KR102614125B1 - Method and system for controlling regeneration for fuelcell vehicle - Google Patents
Method and system for controlling regeneration for fuelcell vehicle Download PDFInfo
- Publication number
- KR102614125B1 KR102614125B1 KR1020160171586A KR20160171586A KR102614125B1 KR 102614125 B1 KR102614125 B1 KR 102614125B1 KR 1020160171586 A KR1020160171586 A KR 1020160171586A KR 20160171586 A KR20160171586 A KR 20160171586A KR 102614125 B1 KR102614125 B1 KR 102614125B1
- Authority
- KR
- South Korea
- Prior art keywords
- regenerative braking
- fuel cell
- cod heater
- voltage
- voltage line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 230000008929 regeneration Effects 0.000 title 1
- 238000011069 regeneration method Methods 0.000 title 1
- 230000001172 regenerating effect Effects 0.000 claims abstract description 120
- 239000000446 fuel Substances 0.000 claims abstract description 53
- 230000000903 blocking effect Effects 0.000 claims abstract description 11
- 239000002826 coolant Substances 0.000 claims description 17
- 230000020169 heat generation Effects 0.000 claims description 11
- 229910000831 Steel Inorganic materials 0.000 description 19
- 239000010959 steel Substances 0.000 description 19
- 238000010438 heat treatment Methods 0.000 description 10
- 238000001816 cooling Methods 0.000 description 9
- 238000013021 overheating Methods 0.000 description 9
- 239000002699 waste material Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/10—Dynamic electric regenerative braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/50—Charging stations characterised by energy-storage or power-generation means
- B60L53/53—Batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/50—Charging stations characterised by energy-storage or power-generation means
- B60L53/54—Fuel cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/30—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
- B60L58/32—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
- B60L58/33—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04037—Electrical heating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/547—Voltage
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/20—Fuel cells in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/40—Application of hydrogen technology to transportation, e.g. using fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Fuel Cell (AREA)
Abstract
회생제동 진입시 연료전지에의 공기유입을 차단하는 단계; 회생제동 에너지를 고전압배터리로 충전하는 단계; 고전압배터리가 만충 상태인 경우 COD히터를 고전압라인에 연결하는 단계; 및 회생제동 에너지에 따라 DC-DC컨버터를 통해 고전압라인의 전압을 제어하는 단계;를 포함하는 연료전지차량의 회생제동 제어방법 및 제어시스템이 소개된다.Blocking air inflow into the fuel cell when regenerative braking is initiated; Charging regenerative braking energy into a high-voltage battery; Connecting the COD heater to the high voltage line when the high voltage battery is fully charged; A regenerative braking control method and control system for a fuel cell vehicle including a step of controlling the voltage of a high voltage line through a DC-DC converter according to regenerative braking energy is introduced.
Description
본 발명은 장강판 회생 제동시 고전압 배터리 만충으로 회생제동 유지가 불가능한 경우 COD 히터를 연결하여 회생제동 에너지를 소모함으로써 주행 안정성 향상이 가능하고, COD 히터 연결을 통한 회생제동시 현재 회생제동량과 COD 히터 발열량을 유사하게 제어함으로써 불필요한 고전압 배터리 에너지 낭비를 막을 수 있으며, COD 히터 연결을 통한 회생제동시 현재 회생제동량에 맞도록 COD 히터 발열량을 축소시킴으로써 히터 과열 문제점을 억제할 수 있는 연료전지차량의 회생제동 제어방법 및 제어시스템에 관한 것이다.The present invention can improve driving stability by consuming regenerative braking energy by connecting a COD heater when it is impossible to maintain regenerative braking due to a full charge of the high-voltage battery during regenerative braking of a long steel plate, and when regenerative braking by connecting a COD heater, the current regenerative braking amount and COD By controlling the heater heating value similarly, unnecessary waste of high-voltage battery energy can be prevented, and when regenerative braking is performed by connecting a COD heater, the heater overheating problem can be suppressed by reducing the COD heater heating amount to match the current regenerative braking amount. It relates to regenerative braking control methods and control systems.
연료전지 차량에는 회생제동 에너지 저장 및 가속시 어시스트 목적으로 고전압 배터리가 보조 전원으로 사용되고 있다. 장강판 주행시 회생제동 에너지는 보조배터리로 충전하게 되고, 만충시에는 더 이상 회생제동 에너지를 저장할 수 없으므로 회생제동을 중단하게 되는데 이때 차량은 무부하 상태가 되어 차량이 가속되는 현상이 발생하여 주행 상품성이 저하된다. 이를 해결하기 위해 연료전지 COD 히터를 연결하여 회생제동 에너지를 COD 히터 발열을 통해 연속적으로 소모함으로써 회생제동 제어를 유지할 수 있다.In fuel cell vehicles, high-voltage batteries are used as auxiliary power sources to store regenerative braking energy and assist during acceleration. When driving on a steel plate, regenerative braking energy is charged to the auxiliary battery, and when fully charged, regenerative braking energy can no longer be stored, so regenerative braking is stopped. At this time, the vehicle is in an unloaded state and the vehicle accelerates, which reduces the driving marketability. It deteriorates. To solve this problem, regenerative braking control can be maintained by connecting a fuel cell COD heater and continuously consuming regenerative braking energy through COD heater heat generation.
하지만 종래 시스템 및 기술에서는 회생제동시 DC단 전압을 연료전지 OCV 수준으로 고정함으로써 COD 히터를 연속으로 사용시 회생제동량이 줄어들 경우 COD는 고전압배터리 전력까지 흡수하여 발열에너지로 소모하게 됨으로써 불필요한 에너지 낭비 및 COD 과열 우려가 있었다. COD 과열 감지시에는 COD 연결을 해제해야 하기 때문에 차량은 다시 무부하 상태로 복귀하여 주행 상품성이 저하되는 문제가 있었다.However, in conventional systems and technologies, the DC terminal voltage is fixed at the fuel cell OCV level during regenerative braking, so when the COD heater is continuously used and the amount of regenerative braking decreases, the COD absorbs the high-voltage battery power and consumes it as heat energy, resulting in unnecessary energy waste and COD. There was concern about overheating. When COD overheating is detected, the COD connection must be disconnected, so the vehicle returns to an unloaded state, which reduces driving performance.
상기의 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.The matters described as background technology above are only for the purpose of improving understanding of the background of the present invention, and should not be taken as recognition that they correspond to prior art already known to those skilled in the art.
본 발명은 이러한 문제점을 해결하기 위하여 제안된 것으로, 장강판 회생 제동시 고전압 배터리 만충으로 회생제동 유지가 불가능한 경우 COD 히터를 연결하여 회생제동 에너지를 소모함으로써 주행 안정성 향상이 가능하고, COD 히터 연결을 통한 회생제동시 현재 회생제동량과 COD 히터 발열량을 유사하게 제어함으로써 불필요한 고전압 배터리 에너지 낭비를 막을 수 있으며, COD 히터 연결을 통한 회생제동시 현재 회생제동량에 맞도록 COD 히터 발열량을 축소시킴으로써 히터 과열 문제점을 억제할 수 있는 연료전지차량의 회생제동 제어방법 및 제어시스템을 제공하고자 함이다.The present invention was proposed to solve this problem. During regenerative braking of long steel plates, when it is impossible to maintain regenerative braking due to a full charge of the high-voltage battery, driving stability can be improved by consuming regenerative braking energy by connecting a COD heater, and connecting the COD heater By controlling the current regenerative braking amount and COD heater heating amount similarly during regenerative braking, unnecessary waste of high-voltage battery energy can be prevented. When regenerative braking via COD heater connection, the heater overheating is reduced by reducing the COD heater heating amount to match the current regenerative braking amount. The purpose is to provide a regenerative braking control method and control system for fuel cell vehicles that can suppress problems.
상기의 목적을 달성하기 위한 본 발명에 따른 연료전지차량의 회생제동 제어방법은, 회생제동 진입시 연료전지에의 공기유입을 차단하는 단계; 회생제동 에너지를 고전압배터리로 충전하는 단계; 고전압배터리가 만충 상태인 경우 COD히터를 고전압라인에 연결하는 단계; 및 회생제동 에너지에 따라 DC-DC컨버터를 통해 고전압라인의 전압을 제어하는 단계;를 포함한다.To achieve the above object, a regenerative braking control method for a fuel cell vehicle according to the present invention includes the steps of blocking air inflow into the fuel cell when regenerative braking is entered; Charging regenerative braking energy into a high-voltage battery; Connecting the COD heater to the high voltage line when the high voltage battery is fully charged; and controlling the voltage of the high voltage line through a DC-DC converter according to the regenerative braking energy.
공기유입을 차단하는 단계에서는 공기블로워의 가동을 중지하고 공기라인밸브를 클로즈할 수 있다.In the step of blocking air inflow, the air blower can be stopped and the air line valve can be closed.
COD히터는 복수의 저항으로 구성되고, COD히터를 고전압라인에 연결하는 단계에서는 회생제동에너지에 따라 COD히터의 복수의 저항을 선택적으로 고전압라인에 연결할 수 있다.The COD heater is composed of a plurality of resistors, and in the step of connecting the COD heater to the high voltage line, the plurality of resistors of the COD heater can be selectively connected to the high voltage line depending on the regenerative braking energy.
COD히터를 고전압라인에 연결하는 단계 이후에는, 연료전지 냉각수 라인이 COD히터를 거치도록 냉각수 밸브를 제어하는 단계;를 더 포함할 수 있다.After connecting the COD heater to the high voltage line, the step of controlling the coolant valve so that the fuel cell coolant line passes through the COD heater may be further included.
냉각수 밸브를 제어하는 단계에서는 연료전지로 공급되는 냉각수가 COD히터로 공급되도록 냉각수 밸브를 제어할 수 있다.In the step of controlling the coolant valve, the coolant valve can be controlled so that the coolant supplied to the fuel cell is supplied to the COD heater.
고전압라인의 전압을 제어하는 단계에서는 아래의 수식에 따라 고전압라인의 전압을 결정할 수 있다.In the step of controlling the voltage of the high voltage line, the voltage of the high voltage line can be determined according to the formula below.
회생제동에너지(kW) = COD히터 발열량(kW) = Vdc 2 / RRegenerative braking energy (kW) = COD heater heat generation (kW) = V dc 2 / R
(여기서, Vdc 는 고전압라인의 전압이고, R은 COD히터의 저항값임)(Here, V dc is the voltage of the high voltage line, and R is the resistance value of the COD heater)
고전압라인의 전압을 제어하는 단계 이후에는, 회생제동이 종료되거나 고전압배터리가 만충 상태가 아닌 경우 COD히터의 고전압라인 연결을 해제하는 단계;를 더 포함할 수 있다.After the step of controlling the voltage of the high voltage line, the step of disconnecting the high voltage line of the COD heater may be further included when regenerative braking is terminated or the high voltage battery is not fully charged.
본 발명의 연료전지차량의 회생제동 제어시스템은, 연료전지와 고전압배터리를 연결하는 고전압라인에 선택적으로 연결되도록 마련된 COD히터; 및 회생제동 진입시 연료전지에의 공기유입을 차단하고, 회생제동 에너지를 고전압배터리로 충전하며, 고전압배터리가 만충 상태인 경우 COD히터를 고전압라인에 연결하고, 회생제동 에너지에 따라 DC-DC컨버터를 통해 고전압라인의 전압을 제어하는 제어부;를 포함한다.The regenerative braking control system for a fuel cell vehicle of the present invention includes a COD heater selectively connected to a high-voltage line connecting a fuel cell and a high-voltage battery; And when regenerative braking is entered, air inflow into the fuel cell is blocked, regenerative braking energy is charged to the high-voltage battery, and when the high-voltage battery is fully charged, the COD heater is connected to the high-voltage line, and the DC-DC converter is activated according to the regenerative braking energy. It includes a control unit that controls the voltage of the high voltage line.
본 발명의 연료전지차량의 회생제동 제어방법 및 제어시스템에 따르면, 장강판 회생 제동시 고전압 배터리 만충으로 회생제동 유지가 불가능한 경우 COD 히터를 연결하여 회생제동 에너지를 소모함으로써 주행 안정성 향상이 가능하고, COD 히터 연결을 통한 회생제동시 현재 회생제동량과 COD 히터 발열량을 유사하게 제어함으로써 불필요한 고전압 배터리 에너지 낭비를 막을 수 있으며, COD 히터 연결을 통한 회생제동시 현재 회생제동량에 맞도록 COD 히터 발열량을 축소시킴으로써 히터 과열 문제점을 억제할 수 있다.According to the regenerative braking control method and control system for a fuel cell vehicle of the present invention, when regenerative braking cannot be maintained due to a full charge of the high-voltage battery during regenerative braking of a long steel plate, driving stability can be improved by consuming regenerative braking energy by connecting a COD heater, When regenerative braking by connecting a COD heater, unnecessary waste of high-voltage battery energy can be prevented by controlling the current regenerative braking amount and COD heater heating amount similarly, and when regenerative braking by connecting a COD heater, the COD heater heating amount is adjusted to match the current regenerative braking amount. By reducing it, heater overheating problems can be suppressed.
도 1은 본 발명의 일 실시예에 따른 연료전지차량의 회생제동 제어시스템의 구성도.
도 2는 본 발명의 일 실시예에 따른 연료전지차량의 회생제동 제어방법의 순서도.
도 3은 고전압라인의 전압과 COD히터의 발열 에너지의 관계를 나타낸 그래프.
도 4는 본 발명의 일 실시예에 따른 연료전지차량의 회생제동 제어방법을 설명하기 위한 그래프.1 is a configuration diagram of a regenerative braking control system for a fuel cell vehicle according to an embodiment of the present invention.
Figure 2 is a flowchart of a regenerative braking control method for a fuel cell vehicle according to an embodiment of the present invention.
Figure 3 is a graph showing the relationship between the voltage of the high voltage line and the heat energy of the COD heater.
Figure 4 is a graph illustrating a regenerative braking control method for a fuel cell vehicle according to an embodiment of the present invention.
도 1은 본 발명의 일 실시예에 따른 연료전지차량의 회생제동 제어시스템의 구성도이고, 도 2는 본 발명의 일 실시예에 따른 연료전지차량의 회생제동 제어방법의 순서도이며, 도 3은 고전압라인의 전압과 COD히터의 발열 에너지의 관계를 나타낸 그래프이고, 도 4는 본 발명의 일 실시예에 따른 연료전지차량의 회생제동 제어방법을 설명하기 위한 그래프이다.Figure 1 is a configuration diagram of a regenerative braking control system for a fuel cell vehicle according to an embodiment of the present invention, Figure 2 is a flowchart of a regenerative braking control method for a fuel cell vehicle according to an embodiment of the present invention, and Figure 3 is It is a graph showing the relationship between the voltage of the high voltage line and the heat energy of the COD heater, and Figure 4 is a graph for explaining the regenerative braking control method of a fuel cell vehicle according to an embodiment of the present invention.
본 발명은 장강판 회생 제동시 고전압 배터리 만충으로 회생제동 유지가 불가능한 경우 COD 히터를 연결하여 회생제동 에너지를 소모함으로써 주행 안정성 향상이 가능하고, COD 히터 연결을 통한 회생제동시 현재 회생제동량과 COD 히터 발열량을 유사하게 제어함으로써 불필요한 고전압 배터리 에너지 낭비를 막을 수 있으며, COD 히터 연결을 통한 회생제동시 현재 회생제동량에 맞도록 COD 히터 발열량을 축소시킴으로써 히터 과열 문제점을 억제할 수 있는 연료전지차량의 회생제동 제어방법 및 제어시스템을 제공하고자 함이다.The present invention can improve driving stability by consuming regenerative braking energy by connecting a COD heater when it is impossible to maintain regenerative braking due to a full charge of the high-voltage battery during regenerative braking of a long steel plate, and when regenerative braking by connecting a COD heater, the current regenerative braking amount and COD By controlling the heater heating value similarly, unnecessary waste of high-voltage battery energy can be prevented, and when regenerative braking is performed by connecting the COD heater, the heater overheating problem can be suppressed by reducing the COD heater heating amount to match the current regenerative braking amount. The purpose is to provide a regenerative braking control method and control system.
도 1은 본 발명의 일 실시예에 따른 연료전지차량의 회생제동 제어시스템의 구성도로써, 본 발명의 연료전지차량의 회생제동 제어시스템은, 연료전지(100)와 고전압배터리(500)를 연결하는 고전압라인에 선택적으로 연결되도록 마련된 COD히터(700); 및 회생제동 진입시 연료전지(100)에의 공기유입을 차단하고, 회생제동 에너지를 고전압배터리(500)로 충전하며, 고전압배터리(500)가 만충 상태인 경우 COD히터(700)를 고전압라인에 연결하고, 회생제동 에너지에 따라 DC-DC컨버터(300)를 통해 고전압라인의 전압을 제어하는 제어부(900);를 포함한다.1 is a configuration diagram of a regenerative braking control system for a fuel cell vehicle according to an embodiment of the present invention. The regenerative braking control system for a fuel cell vehicle according to the present invention connects a
장강판 주행시 모터 회생제동 에너지는 고전압 배터리 충전 및 고전압 보기류에 공급된다. 고전압 배터리 만충시 고전압 배터리 충전을 중단하고, COD 히터류 릴레이를 연결하여 회생제동 에너지를 COD 히터 발열을 통해 소모한다. When driving on a steel plate, the motor regenerative braking energy is supplied to high-voltage battery charging and high-voltage auxiliary equipment. When the high-voltage battery is fully charged, charging of the high-voltage battery is stopped and the COD heater relay is connected to consume regenerative braking energy through COD heater heat generation.
장강판 주행시 FC Stop 모드 진입을 통해 공기 압축기 작동이 멈추고, 압력 제어밸브(120, 밀폐형)의 개도를 Close 방향으로 제어하여 주행시 차량 전면에서의 Ram Air 유입을 차단함으로써, 연료전지 전압을 매우 낮은 전압 레벨(0V 근처)로 떨어 뜨릴 수 있다. 캐소드에 공기 공급 없는 상태에서 애노드의 수소가 캐소드로 넘어오면서 캐소드 산소농도가 희박해진다. 장강판 주행시 COD 히터 릴레이를 연결할 경우 COD 히터 냉각이 필요하므로, 3방향 밸브(720, 냉각 유로를 연료전지 방향 또는 COD 히터 방향 선택할 수 있음)를 COD 히터 방향으로 제어하여 COD 히터 냉각 제어 모드로 변경한다.When driving on steel plates, the air compressor stops operating by entering FC Stop mode, and the opening degree of the pressure control valve (120, sealed) is controlled in the Close direction to block the inflow of ram air from the front of the vehicle while driving, reducing the fuel cell voltage to a very low voltage. It can be dropped to a level (near 0V). In a state where there is no air supply to the cathode, hydrogen from the anode flows over to the cathode, causing the cathode oxygen concentration to become diluted. When connecting the COD heater relay when driving a long steel plate, COD heater cooling is required, so change to COD heater cooling control mode by controlling the 3-way valve (720, cooling flow path can be selected in the direction of the fuel cell or COD heater) in the direction of the COD heater. do.
도 2는 본 발명의 일 실시예에 따른 연료전지차량의 회생제동 제어방법의 순서도로써, 본 발명에 따른 연료전지차량의 회생제동 제어방법은, 회생제동 진입시 연료전지에의 공기유입을 차단하는 단계(S100); 회생제동 에너지를 고전압배터리로 충전하는 단계(S100); 고전압배터리가 만충 상태인 경우 COD히터를 고전압라인에 연결하는 단계(S400); 및 회생제동 에너지에 따라 DC-DC컨버터를 통해 고전압라인의 전압을 제어하는 단계(S500);를 포함한다.Figure 2 is a flowchart of a regenerative braking control method for a fuel cell vehicle according to an embodiment of the present invention. The regenerative braking control method for a fuel cell vehicle according to the present invention includes the step of blocking air inflow into the fuel cell when regenerative braking is entered. (S100); Charging regenerative braking energy into a high-voltage battery (S100); When the high-voltage battery is fully charged, connecting the COD heater to the high-voltage line (S400); and controlling the voltage of the high voltage line through a DC-DC converter according to the regenerative braking energy (S500).
먼저 회생제동 진입시 연료전지에의 공기유입을 차단하는 단계(S100)를 수행한다. 공기유입을 차단하는 단계에서는 공기블로워의 가동을 중지하고 공기라인밸브를 클로즈할 수 있다. 공기라인밸브는 입구측 밸브 또는 출구측 밸브 또는 두 밸브를 모두 클로즈할 수 있다. 즉, 장강판 주행시 FC Stop 모드 진입을 통해 공기 압축기 작동이 멈추고, 압력 제어밸브(밀폐형)의 개도를 Close 방향으로 제어하여 주행시 차량 전면에서의 Ram Air 유입을 차단함으로써, 연료전지 전압을 매우 낮은 전압 레벨(0V 근처)로 떨어뜨릴 수 있다.First, a step (S100) is performed to block air inflow into the fuel cell when regenerative braking is entered. In the step of blocking air inflow, the air blower can be stopped and the air line valve can be closed. The air line valve can close the inlet side valve, the outlet side valve, or both valves. In other words, when driving on a steel plate, the air compressor stops operating by entering FC Stop mode, and the opening degree of the pressure control valve (sealed type) is controlled in the Close direction to block the inflow of ram air from the front of the vehicle while driving, reducing the fuel cell voltage to a very low voltage. It can be dropped to a level (near 0V).
그리고 회생제동 에너지를 고전압배터리로 충전하는 단계(S200)를 수행한다.Then, a step (S200) of charging the regenerative braking energy to the high voltage battery is performed.
여기서 만약 고전압배터리가 만충 상태인 경우(S300) COD히터를 고전압라인에 연결하는 단계(S400); 및 회생제동 에너지에 따라 DC-DC컨버터를 통해 고전압라인의 전압을 제어하는 단계(S500)를 수행한다. 고전압배터리의 만충조건은 따라 60~100% 정도에서 달라질 수 있을 것이다.Here, if the high-voltage battery is fully charged (S300), connecting the COD heater to the high-voltage line (S400); And a step (S500) of controlling the voltage of the high voltage line through a DC-DC converter according to the regenerative braking energy. The full charge condition of a high voltage battery may vary from 60 to 100% depending on the condition.
한편, COD히터는 복수의 저항으로 구성되고, COD히터를 고전압라인에 연결하는 단계에서는 회생제동에너지에 따라 COD히터의 복수의 저항을 선택적으로 고전압라인에 연결할 수 있다. 즉 2개의 저항으로 구성된 경우라면 1번저항, 2번저항 또는 1번과 2번 저항 모두를 연결하는 것이 가능하다. 고전압라인과 COD히터는 스위치로 연결하고, 제어부에서 그 스위치를 제어토록 할 수 있다.Meanwhile, the COD heater is composed of a plurality of resistors, and in the step of connecting the COD heater to the high voltage line, the plurality of resistors of the COD heater can be selectively connected to the high voltage line according to the regenerative braking energy. In other words, if it consists of two resistors, it is possible to connect resistor 1, resistor 2, or both resistors 1 and 2. The high voltage line and COD heater can be connected with a switch, and the switch can be controlled by the control unit.
한편, COD히터를 고전압라인에 연결하는 단계 이후에는, 연료전지 냉각수 라인이 COD히터를 거치도록 냉각수 밸브를 제어하는 단계를 더 포함할 수 있다. 그리고, 냉각수 밸브를 제어하는 단계에서는 연료전지로 공급되는 냉각수가 COD히터로 공급되도록 냉각수 밸브를 제어할 수 있다.Meanwhile, after connecting the COD heater to the high voltage line, a step of controlling the coolant valve so that the fuel cell coolant line passes through the COD heater may be further included. Also, in the step of controlling the coolant valve, the coolant valve can be controlled so that the coolant supplied to the fuel cell is supplied to the COD heater.
즉, 장강판 주행시 COD 히터 릴레이를 연결할 경우 COD 히터 냉각이 필요하므로, 3방향 밸브(냉각 유로를 연료전지 방향 또는 COD 히터 방향 선택할 수 있음)를 COD 히터 방향으로 제어하여 COD 히터 냉각 제어 모드로 변경한다. In other words, when connecting the COD heater relay when driving a long steel plate, COD heater cooling is required, so change to COD heater cooling control mode by controlling the 3-way valve (cooling flow path can be selected in the direction of the fuel cell or COD heater) in the direction of the COD heater. do.
한편, 고전압라인의 전압을 제어하는 단계에서는 아래의 수식에 따라 고전압라인의 전압을 결정할 수 있다.Meanwhile, in the step of controlling the voltage of the high voltage line, the voltage of the high voltage line can be determined according to the formula below.
회생제동에너지(kW) = COD히터 발열량(kW) = Vdc 2 / RRegenerative braking energy (kW) = COD heater heat generation (kW) = V dc 2 /R
(여기서, Vdc 는 고전압라인의 전압이고, R은 COD히터의 저항값임)(Here, V dc is the voltage of the high voltage line, and R is the resistance value of the COD heater)
도 3은 고전압라인의 전압과 COD히터의 발열 에너지의 관계를 나타낸 그래프로서, 저항 2개를 모두 연결한 경우와 저항 1개만을 연결한 경우의 고전압라인 전압과 COD히터 발열량의 관계를 나타낸다. 이에 따라, 고전압라인의 전압을 변경할 경우 즉, COD히터에 인가되는 전압을 변경할 경우 그 COD히터의 발열량도 변화하고, 그에 따라 소모되는 회생제동에너지의 양을 변경할 수 있음을 알 수 있다. 이에 관한 관계는 위 수식에 나타나 있다.Figure 3 is a graph showing the relationship between the voltage of the high voltage line and the heat energy of the COD heater. It shows the relationship between the high voltage line voltage and the heat generation amount of the COD heater when both resistors are connected and when only one resistor is connected. Accordingly, it can be seen that when the voltage of the high voltage line is changed, that is, when the voltage applied to the COD heater is changed, the heat generation amount of the COD heater also changes, and the amount of regenerative braking energy consumed can be changed accordingly. This relationship is shown in the formula above.
한편, 도 4는 본 발명의 일 실시예에 따른 연료전지차량의 회생제동 제어방법을 설명하기 위한 그래프로서, 이를 통해 고전압배터리가 만충인 상태에서도 필요한 만큼만 COD히터를 가동할 수 있고, 그에 따라 불필요하게 고전압배터리가 소모되는 현상을 방지할 수 있고 고전압배터리의 SOC는 만충상태를 유지할 수 있음을 알 수 있다.Meanwhile, Figure 4 is a graph illustrating a regenerative braking control method for a fuel cell vehicle according to an embodiment of the present invention. Through this, the COD heater can be operated only as needed even when the high-voltage battery is fully charged, and thus unnecessary. It can be seen that the high-voltage battery can be prevented from being consumed and the SOC of the high-voltage battery can be maintained in a fully charged state.
그리고, 고전압라인의 전압을 제어하는 단계 이후에는, 회생제동이 종료되거나 고전압배터리가 만충 상태가 아닌 경우 COD히터의 고전압라인 연결을 해제하는 단계(S600,S700);를 더 포함함으로써 정상적인 주행상황에 돌입하도록 한다.In addition, after the step of controlling the voltage of the high voltage line, a step (S600, S700) of disconnecting the high voltage line of the COD heater when regenerative braking is terminated or the high voltage battery is not fully charged is further included to maintain normal driving conditions. Let's rush in.
본 발명의 경우 "회생제동"이라고 표현하였지만, 장강판인 상황에서의 회생제동 상황으로 발명을 해석하는 것 역시 본 발명의 권리범위에 포함된다고 보아야 한다.In the case of the present invention, it is expressed as “regenerative braking,” but interpreting the invention as a regenerative braking situation in a long steel plate situation should also be considered to be included in the scope of the present invention.
종래 기술의 경우 장강판 회생제동시 DC단(고전압라인) 전압을 고정한 상태에서 회생제동을 실시함으로써 실제 회생제동량과 COD 소모전력간의 편차가 발생하여 COD 소모전력 대비 회생제동량이 적을 경우 고전압 배터리 에너지까지 COD 히터가 소모함으로써 불필요한 고전압 배터리 에너지 낭비 및 COD 과열 우려가 있었다.In the case of the prior art, when regenerative braking of long steel plates, regenerative braking is performed with the DC terminal (high voltage line) voltage fixed, so a deviation occurs between the actual regenerative braking amount and COD power consumption, and when the regenerative braking amount is less than the COD power consumption, the high voltage battery energy is used. As the COD heater was being consumed, there was a risk of unnecessary high-voltage battery energy being wasted and COD overheating.
종래 시스템의 경우 공기 압력 차단밸브가 없거나 완전한 차단이 불가능한 이유로 인해 장강판 주행시 차량 전면부를 통해 공기공급계로 Ram Air 유입이 존재하고, 이로 인해 연료전지 전압이 OCV 상태를 유지하게 된다. 이러한 이유로 회생제동시 DC단 전압을 연료전지 OCV 전압 수준으로 높게 유지하고 있어야만 연료전지에서 전류 발생이 없기 때문에 DC단 전압을 고정할 수 밖에 없는 제약이 있었다. In the case of the conventional system, due to the lack of an air pressure blocking valve or the impossibility of complete blocking, ram air flows into the air supply system through the front of the vehicle when driving on a steel plate, and this causes the fuel cell voltage to remain in the OCV state. For this reason, during regenerative braking, the DC voltage must be kept high at the fuel cell OCV voltage level so that no current is generated in the fuel cell, so there was a limitation in that the DC terminal voltage had to be fixed.
본 발명의 경우 공기 압력 차단밸브의 완전 밀폐가 가능해져 장강판 주행시 Ram Air 유입이 없으므로, 정지상태의 FC Stop과 마찬가지로 연료전지 전압은 수소 크로스오버에 의해 하강하게 된다. 이러한 이유로 인해 장강판 회생제동시 DC단 전압을 고전압 부품류 작동 범위 내에서는 가변할 수 있다.In the case of the present invention, the air pressure blocking valve can be completely sealed, so there is no ram air inflow during long steel plate driving, so the fuel cell voltage falls due to hydrogen crossover, just like FC Stop in the stationary state. For this reason, the DC terminal voltage during regenerative braking of long steel plates can be varied within the operating range of high-voltage components.
장강판 회생제동시 FC Stop 모드로 진입하여 공기 압축기 정지 및 공기 압력 제어밸브 차단을 통해 캐소드로의 공기 공급을 중단하고, Ram Air 유입을 차단한다. 장강판 회생제동시 고전압 배터리 만충지점 도달하면 COD 히터를 회생제동량에 따라 1개 또는 2개를 선택할 수 있다. COD 히터 회로가 1개인 경우는 1개 회로만 연결하고, 2개 이상인 경우 다단으로 선택 가능하다.During regenerative braking of long steel plates, FC Stop mode is entered to stop the air supply to the cathode and block the inflow of ram air by stopping the air compressor and blocking the air pressure control valve. When the high-voltage battery reaches the full charge point during regenerative braking of a long steel plate, one or two COD heaters can be selected depending on the amount of regenerative braking. If there is one COD heater circuit, only one circuit can be connected, and if there are two or more, multiple stages can be selected.
COD 히터 연결시 냉각을 위해 냉각계의 3방향 밸브를 히터 방향으로 제어하여 냉각펌프를 통해 순환하는 냉각수를 COD 히터측으로 흐르도록 한다. 연료전지는 FC Stop 상태이므로 냉각수 공급을 하지 않더라도 과열되지 않고, 현재 온도를 유지할 수 있다. COD 히터 발열을 통한 회생제동시 실제 회생제동량과 COD 발열량이 일치하도록 DC단 전압을 제어한다. DC단 전압을 가변함으로써 불필요한 고전압배터리 에너지 낭비 및 COD 과열 문제점을 방지할 수 있다. 장강판 주행이 종료되면 COD 회생제동 제어도 종료하고 일반 제어로 복귀한다.When connecting the COD heater, control the three-way valve of the cooling system in the direction of the heater for cooling so that the coolant circulating through the cooling pump flows toward the COD heater. Since the fuel cell is in the FC Stop state, it does not overheat and can maintain the current temperature even if coolant is not supplied. During regenerative braking through COD heater heat generation, the DC voltage is controlled to match the actual regenerative braking amount and COD heat generation amount. By varying the DC terminal voltage, unnecessary high-voltage battery energy waste and COD overheating problems can be prevented. When long steel plate driving ends, COD regenerative braking control also ends and returns to normal control.
본 발명의 연료전지차량의 회생제동 제어방법 및 제어시스템에 따르면, 장강판 회생 제동시 고전압 배터리 만충으로 회생제동 유지가 불가능한 경우 COD 히터를 연결하여 회생제동 에너지를 소모함으로써 주행 안정성 향상이 가능하고, COD 히터 연결을 통한 회생제동시 현재 회생제동량과 COD 히터 발열량을 유사하게 제어함으로써 불필요한 고전압 배터리 에너지 낭비를 막을 수 있으며, COD 히터 연결을 통한 회생제동시 현재 회생제동량에 맞도록 COD 히터 발열량을 축소시킴으로써 히터 과열 문제점을 억제할 수 있다.According to the regenerative braking control method and control system for a fuel cell vehicle of the present invention, when regenerative braking cannot be maintained due to a full charge of the high-voltage battery during regenerative braking of a long steel plate, driving stability can be improved by consuming regenerative braking energy by connecting a COD heater, When regenerative braking by connecting a COD heater, unnecessary waste of high-voltage battery energy can be prevented by controlling the current regenerative braking amount and COD heater heating amount similarly, and when regenerative braking by connecting a COD heater, the COD heater heating amount is adjusted to match the current regenerative braking amount. By reducing it, heater overheating problems can be suppressed.
본 발명의 특정한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 기술적 사상을 벗어나지 않는 한도 내에서, 본 발명이 다양하게 개량 및 변화될 수 있다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Although the present invention has been shown and described in relation to specific embodiments, it is known in the art that various improvements and changes can be made to the present invention without departing from the technical spirit of the present invention as provided by the following claims. This will be self-evident to those with ordinary knowledge.
100 : 연료전지 300 : DC-DC컨버터
500 : 고전압배터리 700 : COD히터
900 : 제어부100: Fuel cell 300: DC-DC converter
500: High voltage battery 700: COD heater
900: Control unit
Claims (8)
회생제동 에너지를 고전압배터리로 충전하는 단계;
고전압배터리가 만충 상태인 경우 COD히터를 고전압라인에 연결하는 단계; 및
회생제동 에너지에 따라 DC-DC컨버터를 통해 고전압라인의 전압을 제어하는 단계;를 포함하고,
고전압라인의 전압을 제어하는 단계에서는 아래의 수식에 따라, 회생제동에너지와 COD히터의 발열량이 일치하도록 고전압라인의 전압을 가변하여 결정하는 것을 특징으로 하는 연료전지차량의 회생제동 제어방법.
회생제동에너지(kW) = COD히터 발열량(kW) = Vdc 2 / R
(여기서, Vdc 는 고전압라인의 전압이고, R은 COD히터의 저항값임)Blocking air inflow into the fuel cell when regenerative braking is initiated;
Charging regenerative braking energy into a high-voltage battery;
Connecting the COD heater to the high voltage line when the high voltage battery is fully charged; and
Comprising: controlling the voltage of the high voltage line through a DC-DC converter according to the regenerative braking energy,
In the step of controlling the voltage of the high-voltage line, the regenerative braking control method for a fuel cell vehicle is characterized in that the voltage of the high-voltage line is varied and determined so that the regenerative braking energy and the heat generation amount of the COD heater match according to the formula below.
Regenerative braking energy (kW) = COD heater heat generation (kW) = V dc 2 / R
(Here, V dc is the voltage of the high voltage line, and R is the resistance value of the COD heater)
공기유입을 차단하는 단계에서는 공기블로워의 가동을 중지하고 공기라인밸브를 클로즈하는 것을 특징으로 하는 연료전지차량의 회생제동 제어방법.In claim 1,
A regenerative braking control method for a fuel cell vehicle, characterized in that in the step of blocking air inflow, the operation of the air blower is stopped and the air line valve is closed.
COD히터는 복수의 저항으로 구성되고, COD히터를 고전압라인에 연결하는 단계에서는 회생제동에너지에 따라 COD히터의 복수의 저항을 선택적으로 고전압라인에 연결하는 것을 특징으로 하는 연료전지차량의 회생제동 제어방법.In claim 1,
The COD heater is composed of a plurality of resistors, and in the step of connecting the COD heater to the high voltage line, the plurality of resistors of the COD heater are selectively connected to the high voltage line according to the regenerative braking energy. method.
COD히터를 고전압라인에 연결하는 단계 이후에는, 연료전지 냉각수 라인이 COD히터를 거치도록 냉각수 밸브를 제어하는 단계;를 더 포함하는 것을 특징으로 하는 연료전지차량의 회생제동 제어방법.In claim 1,
After connecting the COD heater to the high voltage line, the regenerative braking control method for a fuel cell vehicle further includes the step of controlling the coolant valve so that the fuel cell coolant line passes through the COD heater.
냉각수 밸브를 제어하는 단계에서는 연료전지로 공급되는 냉각수가 COD히터로 공급되도록 냉각수 밸브를 제어하는 것을 특징으로 하는 연료전지차량의 회생제동 제어방법.In claim 4,
A regenerative braking control method for a fuel cell vehicle, characterized in that in the step of controlling the coolant valve, the coolant valve is controlled so that the coolant supplied to the fuel cell is supplied to the COD heater.
고전압라인의 전압을 제어하는 단계 이후에는, 회생제동이 종료되거나 고전압배터리가 만충 상태가 아닌 경우 COD히터의 고전압라인 연결을 해제하는 단계;를 더 포함하는 것을 특징으로 하는 연료전지차량의 회생제동 제어방법.In claim 1,
After the step of controlling the voltage of the high voltage line, the step of disconnecting the high voltage line of the COD heater when regenerative braking is terminated or the high voltage battery is not fully charged; regenerative braking control of a fuel cell vehicle further comprising: method.
회생제동 진입시 연료전지에의 공기유입을 차단하고, 회생제동 에너지를 고전압배터리로 충전하며, 고전압배터리가 만충 상태인 경우 COD히터를 고전압라인에 연결하고, 회생제동 에너지에 따라 DC-DC컨버터를 통해 고전압라인의 전압을 제어하는 제어부;를 포함하고,
상기 제어부는,
회생제동에너지와 COD히터의 발열량이 일치하도록 고전압라인의 전압을 가변하여 결정하는 것을 특징으로 하는 연료전지차량의 회생제동 제어시스템.A COD heater provided to be selectively connected to the high-voltage line connecting the fuel cell and the high-voltage battery; and
When regenerative braking is entered, air inflow into the fuel cell is blocked, regenerative braking energy is charged to the high-voltage battery, and when the high-voltage battery is fully charged, the COD heater is connected to the high-voltage line, and depending on the regenerative braking energy, the DC-DC converter is used. It includes a control unit that controls the voltage of the high voltage line,
The control unit,
A regenerative braking control system for a fuel cell vehicle, characterized in that the voltage of the high voltage line is varied and determined to match the regenerative braking energy and the heat generation amount of the COD heater.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160171586A KR102614125B1 (en) | 2016-12-15 | 2016-12-15 | Method and system for controlling regeneration for fuelcell vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160171586A KR102614125B1 (en) | 2016-12-15 | 2016-12-15 | Method and system for controlling regeneration for fuelcell vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180069956A KR20180069956A (en) | 2018-06-26 |
KR102614125B1 true KR102614125B1 (en) | 2023-12-14 |
Family
ID=62788426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160171586A Active KR102614125B1 (en) | 2016-12-15 | 2016-12-15 | Method and system for controlling regeneration for fuelcell vehicle |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102614125B1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102633952B1 (en) * | 2018-12-11 | 2024-02-05 | 현대자동차주식회사 | Method for contorlling fuel cell system in emergency driving of fuel cell vehicle |
KR102692274B1 (en) | 2018-12-24 | 2024-08-05 | 현대자동차주식회사 | Method for controlling fuel cell system to prevent overheating of cathode oxygen depletion heater |
KR102758214B1 (en) * | 2023-06-09 | 2025-01-21 | 한국자동차연구원 | Regenreative braking device for downgill driving of fuel cell vehicle and regenerative braking control method for downgill driving of fuel cell vehicle |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012029464A (en) * | 2010-07-23 | 2012-02-09 | Toyota Motor Corp | Regenerative power generation control system for vehicle |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101251280B1 (en) * | 2011-07-21 | 2013-04-10 | 현대자동차주식회사 | Control method for ensured braking of fuel cell vehicle when regenerative braking |
-
2016
- 2016-12-15 KR KR1020160171586A patent/KR102614125B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012029464A (en) * | 2010-07-23 | 2012-02-09 | Toyota Motor Corp | Regenerative power generation control system for vehicle |
Also Published As
Publication number | Publication date |
---|---|
KR20180069956A (en) | 2018-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9865888B2 (en) | System and method for controlling temperature of fuel cell stack | |
KR101846632B1 (en) | Method for controlling voltage of fuelcell in stop-mode of fuelcell vehicle | |
US10106012B2 (en) | Air-conditioner for vehicle | |
KR102496804B1 (en) | Thermal management system of fuel cell vehicle | |
KR101859803B1 (en) | Fuel cell system and operation control method of the same | |
KR101835186B1 (en) | Fuel cell system and control method for fuel cell system | |
KR102507226B1 (en) | Cod control method and system for fuel cell | |
US10147960B2 (en) | Shut down system and control method of fuel cell vehicle | |
KR101822245B1 (en) | Control method of cooling pump for fuel cell system | |
KR102757852B1 (en) | Control system and control method of cold start for fuel cell | |
US20100167148A1 (en) | Temperature control system for fuel cell | |
US20210367246A1 (en) | Fuel cell system | |
KR102614125B1 (en) | Method and system for controlling regeneration for fuelcell vehicle | |
KR102602924B1 (en) | Operating control system and control method of fuel cell | |
KR102633952B1 (en) | Method for contorlling fuel cell system in emergency driving of fuel cell vehicle | |
US8402820B2 (en) | Diagnosis concept for valve controlled coolant bypass paths | |
KR20210072223A (en) | Power net system of the fuel cell and control method thereof | |
JP6515775B2 (en) | Fuel cell system | |
CN114179640B (en) | Power Systems | |
JP2016031776A (en) | Starting method of fuel cell system | |
KR102692274B1 (en) | Method for controlling fuel cell system to prevent overheating of cathode oxygen depletion heater | |
KR102598947B1 (en) | Fuel cell system and method for controlling therof | |
JP6444456B2 (en) | Starting method of fuel cell system | |
JP2019140854A (en) | Fuel cell system | |
JP5835151B2 (en) | Fuel cell system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20161215 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20211129 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20161215 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20230516 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20231030 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20231211 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20231211 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |