 IPSAM에 결합되어 있는 것으로 확인되었다. 고해상도 투과전자현미경 분석결과 격자 간격은 0.24㎚인 것으로 확인되었으며 입자의 SAED 패턴에서 감지된 날카로운 회절 반점이 확인된 것으로 보아 GNP의 순수한 결정질 특성을 보이는 것으로 판단되었다.Gold nanoparticles (GNPs) are identified as small black dots (see panels (C) and (D) of Figure 6). Gold ions can be reduced to GNPs by a reducing agent. The nitrogen atom of the PEI amino group of the present invention has a lone pair of electrons, so it can act as a reducing agent for PEI, so there was no need to add an additional reducing agent for the experiment. GNPs had a diameter of less than 9 nm and were mostly found to be bound to IPSAM. As a result of high-resolution transmission electron microscopy analysis, the lattice spacing was confirmed to be 0.24 nm, and the sharp diffraction spots detected in the SAED pattern of the particle were confirmed to indicate the pure crystalline characteristics of GNP.
GNP는 고립전자쌍을 갖는 화합물과 배위결합을 가질 수 있는 것으로 알려져 있다. 따라서 상기 GNP는 PEI의 질소 원자 고립 전자쌍으로 인해 PEI와의 배위 결합을 하는 방법으로 IPSAM에 결합되는 것으로 판단된다.It is known that GNP can form a coordination bond with a compound having a lone pair of electrons. Therefore, it is believed that the GNP is bound to IPSAM through a coordination bond with PEI due to the lone electron pair of the nitrogen atom of PEI.
2.9. 엽산화 IPSAM/GNP의 탑재2.9. Loaded with folate IPSAM/GNP
DMF에 용해된 DOX의 보정은 하기의 방정식과 같다: Y=1050.5X+20.4(R2=0.9998).The correction for DOX dissolved in DMF is as follows: Y=1050.5X+20.4 (R 2 =0.9998).
상기 X는 DOX 농도(㎍/㎖)를 의미하고 상기 Y는 형광 강도를 의미한다. IPSAM(3/7)에 탑재된 DOX의 양은 IPSAM 현탁액에 첨가된 DOX의 약 91%였으며 특정 탑재는 0.455%인 것으로 산출되었다. IPSAM는 PEI와 PTA가 PEI(1.97㎎PEI/㎖):PTA(18.03㎎PTA/㎖)=1:9.16의 질량비로 포함되어 있으므로 일종의 소수성 코어-풍부 마이셀로 구분할 수 있다. 본 발명에서는 DOX:PTA=1:91.6의 질량비가 되도록 IPSAM 현탁액에 DOX를 첨가하여 탑재시켰으며 상기 DOX는 주로 PTA로 구성된 코어에 쉽게 탑재되는 것으로 판단된다.The X refers to the DOX concentration (㎍/ml) and the Y refers to the fluorescence intensity. The amount of DOX loaded into IPSAM (3/7) was approximately 91% of the DOX added to the IPSAM suspension, and the specific loading was calculated to be 0.455%. IPSAM can be classified as a type of hydrophobic core-rich micelle because it contains PEI and PTA in a mass ratio of PEI (1.97 mg PEI/ml):PTA (18.03 mg PTA/ml) = 1:9.16. In the present invention, DOX was added to the IPSAM suspension and loaded at a mass ratio of DOX:PTA=1:91.6, and it is believed that the DOX is easily loaded into the core mainly composed of PTA.
2.10. 제타 전위 측정2.10. Zeta potential measurements
IPSAM(3/7), 엽산화 IPSAM(3/7), 엽산화 IPSAM(3/7)/DOX, 엽산화 IPSAM(3/7)/GNP 및 엽산화 IPSAM(3/7)/DOX/GNP의 제타 전위는 각각 +49.3mV, +49.7mV, +46.5mV, +21.2mV, 및 +24.3mV인 것으로 확인되었다. IPSAM에 포함된 PEI 사슬은 양전하를 띠며 극성을 가져 수성 벌크상으로 향할 가능성이 있다. 양이온성 고분자 사슬은 표면 전위에 많은 영향을 미치며 결과적으로 강한 양의 제타 전위를 보이게 된다. 엽산화 IPSAM(3/7)의 제타 전위는 IPSAM(3/7)의 제타 전위와 매우 유사한 것으로 호가인되었다. 핵자기공명분석법에 따르면 PEI 1분자(molecule)에는 엽산 1분자(molecule)가 부착된 것으로 확인되었다. 엽산화 PEI를 IPSAM에 도입한 결과 PEI+엽산 PEI의 총함량이 IPSAM 질량의 2%(w/w) 수준에 불과한 것으로 확인되었다. 추가적으로 엽산화 PEI의 엽산 잔기는 아미노기를 포함하는 것으로 확인되었는데 이는 엽산 PEI가 IPSAM의 제타 전위에 거의 영향을 미치지 않는다는 것을 의미한다. 엽산화 IPSAM(3/7)/DOX의 제타 전위는 엽산화 IPSAM(3/7)보다 약간 낮은 것으로 확인되었다.IPSAM(3/7), folate IPSAM(3/7), folate IPSAM(3/7)/DOX, folate IPSAM(3/7)/GNP and folate IPSAM(3/7)/DOX/GNP The zeta potentials were found to be +49.3mV, +49.7mV, +46.5mV, +21.2mV, and +24.3mV, respectively. The PEI chains contained in IPSAM are positively charged and polar, which may lead them to the aqueous bulk phase. Cationic polymer chains have a great influence on the surface potential, resulting in a strong positive zeta potential. The zeta potential of folate IPSAM(3/7) was found to be very similar to that of IPSAM(3/7). According to nuclear magnetic resonance analysis, it was confirmed that one molecule of folic acid was attached to one molecule of PEI. As a result of introducing folic acid PEI into IPSAM, it was confirmed that the total content of PEI + folic acid PEI was only 2% (w/w) of the mass of IPSAM. Additionally, the folate residue of folate PEI was found to contain an amino group, which means that folate PEI has little effect on the zeta potential of IPSAM. The zeta potential of folate IPSAM(3/7)/DOX was found to be slightly lower than that of folate IPSAM(3/7).
DOX는 양이온성 항암제이며 IPSAM에는 적은 양이 탑재된다. 상세하게는 IPSAM에 특정 탑재된 DOX의 함량은 0.455%에 불과하다. 따라서 상기 탑재된 DOX는 양으로 하전된 IPSAM의 제타 전위에 큰 영향을 미치지 않을 것으로 판단된다.DOX is a cationic anticancer agent and is loaded in small amounts in IPSAM. In detail, the content of DOX specifically loaded into IPSAM is only 0.455%. Therefore, it is believed that the loaded DOX will not have a significant effect on the zeta potential of the positively charged IPSAM.
엽산화 IPSAM(3/7)/GNP의 제타 전위는 엽산화 IPSAM(3/7)보다 훨씬 낮은 것으로 확인되었다. GNP는 음전하를 띤 나노입자로서 IPSAM의 양전화를 중화하므로 제타 전위를 감소시키게 된다. 엽산화 IPSAM(3/7)/DOX/GNP의 제타 전위는 엽산화 IPSAM(3/7)/GNP보다 약간 높았는데, 이는 아마도 양전하를 가지는 DOX가 탑재되었기 때문으로 판단된다.The zeta potential of folate IPSAM(3/7)/GNP was found to be much lower than that of folate IPSAM(3/7). GNPs are negatively charged nanoparticles that neutralize the positive charge of IPSAM, thereby reducing the zeta potential. The zeta potential of folate IPSAM(3/7)/DOX/GNP was slightly higher than that of folate IPSAM(3/7)/GNP, probably because DOX, which has a positive charge, was loaded.
2.11. 근적외선 유도 방출 분석2.11. Near-infrared stimulated emission analysis
도 7의 패널(A)는 본 발명의 IPSAM(3/7)에 대한 근적외선 조사에 따른 현탁액의 온도 변화 프로파일을 보여준다.Panel (A) of Figure 7 shows the temperature change profile of the suspension upon near-infrared irradiation for IPSAM (3/7) of the present invention.
GNP가 포함되지 않은 IPSAM(IPSAM(3/7))에 근적외선을 조사한 경우 현탁액의 온도가 13분 만에 25℃에서 약 34℃로 증가했으며 그 이후에는 유의한 증가가 없었다. 빛 에너지는 분산되어 서스펜션 온도를 높이는 것으로 판단된다. IPSAM(3/7)/GNP에 근적외선을 조사한 경우 현탁액의 온도는 33분 만에 48℃까지 상승하였으며 그 이후에는 유의한 증가가 없었다. 상기 GNP는 근적외선이 조사되면 표면 플라즈몬 공명을 일으켜 열을 발생시킨다. 이에 반하여 근적외선이 조사되지 않은 경우 GNP의 포함과 상관없이 현탄액의 온도가 변하지 않았다.When IPSAM (IPSAM(3/7)), which does not contain GNPs, was irradiated with near-infrared rays, the temperature of the suspension increased from 25°C to approximately 34°C in 13 minutes, and there was no significant increase thereafter. It is believed that light energy is dispersed and increases the suspension temperature. When IPSAM(3/7)/GNP was irradiated with near-infrared rays, the temperature of the suspension rose to 48°C in 33 minutes and there was no significant increase thereafter. When the GNP is irradiated with near-infrared rays, it generates surface plasmon resonance and generates heat. In contrast, when near-infrared rays were not irradiated, the temperature of the suspension did not change regardless of the inclusion of GNP.
도 7의 패널(B)는 본 발명의 근적외선 조사로 인한 IPSAM(3/7)에 탑재된 나일 레드의 방출 프로파일을 보여준다.Panel (B) of Figure 7 shows the emission profile of Nile Red mounted on IPSAM (3/7) due to near-infrared irradiation of the present invention.
근적외선 조사 없는 경우 GNP의 포함여부와 상관없이 1시간동안 IPSAM의 나일레드 방출이 확인되지 않았다. 이에 반하여 근적외선이 조사되는 경우 GNP가 포함되지 않은 IPSAM은 처음 10분 동안 유의미한 나일 레드 방출을 보이지 않았으나 40분 및 60분 후 각각 5%, 및 7.5%의 나일 레드 방출율을 보였다. 근적외선 조사하에서 GNP가 없는 IPSAM 현탁액에 근적외선을 조사하게 되면 현탁액의 온도는 최초 10분 동안은 33℃로 증가한다. 그러나 상기 10분의 시간만으로는 충분한 방출이 일어나지 않았다. 15분간 근적외선을 조사하게 되면 온도가 최대 34℃에 도달하였으며 그 이후에는 변화하지 않았다(도 7의 패널(A) 참조). 25 내지 35℃ 범위에서 PSAM 현탁액의 광학 밀도는 온도 증가에 따라 약간의 감소만을 보였다(도 1의 패널(A) 참조). 상기 IPSAM의 부분적 분해는 10분 근적외선 조사 후 발생한 탑재물의 방출을 설명해 준다. In the absence of near-infrared irradiation, Nile red emission from IPSAM was not confirmed for 1 hour regardless of whether GNP was included. In contrast, when irradiated with near-infrared rays, IPSAM without GNP did not show significant Nile red emission for the first 10 minutes, but showed Nile red emission rates of 5% and 7.5% after 40 and 60 minutes, respectively. When near-infrared rays are irradiated to an IPSAM suspension without GNPs under near-infrared irradiation, the temperature of the suspension increases to 33°C for the first 10 minutes. However, sufficient release did not occur within the 10-minute period. When near-infrared rays were irradiated for 15 minutes, the temperature reached a maximum of 34°C and did not change after that (see panel (A) of FIG. 7). In the range of 25 to 35°C, the optical density of the PSAM suspension showed only a slight decrease with increasing temperature (see panel (A) of Figure 1). The partial decomposition of the IPSAM explains the release of the payload that occurred after 10 minutes of near-infrared irradiation.
IPSAM(3/7)/GNP는 근적외선이 조사되면 탑재물의 방출율(%)이 급격히 향상된다. 상세하게는 근적외선 조사 후 최초 5분 동안 IPSAM(3/7)/GNP의 방출율은 약 0.5% 증가하였으며 그 이후 상당히 증가하여 60분에는 방출율이 약 32%까지 급격히 증가하는 것으로 확인되었다. IPSAM(3/7)/GNP 현탄액의 온도는 근적외선 조사 5분만에 약 37℃로 높아졌으며, 10분후에는 약 43℃로 높아졌으며 그 후 더 높아져 최대온도인 48℃에 도달하였다(도 7의 패널(A) 참조).When IPSAM(3/7)/GNP is irradiated with near-infrared rays, the emission rate (%) of the payload rapidly improves. In detail, the release rate of IPSAM(3/7)/GNP increased by about 0.5% for the first 5 minutes after near-infrared irradiation and increased significantly thereafter, with the release rate rapidly increasing to about 32% at 60 minutes. The temperature of the IPSAM(3/7)/GNP suspension increased to about 37°C within 5 minutes of near-infrared irradiation, to about 43°C after 10 minutes, and then increased further to reach the maximum temperature of 48°C (Figure 7 (see panel (A)).
IPSAM(3/7)/GNP 현탄액 온도는 근적외선 조사 5분 만에 IP(3/7)의 UCST인 37℃에 도달하였으나 탑재물을 방출은 시간이 더 오래 걸렸다(도 7의 패널(A) 및 도 5 참조). 상기 결과는 IPSAM(3/7)의 방출율이 최초 5분 동안 매우 낮았던 이유를 설명하여 준다(도 7의 패널(B) 참조). 정리하면 IPSAM(3/7)의 탑재물 방출율은 온도에 비례하므로 근적외선을 조사하여 온도가 증가하게 되면 방출율의 향상이 가속화된다.The IPSAM(3/7)/GNP suspension temperature reached 37°C, the UCST of IP(3/7), in 5 minutes of near-infrared irradiation, but release of the payload took longer (panel (A) of Figure 7) and Figure 5). The above results explain why the release rate of IPSAM (3/7) was very low during the first 5 minutes (see panel (B) of Figure 7). In summary, the payload emission rate of IPSAM (3/7) is proportional to temperature, so when the temperature increases by irradiating near-infrared rays, the improvement in emission rate accelerates.
2.12. In-vitro 항암 효능 분석2.12. In-vitro anticancer efficacy analysis
도 8은 본 발명의 엽산화 IPSAM(3/7), 유리 DOX(free DOX), 엽산화 IPSAM(3/7)/DOX, 엽산화 IPSAM(3/7)/GNP 및 엽산화 IPSAM(3/7)/DOX/GNP의 근적외선 조사에 따른 in vitro KB 세포 활성 변화를 보여준다.Figure 8 shows folate IPSAM (3/7), free DOX, folate IPSAM (3/7)/DOX, folate IPSAM (3/7)/GNP, and folate IPSAM (3/) of the present invention. 7) Shows changes in in vitro KB cell activity following near-infrared irradiation of /DOX/GNP.
엽산화 IPSAM(3/7)은 근적외선 조사에 관계없이 암세포(KB 세포)의 생존율에 유의한 영향을 미치지 않는 것으로 확인되었다. 상기 결과는 엽산화 IPSAM 또는 근적외선 조사가 암세포의 활성에 아무런 영향을 주지 않은 것을 의미한다. 항암제로 잘 알려진 유리 DOX(free DOX)는 암세포 성장 억제에 상당한 효능을 보였으나, 근적외선 조사에 따른 항암 효과의 차이는 보이지 않았다. 엽산화 IPSAM(3/7)/DOX는 유리 DOX보다 더 높은 암세포 성장 억제 효능을 보였다. 엽산 수용체는 암세포(KB 세포)에서 과발현되는 것으로 알려져 있다. 따라서 엽산이 도입된 IPSAM은 수용체 매개 엔도사이토시스를 통해 암세포로 쉽게 침투될 수 있다. 상기 결과는 엽산화 IPSAM(3/7)/DOX는 유리 DOX보다 더 높은 암세포 성장 억제 효능을 보이는 이유를 설명해 준다. 엽산화 IPSAM(3/7)과 유리 DOX의 항암 효과와 마찬가지로 엽산화 IPSAM(3/7)/DOX 또한 근적외선 조사에 의해 암세포 성장 억제효과가 거의 영향 받지 않았다. It was confirmed that folate IPSAM (3/7) had no significant effect on the survival rate of cancer cells (KB cells) regardless of near-infrared irradiation. The above results mean that folate IPSAM or near-infrared irradiation had no effect on the activity of cancer cells. Free DOX, a well-known anti-cancer agent, showed significant efficacy in inhibiting cancer cell growth, but no difference in anti-cancer effect was observed depending on near-infrared irradiation. Folated IPSAM(3/7)/DOX showed higher cancer cell growth inhibition efficacy than free DOX. Folate receptors are known to be overexpressed in cancer cells (KB cells). Therefore, folic acid-incorporated IPSAM can easily penetrate into cancer cells through receptor-mediated endocytosis. The above results explain why folate IPSAM(3/7)/DOX shows higher cancer cell growth inhibition efficacy than free DOX. Like the anticancer effects of folate IPSAM(3/7) and free DOX, the cancer cell growth inhibitory effect of folate IPSAM(3/7)/DOX was also almost unaffected by near-infrared irradiation.
한편, 엽산화 IPSAM(3/7)/GNP는 근적외선 조사가 없는 경우 세포 생존율에 거의 영향을 미치지 않았지만, 근적외선 조사에서는 세포 성장을 유의하게 억제하였다. GNP는 근적외선을 흡수하고 표면 플라즈몬 공명을 통해 열로 발산 할 수 있다. 상기 GNP에 의해 생성된 열은 세포 성장을 억제할 수 있다. 엽산화 IPSAM(3/7)/DOX와 마찬가지로 엽산화 IPSAM(3/7)/DOX/GNP는 DOX의 항암 특성으로 인해 암세포 성장을 억제하는 데 상당한 효능을 나타내는 것으로 확인되었다. 근적외선을 조사하며 엽산화 IPSAM(3/7)/DOX/GNP을 처리한 경우 암세포의 활성이 현저하게 감소한 것으로 확인된다. 정리하면 본 발명의 엽산화 IPSAM(3/7)/DOX/GNP은 근적외선이 조사된 조건에서 광열효과(photothermal effect)에 의해 세포 성장을 억제하는 효과가 있을 뿐 아니라 상기 열로 인해 IPSAM가 분해되고 이로 인해 탑재물인 DOX이 방출되어 암세포의 활성을 저하시키는 것이다.Meanwhile, folate-oxidized IPSAM(3/7)/GNP had little effect on cell viability in the absence of near-infrared irradiation, but significantly inhibited cell growth under near-infrared irradiation. GNPs can absorb near-infrared rays and dissipate them as heat through surface plasmon resonance. The heat generated by the GNPs can inhibit cell growth. Like folate IPSAM(3/7)/DOX, folate IPSAM(3/7)/DOX/GNP was found to have significant efficacy in inhibiting cancer cell growth due to the anticancer properties of DOX. It was confirmed that the activity of cancer cells was significantly reduced when treated with folate IPSAM (3/7)/DOX/GNP while irradiating near-infrared rays. In summary, the folate-oxidized IPSAM(3/7)/DOX/GNP of the present invention not only has the effect of inhibiting cell growth by a photothermal effect under near-infrared irradiated conditions, but also decomposes IPSAM due to the heat, thereby causing As a result, the payload DOX is released and reduces the activity of cancer cells.
2.13. DOX가 탑재된 엽산화 IPSAM과 암세포의 상호작용2.13. Interaction between DOX-loaded folate IPSAM and cancer cells
도 9는 본 발명의 유리 DOX, 엽산화 IPSAM(3/7)/DOX 및 엽산화 IPSAM(3/7)/DOX/GNP로 처리한 KB 세포에 대한 유세포 분석 결과를 보여준다.Figure 9 shows the results of flow cytometry analysis of KB cells treated with free DOX, folate IPSAM(3/7)/DOX, and folate IPSAM(3/7)/DOX/GNP of the present invention.
유리 DOX를 처리한 KB 세포는 상대적으로 낮은 형광 강도(GMFI=364.3)를 보이는 것으로 확인되었으며 상기 형광은 DOX에 의한 것이므로 항암제(DOX)가 세포내로 전달된 것으로 판단된다. KB cells treated with free DOX were confirmed to exhibit relatively low fluorescence intensity (GMFI=364.3), and since the fluorescence was caused by DOX, it was determined that the anticancer drug (DOX) was delivered into the cells.
상기 유리 DOX의 전달은 단순 확산에 의한 것으로 판단된다. 이에 반하여 엽산화 IPSAM(3/7)/DOX로 처리된 암세포의 경우 유리 DOX(GMFI=364.3)로 처리된 암세포보다 훨씬 강한 형광 강도(GMFI=1701.3)를 보였다. 엽산 수용체는 KB 세포에서 과발현되는 것으로 알려져 있다. 따라서 엽산 수용체를 매개로 한 엔도사이토시스에 의해 엽산화 IPSAM(3/7)/DOX가 KB 세포 내로 내부화되어 강한 형광 강도를 발생시키는 것으로 판단된다. 엽산화 IPSAM(3/7)/DOX/GNP로 처리된 KB 세포 또한 리간드-수용체 상호작용 및 수용체 매개 엔도사이토시스로 인해 강한 형광 강도를 나타내는 것으로 확인되었다.It is believed that the transfer of free DOX is through simple diffusion. In contrast, cancer cells treated with folate IPSAM(3/7)/DOX showed much stronger fluorescence intensity (GMFI=1701.3) than cancer cells treated with free DOX (GMFI=364.3). Folate receptors are known to be overexpressed in KB cells. Therefore, it is believed that folate IPSAM(3/7)/DOX is internalized into KB cells through folate receptor-mediated endocytosis, generating strong fluorescence intensity. KB cells treated with folate IPSAM(3/7)/DOX/GNP were also found to exhibit strong fluorescence intensity due to ligand-receptor interaction and receptor-mediated endocytosis.
엽산화 IPSAM(3/7)/DOX/GNP로 처리한 KB 세포의 GMFI는 1403.9로 엽산화 IPSAM(3/7)/DOX를 처리한 KB 세포(GMFI=1701.3)보다 다소 낮았는데 이는 DOX 형광의 일부가 GNP에 의해 흡수되었기 때문으로 판단된다.The GMFI of KB cells treated with folate IPSAM(3/7)/DOX/GNP was 1403.9, which was slightly lower than that of KB cells treated with folate IPSAM(3/7)/DOX (GMFI=1701.3), which was slightly lower than that of DOX fluorescence. It is believed that this is because some of it was absorbed by GNP.
수용체 매개 엔도사이토시스에 더하여, IPSAM과 암세포 사이의 정전기적 상호작용은 세포 내로 나노입자의 내재화를 촉진할 것으로 판단된다. 상세하게는 IPSAM의 양의 제타 전위(엽산화 IPSAM(3/7)/DOX/GNP=+24.3mV, 엽산화 IPSAM(3/7)/DOX=+46.5mV)는 정전기적 상호작용을 통해 IPSAM의 접착 및 세포 내로의 진입을 촉진할 수 있는 것으로 판단된다.In addition to receptor-mediated endocytosis, electrostatic interactions between IPSAM and cancer cells are believed to promote internalization of nanoparticles into cells. In detail, the positive zeta potential of IPSAM (folate IPSAM(3/7)/DOX/GNP=+24.3mV, folate IPSAM(3/7)/DOX=+46.5mV) is associated with IPSAM through electrostatic interaction. It is believed that it can promote adhesion and entry into cells.
유세포 분석 결과에 따르면 엽산 나노입자에 의해 암세포로 전달되는 DOX의 양은 유리 DOX보다 훨씬 많은 것으로 확인되었다. 상기 결과는 엽산화 IPSAM에 로딩된 DOX가 유리 DOX보다 더 높은 항암 효능을 나타내는 이유를 설명해준다(도 8 참조).According to the results of flow cytometry, the amount of DOX delivered to cancer cells by folic acid nanoparticles was confirmed to be much greater than that of free DOX. The above results explain why DOX loaded into folate IPSAM shows higher anticancer efficacy than free DOX (see Figure 8).
도 10은 본 발명의 유리 DOX, 엽산화 IPSAM(3/7)/DOX, 엽산화 IPSAM(3/7)/DOX/GNP를 처리한 KB 세포의 공초점 레이저 주사 현미경(CLSM) 이미지를 보여준다.Figure 10 shows confocal laser scanning microscopy (CLSM) images of KB cells treated with free DOX, folate IPSAM(3/7)/DOX, and folate IPSAM(3/7)/DOX/GNP of the present invention.
DAPI로 염색된 핵은 10mM PBS(pH 7.4)를 처리한 KB 세포의 영상에서 파란색으로 확인된다. DOX 형광은 적색으로 표시되는데 DOX 형광은 핵 주변뿐만 아니라 핵내에서도 발견되었다. 상기 결과는 DOX가 세포에 의해 흡수된 후 핵으로 전달되어 DNA 가닥의 이중 나선에 삽입되었다는 것을 의미하며 이로 인해 단백질의 생합성이 억제되어 암세포의 사멸이 유도되었다는 것을 의미한다.Nuclei stained with DAPI are confirmed in blue in the image of KB cells treated with 10mM PBS (pH 7.4). DOX fluorescence is displayed in red, and DOX fluorescence was found not only around the nucleus but also within the nucleus. The above results indicate that DOX was absorbed by cells, delivered to the nucleus, and inserted into the double helix of the DNA strand, which inhibited protein biosynthesis and induced the death of cancer cells.
엽산화 IPSAM(3/7)/DOX로 처리한 암세포의 DOX 형광 강도는 유리 DOX로 처리한 암세포보다 훨씬 강한 것으로 확인되었다. 본 발명의 엽산화는 엔도사이토시스를 통한 DOX 형광의 강도 향상에 중요한 역할을 하는 것으로 판단된다. 엽산화 IPSAM(3/7)/DOX/GNP로 처리한 암세포는 엽산화 IPSAM(3/7)/DOX로 처리한 암세포와 유사한 수준의 강한 DOX 형광을 나타냈다. IPSAM에 엽산과 같은 리간드를 도입하게 되면 수용체 매개 엔도사이토시스를 유도하여 상기 IPSAM을 쉽게 암세포 내부로 침투시킬 수 있게 된다. 추가적으로 수용체 매개 엔도사이토시스와 함께 IPSAM과 암세포 사이의 정전기적 상호작용 또한 IPSAM의 엔도사이토시스를 촉진한 것으로 판단된다.The DOX fluorescence intensity of cancer cells treated with folate IPSAM(3/7)/DOX was found to be much stronger than that of cancer cells treated with free DOX. Folic oxidation of the present invention is believed to play an important role in improving the intensity of DOX fluorescence through endocytosis. Cancer cells treated with folate IPSAM(3/7)/DOX/GNP showed strong DOX fluorescence at a similar level to cancer cells treated with folate IPSAM(3/7)/DOX. When a ligand such as folic acid is introduced into IPSAM, receptor-mediated endocytosis is induced, allowing the IPSAM to easily penetrate into cancer cells. Additionally, along with receptor-mediated endocytosis, electrostatic interactions between IPSAM and cancer cells are also believed to have promoted the endocytosis of IPSAM.
본 발명의 FACS 분석결과 및 CLSM 분석결과는 본 발명의 in vitro 항암 효능 분석결과 (도 8 참조)의 결과와 잘 일치하였는데 이는 DOX의 세포 흡수가 많을수록 항암 효과가 높다는 것을 의미한다(도 8, 9, 및 10 참조). The results of the FACS analysis and the CLSM analysis of the present invention were consistent with the results of the in vitro anticancer efficacy analysis of the present invention (see Figure 8), which means that the greater the cellular uptake of DOX, the higher the anticancer effect (Figures 8 and 9 , and 10).
IPSAM(3/7)은 세포 내에서 산화되면 탑재물을 방출하게 된다. 그러나 세포에 내재된 ROS로는 IPSAM에 탑재된 DOX의 방출을 유도하기에 불충분할 것으로 판단된다. 그 이유는 상기 IPSAM의 산화 민감도가 충분하지 않기 때문이다(도 5 참조). DOX는 세포내에서 산소 자유 라디칼을 생성하는 것으로 알려져 있으며 이는 세포내에 침투한 IPSAM 역시 산화할 수 있을 것으로 판단된다. 상기 결과는 GNP가 포함되지 않았으며 항암제(DOX)가 나노입자에 싸여 있는 IPSAM(엽산화 IPSAM(3/7)/DOX 및 엽산화 IPSAM(3/7)/DOX/GNP)이 세포내에 침투하여 DOX 항암 활성을 발휘할 수 있는 이유를 설명해 준다(도 8 참조).IPSAM(3/7) releases its payload when oxidized within the cell. However, it is believed that the ROS inherent in the cells are insufficient to induce the release of DOX loaded on IPSAM. The reason is that the oxidation sensitivity of the IPSAM is not sufficient (see Figure 5). DOX is known to generate oxygen free radicals within cells, and it is believed that this can also oxidize IPSAM that has penetrated into cells. The above results show that IPSAM (folate IPSAM (3/7)/DOX and folate IPSAM (3/7)/DOX/GNP), which does not contain GNP and is an anticancer drug (DOX) wrapped in nanoparticles, penetrates into the cells. This explains why DOX can exert anticancer activity (see Figure 8).
정리하면 GNP가 포함된 IPSAM(3/7)에 근적외선을 조사하게 되면 온도 상승으로 인해 IPSAM의 분해가 촉진되고 이는 DOX의 방출을 촉진하여 보다 높은 항암 활성으로 이어지게 된다(도 8 참조).In summary, when IPSAM (3/7) containing GNP is irradiated with near-infrared rays, the decomposition of IPSAM is promoted due to an increase in temperature, which promotes the release of DOX, leading to higher anticancer activity (see Figure 8).
3. 결론3. Conclusion
본 발명의 PEI는 PTA와 이온쌍을 형성할 수 있고 상기 이온쌍은 양친매성 및 표면 활성 특성으로 인해 수용액에서 나노 입자 즉, IPSAM으로 자가 조립될 수 있다.PEI of the present invention can form ion pairs with PTA, and the ion pairs can self-assemble into nanoparticles, i.e. IPSAM, in aqueous solution due to its amphipathic and surface active properties.
상기 IPSAM은 UCST 거동을 나타냈으며, 상세하게는 아미노기:카르복실기 비율이 3:7인 IPSAM(IPSAM(3/7))의 경우 pH 7.0에서 약 37℃의 UCST를 보였고 H2O2 농도가 증가함에 따라 치료에 사용되는 IPSAM(3/7)의 양이 감소하였다.The IPSAM showed UCST behavior, and in detail, in the case of IPSAM (IPSAM (3/7)) with an amino group: carboxyl group ratio of 3:7, it showed a UCST of about 37°C at pH 7.0, and as the H2O2 concentration increased, the treatment improved. The amount of IPSAM (3/7) used was reduced.
본 발명의 IPSAM은 산화 및 온도에 반응하여 탑재물을 방출하는 특성을 보였다. H2O2 농도가 증가함에 따라 탑재물인 나일 레드의 방출율이 현저하게 증가하였다.The IPSAM of the present invention showed the characteristic of releasing the payload in response to oxidation and temperature. As the H 2 O 2 concentration increased, the release rate of the payload, Nile Red, increased significantly.
본 발명의 IPSAM이 산화되면 이온쌍(IP(3/7))의 계면 활성이 감소하고 CMC가 증가하게 된다. 따라서 IPSAM(3/7)의 UCST는 감소하게 되고 이는 IPSAM의 분해 및 탑재물의 방출로 이어진다.When the IPSAM of the present invention is oxidized, the interfacial activity of the ion pair (IP(3/7)) decreases and the CMC increases. Therefore, the UCST of IPSAM (3/7) decreases, which leads to the decomposition of IPSAM and release of the payload.
본 발명의 IPSAM에 열을 가하여 온도가 UCST보다 높아지면 IPSAM은 분해되고 이는 강렬한 탑재물의 방출로 이어진다.When heat is applied to the IPSAM of the present invention and the temperature rises above UCST, the IPSAM decomposes, leading to the release of intense payload.
GNP를 포함하는 IPSAM에 탑재된 나일 레드는 근적외선 조사에 의해 방출이 급격히 증가하게 된다. The emission of Nile Red mounted on IPSAM containing GNP increases rapidly due to near-infrared irradiation.
GNP의 표면 플라즈몬 공명에 의해 생성된 열은 IPSAM을 분해하고 강화된 방출을 유도할 수 있다.The heat generated by the surface plasmon resonance of GNPs can decompose IPSAM and induce enhanced emission.
엽산화 IPSAM(3/7)에 로딩된 DOX는 유리 DOX보다 KB 세포에 대한 In vitro 항암 활성이 유의하게 더 높은 것으로 확인되었다.DOX loaded into folate IPSAM (3/7) was found to have significantly higher in vitro anticancer activity against KB cells than free DOX.
엽산화 IPSAM에 적재된 DOX는 FACS 및 CLSM에 의해 입증된 바와 같이 유리 DOX보다 더 암세포에 내재화되는 비율이 더 높았다.DOX loaded in folate IPSAM showed a higher rate of internalization into cancer cells than free DOX, as demonstrated by FACS and CLSM.
GNP가 포함된 IPSAM에 근적외선을 조사하게 되면 항암 활성이 보다 증가하는데 이는 IPSAM의 분해가 촉진되어 DOX의 방출이 촉진되었기 때문이다.When IPSAM containing GNP is irradiated with near-infrared rays, its anticancer activity increases because the decomposition of IPSAM is promoted and the release of DOX is promoted.
본 발명의 IPSAM은 처음으로 개발된 약물전달체이며 산화, 열 및 근적외선 조사에 반응하여 탑재물을 방출하는 특징을 가진다.IPSAM of the present invention is the first drug delivery system developed and has the characteristic of releasing the payload in response to oxidation, heat, and near-infrared irradiation.
본 명세서에서 설명된 구체적인 실시예는 본 발명의 바람직한 구현예 또는 예시를 대표하는 의미이며, 이에 의해 본 발명의 범위가 한정되지는 않는다. 본 발명의 변형과 다른 용도가 본 명세서 특허청구범위에 기재된 발명의 범위로부터 벗어나지 않는다는 것은 당업자에게 명백하다. The specific embodiments described in this specification are meant to represent preferred embodiments or examples of the present invention, and are not intended to limit the scope of the present invention. It will be apparent to those skilled in the art that modifications and other uses of the present invention do not depart from the scope of the invention as set forth in the claims herein.
Claims (7)
[화학식 1]
(상기 화학식에서 1에서, Ar은 C6-C20아릴, L2는 C1-C5알킬렌이며, x는 1 내지 3의 정수이다.):
로 표시되는 비극성 음이온성 화합물; 및 금나노입자(gold nano particle)를 포함하는 온도 및 산화 응답성 이온 복합체이며,
상기 극성 양이온성 고분자는 폴리에틸렌이민(polyethylene imine)이며 상기 비극성 음이온성 화합물은 페닐티오아세트산(phenylthioacetic acid)인 것을 특징으로 하는 온도 및 산화 응답성 이온 복합체.
A polar cationic polymer containing an amino group in the repeating unit and the following formula 1:
[Formula 1]
(In the above formula, Ar is C6-C20 aryl, L2 is C1-C5 alkylene, and x is an integer of 1 to 3.):
A non-polar anionic compound represented by ; and a temperature- and oxidation-responsive ionic complex containing gold nanoparticles,
A temperature and oxidation responsive ionic complex, wherein the polar cationic polymer is polyethylene imine and the non-polar anionic compound is phenylthioacetic acid.
The temperature and oxidation responsive ion complex according to claim 1, wherein the temperature and oxidation responsive ion complex has a molar ratio of the amino group of the polar cationic polymer and the carboxyl group of the non-polar anionic compound of 2:8 to 5:5. Complex.
The temperature and oxidation responsive ionic complex according to claim 1, wherein the ionic complex is folated.
A temperature- and oxidation-responsive active ingredient carrier comprising the temperature- and oxidation-responsive ion complex of any one of claims 1, 3, and 5 and an active ingredient.
A pharmaceutical composition comprising the temperature- and oxidation-responsive active ingredient carrier of claim 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220018610A KR102671525B1 (en) | 2022-02-14 | 2022-02-14 | Temperature And Oxidation Responsive Active Ingredient Delivery System Comprising Polar Cationic polymer, Non-polar Anionic compound And Gold Nanoparticles, and Pharmaceutical Composition Comprising The Same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220018610A KR102671525B1 (en) | 2022-02-14 | 2022-02-14 | Temperature And Oxidation Responsive Active Ingredient Delivery System Comprising Polar Cationic polymer, Non-polar Anionic compound And Gold Nanoparticles, and Pharmaceutical Composition Comprising The Same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20230122224A KR20230122224A (en) | 2023-08-22 |
KR102671525B1 true KR102671525B1 (en) | 2024-05-31 |
Family
ID=87799989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220018610A Active KR102671525B1 (en) | 2022-02-14 | 2022-02-14 | Temperature And Oxidation Responsive Active Ingredient Delivery System Comprising Polar Cationic polymer, Non-polar Anionic compound And Gold Nanoparticles, and Pharmaceutical Composition Comprising The Same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102671525B1 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5296787B2 (en) * | 2007-07-19 | 2013-09-25 | オールエクセル,インコーポレイティド | Self-assembling amphiphilic polymers as anticancer agents |
KR101971426B1 (en) * | 2017-09-11 | 2019-04-24 | 강원대학교 산학협력단 | UV light and temperature-responsive self-assembled microsphere composed of water-soluble polymer and aromatic compound and method for production thereof |
-
2022
- 2022-02-14 KR KR1020220018610A patent/KR102671525B1/en active Active
Non-Patent Citations (1)
Title |
---|
The Polymer Society of Korea 추계학술대회 연구논문 초록집, 44(2), 1PS-76, 2019.10.09.* |
Also Published As
Publication number | Publication date |
---|---|
KR20230122224A (en) | 2023-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shu et al. | Tumor microenvironment triple-responsive nanoparticles enable enhanced tumor penetration and synergetic chemo-photodynamic therapy | |
Pei et al. | ROS-sensitive thioketal-linked polyphosphoester-doxorubicin conjugate for precise phototriggered locoregional chemotherapy | |
He et al. | Tailoring platinum (IV) amphiphiles for self-targeting all-in-one assemblies as precise multimodal theranostic nanomedicine | |
Yang et al. | Estrone-modified pH-sensitive glycol chitosan nanoparticles for drug delivery in breast cancer | |
Chen et al. | Pluronic-based functional polymeric mixed micelles for co-delivery of doxorubicin and paclitaxel to multidrug resistant tumor | |
Li et al. | Near-infrared light stimuli-responsive synergistic therapy nanoplatforms based on the coordination of tellurium-containing block polymer and cisplatin for cancer treatment | |
Yue et al. | Mitochondria-targeting near-infrared light-triggered thermosensitive liposomes for localized photothermal and photodynamic ablation of tumors combined with chemotherapy | |
Ravar et al. | Hyaluronic acid-coated liposomes for targeted delivery of paclitaxel, in-vitro characterization and in-vivo evaluation | |
Xia et al. | Redox-responsive micelles from disulfide bond-bridged hyaluronic acid-tocopherol succinate for the treatment of melanoma | |
Wang et al. | Low-molecular-weight protamine-modified PLGA nanoparticles for overcoming drug-resistant breast cancer | |
Chen et al. | Biocompatible cationic pullulan-g-desoxycholic acid-g-PEI micelles used to co-deliver drug and gene for cancer therapy | |
Cho et al. | Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic® for tumor-targeted delivery of docetaxel | |
Kim et al. | Gemcitabine-loaded DSPE-PEG-PheoA liposome as a photomediated immune modulator for cholangiocarcinoma treatment | |
Malhi et al. | Intracellular delivery of redox cycler-doxorubicin to the mitochondria of cancer cell by folate receptor targeted mitocancerotropic liposomes | |
Wen et al. | Nanocomposite liposomes containing quantum dots and anticancer drugs for bioimaging and therapeutic delivery: a comparison of cationic, PEGylated and deformable liposomes | |
Han et al. | Plasmid pORF-hTRAIL and doxorubicin co-delivery targeting to tumor using peptide-conjugated polyamidoamine dendrimer | |
Ihsanullah et al. | Stepwise-activatable hypoxia triggered nanocarrier-based photodynamic therapy for effective synergistic bioreductive chemotherapy | |
Deshpande et al. | Enhancing cubosome functionality by coating with a single layer of poly-ε-lysine | |
Paolino et al. | Supramolecular devices to improve the treatment of brain diseases | |
Wang et al. | Improved cancer phototheranostic efficacy of hydrophobic IR780 via parenteral route by association with tetrahedral nanostructured DNA | |
Shen et al. | A self-assembly nanodrug delivery system based on amphiphilic low generations of PAMAM dendrimers-ursolic acid conjugate modified by lactobionic acid for HCC targeting therapy | |
Wang et al. | Curcumin-loaded TPGS/F127/P123 mixed polymeric micelles for cervical cancer therapy: formulation, characterization, and in vitro and in vivo evaluation | |
Yu et al. | Polymeric nanoparticles of cholesterol-modified glycol chitosan for doxorubicin delivery: preparation and in-vitro and in-vivo characterization | |
Dzhardimalieva et al. | Recent advances in metallopolymer-based drug delivery systems | |
Kim et al. | Self-assembly prepared using an ion pair of poly (ethylene imine) and (phenylthio) acetic acid as a drug carrier for oxidation, temperature, and NIR-responsive release |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20220214 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20240318 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20240527 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20240529 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20240529 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |