[go: up one dir, main page]

KR102609196B1 - 동적으로 재구성 가능한 멀티뷰 픽셀들을 갖는 멀티뷰 디스플레이 및 방법 - Google Patents

동적으로 재구성 가능한 멀티뷰 픽셀들을 갖는 멀티뷰 디스플레이 및 방법 Download PDF

Info

Publication number
KR102609196B1
KR102609196B1 KR1020217002755A KR20217002755A KR102609196B1 KR 102609196 B1 KR102609196 B1 KR 102609196B1 KR 1020217002755 A KR1020217002755 A KR 1020217002755A KR 20217002755 A KR20217002755 A KR 20217002755A KR 102609196 B1 KR102609196 B1 KR 102609196B1
Authority
KR
South Korea
Prior art keywords
view
light
view display
display
multibeam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020217002755A
Other languages
English (en)
Other versions
KR20210013770A (ko
Inventor
데이비드 에이. 파탈
Original Assignee
레이아 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 레이아 인코포레이티드 filed Critical 레이아 인코포레이티드
Publication of KR20210013770A publication Critical patent/KR20210013770A/ko
Application granted granted Critical
Publication of KR102609196B1 publication Critical patent/KR102609196B1/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/33Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving directional light or back-light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1323Arrangements for providing a switchable viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/32Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using arrays of controllable light sources; using moving apertures or moving light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • H04N13/351Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking for displaying simultaneously
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133601Illuminating devices for spatial active dimming
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133626Illuminating devices providing two modes of illumination, e.g. day-night

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)

Abstract

멀티뷰 디스플레이는 멀티뷰 디스플레이의 상이한 뷰 방향들에 대응되는 상이한 주 각도 방향들을 갖는 지향성 광빔들을 제공하도록 구성된 멀티빔 소자들의 어레이를 채용한다. 또한, 멀티뷰 디스플레이는 지향성 광빔들을 멀티뷰 디스플레이에 의하여 디스플레이될 멀티뷰 이미지로서 변조하도록 구성된 광 밸브들의 어레이를 포함하고, 멀티뷰 디스플레이의 하나의 멀티뷰 픽셀은 복수의 멀티빔 소자들 중 하나의 멀티빔 소자에 대응되는 광 밸브 어레이의 한 세트의 광 밸브들을 포함하고 그리고 멀티빔 소자로부터의 지향성 광빔들을 변조하도록 구성된다. 또한, 멀티뷰 픽셀의 형상은 동적 시야(FOV)를 갖는 멀티뷰 이미지를 제공하기 위하여 동적으로 재구성될 수 있다. FOV는 멀티뷰 디스플레이의 모니터링된 배향, 멀티뷰 디스플레이에 대한 사용자의 모니터링된 위치 또는 이들 둘 모두를 기반으로 수정될 수 있다.

Description

동적으로 재구성 가능한 멀티뷰 픽셀들을 갖는 멀티뷰 디스플레이 및 방법
관련 출원에 대한 상호 참조
N/A
연방 후원 연구 또는 개발에 관한 진술
N/A
전자 디스플레이들은 매우 다양한 기기들 및 제품들의 사용자들에게 정보를 전달하기 위한 아주 보편적인 매체이다. 가장 일반적으로 이용되는 전자 디스플레이들은 음극선관(cathode ray tube; CRT), 플라즈마 디스플레이 패널(plasma display panel; PDP), 액정 디스플레이(liquid crystal display; LCD), 전계 발광(electroluminescent; EL) 디스플레이, 유기 발광 다이오드(organic light emitting diode; OLED) 및 능동 매트릭스(active matrix) OLED(AMOLED) 디스플레이, 전기 영동(electrophoretic; EP) 디스플레이 및 전자 기계(electromechanical) 또는 전자 유체(electrofluidic) 광 변조를 이용하는 다양한 디스플레이들(예를 들어, 디지털 미세거울(micromirror) 기기, 전기 습윤(electrowetting) 디스플레이 등)을 포함한다. 일반적으로, 전자 디스플레이들은 능동형 디스플레이들(즉, 광을 방출하는 디스플레이들) 또는 수동형 디스플레이들(즉, 다른 원천에 의하여 제공되는 광을 변조하는 디스플레이들)로 분류될 수 있다. 능동형 디스플레이들의 가장 명백한 예들로는 CRT, PDP 및 OLED/AMOLED가 있다. 방출광을 고려하면 일반적으로 수동형으로 분류되는 디스플레이들은 LCD 및 EP 디스플레이들이다. 수동형 디스플레이들은 본질적으로 낮은 전력 소모를 포함하는, 그러나 이에 제한되지 않는, 매력적인 성능 특성들을 종종 나타내지만, 광을 방출하는 능력이 부족한 많은 실제 응용들에서 다소 제한적으로 사용될 수 있다.
방출광과 관련된 수동형 디스플레이들의 한계들을 극복하기 위하여, 많은 수동형 디스플레이들이 외부 광원과 결합된다. 결합된 광원은 이러한 다른 수동형 디스플레이들이 광을 방출하고 실질적으로 능동형 디스플레이로서 기능하게끔 한다. 이러한 결합된 광원들의 예들은 백라이트들이다. 백라이트는 수동형 디스플레이를 조명하기 위하여 수동형 디스플레이 뒤에 배치되는 광의 원천(종종 패널 백라이트)으로서 기능할 수 있다. 예를 들어, 백라이트는 LCD 또는 EP 디스플레이에 결합될 수 있다. 백라이트는 LCD 또는 EP 디스플레이를 통과하는 광을 방출한다. 방출된 광은 LCD 또는 EP 디스플레이에 의하여 변조되고, 이후 변조된 광은 LCD 또는 EP 디스플레이로부터 방출된다. 백라이트들은 종종 백색 광을 방출하도록 구성된다. 이후, 컬러 필터들이 백색 광을 디스플레이에서 이용되는 다양한 컬러들로 변환하는 데 이용된다. 예를 들어, 컬러 필터들은 LCD 또는 EP 디스플레이의 출력에 배치되거나(덜 일반적임), 또는 백라이트와 LCD 또는 EP 디스플레이의 사이에 배치될 수 있다. 대안적으로, 다양한 컬러들은 원색들과 같은 상이한 컬러들을 이용하는 디스플레이의 필드-순차(field-sequential) 조명에 의하여 구현될 수 있다.
본 명세서에 설명된 원리들에 따른 예들 및 실시 예들의 다양한 특징들은 동일한 도면 부호가 동일한 구조적 요소를 나타내는 첨부된 도면과 관련하여 취해진 다음의 상세한 설명을 참조하여 보다 용이하게 이해될 수 있다.
도 1a는 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 일 예로서 멀티뷰 디스플레이의 사시도를 도시한다.
도 1b는 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 일 예로서 멀티뷰 디스플레이의 뷰 방향에 대응되는 특정 주 각도 방향을 갖는 광빔의 각도 성분들의 그래픽 표현을 도시한다.
도 2는 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 일 예로서 회절 격자의 단면도를 도시한다.
도 3a는 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 일 예로서 멀티뷰 디스플레이의 단면도를 도시한다.
도 3b는 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 일 예로서 멀티뷰 디스플레이의 평면도를 도시한다.
도 3c는 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 일 예로서 멀티뷰 디스플레이의 사시도를 도시한다.
도 4a는 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 일 예로서 동적으로 재구성 가능한 형상을 갖는 멀티뷰 픽셀의 평면도를 도시한다.
도 4b는 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 다른 예로서 동적으로 재구성 가능한 형상을 갖는 멀티뷰 픽셀의 평면도를 도시한다.
도 4c는 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 다른 예로서 동적으로 재구성 가능한 형상을 갖는 멀티뷰 픽셀의 평면도를 도시한다.
도 4d는 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 다른 예로서 동적으로 재구성 가능한 형상을 갖는 멀티뷰 픽셀의 평면도를 도시한다.
도 5a는 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 일 예로서 동적으로 재구성 가능한 형상을 갖는 멀티뷰 픽셀의 평면도를 도시한다.
도 5b는 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 다른 예로서 동적으로 재구성 가능한 형상을 갖는 멀티뷰 픽셀의 평면도를 도시한다.
도 6a는 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 일 예로서 멀티빔 소자의 단면도를 도시한다.
도 6b는 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 다른 예로서 멀티빔 소자의 단면도를 도시한다.
도 6c는 본 명세서에 설명된 원리들에 일치하는 다른 실시 예에 따른 일 예로서 멀티빔 소자의 단면도를 도시한다.
도 6d는 본 명세서에 설명된 원리들에 일치하는 다른 실시 예에 따른 다른 예로서 멀티빔 소자의 단면도를 도시한다.
도 7은 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 일 예로서 멀티뷰 디스플레이의 블록도를 도시한다.
도 8은 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 일 예로서 멀티뷰 디스플레이의 동작 방법의 흐름도를 도시한다.
일부 예들 및 실시 예들은 상술한 도면들에 도시된 특징들에 부가되거나 그 대신에 포함되는 다른 특징들을 가질 수 있다. 이들 및 다른 특징들은 상술한 도면을 참조하여 이하에서 설명된다.
본 명세서에 설명된 원리들에 따른 예들 및 실시 예들은 동적으로 재구성 가능한 멀티뷰 픽셀들을 이용하는 멀티뷰 또는 3차원(3D) 디스플레이를 제공한다. 특히, 본 명세서에 설명된 원리들에 일치하는 실시 예들은 멀티뷰 디스플레이의 상이한 뷰 방향들에 대응되는 상이한 주 각도 방향들을 갖는 지향성 광빔들을 제공하도록 구성된 멀티빔 소자들의 어레이를 이용하는 멀티뷰 디스플레이를 제공한다. 다양한 실시 예들에 따르면, 멀티빔 소자들 각각은 회절 격자, 미세 반사 소자 및 미세 굴절 소자 중 하나 이상을 포함한다. 또한, 다양한 실시 예들에 따르면, 멀티뷰 디스플레이는 멀티뷰 디스플레이에 의해 디스플레이될 멀티뷰 이미지로서 지향성 광빔들을 변조하도록 구성된 광 밸브들의 어레이를 포함하고, 멀티뷰 디스플레이의 하나의 멀티뷰 픽셀은, 복수의 멀티빔 소자들 중 하나의 멀티빔 소자에 대응되고 그리고 그 멀티빔 소자로부터의 지향성 광빔들을 변조하도록 구성되는, 광 밸브 어레이 중 한 세트의 광 밸브들을 포함한다. 또한, 다양한 실시 예들에 따르면, 멀티뷰 픽셀의 형상은 동적 시야(field of view; FOV)를 갖는 멀티뷰 이미지를 제공하기 위해 동적으로 재구성될 수 있다. 예를 들어, FOV는 멀티뷰 디스플레이의 모니터링된 배향(orientation), 멀티뷰 디스플레이에 대한 사용자의 모니터링된 위치, 또는 둘 모두에 기반하여 수정될 수 있다.
본 명세서에서, '멀티뷰 디스플레이(multiview display)'는 상이한 뷰 방향들로 멀티뷰 이미지의 상이한 뷰들을 제공하도록 구성된 전자 디스플레이 또는 디스플레이 시스템으로서 정의된다. 도 1a는 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 일 예로서 멀티뷰 디스플레이(10)의 사시도를 도시한다. 도 1a에 도시된 바와 같이, 멀티뷰 디스플레이(10)는 보여질 멀티뷰 이미지를 디스플레이하기 위한 스크린(12)을 포함한다. 멀티뷰 디스플레이(10)는 멀티뷰 이미지의 상이한 뷰들(14)을 스크린(12)에 대하여 상이한 뷰 방향들(16)로 제공한다. 뷰 방향들(16)은 스크린(12)으로부터 여러 상이한 주 각도 방향들로 연장되는 화살표들로서 도시되었고, 상이한 뷰들(14)은 화살표들(즉, 뷰 방향들(16)을 묘사함)의 말단에 다각형 박스들로서 도시되었으며, 제한이 아닌 예로서 단지 4개의 뷰들(14) 및 4개의 뷰 방향들(16)이 도시되었다. 도 1a에는 상이한 뷰들(14)이 스크린 위에 있는 것으로 도시되었으나, 멀티뷰 이미지가 멀티뷰 디스플레이(10) 상에 디스플레이되는 경우 뷰들(14)은 실제로 스크린(12) 상에 또는 스크린(12)의 부근에 나타날 수 있다는 것에 유의한다. 뷰들(14)을 스크린(12) 위에 묘사한 것은 단지 도시의 간략화를 위한 것이며, 특정 뷰(14)에 대응되는 개별적인 뷰 방향들(16)로부터 멀티뷰 디스플레이(10)를 보는 것을 나타내기 위함이다.
본 명세서의 정의에 의하면, 뷰 방향 또는 대등하게는 멀티뷰 디스플레이의 뷰 방향에 대응되는 방향을 갖는 광빔은 일반적으로 각도 성분들(angular components) {θ, φ}로 주어지는 주 각도 방향을 갖는다. 본 명세서에서, 각도 성분(θ)은 광빔의 '고도 성분(elevation component)' 또는 '고도각(elevation angle)'으로 언급된다. 각도 성분(φ)은 광빔의 '방위 성분(azimuth component)' 또는 '방위각(azimuth angle)'으로 언급된다. 정의에 의하면, 고도각(θ)은 수직 평면(예를 들어, 멀티뷰 디스플레이 스크린의 평면에 수직인)에서의 각도이고, 방위각(φ)은 수평 평면(예를 들어, 멀티뷰 디스플레이 스크린의 평면에 평행인)에서의 각도이다. 도 1b는 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 일 예로서 멀티뷰 디스플레이의 뷰 방향(예를 들어, 도 1a의 뷰 방향(16))에 대응되는 특정 주 각도 방향을 갖는 광빔(20)의 각도 성분들 {θ, φ}의 그래픽 표현을 도시한다. 또한, 본 명세서의 정의에 의하면, 광빔(20)은 특정 지점으로부터 방출되거나 발산된다. 즉, 정의에 의하면, 광빔(20)은 멀티뷰 디스플레이 내의 특정 원점(point of origin)과 관련된 중심 광선(central ray)을 갖는다. 또한, 도 1b는 광빔(또는 뷰 방향)의 원점(O)을 도시한다.
또한, 본 명세서에서, '멀티뷰 이미지(multiview image)' 및 '멀티뷰 디스플레이(multiview display)'라는 용어들에서 사용된 바와 같은 '멀티뷰(multiview)'라는 용어는 복수의 뷰들의 뷰들 간의 각도 차이(angular disparity)를 포함하거나 상이한 시점들(perspectives)을 나타내는 복수의 뷰들로서 정의된다. 또한, 본 명세서의 정의에 의하면, 본 명세서에서 '멀티뷰'라는 용어는 3개 이상의 상이한 뷰들(즉, 최소 3개의 뷰들로서 일반적으로 4개 이상의 뷰들)을 명백히 포함한다. 따라서, 본 명세서에서 사용된 바와 같은 '멀티뷰 디스플레이'는 장면 또는 이미지를 나타내기 위하여 단지 2개의 상이한 뷰들만을 포함하는 스테레오스코픽(stereoscopic) 디스플레이와는 명백히 구분된다. 그러나, 본 명세서의 정의에 의하면, 멀티뷰 이미지들 및 멀티뷰 디스플레이들은 3개 이상의 뷰들을 포함하지만, 멀티뷰의 뷰들 중 단지 2개만을 동시에 보게끔(예를 들어, 하나의 눈 당 하나의 뷰) 선택함으로써 멀티뷰 이미지들이 (예를 들어, 멀티뷰 디스플레이 상에서) 스테레오스코픽 쌍의 이미지들(stereoscopic pair of images)로 보일 수 있다는 것에 유의한다.
본 명세서에서, '멀티뷰 픽셀(multiview pixel)'은 멀티뷰 디스플레이의 복수의 상이한 뷰들의 각각의 뷰의 '뷰(view)' 픽셀들을 나타내는 한 세트 또는 그룹의 서브 픽셀들(sub-pixels)(광 밸브들과 같은)로서 정의된다. 특히, 멀티뷰 픽셀은 멀티뷰 이미지의 상이한 뷰들 각각의 뷰 픽셀에 대응되거나 그 뷰 픽셀을 나타내는 개별 서브 픽셀을 가질 수 있다. 또한, 본 명세서의 정의에 의하면, 멀티뷰 픽셀의 서브 픽셀들은, 서브 픽셀들 각각이 상이한 뷰들 중 대응되는 하나의 뷰의 정해진(predetermined) 뷰 방향과 관련된다는 점에서 소위 '지향성 픽셀들(directional pixels)'이다. 또한, 다양한 예들 및 실시 예들에 따르면, 멀티뷰 픽셀의 서브 픽셀들에 의하여 나타나는 상이한 뷰 픽셀들은 상이한 뷰들 각각에서 대등한 또는 적어도 실질적으로 유사한 위치들 또는 좌표들을 가질 수 있다. 예를 들어, 제 1 멀티뷰 픽셀은 멀티뷰 이미지의 상이한 뷰들 각각의 {x 1, y 1}에 위치하는 뷰 픽셀들에 대응되는 개별 서브 픽셀들을 가질 수 있고, 제 2 멀티뷰 픽셀은 상이한 뷰들 각각의 {x 2, y 2}에 위치하는 뷰 픽셀들에 대응되는 개별 서브 픽셀들을 가질 수 있다.
일부 실시 예들에서, 멀티뷰 픽셀 내의 서브 픽셀들의 개수는 멀티뷰 디스플레이의 상이한 뷰들의 개수와 동일할 수 있다. 예를 들어, 멀티뷰 픽셀은 64개의 상이한 뷰들을 갖는 멀티뷰 디스플레이와 관련된 64개의 서브 픽셀들을 제공할 수 있다. 다른 예에서, 멀티뷰 디스플레이는 8x4 어레이의 뷰들(즉, 32개의 뷰들)을 제공할 수 있고, 멀티뷰 픽셀은 32개의 서브 픽셀들을 포함(즉, 각각의 뷰마다 하나)할 수 있다. 추가적으로, 각각의 상이한 서브 픽셀은, 예를 들어 64개의 상이한 뷰들에 대응되는 뷰 방향들 중 상이한 하나에 대응되는, 관련 방향(즉, 광빔의 주 각도 방향)을 가질 수 있다. 또한, 일부 실시 예들에 따르면, 멀티뷰 디스플레이의 멀티뷰 픽셀들의 개수는 멀티뷰 디스플레이의 뷰들 내의 '뷰' 픽셀들(즉, 선택된 뷰를 구성하는 픽셀들)의 개수와 실질적으로 동일할 수 있다. 예를 들어, 뷰가 640x480개의 뷰 픽셀들(즉, 640x480의 뷰 해상도)을 포함하는 경우, 멀티뷰 디스플레이는 307,200개의 멀티뷰 픽셀들을 가질 수 있다. 다른 예에서, 뷰들이 100x100개의 픽셀들을 포함하는 경우, 멀티뷰 디스플레이는 도합 10,000개(즉, 100x100=10,000)의 멀티뷰 픽셀들을 포함할 수 있다.
이하의 논의에서, 멀티뷰 픽셀의 형상은, 예를 들어 멀티뷰 디스플레이의 모니터링된 배향, 멀티뷰 디스플레이에 대한 사용자의 모니터링된 위치, 및 멀티뷰 디스플레이 상에 디스플레이되는 컨텐츠 중 하나 이상을 기반으로, 재구성될 수 있다. 결과적으로, 멀티뷰 픽셀은 광 밸브들의 개별적인 어레이 상에 구현될 수 있는 임의의 형상을 가질 수 있다(예를 들어, 임의의 계단식(step-wise) 형상).
본 명세서에서, '도광체(light guide)'는 내부 전반사(total internal reflection)를 이용하여 그 내에서 광을 안내하는 구조물로서 정의된다. 특히, 도광체는 도광체의 동작 파장(operational wavelength)에서 실질적으로 투명한 코어(core)를 포함할 수 있다. '도광체'라는 용어는 일반적으로 도광체의 유전체 재료와 도광체를 둘러싸는 재료 또는 매질 사이의 경계에서 광을 안내하기 위하여 내부 전반사를 이용하는 유전체 광학 도파로(dielectric optical waveguide)를 지칭한다. 정의에 의하면, 내부 전반사를 위한 조건은 도광체의 굴절률이 도광체 재료의 표면에 인접한 주변 매질의 굴절률보다 커야 한다는 것이다. 일부 실시 예들에서, 도광체는 내부 전반사를 더 용이하게 하기 위하여 전술한 굴절률 차이에 부가하여 또는 그에 대신하여 코팅(coating)을 포함할 수 있다. 예를 들어, 코팅은 반사 코팅일 수 있다. 도광체는 판(plate) 또는 슬래브(slab) 가이드 및 스트립(strip) 가이드 중 하나 또는 모두를 포함하는, 그러나 이에 제한되지 않는, 다양한 도광체들 중 임의의 것일 수 있다.
또한, 본 명세서에서, '판 도광체(plate light guide)'에서와 같이 도광체에 적용되는 경우의 '판(plate)'이라는 용어는, 종종 '슬래브' 가이드로 지칭되는, 한 장씩의(piece-wise) 또는 구분적으로 평면인(differentially planar) 층 또는 시트로서 정의된다. 특히, 판 도광체는 도광체의 상단 표면 및 하단 표면(즉, 대향면들)에 의하여 경계를 이루는 2개의 실질적으로 직교하는 방향들로 광을 안내하도록 구성된 도광체로서 정의된다. 또한, 본 명세서의 정의에 의하면, 상단 및 하단 표면들은 서로 떨어져 있고 적어도 구별적인 의미에서 서로 실질적으로 평행할 수 있다. 즉, 판 도광체의 임의의 구별적으로 작은 섹션 내에서, 상단 및 하단 표면들은 실질적으로 평행하거나 공면(co-planar) 상에 있다.
일부 실시 예들에서, 판 도광체는 실질적으로 편평할 수 있고(즉, 평면에 국한됨), 따라서 판 도광체는 평면형 도광체이다. 다른 실시 예들에서, 판 도광체는 1개 또는 2개의 직교하는 차원들로 만곡될 수 있다. 예를 들어, 판 도광체는 단일 차원으로 만곡되어 원통형 형상의 판 도광체를 형성할 수 있다. 그러나, 어떠한 곡률이든 광을 안내하기 위하여 판 도광체 내에서 내부 전반사가 유지되는 것을 보장하기에 충분히 큰 곡률 반경을 갖는다.
본 명세서에서, '회절 격자(diffraction grating)'는 회절 격자 상에 입사하는 광의 회절을 제공하기 위하여 배열된 복수의 특징부들(즉, 회절 특징부들)로서 광범위하게 정의된다. 일부 예들에서, 복수의 특징부들은 주기적 방식 또는 준-주기적 방식으로 배열될 수 있다. 다른 예들에서, 회절 격자는 복수의 회절 격자들을 포함하는 혼합-주기(mixed-period) 회절 격자일 수 있고, 복수의 회절 격자들의 각각의 회절 격자는 특징부들의 상이한 주기적 배열을 가질 수 있다. 또한, 회절 격자는 1차원(one-dimensional; 1D) 어레이로 배열된 복수의 특징부들(예를 들어, 재료 표면 내의 복수의 홈들(grooves) 또는 융기들(ridges))을 포함할 수 있다. 대안적으로, 회절 격자는 특징부들의 2차원(two-dimensional; 2D) 어레이 또는 2차원으로 정의된 특징부들의 어레이를 포함할 수 있다. 예를 들어, 회절 격자는 재료 표면 상의 돌출들(bumps) 또는 재료 표면 내의 구멍들(holes)의 2D 어레이일 수 있다. 일부 예들에서, 회절 격자는 제 1 방향 또는 제 1 차원으로 실질적으로 주기적일 수 있고, 회절 격자를 가로지르는 또는 회절 격자를 따르는 다른 방향으로 실질적으로 비주기적(예를 들어, 일정한, 무작위적인 등)일 수 있다.
이와 같이, 그리고 본 명세서의 정의에 의하면, '회절 격자(diffraction grating)'는 회절 격자 상에 입사하는 광의 회절을 제공하는 구조물이다. 광이 도광체로부터 회절 격자 상에 입사하면, 제공된 회절 또는 회절적 산란(diffractive scattering)은 회절 격자가 회절에 의하여 도광체로부터 광을 커플 아웃(couple out)시킬 수 있다는 점에서 '회절적 커플링(diffractive coupling)'을 야기할 수 있으며, 따라서 그와 같이 지칭될 수 있다. 또한, 회절 격자는 회절에 의하여(즉, 회절각(diffractive angle)으로) 광의 각도를 재지향시키거나 변경시킨다. 특히, 회절의 결과로서, 회절 격자를 떠나는 광은 일반적으로 회절 격자 상에 입사하는 광(즉, 입사광)의 전파 방향과는 상이한 전파 방향을 갖는다. 본 명세서에서, 회절에 의한 광의 전파 방향의 변경은 '회절적 재지향(diffractive redirection)'으로 언급된다. 따라서, 회절 격자는 회절 격자 상에 입사하는 광을 회절적으로 재지향시키는 회절 특징부들을 포함하는 구조물인 것으로 이해될 수 있으며, 도광체로부터 광이 입사되면 회절 격자는 또한 도광체로부터의 광을 회절적으로 커플 아웃시킬 수 있다.
또한, 본 명세서의 정의에 의하면, 회절 격자의 특징부들은 '회절 특징부들(diffractive features)'로 언급되고, 재료 표면(즉, 2개의 재료들 사이의 경계)에, 표면 내에 및 표면 상에 중 하나 이상에 있을 수 있다. 예를 들어, 표면은 도광체의 표면일 수 있다. 회절 특징부들은 표면의, 표면 내의 또는 표면 상의 홈들, 융기들, 구멍들 및 돌출들 중 하나 이상을 포함하는, 그러나 이에 제한되지 않는, 광을 회절시키는 다양한 구조물들 중 임의의 것을 포함할 수 있다. 예를 들어, 회절 격자는 재료 표면 내에 복수의 실질적으로 평행한 홈들을 포함할 수 있다. 다른 예에서, 회절 격자는 재료 표면으로부터 상승하는 복수의 평행한 융기들을 포함할 수 있다. 회절 특징부들(예를 들어, 홈들, 융기들, 구멍들, 돌출들 등)은 정현파 프로파일, 직사각형 프로파일(예를 들어, 이진 회절 격자), 삼각형 프로파일 및 톱니 프로파일(예를 들어, 블레이즈 격자) 중 하나 이상을 포함하는, 그러나 이에 제한되지 않는, 회절을 제공하는 다양한 단면 형상들 또는 프로파일들 중 임의의 것을 가질 수 있다.
본 명세서에 설명된 다양한 예들에 따르면, 회절 격자(예를 들어, 후술될 바와 같은 회절적 멀티빔 소자의 회절 격자)는 도광체(예를 들어, 판 도광체)로부터의 광을 광빔으로서 회절적으로 산란 또는 커플 아웃시키기 위하여 이용될 수 있다. 특히, 국부적으로 주기적인 회절 격자의 또는 이에 의하여 제공되는 회절각(diffraction angle; θ m )은 식(1)으로 주어질 수 있다.
(1)
여기서, λ는 광의 파장, m은 회절 차수, n은 도광체의 굴절률, d는 회절 격자의 특징부들 간의 거리 또는 간격, θ i 는 회절 격자 상의 광의 입사각이다. 간략화를 위하여, 식(1)은 회절 격자가 도광체의 표면에 인접하고 도광체 외부의 재료의 굴절률은 1인 것(즉, n out = 1)으로 가정한다. 일반적으로, 회절 차수(m)는 정수로 주어진다(즉, m = ± 1, ± 2, ...). 회절 격자에 의하여 생성되는 광빔의 회절각(θ m )은 식(1)으로 주어질 수 있다. 회절 차수(m)가 1인 경우(즉, m = 1) 1차 회절, 더 구체적으로는 1차 회절각(θ m )이 제공된다.
도 2는 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 일 예로서 회절 격자(30)의 단면도를 도시한다. 예를 들어, 회절 격자(30)는 도광체(40)의 표면 상에 위치할 수 있다. 또한, 도 2는 입사각(θi)으로 회절 격자(30) 상에 입사되는 광빔(20)을 도시한다. 광빔(20)은 도광체(40) 내의 안내된 광빔이다. 또한, 도 2에는 입사 광빔(20)의 회절의 결과로서 회절 격자(30)에 의하여 회절적으로 생성되고 커플 아웃 또는 산란된 지향성 광빔(50)이 도시되었다. 지향성 광빔(50)은 식(1)으로 주어진 바와 같은 회절각(θm)(또는 본 명세서에서 '주 각도 방향(principal angular direction)')을 갖는다. 예를 들어, 지향성 광빔(50)은 회절 격자(30)의 회절 차수 'm'에 대응될 수 있다.
또한, 일부 실시 예들에 따르면, 회절 특징부들은 만곡될 수 있고 또한 광의 전파 방향에 대하여 정해진 배향(예를 들어, 경사 또는 회전)을 가질 수 있다. 예를 들어, 회절 특징부들의 커브(curve) 및 회절 특징부들의 배향 중 하나 또는 모두는 회절 격자에 의하여 산란되는 광의 방향을 제어하도록 구성될 수 있다. 예를 들어, 지향성 광의 주 각도 방향은 입사광의 전파 방향에 대하여 광이 회절 격자 상에 입사하는 지점에서의 회절 특징부의 각도의 함수일 수 있다.
본 명세서의 정의에 의하면, '멀티빔 소자(multibeam element)'는 복수의 광빔들을 포함하는 광을 생성하는 백라이트 또는 디스플레이의 구조물 또는 소자이다. 정의에 의하면, '회절적(diffractive)' 멀티빔 소자는 회절적 커플링에 의하여 또는 회절적 커플링을 이용하여 복수의 광빔들을 생성하는 멀티빔 소자이다. 특히, 일부 실시 예들에서, 회절적 멀티빔 소자는 도광체 내에서 안내된 광의 일부를 회절적으로 커플 아웃시킴으로써 복수의 광빔들을 제공하기 위하여 백라이트의 도광체에 광학적으로 결합될 수 있다. 또한, 본 명세서의 정의에 의하면, 회절적 멀티빔 소자는 멀티빔 소자의 경계 또는 범위(extent) 내에 복수의 회절 격자들을 포함한다. 본 명세서의 정의에 의하면, 멀티빔 소자에 의하여 생성된 복수의 광빔들의 광빔들은 서로 상이한 주 각도 방향들을 갖는다. 특히, 정의에 의하면, 복수의 광빔들 중 어느 하나의 광빔은 복수의 광빔들 중 다른 하나의 광빔과는 상이한 정해진 주 각도 방향을 갖는다. 다양한 실시 예들에 따르면, 회절적 멀티빔 소자의 회절 격자들 내의 회절 특징부들의 간격 또는 격자 피치는 서브 파장(sub-wavelength)(즉, 안내된 광의 파장 미만)일 수 있다.
복수의 회절 격자들을 갖는 멀티빔 소자가 이후의 논의들에서 예시적인 예로서 이용되지만, 일부 실시 예들에서 미세(micro) 반사 소자 및 미세 굴절 소자 중 적어도 하나와 같은 다른 구성 요소들이 멀티빔 소자에 이용될 수 있다. 예를 들어, 미세 반사 소자는 삼각 형상 거울, 사다리 형상 거울, 피라미드 형상 거울, 직사각 형상 거울, 반구 형상 거울, 오목 거울 및/또는 볼록 거울을 포함할 수 있다. 일부 실시 예들에서, 미세 굴절 소자는 삼각 형상 굴절 소자, 사다리 형상 굴절 소자, 피라미드 형상 굴절 소자, 직사각 형상 굴절 소자, 반구 형상 굴절 소자, 오목 굴절 소자 및/또는 볼록 굴절 소자를 포함할 수 있다.
다양한 실시 예들에 따르면, 복수의 광빔들은 광 필드(light field)를 나타낼 수 있다. 예를 들어, 복수의 광빔들은 실질적으로 원추형 공간 영역에 국한되거나 복수의 광빔들 내의 광빔들의 상이한 주 각도 방향들을 포함하는 정해진 각도 확산(angular spread)을 가질 수 있다. 따라서, 광빔들의 정해진 각도 확산은 그 조합으로써(즉, 복수의 광빔들) 광 필드를 나타낼 수 있다.
다양한 실시 예들에 따르면, 복수의 광빔들 내의 여러 광빔들의 상이한 주 각도 방향들은 회절적 멀티빔 소자의 크기(예를 들어, 길이, 폭, 면적 등 중의 하나 이상)와 회절적 멀티빔 소자 내의 회절 격자의 배향 및 '격자 피치(grating pitch)' 또는 회절 특징부 간격을 포함하는, 그러나 이에 제한되지 않는, 특성에 의하여 결정된다. 본 명세서의 정의에 의하면, 일부 실시 예들에서, 회절적 멀티빔 소자는 '연장된 점 광원(extended point light source)', 즉 회절적 멀티빔 소자의 범위(extent)에 걸쳐(across) 분포된 복수의 점 광원들로 간주될 수 있다. 또한, 본 명세서의 정의에 의하면, 그리고 도 1b와 관련하여 전술한 바와 같이, 회절적 멀티빔 소자에 의하여 생성되는 광빔은 각도 성분들 {θ, φ}로 주어지는 주 각도 방향을 갖는다.
본 명세서에서, '시준기(collimator)'는 광을 시준하도록 구성된 실질적으로 임의의 광학 기기 또는 장치로서 정의된다. 예를 들어, 시준기는 시준 거울 또는 반사체, 시준 렌즈, 또는 이의 다양한 조합들을 포함할 수 있지만, 이에 제한되지 않는다. 일부 실시 예들에서, 시준 반사체를 포함하는 시준기는 포물선형 곡선 또는 형상에 의해 특징화된 반사 표면을 가질 수 있다. 다른 예에서, 시준 반사체는 형상화된 포물선형 반사체를 포함할 수 있다. '형상화된 포물선형(shaped parabolic)'은 형상화된 포물선형 반사체의 만곡된(curved) 반사 표면이 정해진 반사 특성(예를 들어, 시준의 정도)을 달성하기 위해 결정된 방식으로 '진정한(true)' 포물선형 곡선으로부터 벗어나는 것을 의미한다. 유사하게, 시준 렌즈는 구형으로 형상화된 표면을 포함할 수 있다(예를 들어, 양면 볼록 구형 렌즈).
일부 실시 예들에서, 시준기는 연속 반사체(continuous reflector) 또는 연속 렌즈(continuous lens)일 수 있다(즉, 실질적으로 매끄럽고 연속적인 표면을 갖는 반사체 또는 렌즈). 다른 실시 예들에서, 시준 반사체 또는 시준 렌즈는, 프레넬(Fresnel) 반사체 또는 프레넬 렌즈를 포함하지만 이에 제한되지 않는, 광의 시준을 제공하는 실질적으로 불연속적인 표면을 포함할 수 있다. 다양한 실시 예들에 따르면, 시준기에 의하여 제공되는 시준의 양은 실시 예마다 정해진 정도 또는 양이 다를 수 있다. 또한, 시준기는 2개의 직교하는 방향들(예를 들어, 수직 방향 및 수평 방향) 중 하나 또는 둘 모두로 시준을 제공하도록 구성될 수 있다. 즉, 일부 실시 예들에 따르면, 시준기는 2개의 직교하는 방향들 중 하나 또는 둘 모두에 시준을 제공하는 형상을 포함할 수 있다.
본 명세서에서, σ 로 표시되는 '시준 계수(collimation factor)'는 광이 시준되는 정도로서 정의된다. 특히, 본 명세서의 정의에 의하면, 시준 계수는 시준된 광의 빔 내의 광선들(light rays)의 각도 확산을 정의한다. 예를 들어, 시준 계수(σ)는 시준된 광의 빔 내의 대부분의 광선들이 특정한 각도 확산 내에(예를 들어, 시준된 광빔의 중심 또는 주 각도 방향에 대하여 +/- σ도) 있음을 명시할 수 있다. 일부 예들에 따르면, 시준된 광빔의 광선들은 각도 측면에서 가우시안(Gaussian) 분포를 가질 수 있고, 각도 확산은 시준된 광빔의 피크(peak) 세기의 절반만큼에서 결정되는 각도일 수 있다.
본 명세서에서, '광원(light source)'은 광의 원천(예를 들어, 광을 생성하고 방출하도록 구성된 광학 방출기(optical emitter))으로서 정의된다. 예를 들어, 광원은 활성화되거나 턴 온 되는 경우 광을 방출하는 발광 다이오드(light emitting diode; LED)와 같은 광학 방출기를 포함할 수 있다. 특히, 본 명세서에서, 광원은 실질적으로 임의의 광의 원천이거나, LED, 레이저, OLED, 중합체 LED, 플라즈마-기반 광학 방출기, 형광 램프, 백열 램프 및 사실상 임의의 다른 광의 원천 중 하나 이상을 포함하는, 그러나 이에 제한되지 않는, 실질적으로 임의의 광학 방출기를 포함할 수 있다. 광원에 의하여 생성된 광은 컬러를 가질 수 있거나(즉, 광의 특정 파장을 포함할 수 있음), 또는 파장들의 범위일 수 있다(예를 들어, 백색광). 일부 실시 예들에서, 광원은 복수의 광학 방출기들을 포함할 수 있다. 예를 들어, 광원은 한 세트 또는 그룹의 광학 방출기들을 포함할 수 있으며, 광학 방출기들 중 적어도 하나는 같은 세트 또는 그룹의 적어도 하나의 다른 광학 방출기에 의하여 생성되는 광의 컬러 또는 파장과는 상이한 컬러를, 또는 대등하게는 파장을, 갖는 광을 생성할 수 있다. 예를 들어, 상이한 컬러들은 원색들(예를 들어, 적색, 녹색, 청색)을 포함할 수 있다.
또한, 본 명세서에서 사용된 바와 같은, 단수 표현은 특허 분야에서의 통상적인 의미, 즉 '하나 이상'의 의미를 갖는 것으로 의도된다. 예를 들어, 본 명세서에서, '소자(element)'는 하나 이상의 소자를 의미하며, 따라서 '상기 소자'는 '상기 소자(들)'을 의미한다. 또한, 본 명세서에서 '상단', '하단', '상부', '하부', '상', '하', '전', '후', '제1', '제 2', '좌' 또는 '우'에 대한 언급은 본 명세서에서 제한적인 것으로 의도되지 않는다. 본 명세서에서, 달리 명시적으로 특정되지 않는 한, 수치 값에 적용되는 경우의 '약'이라는 용어는 일반적으로 수치 값을 생성하기 위하여 이용되는 장비의 허용 오차 범위 내를 의미하거나, ±10%, 또는 ±5%, 또는 ±1%를 의미할 수 있다. 또한, 본 명세서에서 사용된 바와 같은 '실질적으로'라는 용어는 대부분, 또는 거의 전부, 또는 전부, 또는 약 51% 내지 약 100% 범위 내의 양을 의미한다. 또한, 본 명세서의 예들은 단지 예시적인 것으로 의도된 것이며, 제한이 아닌 논의의 목적으로 제시된다.
본 명세서에 설명된 원리들의 일 부 실시 예들에 따르면 멀티뷰 디스플레이가 제공된다. 도 3a는 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 일 예로서 멀티뷰 디스플레이(100)의 단면도를 도시한다. 도 3b는 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 일 예로서 멀티뷰 디스플레이(100)의 평면도를 도시한다. 도 3c는 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 일 예로서 멀티뷰 디스플레이(100)의 사시도를 도시한다. 도 3c의 사시도는 단지 본 명세서에서의 논의를 용이하게 하기 위하여 부분적으로 절개되었다.
도 3a 내지 도 3c에 도시된 멀티뷰 디스플레이(100)는 서로 상이한 주 각도 방향들을 갖는 복수의 지향성 광빔들(102)을 제공하도록 구성된다(예를 들어, 광 필드(light field)로서). 특히, 다양한 실시 예들에 따르면, 제공된 복수의 지향성 광빔들(102)은 멀티뷰 디스플레이의 개별적인 뷰 방향들에 대응되는 상이한 주 각도 방향들로 멀티뷰 디스플레이(100)로부터 산란되어 멀어지도록 구성된다. 일부 실시 예들에서, 지향성 광빔들(102)은 멀티뷰 컨텐츠, 즉 멀티뷰 이미지를 갖는 정보의 디스플레이를 용이하게 하도록 변조(예를 들어, 후술될 바와 같은 광 밸브들을 이용하여)될 수 있다. 도 3a 내지 도 3c는 또한 후술될 서브 픽셀들과 광 밸브들(130)의 어레이를 포함하는 멀티뷰 픽셀(106)을 도시한다. 도시된 바와 같이, 멀티뷰 픽셀(106)의 서브 픽셀들은 광 밸브 어레이의 광 밸브들(130)과 대등하다는 점에 유의한다.
도 3a 내지 도 3c에 도시된 바와 같이, 멀티뷰 디스플레이(100)는 도광체(110)를 포함한다. 도광체(110)는 도광체(110)의 길이를 따라 광을 안내된 광(104)(즉, 안내된 광빔(104))으로서 안내하도록 구성된다. 예를 들어, 도광체(110)는 광학 도파로로서 구성된 유전체 재료를 포함할 수 있다. 유전체 재료는 유전체 광학 도파로를 둘러싸는 매질의 제 2 굴절률보다 큰 제 1 굴절률을 가질 수 있다. 예를 들어, 굴절률들의 차이는 도광체(110)의 하나 이상의 안내 모드에 따라 안내된 광(104)의 내부 전반사를 용이하게 하도록 구성된다.
일부 실시 예들에서, 도광체(110)는 연장된, 광학적으로 투명한 실질적으로 평면형 시트의, 유전체 재료를 포함하는 슬래브 또는 판 광학 도파로(즉, 판 도광체)일 수 있다. 실질적으로 평면형 시트의 유전체 재료는 내부 전반사를 이용하여 안내된 광빔(104)을 안내하도록 구성된다. 다양한 예들에 따르면, 도광체(110)의 광학적으로 투명한 재료는 다양한 유형의 유리(예를 들어, 실리카 유리(silica glass), 알칼리-알루미노실리케이트 유리(alkali-aluminosilicate glass), 보로실리케이트 유리(borosilicate glass) 등) 및 실질적으로 광학적으로 투명한 플라스틱들 또는 중합체들(예를 들어, 폴리(메틸 메타크릴레이트)(poly(methyl methacrylate)) 또는 '아크릴 유리(acrylic glass)', 폴리카보네이트(polycarbonate) 등) 중 하나 이상을 포함하는, 그러나 이에 제한되지 않는, 다양한 유전체 재료들 중 임의의 것으로 구성되거나 이를 포함할 수 있다. 일부 예들에서, 도광체(110)는 도광체(110)의 표면(예를 들어, 상단 표면 및 하단 표면 중 하나 또는 모두)의 적어도 일부 상에 클래딩층(cladding layer)(미도시)을 더 포함할 수 있다. 일부 예들에 따르면, 클래딩층은 내부 전반사를 더 용이하게 하기 위하여 이용될 수 있다.
또한, 일부 실시 예들에 따르면, 도광체(110)는 도광체(110)의 제 1 표면(110')(예를 들어, '전'면 또는 앞쪽)과 제 2 표면(110")(예를 들어, '후'면 또는 뒤쪽) 사이에서, 0이 아닌 전파 각도로 내부 전반사에 따라 안내된 광빔(104)을 안내하도록 구성된다. 특히, 안내된 광빔(104)은 도광체(110)의 제 1 표면(110')과 제 2 표면(110") 사이에서 0이 아닌 전파 각도로 반사되거나 '바운싱(bouncing)'됨으로써 전파된다. 일부 실시 예들에서, 광의 상이한 컬러들을 포함하는 복수의 안내된 광빔들(104)은 상이한 컬러별, 0이 아닌 전파 각도들 각각으로 도광체(110)에 의하여 안내될 수 있다. 도시의 간략화를 위하여 도 3a 내지 도 3c에는 0이 아닌 전파 각도가 도시되지 않았음에 유의한다. 그러나, 도 3a에서 전파 방향(103)을 묘사하는 굵은 화살표는 도광체의 길이를 따르는 안내된 광(104)의 일반적인 전파 방향을 도시한다.
본 명세서에 정의된 바와 같이, '0이 아닌 전파 각도(non-zero propagation angle)'는 도광체(110)의 표면(예를 들어, 제 1 표면(110') 또는 제 2 표면(110"))에 대한 각도이다. 또한, 다양한 실시 예들에 따르면, 0이 아닌 전파 각도는 0보다 크고 도광체(110) 내의 내부 전반사의 임계각보다 작다. 예를 들어, 안내된 광빔(104)의 0이 아닌 전파 각도는 약 10도 내지 약 50도 사이, 일부 예들에서는 약 20도 내지 약 40도 사이, 또는 약 25도 내지 약 35도 사이일 수 있다. 예를 들어, 0이 아닌 전파 각도는 약 30도일 수 있다. 다른 예들에서, 0이 아닌 전파 각도는 약 20도, 또는 약 25도, 또는 약 35도일 수 있다. 또한, 도광체(110) 내의 내부 전반사의 임계각보다 작게 선택되는 한, 특정한 0이 아닌 전파 각도가 특정한 구현을 위하여 선택(예를 들어, 임의로)될 수 있다.
도광체(110) 내의 안내된 광빔(104)은 0이 아닌 전파 각도(예를 들어, 약 30도 내지 약 35도)로 도광체(110) 내부로 유입되거나 커플될 수 있다. 일부 예들에서, 렌즈, 거울 또는 이와 유사한 반사체(예를 들어, 경사진 시준 반사체), 회절 격자 및 프리즘(미도시) 뿐만 아니라 이의 다양한 조합들과 같은, 그러나 이에 제한되지 않는, 커플링 구조물(coupling structure)이 안내된 광빔(104)으로서 0이 아닌 전파 각도로 도광체(110)의 입력 단부의 내부로 광을 커플링하는 것을 용이하게 할 수 있다. 다른 예들에서, 커플링 구조물 없이 또는 실질적으로 커플링 구조물의 이용 없이, 광은 도광체(110)의 입력 단부의 내부로 직접 유입될 수 있다(즉, 직접 또는 '버트(butt)' 커플링이 이용될 수 있음). 도광체(110)의 내부로 커플되면, 안내된 광빔(104)은 일반적으로 입력 단부로부터 멀어질 수 있는 전파 방향(103)(예를 들어, 도 3a에서 x-축을 따라 가리키는 굵은 화살표들로서 도시됨)으로 도광체(110)를 따라 전파하도록 구성된다.
또한, 다양한 실시 예들에 따르면, 광을 도광체(110) 내부로 커플링함으로써 생성된 안내된 광(104)은, 또는 대등하게는 안내된 광빔(104)은, 시준된 광빔일 수 있다. 본 명세서에서, '시준된 광(collimated light)' 또는 '시준된 광빔(collimated light beam)'은 일반적으로 광빔(예를 들어, 안내된 광빔(104))의 광선들이 광빔 내에서 실질적으로 서로 평행한 광의 빔으로서 정의된다. 또한, 본 명세서의 정의에 의하면, 시준된 광빔으로부터 분기되거나 산란되는 광의 광선들은 시준된 광빔의 일부인 것으로 간주되지 않는다. 일부 실시 예들에서(미도시), 멀티뷰 디스플레이(100)는 예를 들어 광원으로부터의 광을 시준하기 위하여, 전술한 바와 같은 렌즈, 반사체 또는 거울과 같은 시준기(예를 들어, 경사진 시준 반사체)를 포함할 수 있다. 일부 실시 예들에서, 광원 자체가 시준기를 포함한다. 도광체(110)에 제공되는 시준된 광은 시준된 안내된 광빔(104)이다. 다양한 실시 예들에서, 안내된 광빔(104)은 시준 계수(σ)에 따라 시준되거나 시준 계수(σ)를 가질 수 있다. 대안적으로, 다른 실시 예들에서, 안내된 광빔(104)은 시준되지 않을 수 있다.
일부 실시 예들에서, 도광체(110)는 안내된 광(104)을 '재순환(recycle)'하도록 구성될 수 있다. 특히, 도광체의 길이를 따라 안내되었던 안내된 광(104)은 전파 방향(103)과는 상이한 다른 전파 방향(103')으로 도광체의 길이를 따라 다시 재지향될 수 있다. 예를 들어, 도광체(110)는 광원에 인접한 입력 단부에 대향하는 도광체(110)의 단부에 반사체(미도시)를 포함할 수 있다. 반사체는 안내된 광(104)을 재순환된 안내된 광으로서 입력 단부를 향하여 다시 반사하도록 구성될 수 있다. 일부 실시 예들에서, 광 재순환(예를 들어, 반사체를 이용하는) 대신에 또는 그에 부가하여 또 다른 광원이 다른 전파 방향(103')으로 안내된 광(104)을 제공할 수 있다. 다른 전파 방향(103')을 갖는 안내된 광(104)을 제공하기 위한 안내된 광(104)의 재순환 및 또 다른 광원의 이용 중 하나 또는 모두는, 안내된 광이, 예를 들어 후술되는 멀티빔 소자들에게, 두 번 이상 이용 가능하게 함으로써 멀티뷰 디스플레이(100)의 밝기를 증가(예를 들어, 지향성 광빔들(102)의 세기를 증가)시킬 수 있다.
도 3a에서, 재순환된 안내된 광의 전파 방향(103')을 지시하는 굵은 화살표(예를 들어, 음의 x-방향으로 향하는)는 도광체(110) 내의 재순환된 안내된 광의 일반적인 전파 방향을 도시한다. 대안적으로(예를 들어, 안내된 광을 재순환하는 것과 반대로), 다른 전파 방향(103')으로 전파하는 안내된 광(104)은, 다른 전파 방향(103')으로 광을 도광체(110) 내부로 유입시킴으로써(예를 들어, 전파 방향(103)을 갖는 안내된 광(104)에 부가하여) 제공될 수 있다.
도 3a 내지 도 3c에 도시된 바와 같이, 멀티뷰 디스플레이(100)는 도광체의 길이를 따라 서로 이격된 복수의 멀티빔 소자들(120)을 포함한다. 특히, 복수의 멀티빔 소자들의 멀티빔 소자들(120)은 유한한 공간만큼 서로 분리되어 있을 수 있으며, 도광체의 길이를 따라 개별적이고 구분되는 소자들을 나타낸다. 즉, 본 명세서의 정의에 의하면, 복수의 멀티빔 소자들의 멀티빔 소자들(120)은 유한한(즉, 0이 아닌) 소자간 거리(예를 들어, 유한한 중심간 거리)에 따라 서로 이격되어 있다. 또한, 일부 실시 예들에 따르면, 복수의 멀티빔 소자들의 멀티빔 소자들(120)은 일반적으로 서로 교차되거나, 중첩되거나 또는 다른 방식으로 접촉되지 않는다. 즉, 복수의 멀티빔 소자들의 각각의 멀티빔 소자(120)는 일반적으로 멀티빔 소자들(120)의 다른 것들로부터 구분되고 떨어져 있다.
일부 실시 예들에 따르면, 복수의 멀티빔 소자들의 멀티빔 소자들(120)은 1차원(1D) 어레이 또는 2차원(2D) 어레이로 배열될 수 있다. 예를 들어, 멀티빔 소자들(120)은 선형 1D 어레이로서 배열될 수 있다. 다른 예에서, 멀티빔 소자들(120)은 직사각형 2D 어레이 또는 원형 2D 어레이로서 배열될 수 있다. 또한, 일부 예들에서, 어레이(즉, 1D 또는 2D 어레이)는 규칙적이거나 균일한 어레이일 수 있다. 특히, 멀티빔 소자들(120) 간의 소자간 거리(예를 들어, 중심간 거리 또는 간격)는 어레이에 걸쳐(across) 실질적으로 균일하거나 일정할 수 있다. 다른 예들에서, 멀티빔 소자들(120) 간의 소자간 거리는 어레이에 걸쳐 변할 수 있거나, 도광체(110)의 길이를 따라 변할 수 있거나, 또는 두 경우 모두에 대하여 변할 수 있다.
다양한 실시 예들에 따르면, 복수의 멀티빔 소자들의 멀티빔 소자(120)는 안내된 광(104)의 일부를 복수의 지향성 광빔들(102)로서 제공, 커플 아웃 또는 산란시키도록 구성될 수 있다. 예를 들어, 다양한 실시 예들에 따르면, 안내된 광의 일부는 회절적 산란, 반사적 산란, 및 굴절적 산란 또는 커플링 중 하나 이상을 이용하여 커플 아웃되거나 산란될 수 있다. 도 3a 및 도 3c는 지향성 광빔들(102)을 도광체(110)의 제 1(또는 전방) 표면(110')으로부터 향하게 묘사된 복수의 분기되는 화살표들로서 도시한다. 또한, 이상에서 정의된 바와 같이 그리고 후술될 바와 같이 그리고 도 3a 내지 도 3c에 도시된 바와 같이, 다양한 실시 예들에 따르면, 멀티빔 소자(120)의 크기는 멀티뷰 픽셀(106)의 서브 픽셀(또는 대등하게는 광 밸브(130))의 크기와 유사하다. 본 명세서에서, '크기'는 길이, 폭, 또는 면적을 포함하는, 그러나 이에 제한되지 않는, 다양한 방식들 중 임의의 것으로 정의될 수 있다. 예를 들어, 서브 픽셀 또는 광 밸브(130)의 크기는 이들의 길이일 수 있고, 멀티빔 소자(120)의 유사한 크기 또한 멀티빔 소자(120)의 길이일 수 있다. 다른 예에서, 크기는 면적을 지칭할 수 있고, 멀티빔 소자(120)의 면적은 서브 픽셀(또는 광 밸브(130))의 면적과 유사할 수 있다.
일부 실시 예들에서, 멀티빔 소자(120)의 크기는 서브 픽셀 크기와 유사하고, 멀티빔 소자 크기는 서브 픽셀 크기의 약 50% 내지 약 200% 사이일 수 있다. 예를 들어, 멀티빔 소자의 크기를 's'로 나타내고 서브 픽셀의 크기를 'S'로 나타내면(예를 들어, 도 3a에 도시된 바와 같이), 멀티빔 소자의 크기(s)는 다음과 같이 주어질 수 있다.
다른 예에서, 멀티빔 소자의 크기는 서브 픽셀 크기의 약 60%보다 큰, 또는 서브 픽셀 크기의 약 70%보다 큰, 또는 서브 픽셀 크기의 약 80%보다 큰, 또는 서브 픽셀 크기의 약 90%보다 큰 범위 내에 있을 수 있고, 그리고, 서브 픽셀 크기의 약 180% 보다 작은, 또는 서브 픽셀 크기의 약 160%보다 작은, 또는 서브 픽셀 크기의 약 140%보다 작은, 또는 서브 픽셀 크기의 약 120%보다 작은 범위 내에 있을 수 있다. 예를 들어, '유사한 크기(comparable size)'에 의하면, 멀티빔 소자의 크기는 서브 픽셀 크기의 약 75% 내지 약 150% 사이일 수 있다. 다른 예에서, 멀티빔 소자(120)는 크기면에서 서브 픽셀과 유사할 수 있고, 멀티빔 소자의 크기는 서브 픽셀의 크기의 약 125% 내지 약 85% 사이이다. 일부 실시 예들에 따르면, 멀티빔 소자(120)와 서브 픽셀의 유사한 크기들은 멀티뷰 디스플레이의 뷰들 간의 암 영역들(dark zones)을 감소시키도록, 또는 일부 예들에서는 최소화시키도록, 선택될 수 있다. 또한, 멀티빔 소자(120)와 서브 픽셀의 유사한 크기들은 멀티뷰 디스플레이의 뷰들(또는 뷰 픽셀들) 간의 중첩을 감소시키도록, 일부 예들에서는 최소화시키도록, 선택될 수 있다.
도 3a 내지 도 3c에 도시된 멀티뷰 디스플레이(100)는 복수의 지향성 광빔들을의 지향성 광빔들(102)을 변조하도록 구성된 광 밸브들(130)의 어레이를 더 포함한다. 도시된 바와 같이, 상이한 주 각도 방향들을 갖는 지향성 광빔들(102) 중 상이한 것들은 광 밸브 어레이 내의 광 밸브들(130) 중 상이한 것들을 통과하고 그에 의하여 변조될 수 있다. 또한, 도시된 바와 같이, 어레이의 광 밸브(130)는 멀티뷰 픽셀(106)의 서브 픽셀에 대응되고, 한 세트의 광 밸브들(130)은 멀티뷰 디스플레이의 멀티뷰 픽셀(106)에 대응된다. 특히, 도시된 바와 같이, 광 밸브 어레이의 상이한 세트의 광 밸브들(130)은 멀티빔 소자들(120) 중 대응되는 하나로부터 지향성 광빔들(102)을 수신하고 변조하도록 구성되며, 즉 각각의 멀티빔 소자(120)마다 하나의 고유한 세트의 광 밸브들(130)이 존재한다 다양한 실시 예들에서, 액정 광 밸브들, 전기 영동 광 밸브들 및 전기 습윤 기반의 광 밸브들 중 하나 이상을 포함하지만 이에 제한되지 않는 상이한 유형들의 광 밸브들이 광 밸브 어레이의 광 밸브들(130)로서 이용될 수 있다.
도 3a에 도시된 바와 같이, 제 1 광 밸브 세트(130a)는 제 1 멀티빔 소자(120a)로부터 지향성 광빔들(102)을 수신하고 변조하도록 구성된다. 또한, 제 2 광 밸브 세트(130b)는 제 2 멀티빔 소자(120b)로부터 지향성 광빔들(102)을 수신하고 변조하도록 구성된다. 따라서, 도 3a에 도시된 바와 같이, 광 밸브 어레이 내의 각각의 광 밸브 세트들(예를 들어, 제 1 및 제 2 광 밸브 세트들(130a, 130b))은 각각 상이한 멀티빔 소자(120)(예를 들어, 소자들(120a, 120b)) 및 상이한 멀티뷰 픽셀(106) 모두에 대응되고, 광 밸브 세트들의 개별 광 밸브들(130)은 개별적인 멀티뷰 픽셀들(106)의 서브 픽셀들에 대응된다.
도 3a에 도시된 바와 같이, 멀티뷰 픽셀(106)의 서브 픽셀의 크기는 광 밸브 어레이 내의 광 밸브(130)의 크기에 대응될 수 있다는 것에 유의한다. 다른 예들에서, 서브 픽셀의 크기는 광 밸브 어레이의 인접한 광 밸브들(130) 간의 거리(예를 들어, 중심간 거리)로서 정의될 수 있다. 예를 들어, 광 밸브들(130)은 광 밸브 어레이 내의 광 밸브들(130) 간의 중심간 거리보다 작을 수 있다. 예를 들어, 서브 픽셀의 크기는 광 밸브(130)의 크기로 정의되거나 또는 광 밸브들(130) 간의 중심간 거리에 대응되는 크기로 정의될 수 있다.
일부 실시 예들에서, 멀티빔 소자들(120)과 대응되는 멀티뷰 픽셀들(106)(즉, 서브 픽셀들의 세트들과 대응되는 광 밸브들(130)의 세트들) 간의 관계는 일대일 관계일 수 있다. 즉, 멀티뷰 픽셀들(106)의 개수와 멀티빔 소자들(120)의 개수는 동일할 수 있다. 도 3b는 상이한 세트의 광 밸브들(130)(그리고 대응되는 서브 픽셀들)을 포함하는 각각의 멀티뷰 픽셀(106)이 점선으로 둘러싸인 것으로 도시된 일대일 관계를 예로서 명시적으로 도시한다. 다른 실시 예들에서(미도시), 멀티뷰 픽셀들(106)의 개수와 멀티빔 소자들(120)의 개수는 서로 상이할 수 있다.
일부 실시 예들에서, 복수의 멀티빔 소자들 중 한 쌍의 멀티빔 소자들(120) 간의 소자간 거리(예를 들어, 중심간 거리)는, 예를 들어 광 밸브 세트들로 나타내지는, 대응되는 한 쌍의 멀티뷰 픽셀들(106) 간의 픽셀간 거리(예를 들어, 중심간 거리)와 동일할 수 있다. 예를 들어, 도 3a에 도시된 바와 같이, 제 1 멀티빔 소자(120a)와 제 2 멀티빔 소자(120b) 간의 중심간 거리(d)는 제 1 광 밸브 세트(130a)와 제 2 광 밸브 세트(130b) 간의 중심간 거리(D)와 실질적으로 동일할 수 있다. 다른 실시 예들에서(미도시), 멀티빔 소자들(120)들의 쌍들과 대응되는 광 밸브 세트들의 상대적인 중심간 거리들은 다를 수 있다. 예를 들어, 멀티빔 소자들(120)은 멀티뷰 픽셀들(106)을 나타내는 광 밸브 세트들 간의 간격(즉, 중심간 거리 D)보다 크거나 작은 소자간 간격(즉, 중심간 거리 d)을 가질 수 있다.
일부 실시 예들에서, 멀티빔 소자(120)의 형상은 멀티뷰 픽셀(106)의 형상과, 또는 대등하게는 멀티뷰 픽셀(106)에 대응되는 광 밸브들(130)의 세트(또는 '서브 어레이')의 형상과, 유사할 수 있다. 예를 들어, 멀티빔 소자(120)는 정사각 형상을 가질 수 있고, 멀티뷰 픽셀(106)(또는 대응되는 한 세트의 광 밸브들(130)의 배열)은 실질적으로 정사각형일 수 있다. 다른 예에서, 멀티빔 소자(120)는 직사각 형상을, 즉 폭 또는 가로 방향 치수보다 큰 길이 또는 세로 방향 치수를, 가질 수 있다. 이 예에서, 멀티빔 소자(120)에 대응되는 멀티뷰 픽셀(106)(또는 대등하게는 한 세트의 광 밸브들(130)의 배열)은 유사한 직사각형 형상을 가질 수 있다. 도 3b는 정사각 형상의 멀티빔 소자(120) 및 광 밸브들(130)의 정사각형 세트들을 포함하는 대응되는 정사각 형상의 멀티뷰 픽셀들(106)의 평면도를 도시한다. 또 다른 예들에서(미도시), 멀티빔 소자들(120) 및 대응되는 멀티뷰 픽셀들(106)은, 삼각형, 육각형 및 원형을 포함하는 또는 적어도 이러한 형상들에 근사하는, 다양한 형상들을 가질 수 있지만, 이에 제한되는 것은 아니다. 또한, 전술한 바와 같이 그리고 후술될 바와 같이, 멀티뷰 픽셀(106)(즉, 서브 픽셀들의 세트)의 형상은 동적 FOV를 제공하기 위하여 동적으로 재구성될 수 있다. 따라서, 이러한 실시 예들에서, 멀티빔 소자(120)의 형상과 멀티뷰 픽셀(106)의 형상 간의 관계는, 일반적으로, 존재하지 않을 수 있다.
또한 (예를 들어, 도 3a에 도시된 바와 같이), 일부 실시 예들에 따르면, 각각의 멀티빔 소자(120)는 특정한 멀티뷰 픽셀(106)에 현재 할당된 서브 픽셀들의 세트를 기반으로 주어진 시간에 단지 하나의 멀티뷰 픽셀(106)에게 지향성 광빔들(102)을 제공하도록 구성된다. 특히, 도 3a에 도시된 바와 같이, 멀티빔 소자들(120) 중 주어진 하나와 특정 멀티뷰 픽셀(106)에 대한 서브 픽셀들의 세트의 현재의 할당과 관련하여, 멀티뷰 디스플레이의 상이한 뷰들에 대응되는 상이한 주 각도 방향들을 갖는 지향성 광빔들(102)은 하나의 대응되는 멀티뷰 픽셀(106)과 이의 서브 픽셀들에, 즉 멀티빔 소자(120)에 대응되는 한 세트의 광 밸브들(130)에, 실질적으로 국한된다. 이와 같이, 멀티뷰 디스플레이(100)의 각각의 멀티빔 소자(120)는 멀티뷰 디스플레이의 현재의 상이한 뷰들에 대응되는 한 세트의 상이한 주 각도 방향들을 갖는 대응되는 한 세트의 지향성 광빔들(102)을 제공한다(즉, 한 세트의 지향성 광빔들(102)은 현재의 상이한 뷰 방향들 각각에 대응되는 방향을 갖는 광빔을 포함함). 서브 픽셀들의 세트들을 멀티뷰 픽셀(106)에 동적으로 그리고 선택적으로 할당함으로써, 따라서 서브 픽셀들의 세트들을 특정 뷰 방향들에 동적으로 그리고 선택적으로 할당함으로써, 멀티뷰 디스플레이(100)는 FOV를 동적으로 선택적으로 변경할 수 있다. 예를 들어, 멀티뷰 디스플레이(100)가 가로(landscape) 배향을 갖는 경우, FOV는 상대적으로 더 넓고 짧도록 선택적으로 변경될 수 있다. 또한, 멀티뷰 디스플레이(100)가 세로(portrait) 배향을 갖는 경우, FOV는 상대적으로 더 좁고 길도록 선택적으로 변경될 수 있다.
다양한 실시 예들에 따르면, 멀티뷰 디스플레이(100)는 동적으로 재구성 가능한 형상들을 갖는 복수의 멀티뷰 픽셀들(106)을 포함한다. 특히, 복수의 멀티뷰 픽셀들의 하나의 멀티뷰 픽셀(106)은 멀티뷰 이미지를 제공하기 위하여 지향성 광빔들을 변조하도록 구성된 한 세트의 광 밸브들(130)을 포함한다. 추가적으로, 다양한 실시 예들에 따르면, 복수의 멀티뷰 픽셀들의 멀티뷰 픽셀들(106)은 멀티뷰 디스플레이(100)의 조건(condition)을 기반으로 동적 FOV를 갖는 멀티뷰 이미지를 제공하기 위하여 동적으로 재구성 가능한 개별 형상들을 갖는다.
도 4a 내지 도 4d는 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 일 예로서 동적으로 (예를 들어, 실시간(real-time)으로 또는 '온 더 플라이(on the fly)'로) 재구성 가능한 형상들(132)(형상들(132)을 나타내기 위해 점선들을 이용하여 도시함)을 갖는 멀티뷰 픽셀들(106)의 평면도를 도시한다. 특히, 도 4a 내지 도 4d에서, 제한이 아닌 예로서, 멀티뷰 픽셀들(106) 각각이 멀티빔 소자(120)로부터의 산란된 광을 변조하고 32개의 뷰들을 제공한다. 그러나, 광 밸브들(130)의 세트들의 형상들(132)은, 따라서 멀티뷰 픽셀들(106)에 의하여 제공되는 대응되는 FOV들은, 도 4a 내지 도 4d에 도시된 다양한 멀티뷰 픽셀들(106) 각각에서 서로 상이하다. 또한, 상이한 FOV들은 사용 시 멀티뷰 디스플레이(100)의 상이한 배향들 또는 다른 조건들과 관련하여 유용할 수 있다. 예를 들어, 도 4a의 형상들(132)(예를 들어, 길이(136)보다 큰 폭(134)을 가짐)은 멀티뷰 디스플레이가 가로 배향을 갖는 경우 또는 가로 모드에서 사용 중인 경우에 이용될 수 있다. 특히, 멀티뷰 픽셀들(106)의 이러한 구성은 y-축(예를 들어, 수직 방향)보다 x-축(예를 들어, 수평 또는 종 방향)을 따라 더 넓은 FOV를 제공할 수 있다. 또한, 이러한 더 넓은 FOV는 x-축에서 또는 x-축에 대응되는 방향을 따라, 즉 시청자가 y-축에 대하여 시선을 회전시킴에 따라, 더 많은 뷰들 또는 뷰 방향들을 포함할 수 있다. 대안적으로, 도 4b의 형상들(132)(길이(136)보다 작은 폭(134)을 가짐)은 멀티뷰 디스플레이가 세로 배향을 갖는 경우 또는 세로 모드에서 사용 중인 경우에 이용될 수 있다. 멀티뷰 픽셀들(106)의 이러한 구성은 x-축보다 y-축을 따라 더 넓은 FOV를 제공할 수 있다. 이전과 마찬가지이지만, 이 경우에는 시청자가 x-축에 대하여 시선을 회전시킴에 따라, 더 넓은 FOV는 y-축에서 또는 y-축을 따라 더 많은 뷰들 또는 뷰 방향들을 포함할 수 있다. 또한, 일부 실시 예들에 따르면, 멀티뷰 디스플레이는 동작 중에 도 4a 및 도 4b 각각의 형상들(132) 간에 전환하도록 구성되어 형상들(132) 및 FOV들 모두의 동적 재구성을 제공할 수 있다.
일반적으로, 직사각 형상들(132) 대신에, 멀티뷰 픽셀들(106)은 임의의 계단식 형상 또는 대등하게는 타일링 가능한(tileable) 형상을 가질 수 있다. 이는, 제한이 아닌 예로서, 도 4c 및 도 4d에 도시된다. 특히 도 4c 및 도 4d는 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 일 예로서 동적으로 재구성 가능한 형상들(132)을 갖는 멀티뷰 픽셀들(106)의 평면도를 도시한다.
일부 실시 예들에서, 멀티뷰 픽셀들(106)의 형상들(132)은, 예를 들어 멀티뷰 디스플레이(100)가 수평 배향 또는 수직 배향에 있을 때, x-축 및 y-축 각각을 따라 상이한 뷰들에 대하여 균형 잡힌(balanced) 또는 유사한 FOV들을 제공하는 데 이용될 수 있다. 도 5a는 본 명세서에 설명된 원리들에 일치하는 다른 실시 예에 따른 일 예로서 동적으로 재구성 가능한 형상들(132)(위와 같이, 점선으로 표시됨)을 갖는 멀티뷰 픽셀들(106)의 평면도를 도시한다. 특히, 도 5a에 도시된 멀티뷰 픽셀들(106)은 대칭 다이아몬드(symmetric diamond) 형상(132)을 갖는다. 도 5a에 도시된 멀티뷰 픽셀들(106)의 대칭 다이아몬드 형상(132)은 멀티뷰 디스플레이의 광 밸브들(130) 중 적어도 일부의 그레이스케일(grayscale) 또는 듀티 사이클(duty-cycle) 변조에 의하여 달성될 수 있음에 유의한다. 따라서, 멀티뷰 픽셀들(106)의 서브 픽셀들을 동적으로 재할당하거나 또는 재구성함으로써, 상이한 형상들(132)이 얻어질 수 있고, 따라서 상이한 FOV들이 얻어질 수 있다. 대안적으로, 대칭 다이아몬드 형상(132)은 타일링 가능한 근사(approximation)를 이용하여 구현될 수 있다. 도 5b는 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 일 예로서 근사로 구현된 동적으로 재구성 가능한 형상들(132)을 갖는 멀티뷰 픽셀들(106)의 평면도를 도시한다. 도시된 바와 같이, 근사 또는 대등하게는 계단식 형상들(132)은 도 5a에 도시된 대칭 다이아몬드 형상들(132)의 실제적인 구현을 제공할 수 있다.
전술한 바와 같이 그리고 도 4a 내지 도 5b에 도시된 바와 같이, 멀티뷰 픽셀들(106)의 형상들(132)은 멀티뷰 디스플레이의 평면에서 타일링될 수 있고, 즉 멀티뷰 픽셀들(106)은 인접한 멀티뷰 픽셀들(106) 간의 공간 없이 서로 나란히 위치될 수 있다. 특정 형상들(132)이 도 4a 내지 도 5b에 도시되어 있지만, 형상들(132)는 다이아몬드, 정사각형, 수평 직사각형, 수직 직사각형, 또는 계단식 형상을 포함할 수 있다.
다양한 실시 예들에 따르면, 멀티뷰 픽셀들(106)의 동적 적응(adaptation) 또는 재구성은, 따라서 FOV의 동적 적응 또는 재구성은, 멀티뷰 디스플레이(100)의 조건을 기반으로 할 수 있다. 조건은, 적어도 부분적으로, 멀티뷰 디스플레이(100)에 대한 사용자 또는 시청자의 위치, 사용자의 시선 방향, 또는 사용자 머리의 머리 추적(head tracking) 중 하나 이상을 포함할 수 있다. 예를 들어, 멀티뷰 디스플레이(100) 또는 멀티뷰 디스플레이(100)를 포함하는 전자 기기는 멀티뷰 디스플레이(100)에 대한 사용자의 위치를 추적하거나 모니터링할 수 있다. 일부 실시 예들에서, 추적은 하나 이상의 이미지의 분석을 수반한다. 대안적으로 또는 부가적으로, 모니터링은 초음파, 무선 신호들 또는 다른 유형의 계측(metrology)을 이용하여 수행될 수 있다.
또한, 일부 실시 예들에서, 멀티뷰 픽셀들(106)의 동적 적응 또는 재구성은, 따라서 FOV의 동적 적응 또는 재구성은, 적어도 부분적으로, 멀티뷰 디스플레이의 모니터링된 배향을 포함하는 조건을 기반으로 할 수 있다. 예를 들어, 배향은 자이로스코프, 가속도계, 및 다른 유형의 배향 측정(예를 들어, 카메라 또는 이미지 센서를 이용하여 획득된 이미지의 분석) 중 하나 이상을 이용하여 결정될 수 있다. 따라서, 동적 FOV는, 멀티뷰 디스플레이(100) 또는 멀티뷰 디스플레이(100)를 포함하는 전자 기기에 포함된, 적어도 하나의 센서를 이용하여 수행된 측정에 적어도 부분적으로 기초하여 재구성될 수 있다.
또한, 일부 실시 예들에서, 멀티뷰 픽셀들(106)의 동적 적응 또는 재구성은, 따라서 FOV의 동적 적응 또는 재구성은, 적어도 부분적으로, 멀티뷰 디스플레이(100) 상에 제시될 멀티뷰 이미지의 컨텐츠를 포함하는 조건을 기반으로 할 수 있다. 예를 들어, 컨텐츠가 넓은 폭 또는 축을 갖는 파노라마 장면(panoramic scene)을 포함하는 경우, 동적 FOV는 폭 또는 축을 따라 더 많은 수의 뷰들을 제공하도록 재구성될 수 있다. 보다 일반적으로, 하나 이상의 상이한 축들(예를 들어 길이 및 폭)을 따른 정보 공간 밀도(information spatial density)를 결정하기 위해 컨텐츠가 분석될 수 있고, 동적 FOV는 가장 높은 정보 공간 밀도를 갖는 축을 따라 더 많은 수의 뷰들을 제공하도록 재구성될 수 있다.
다시 도 3a를 참조하면, 멀티뷰 디스플레이(100)는 광원(140)을 더 포함할 수 있다. 다양한 실시 예들에 따르면, 광원(140)은 도광체(110) 내에서 안내될 광을 제공하도록 구성된다. 특히, 광원(140)은 도광체(110)의 입구 표면 또는 단부(입력 단부)에 인접하여 위치할 수 있다. 다양한 실시 예들에서, 광원(140)은 LED, 레이저(예를 들어, 레이저 다이오드) 또는 이들의 조합을 포함하는, 그러나 이에 제한되지 않는, 실질적으로 임의의 광의 원천(예를 들어, 광학 방출기)을 포함할 수 있다. 일부 실시 예들에서, 광원(140)은 특정한 컬러로 나타나는 협대역 스펙트럼을 갖는 실질적으로 단색광(monochromatic light)을 생성하도록 구성된 광학 방출기를 포함할 수 있다. 특히, 단색광의 컬러는 특정한 색 공간 또는 색 모델(예를 들어, 적-녹-청(red-green-blue; RGB) 색 모델)의 원색일 수 있다. 다른 예들에서, 광원(140)은 실질적으로 광대역 또는 다색광(polychromatic light)을 제공하도록 구성된 실질적으로 광대역 광원일 수 있다. 예를 들어, 광원(140)은 백색광을 제공할 수 있다. 일부 실시 예들에서, 광원(140)은 광의 상이한 컬러들을 제공하도록 구성된 복수의 상이한 광학 방출기들을 포함할 수 있다. 상이한 광학 방출기들은 광의 상이한 컬러들 각각에 대응되는 안내된 광의 상이한, 컬러별, 0이 아닌 전파 각도들을 갖는 광을 제공하도록 구성될 수 있다.
일부 실시 예들에서, 광원(140)은 시준기를 더 포함할 수 있다. 시준기는 광원(140)의 광학 방출기들 중 하나 이상으로부터 실질적으로 비-시준된(uncollimated) 광을 수신하도록 구성될 수 있다. 또한, 시준기는 실질적으로 비-시준된 광을 시준된 광으로 변환하도록 구성될 수 있다. 특히, 일부 실시 예들에 따르면, 시준기는, 0이 아닌 전파 각도를 가지며 정해진 시준 계수에 따라 시준되는, 시준된 광을 제공할 수 있다. 또한, 상이한 컬러들의 광학 방출기들이 이용되는 경우, 시준기는 상이한, 컬러별, 0이 아닌 전파 각도들 및 상이한 컬러별 시준 계수들 중 하나 또는 모두를 갖는 시준된 광을 제공하도록 구성될 수 있다. 또한, 시준기는 전술한 안내된 광(104)으로서 전파될 수 있도록 시준된 광빔을 도광체(110)에게 전달하도록 구성된다.
일부 실시 예들에서, 멀티뷰 디스플레이(100)는 안내된 광(104)의 전파 방향(103, 103')에 직교하는(또는 실질적으로 직교하는) 도광체(110)를 관통하는 방향에서 광에 대하여 실질적으로 투명하도록 구성된다. 특히, 일부 실시 예들에서, 도광체(110) 및 이격된 멀티빔 소자들(120)은 제 1 표면(110') 및 제 2 표면(110'') 모두를 통하여 광이 도광체(110)를 통과할 수 있도록 한다. 투명화(transparency)는, 적어도 부분적으로, 멀티빔 소자들(120)의 비교적 작은 크기 및 멀티빔 소자(120)의 비교적 큰 소자간 간격(예를 들어, 멀티뷰 픽셀들(106)과의 일대일 대응) 모두에 기인하여 용이해질 수 있다. 또한, 일부 실시 예들에 따르면, 멀티빔 소자들(120)의 회절 격자들(122)은 도광체의 표면들(110', 110'')에 직교하게 전파하는 광에 대하여도 실질적으로 투명할 수 있다.
다양한 실시 예들에 따르면, 멀티빔 소자들(120)은 안내된 광(104)의 일부를 산란시키도록 구성된 많은 상이한 구조물들 중 임의의 것을 포함할 수 있다. 예를 들어, 상이한 구조물들은, 회절 격자들, 미세 반사 소자들, 미세 굴절 소자들, 또는 이의 다양한 조합들을 포함할 수 있지만, 이에 제한되지 않는다. 일부 실시 예들에서, 회절 격자를 포함하는 멀티빔 소자(120)는 안내된 광의 일부를 상이한 주 각도 방향들을 갖는 복수의 지향성 광빔들(102)로서 회절적으로 커플 아웃시키도록 구성된다. 다른 실시 예들에서, 미세 반사 소자를 포함하는 멀티빔 소자(120)는 안내된 광의 일부를 복수의 지향성 광빔들(102)로서 반사적으로 커플 아웃시키도록 구성되고, 미세 굴절 소자를 포함하는 멀티빔 소자(120)는 안내된 광의 일부를 굴절에 의하여 또는 굴절을 이용하여 복수의 지향성 광빔들(102)로서 커플 아웃시키도록 구성된다(즉, 안내된 광의 일부를 굴절적으로 커플 아웃시킴).
도 6a는 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 일 예로서 멀티빔 소자(120)의 단면도를 도시한다. 도 6b는 본 명세서에 설명된 원리들에 일치하는 다른 실시 예에 따른 다른 예로서 멀티빔 소자(120)의 단면도를 도시한다. 특히, 도 6a 및 도 6b는 회절 격자(122)를 포함하는 멀티뷰 디스플레이(100)의 멀티빔 소자(120)를 도시한다. 회절 격자(122)는 안내된 광(104)(백색광 또는 RGB일 수 있음)의 일부를 복수의 지향성 광빔들(102)로서 회절적으로 커플 아웃 또는 산란시키도록 구성된다. 회절 격자(122)는 회절 특징부 간격(종종 '격자 간격(grating spacing)'으로 지칭됨)만큼, 또는 안내된 광의 일부의 회절적 커플링 아웃을 제공하도록 구성된 회절 특징부 또는 격자 피치만큼, 서로 이격된 복수의 회절 특징부들을 포함한다는 것에 유의한다. 다양한 실시 예들에 따르면, 회절 격자(122)의 회절 특징부들의 간격 또는 격자 피치는, 서브 파장(즉, 안내된 광의 파장 미만)일 수 있다. 도시의 간략화를 위하여, 도 6a 및 도 6b는 단일 격자 간격(즉, 일정한 격자 피치)을 갖는 회절 격자(122)를 도시한다. 다양한 실시 예들에서, 도 6a 및 도 6b에 도시된 지향성 광빔들을 제공하기 위하여, 회절 격자(122)는 복수의 상이한 격자 간격들(즉, 2개 이상의 격자 간격들) 또는 변화하는 격자 간격 또는 피치를 포함할 수 있다.
일부 실시 예들에서, 멀티빔 소자(120)의 회절 격자(122)는 도광체(110)의 표면에, 또는 도광체(110)의 표면에 인접하여, 위치할 수 있다. 예를 들어, 도 6a에 도시된 바와 같이, 회절 격자(122)는 도광체(110)의 제 1 표면(110')에 위치하거나 제 1 표면(110')에 인접하여 위치할 수 있다. 제 1 표면(110')의 회절 격자(122)는 안내된 광의 일부를 제 1 표면(110')을 통하여 산란된 복수의 지향성 광빔들(102)로서 회절적으로 커플 아웃 또는 산란시키도록 구성된 투과 모드 회절 격자일 수 있다. 다른 예에서, 도 6b에 도시된 바와 같이, 회절 격자(122)는 도광체(110)의 제 2 표면(110")에 위치하거나 제 2 표면(110")에 인접하여 위치할 수 있다. 제 2 표면(110")에 위치하는 경우, 회절 격자(122)는 반사 모드 회절 격자일 수 있다. 반사 모드 회절 격자로서, 회절 격자(122)는 안내된 광의 일부를 회절시키고, 회절적으로 산란된 복수의 지향성 광빔들(102)로서 제 1 표면(110')을 통하여 빠져나갈 수 있도록 회절된 안내된 광의 일부를 제 1 표면(110')을 향하여 반사시키도록 구성된다.
다른 실시 예들에서(미도시), 회절 격자는, 예를 들어 투과 모드 회절 격자 및 반사 모드 회절 격자 중 하나 또는 모두로서, 도광체(110)의 표면들 사이에 위치할 수 있다. 본 명세서에 설명된 일부 실시 예들에서, 복수의 지향성 광빔들(102)의 주 각도 방향들은, 도광체의 표면에서 도광체(110)를 빠져나가는 복수의 지향성 광빔들(102)로 인한 굴절의 영향을 포함할 수 있음에 유의한다. 예를 들어, 도 6b는, 제한이 아닌 예로서, 산란된 복수의 지향성 광빔들(102)이 제 1 표면(110')을 가로지를 때 굴절률의 변화로 인한 산란된 복수의 지향성 광빔들(102)의 굴절(즉, 휨(bending))을 도시한다.
일부 실시 예들에 따르면, 회절 격자(122)의 회절 특징부들은 서로 이격된 홈들 및 융기들 중 하나 또는 모두를 포함할 수 있다. 홈들 또는 융기들은 도광체(110)의 재료를 포함할 수 있으며, 예를 들어 도광체(110)의 표면 내에 형성될 수 있다. 다른 예에서, 홈들 또는 융기들은 도광체의 재료 이외의 재료로 형성될 수 있으며, 예를 들어 도광체(110)의 표면 상에 다른 재료의 필름 또는 층으로 형성될 수 있다. 멀티빔 소자들(120)이 도광체(110)의 뒤쪽 또는 제 2 표면(110'') 상에 위치하고 멀티빔 소자들(120)이 반사 모드 회절 격자들로서 구성된 복수의 회절 격자들(122)을 포함하는 경우(예를 들어, 도 6b에 도시된 바와 같이), 복수의 격자들의 개별 회절 격자들은 에칭(etching)에 의하여 제 2 표면(110'') 내에 형성되고, 반사는 회절 격자들을 덮고 이의 회절 특징부들(예를 들어, 홈들)을 실질적으로 충진(fill)시키도록 도광체(110)의 제 2 표면(110'')에 적용되는 은(silver)을 포함하는 반사층을 이용하여 향상될 수 있다. 특히, 도 6b에 도시된 바와 같이, 회절 격자(122)는 회절 격자(122a) 및 반사층(122b)를 포함할 수 있다. 반사층(122b)은 반사 금속 층과 같은, 그러나 이에 제한되지 않는, 반사 금속 또는 층을 포함할 수 있다. 일부 실시 예들에 따르면, 회절 격자들의 격자 특성들(예를 들어, 격자 피치, 홈 깊이, 융기 높이 등) 및/또는 밀도는, 전파 거리의 함수로서 도광체(110) 내에서 안내된 광(104)의 광학적 세기의 변화를 보상하는 데 이용될 수 있다는 점에 유의한다.
일부 실시 예들에서, 멀티빔 소자(120)의 회절 격자(122)는 회절 특징부 간격이 회절 격자(122) 전체에서 실질적으로 일정하거나 변하지 않는 균일한 회절 격자이다. 다른 실시 예들에서(미도시), 지향성 광빔들(102)을 제공하도록 구성된 회절 격자(122)는 가변(variable) 또는 처프된(chirped) 회절 격자이거나 이를 포함한다. 정의에 의하면, '처프된' 회절 격자는 처프된 회절 격자의 범위(extent) 또는 길이에 걸쳐 변화하는 회절 특징부들의 회절 간격(즉, 격자 피치)을 나타내거나 갖는 회절 격자이다. 일부 실시 예들에서, 처프된 회절 격자는 거리에 따라 선형적으로 변화하는 회절 특징부 간격의 처프를 갖거나 나타낼 수 있다. 따라서, 정의에 의하면, 처프된 회절 격자는 '선형적으로 처프된' 회절 격자이다. 다른 실시 예들에서, 멀티빔 소자(120)의 처프된 회절 격자는 회절 특징부 간격의 비-선형 처프를 나타낼 수 있다. 지수적 처프, 로그적 처프 또는 실질적으로 비-균일 또는 랜덤하지만 단조로운 방식으로 변화하는 처프를 포함하는, 그러나 이에 제한되지 않는, 다양한 비-선형 처프들이 이용될 수 있다. 정현파 처프 또는 삼각형 또는 톱니 처프와 같은, 그러나 이에 제한되지 않는, 비-단조(non-monotonic) 처프들도 이용될 수 있다. 이러한 유형의 처프들 중 임의의 조합도 이용될 수 있다.
전술한 논의는 회절 격자들로서 멀티빔 소자들(120)을 예시하였지만, 다른 실시 예들에서, 미세 반사 구성 요소 및/또는 미세 굴절 구성 요소를 포함하는 광범위한 광학 구성 요소들이 지향성 광빔들(102)을 생성하는 데 이용된다. 예를 들어, 미세 반사 구성 요소들은 삼각형 거울, 사다리꼴 거울, 피라미드형 거울, 사각형 거울, 반구형 거울, 오목 거울 및/또는 볼록 거울을 포함할 수 있다. 이러한 광학적 구성 요소들은 도광체(110)의 제 1 표면(110') 및/또는 제 2 표면(110'')에 위치할 수 있다는 점에 유의한다. 또한, 광학적 구성 요소는 제 1 표면(110') 상에, 제 2 표면(110'') 상에, 또는 제 1 표면(110')과 제 2 표면(110'')의 사이에, 배치될 수 있다. 또한, 광학적 구성 요소는 제 1 표면(110') 및/또는 제 2 표면(110'')으로부터 돌출하는 '양성 특징부(positive feature)'일 수도 있고, 제 1 표면(110') 및/또는 제 2 표면(110'') 내부로 오목한 '음성 특징부(negative feature)'일 수도 있다.
도 6c는 본 명세서에 설명된 원리들에 일치하는 다른 실시 예에 따른 일 예로서 멀티빔 소자(120)의 단면도를 도시한다. 특히, 도 6c는 미세 반사 소자(124)를 포함하는 멀티빔 소자(120)의 다양한 실시 예들을 도시한다. 멀티빔 소자(120)로서 이용되는 또는 멀티빔 소자(120) 내의 미세 반사 소자들은, 반사 재료(예를 들어, 반사성 금속) 또는 이의 층을 이용하는 반사체, 또는 내부 전반사(TIR)를 기반으로 하는 반사체를 포함할 수 있지만, 이에 제한되지 않는다. 일부 실시 예들에 따르면(예를 들어, 도 6c에 도시된 바와 같이), 미세 반사 소자(124)를 포함하는 멀티빔 소자(120)는 도광체(110)의 표면(예를 들어, 제 2 표면(110"))에 또는 이에 인접하여 위치할 수 있다. 다른 실시 예들에서(미도시), 미세 반사 소자(124)는 제 1 표면 및 제 2 표면(110', 110") 사이의 도광체(110) 내에 위치할 수 있다.
예를 들어, 도 6c는 도광체(110)의 제 2 표면(110")에 인접하여 위치하는 반사면들을 갖는 미세 반사 소자(124)(예를 들어, '프리즘형' 미세 반사 소자)를 포함하는 멀티빔 소자(120)를 도시한다. 도시된 프리즘형 미세 반사 소자(124)의 반사면들은 도광체(110)로부터의 안내된 광(104)의 일부를 반사(즉, 반사적으로 커플)시키도록 구성된다. 예를 들어, 반사면들은 도광체(110)로부터의 안내된 광의 일부를 반사하기 위하여, 안내된 광(104)의 전파 방향에 대하여 경사지거나 기울어질 수 있다(즉, 경사각을 가질 수 있다). 다양한 실시 예들에 따르면, 반사면들은 도광체(110) 내에 반사성 재료를 이용하여 형성될 수도 있고(예를 들어, 도 6c에 도시된 바와 같이), 제 2 표면(110") 내의 프리즘형 공동(cavity)의 표면들일 수도 있다. 일부 실시 예들에서, 프리즘형 공동이 이용되는 경우, 공동 표면들에서의 굴절률 변화가 반사(예를 들어, TIR 반사)를 제공할 수 있거나, 반사면들을 형성하는 공동 표면들이 반사성 재료로 코팅되어 반사를 제공할 수 있다. 도 6c는 또한, 제한이 아닌 예로서, 2개의 전파 방향들(103, 103')(즉, 굵은 화살표들로 도시된)을 갖는 안내된 광(104)을 도시한다. 예를 들어, 2개의 전파 방향들(103, 103')을 이용하는 것은, 대칭적인 주 각도 방향들을 갖는 복수의 지향성 광빔들(102)을 제공하는 것을 용이하게 할 수 있다. 다른 예에서(미도시), 미세 반사 소자는, 반구형 미세 반사 소자(124)와 같은 그러나 이에 제한되지 않는, 실질적으로 매끄러운 만곡된 표면을 가질 수 있다.
도 6d는 본 명세서에 설명된 원리들에 일치하는 다른 실시 예에 따른 일 예로서 멀티빔 소자(120)의 단면도를 도시한다. 특히, 도 6d는 미세 굴절 소자(126)를 포함하는 멀티빔 소자(120)를 도시한다. 다양한 실시 예들에 따르면, 미세 굴절 소자(126)는 안내된 광(104)의 일부를 도광체(110)로부터 굴절적으로 커플 아웃시키도록 구성된다. 즉, 도 6d에 도시된 바와 같이, 미세 굴절 소자(126)는 안내된 광의 일부를 지향성 광빔들(102)로서 도광체(110)로부터 커플 아웃시키기 위하여 굴절(예를 들어, 회절 또는 반사와 반대인)을 이용하도록 구성된다. 미세 굴절 소자(126)는 반구 형상, 직사각 형상 또는 프리즘 형상(즉, 경사면들을 갖는 형상)을 포함하는, 그러나 이에 제한되지 않는, 다양한 형상들을 가질 수 있다. 다양한 실시 예들에 따르면, 미세 굴절 소자(126)는, 도시된 바와 같이 도광체(110)의 표면(예를 들어, 제 1 표면(110')) 외부로 연장되거나 돌출될 수 있고, 또는 표면 내의 공동(미도시)일 수 있다. 또한, 일부 실시 예들에서, 미세 굴절 소자(126)는 도광체(110)의 재료를 포함할 수 있다. 다른 실시 예들에서, 미세 굴절 소자(126)는 도광체의 표면에 인접하는, 일부 예들에서는 도광체의 표면에 접촉하는, 다른 재료를 포함할 수 있다.
본 명세서에 설명된 원리들의 일부 실시 예들에 따르면, 멀티뷰 디스플레이가 제공된다. 멀티뷰 디스플레이는 변조된 광빔들을 멀티뷰 디스플레이의 픽셀들로서 방출하도록 구성된다. 방출된, 변조된 광빔들은 서로 상이한 주 각도 방향들을 갖는다(본 명세서에서 '상이하게 지향된 광빔들'로도 지칭됨). 또한, 방출된, 변조된 광빔들은 멀티뷰 디스플레이의 복수의 뷰 방향들을 향하여 우선적으로 지향될 수 있다. 비-제한적인 예들에서, 멀티뷰 디스플레이는 대응되는 개수의 뷰 방향들을 갖는 4 x 4, 4 x 8 또는 8 x 8의 뷰들을 포함할 수 있다. 일부 예들에서, 멀티뷰 디스플레이는 멀티뷰 이미지를 제공하거나 '디스플레이(display)'하도록 구성된다. 다양한 예들에 따르면, 변조된, 상이하게 지향된 광빔들의 상이한 각각은 멀티뷰 이미지와 관련된 상이한 '뷰들(views)'의 개별 픽셀들에 대응될 수 있다. 예를 들어, 상이한 뷰들은 멀티뷰 디스플레이에 의하여 디스플레이되는 멀티뷰 이미지 내에 정보의 '안경 불필요(glasses free)'(예를 들어, 오토스테레오스코픽(autostereoscopic)) 표현을 제공할 수 있다.
또한, 다양한 실시 예들에 따르면, 멀티뷰 디스플레이는 동적으로 재구성 가능한 형상을 갖는 복수의 멀티뷰 픽셀들을 포함한다. 특히, 복수의 멀티뷰 픽셀들 중 하나의 멀티뷰 픽셀은 멀티뷰 이미지를 제공하기 위하여 지향성 광빔들을 변조하도록 구성된 한 세트의 광 밸브들을 포함한다. 추가적으로, 다양한 실시 예들에 따르면, 복수의 멀티뷰 픽셀들의 멀티뷰 픽셀들은, 멀티뷰 디스플레이의 조건을 기반으로 하는 동적 FOV를 갖는 멀티뷰 이미지를 제공하기 위하여 동적으로 재구성 가능한 개별 형상들을 갖는다.
도 7은 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 일 예로서 멀티뷰 디스플레이(200)의 블록도를 도시한다. 다양한 실시 예들에 따르면, 도시된 멀티뷰 디스플레이(200)는 상이한 뷰들을 갖는 멀티뷰 이미지를 상이한 뷰 방향들로 제공하거나 디스플레이하도록 구성된다. 특히, 멀티뷰 디스플레이(200)에 의하여 방출되는 변조된 광빔들(202)은, 멀티뷰 이미지를 디스플레이하는 데 이용될 수 있고 상이한 뷰들의 픽셀들(즉, 뷰 픽셀들)에 대응될 수 있다. 도 7에서 변조된 광빔들(202)이 멀티뷰 디스플레이(200)로부터 발산하는 화살표들로 도시되었다. 방출된 변조된 광빔들(202)의 화살표들에 점선들이 이용되어, 제한이 아닌 예로서, 그 변조를 강조한다.
도 7에 도시된 멀티뷰 디스플레이(200)는 동적으로 재구성 가능한 멀티뷰 픽셀들(230)의 어레이를 포함한다. 어레이의 동적으로 재구성 가능한 멀티뷰 픽셀들(230)은 멀티뷰 디스플레이(200)의 복수의 상이한 뷰들을 제공하도록 구성된다. 다양한 실시 예들에 따르면, 어레이의 동적으로 재구성 가능한 멀티뷰 픽셀(230)은 복수의 광빔들(204)을 변조하고 방출되는 변조된 광빔들(202)을 생성하도록 구성된 복수의 서브 픽셀들을 포함한다. 일부 실시 예들에서, 어레이의 동적으로 재구성 가능한 멀티뷰 픽셀(230)은, 멀티뷰 디스플레이(100)와 관련하여 전술한 서브 픽셀들의 세트를 포함하는 멀티뷰 픽셀(106)과 실질적으로 유사하다. 또한, 일부 실시 예들에서, 동적으로 재구성 가능한 멀티뷰 픽셀(230)은, 멀티뷰 디스플레이(100)와 관련하여 전술한 광 밸브들(130)의 어레이의 한 세트의 광 밸브들(130)과 실질적으로 유사하다. 특히, 동적으로 재구성 가능한 멀티뷰 픽셀(230)의 하나의 서브 픽셀은 전술한 광 밸브(130)와 실질적으로 유사한 하나의 광 밸브를 포함할 수 있다. 즉, 다양한 실시 예들에 따르면, 멀티뷰 디스플레이(200)의 동적으로 재구성 가능한 멀티뷰 픽셀(230)은 한 세트의 광 밸브들(예를 들어, 한 세트의 광 밸브들(130))을 포함할 수 있고, 동적으로 재구성 가능한 멀티뷰 픽셀(230)의 하나의 서브 픽셀은 한 세트 중 하나의 광 밸브(예를 들어, 단일 광 밸브(130))를 포함할 수 있다.
도 7에 도시된 바와 같이, 멀티뷰 디스플레이(200)는 도광체(210)를 더 포함한다. 도광체(210)는 광을 안내하도록 구성된다. 다양한 실시 예들에서, 광은 내부 전반사에 따라, 예를 들어 안내된 광빔으로서, 안내될 수 있다. 예를 들어, 도광체(210)는 그의 광 입력 에지(edge)로부터의 광을 안내된 광빔으로서 안내하도록 구성된 판 도광체일 수 있다. 일부 실시 예들에서, 멀티뷰 디스플레이(200)의 도광체(210)는 멀티뷰 디스플레이(100)와 관련하여 전술한 도광체(110)와 실질적으로 유사할 수 있다.
다양한 실시 예들에 따르면, 도 7에 도시된 멀티뷰 디스플레이(200)는 멀티빔 소자들(220)의 어레이를 더 포함한다. 어레이의 각각의 멀티빔 소자(220)는 복수의 광빔들(204)을 대응되는 동적으로 재구성 가능한 멀티뷰 픽셀(230)에 제공하도록 구성된다. 특히, 멀티빔 소자들은 도광체로부터 안내된 광의 일부를 복수의 광빔들(204)로서 커플 아웃 또는 산란시키도록 구성된다. 복수의 광빔들의 광빔들(204)은 서로 상이한 주 각도 방향들을 갖는다. 또한, 다양한 실시 예들에 따르면, 광빔들(204)의 상이한 주 각도 방향들은 멀티뷰 디스플레이(200)의 상이한 뷰들 중 개별적인 각각의 상이한 뷰 방향들에 대응된다.
다양한 실시 예들에 따르면, 멀티빔 소자 어레이의 멀티빔 소자(222)의 크기는 동적으로 재구성 가능한 멀티뷰 픽셀(230)의 복수의 서브 픽셀들의 서브 픽셀의 크기와 유사하다. 예를 들어, 멀티빔 소자(220)의 크기는 서브 픽셀의 크기의 절반보다 클 수 있고 서브 픽셀의 크기의 두 배보다 작을 수 있다. 또한, 일부 실시 예들에 따르면, 멀티빔 소자 어레이의 멀티빔 소자들(220) 간의 소자간 간격은 멀티뷰 픽셀 어레이의 동적으로 재구성 가능한 멀티뷰 픽셀들(230) 간의 픽셀 간 거리에 대응될 수 있다. 또한, 멀티뷰 픽셀 어레이의 동적으로 재구성 가능한 멀티뷰 픽셀들(230)과 멀티빔 소자 어레이의 멀티빔 소자들(220) 간에는 일대일 대응 관계가 있을 수 있다. 특히, 일부 실시 예들에서, 멀티빔 소자들(220) 간의 소자간(예를 들어, 중심간) 거리는 동적으로 재구성 가능한 멀티뷰 픽셀들(230) 간의 픽셀간(예를 들어, 중심간) 거리와 실질적으로 동일할 수 있다. 따라서, 동적으로 재구성 가능한 멀티뷰 픽셀(230) 내의 각각의 서브 픽셀은 대응되는 멀티빔 소자(220)에 의하여 제공되는 복수의 광빔들(204)의 광빔들(204) 중 상이한 각각을 변조하도록 구성될 수 있다. 또한, 일부 실시 예들에 따르면, 각각의 동적으로 재구성 가능한 멀티뷰 픽셀(230)은 오직 하나의 멀티빔 소자(220)로부터의 광빔들(204)을 수신하고 변조하도록 구성될 수 있다.
일부 실시 예들에서, 멀티빔 소자 어레이의 멀티빔 소자(220)는 전술한 멀티뷰 디스플레이(100)의 멀티빔 소자(120)와 실질적으로 유사할 수 있다. 예를 들어, 멀티빔 소자(220)는 전술한 복수의 회절 격자들(122)과 실질적으로 유사한 복수의 회절 격자들을 포함할 수 있다. 특히, 멀티빔 소자들(220)은 도광체(210)에 광학적으로 결합될 수 있고, 도광체로부터 안내된 광의 일부를 멀티뷰 픽셀 어레이의 대응되는 동적으로 재구성 가능한 멀티뷰 픽셀들(230)에 제공되는 복수의 광빔들(204)로서 커플 아웃 또는 산란시키도록 구성될 수 있다.
또한, 일부 실시 예들에서, 멀티뷰 디스플레이 내의 동적으로 재구성 가능한 멀티뷰 픽셀(230)의 형상은 동적 FOV를 갖는 멀티뷰 이미지를 제공하기 위하여 동적으로 재구성될 수 있다. 예를 들어, 동적으로 재구성 가능한 멀티뷰 픽셀(230)의 형상은 전술한 형상들(132)과 실질적으로 유사할 수 있다. 일부 실시 예들에서, FOV는 멀티뷰 디스플레이의 모니터링된 배향, 멀티뷰 디스플레이에 대한 사용자의 모니터링된 위치, 또는 이들 둘 모두를 기반으로 수정될 수 있다. 대안적으로 또는 부가적으로, FOV는 멀티뷰 디스플레이 상에 디스플레이된 또는 디스플레이될 컨텐츠를 기반으로 수정될 수 있다.
이러한 실시 예들 중 일부에서(도 7에는 도시되지 않음), 멀티뷰 디스플레이(200)는 광원을 더 포함할 수 있다. 예를 들어, 광원은 0이 아닌 전파 각도로 광을 도광체(210)에 제공하도록 구성될 수 있고, 일부 실시 예들에서, 도광체(210) 내에 안내된 광의 정해진 각도 확산을 제공하기 위하여 시준 계수에 따라 시준된다. 일부 실시 예들에 따르면, 광원은 멀티뷰 디스플레이(100)와 관련하여 전술한 광원(140)과 실질적으로 유사할 수 있다. 일부 실시 예들에서, 복수의 광원들이 이용될 수 있다. 예를 들어, 광을 도광체(210)에 제공하기 위하여 한 쌍의 광원들이 도광체(210)의 2개의 상이한 에지들 또는 단부들(예를 들어, 대향 단부들)에서 이용될 수 있다. 일부 실시 예들에서, 멀티뷰 디스플레이(200)는 멀티뷰 디스플레이(100)를 포함한다.
본 명세서에 설명된 원리들의 다른 실시 예들에 따르면, 멀티뷰 디스플레이의 동작 방법이 제공된다. 도 8은 본 명세서에 설명된 원리들에 일치하는 일 실시 예에 따른 일 예로서 멀티뷰 디스플레이의 동작 방법(300)의 흐름도를 도시한다. 도 8에 도시된 바와 같이, 멀티뷰 디스플레이의 동작 방법(300)은 서로 이격된 복수의 멀티빔 소자들을 이용하여 멀티뷰 이미지의 상이한 뷰 방향들에 대응되는 상이한 주 각도 방향들을 갖는 지향성 광빔들을 제공(310)하는 단계를 포함한다. 특히, 복수의 멀티빔 소자들의 멀티빔 소자는 도광체로부터 안내된 광의 일부를 복수의 지향성 광빔들로서 산란시키도록 구성될 수 있다. 일부 실시 예들에서, 멀티빔 소자는 전술한 멀티뷰 디스플레이(100)의 멀티빔 소자들(120)과 실질적으로 유사할 수 있다. 예를 들어, 멀티빔 소자들(120)은, 전술한 멀티뷰 디스플레이(100)의 회절 격자(122), 미세 반사 소자(124) 및 미세 굴절 소자(126)와 실질적으로 유사한, 회절 격자, 미세 반사 소자 또는 미세 굴절 소자 중 하나 이상을 포함할 수 있다.
도 8에 도시된 멀티뷰 디스플레이의 동작 방법(300)은 멀티뷰 이미지를 디스플레이하기 위하여 광 밸브들의 어레이를 이용하여 지향성 광빔들을 변조(320)하느 단계를 포함한다. 특히, 광 밸브 어레이의 한 세트의 광 밸브들은 멀티뷰 픽셀로서 배열된 복수의 멀티빔 소자들 중 하나의 멀티빔 소자에 대응될 수 있고, 그 멀티빔 소자로부터의 지향성 광빔들을 변조하도록 구성될 수 있다. 일부 실시 예들에 따르면, 광 밸브들의 어레이의 하나의 광 밸브는 멀티뷰 픽셀의 하나의 서브 픽셀에 대응된다. 즉, 예를 들어, 광 밸브는 서브 픽셀의 크기와 유사한 크기를 갖거나 멀티뷰 픽셀의 서브 픽셀들 간의 중심간 간격과 유사한 크기를 가질 수 있다. 일부 실시 예들에 따르면, 복수의 광 밸브들은 멀티뷰 디스플레이(100)에 대하여 도 3a 내지 도 3c와 관련하여 전술한 광 밸브들(130)의 어레이와 실질적으로 유사할 수 있다. 특히, 광 밸브들의 상이한 세트들은, 전술한 상이한 멀티뷰 픽셀들(106)에 대한 제 1 및 제 2 광 밸브 세트(130a, 130b)의 대응과 유사한 방식으로, 상이한 멀티뷰 픽셀들에 대응될 수 있다. 또한, 광 밸브 어레이의 개별 광 밸브들은, 도 3a 내지 도 3c의 전술한 논의에서 전술한 광 밸브(130)가 서브 픽셀에 대응되는 것과 마찬가지로, 멀티뷰 픽셀들의 서브 픽셀들에 대응될 수 있다.
도 8에 도시된 바와 같이, 멀티뷰 디스플레이의 동작 방법(300)은 멀티뷰 디스플레이의 조건을 기반으로 동적 FOV를 갖는 멀티뷰 이미지를 제공하기 위하여 멀티뷰 디스플레이의 조건에 따라 멀티뷰 픽셀의 형상을 동적으로 재구성(330)하는 단계를 더 포함한다. 다양한 실시 예들에 따르면, 멀티뷰 픽셀은 복수의 서브 픽셀들을 포함할 수 있다. 일부 실시 예들에서, 멀티뷰 픽셀의 형상은 전술한 형상들(132) 중 하나와 실질적으로 유사할 수 있다. 예를 들어, 멀티뷰 픽셀의 형상을 동적으로 재구성하는 단계는, 길이보다 큰 폭을 갖는 제 1 직사각 형상과 길이보다 작은 폭을 갖는 제 2 직사각 형상 간에 전환하는 단계를 포함할 수 있다. 제 1 직사각 형상은 수평 방향으로 더 많은 개수의 뷰들을 제공할 수 있고, 제 2 직사각 형상은 수직 방향으로 더 많은 개수의 뷰들을 제공할 수 있다. 멀티뷰 픽셀의 형상은 광 밸브 어레이 상에서 타일링될 수 있음에 유의한다.
일부 실시 예들에서(미도시), 멀티뷰 디스플레이의 동작 방법(300)은, 멀티뷰 디스플레이의 조건을 제공하기 위하여, 멀티뷰 디스플레이의 배향을 모니터링 하는 단계와 멀티뷰 디스플레이에 대한 사용자의 위치를 모니터링하는 단계 중 하나 또는 둘 모두를 포함하고, 멀티뷰 픽셀의 형상을 동적으로 재구성하는 단계는 모니터링된 배향 및 모니터링된 사용자의 위치 중 하나 또는 둘 모두를 이용하여 멀티뷰 이미지의 동적 FOV를 결정한다. 대안적으로 또는 부가적으로, 멀티뷰 디스플레이의 조건은 멀티뷰 디스플레이 상에 디스플레이되는 멀티뷰 이미지의 컨텐츠에 의해 결정될 수 있다.
일부 실시 예들에서(미도시), 멀티뷰 디스플레이의 동작 방법은 광원을 이용하여 광을 도광체에 제공하는 단계를 더 포함한다. 제공된 광 중 하나 또는 둘 모두는 도광체 내에서 0이 아닌 전파 각도를 가질 수 있다. 또한, 안내된 광은 시준될 수 있는데, 예를 들어 정해진 시준 계수에 따라 시준될 수 있다. 일부 실시 예들에 따르면, 안내된 광은 멀티뷰 디스플레이(100)와 관련하여 전술한 도광체(110)와 실질적으로 유사할 수 있다. 특히, 다양한 실시 예들에 따르면, 광은 도광체 내에서 내부 전반사에 따라 안내될 수 있다.
일부 실시 예들에서(미도시), 멀티뷰 디스플레이의 동작 방법은 도광체를 따라 광을 안내된 광으로서 안내하는 단계를 더 포함한다. 일부 실시 예들에서, 광은 0이 아닌 전파 각도로 안내될 수 있다. 또한, 안내된 광은 시준될 수 있는데, 예를 들어 정해진 시준 계수에 따라 시준될 수 있다. 일부 실시 예들에 따르면, 도광체는 멀티뷰 디스플레이(100)와 관련하여 전술한 도광체(110)와 실질적으로 유사할 수 있다. 특히, 다양한 실시 예들에 따르면, 광은 도광체 내에서 내부 전반사에 따라 안내될 수 있다.
이상에서는, 멀티뷰 이미지를 제공하기 위하여 동적으로 재구성 가능한 멀티뷰 픽셀들을 이용하는 멀티뷰 디스플레이, 멀티뷰 디스플레이의 동작 방법 및 멀티뷰 디스플레이의 예들 및 실시 예들을 설명하였다. 전술한 예들은 단지 본 명세서에 설명된 원리들을 나타내는 많은 구체적인 예들 중 일부를 예시하는 것임을 이해하여야 한다. 명백히, 당업자는 다음의 청구 범위에 의하여 정의되는 범위를 벗어나지 않고 수 많은 다른 구성들을 쉽게 고안할 수 있다.

Claims (20)

  1. 멀티뷰 디스플레이로서,
    서로 이격되고 상기 멀티뷰 디스플레이의 상이한 뷰 방향들에 대응되는 상이한 주 각도 방향들을 갖는 지향성 광빔들을 제공하도록 구성된 복수의 멀티빔 소자들; 및
    상기 지향성 광빔들을 상기 멀티뷰 디스플레이에 의하여 디스플레이될 멀티뷰 이미지로서 변조하도록 구성된 광 밸브들의 어레이 - 상기 멀티뷰 디스플레이의 하나의 멀티뷰 픽셀은, 상기 복수의 멀티빔 소자들 중 하나의 멀티빔 소자에 대응되는 상기 광 밸브 어레이의 한 세트의 광 밸브들을 포함하고 그리고 상기 멀티빔 소자로부터의 지향성 광빔들을 변조하도록 구성됨 -;를 포함하되,
    상기 멀티뷰 픽셀의 형상은 동적 시야(field of view; FOV)를 갖는 상기 멀티뷰 이미지를 제공하기 위하여 상기 멀티뷰 디스플레이의 동작 중에 실시간으로 동적으로 재구성 가능한,
    멀티뷰 디스플레이.
  2. 제 1 항에 있어서,
    도광체를 따르는 전파 방향으로 광을 안내된 광으로서 안내하도록 구성된 상기 도광체를 더 포함하고,
    상기 복수의 멀티빔 소자들의 멀티빔 소자는 상기 안내된 광의 일부를 복수의 상기 지향성 광빔들로서 산란시키도록 구성되며,
    상기 멀티빔 소자의 크기는 상기 광 밸브 어레이 내의 광 밸브의 크기와 유사한,
    멀티뷰 디스플레이.
  3. 제 2 항에 있어서,
    상기 멀티빔 소자는 상기 안내된 광의 일부를 산란시키도록 구성된 회절 격자, 미세 반사 소자 및 미세 굴절 소자 중 하나 이상을 포함하는,
    멀티뷰 디스플레이.
  4. 제 2 항에 있어서,
    상기 도광체의 입력에 광학적으로 결합된 광원을 더 포함하고,
    상기 광원은 상기 도광체에 상기 광을 제공하도록 구성되며,
    상기 안내된 광은, 0이 아닌 전파 각도를 갖는 것 및 정해진 시준 계수에 따라 시준되는 것 중 하나 또는 둘 모두에 해당하는,
    멀티뷰 디스플레이.
  5. 제 1 항에 있어서,
    상기 멀티뷰 픽셀의 형상은 상기 광 밸브 어레이 상에서 타일링 가능한,
    멀티뷰 디스플레이.
  6. 제 5 항에 있어서,
    타일링 가능한 상기 멀티뷰 픽셀의 형상은 다이아몬드, 정사각형, 수평 직사각형, 수직 직사각형 또는 계단식 형상 중 하나를 포함하는,
    멀티뷰 디스플레이.
  7. 제 1 항에 있어서,
    상기 멀티뷰 디스플레이는 상기 멀티뷰 디스플레이에 대한 사용자의 위치를 모니터링하도록 구성되고,
    상기 멀티뷰 픽셀의 형상은 상기 모니터링된 위치를 기반으로 동적으로 재구성 가능한,
    멀티뷰 디스플레이.
  8. 제 1 항에 있어서,
    상기 멀티뷰 디스플레이는 상기 멀티뷰 디스플레이의 배향을 모니터링하도록 구성되고,
    상기 멀티뷰 픽셀은 상기 모니터링된 배향을 기반으로 동적으로 재구성되는,
    멀티뷰 디스플레이.
  9. 제 1 항에 있어서,
    상기 멀티뷰 디스플레이의 형상은 상기 멀티뷰 디스플레이에 의하여 디스플레이될 상기 멀티뷰 이미지의 컨텐츠를 기반으로 동적으로 재구성되는,
    멀티뷰 디스플레이.
  10. 제 1 항에 있어서,
    상기 멀티뷰 픽셀의 형상은, 길이보다 큰 폭을 갖는 제 1 직사각 형상과 길이보다 작은 폭을 갖는 제 2 직사각 형상 사이에서 동적으로 재구성 가능하고,
    상기 제 1 직사각 형상은 수평 방향으로 더 많은 개수의 뷰들을 제공하도록 구성되고,
    상기 제 2 직사각 형상은 수직 방향으로 더 많은 개수의 뷰들을 제공하도록 구성되는,
    멀티뷰 디스플레이.
  11. 멀티뷰 디스플레이로서,
    도광체의 길이를 따라 광을 안내된 광으로서 안내하도록 구성된 상기 도광체;
    상기 안내된 광의 일부를, 상기 멀티뷰 디스플레이의 상이한 뷰 방향들에 대응되는 상이한 주 각도 방향들을 갖는 지향성 광빔들로서, 상기 도광체로부터 산란시키도록 구성된 복수의 멀티빔 소자들; 및
    상기 지향성 광빔들을 멀티뷰 이미지로서 변조하도록 구성된 광 밸브들의 세트들을 포함하는 복수의 멀티뷰 픽셀들 - 상기 복수의 멀티뷰 픽셀들의 멀티뷰 픽셀의 형상은 상기 멀티뷰 디스플레이의 조건을 기반으로 동적 시야(field of view; FOV)를 갖는 상기 멀티뷰 이미지를 제공하기 위하여 상기 멀티뷰 디스플레이의 동작 중에 실시간으로 동적으로 재구성 가능함 -;
    을 포함하는 멀티뷰 디스플레이.
  12. 제 11 항에 있어서,
    상기 멀티뷰 디스플레이는, 상기 멀티뷰 디스플레이에 대한 사용자의 위치를 모니터링하는 것 및 상기 멀티뷰 디스플레이의 배향을 모니터링하는 것 중 하나 또는 둘 모두를 수행하도록 구성되고,
    상기 멀티뷰 픽셀의 형상은 상기 모니터링된 위치 또는 배향 중 하나 또는 둘 모두를 기반으로 동적으로 재구성되는,
    멀티뷰 디스플레이.
  13. 제 11 항에 있어서,
    상기 멀티빔 소자의 크기는 상기 광 밸브들의 세트 내의 광 밸브의 크기와 유사하고,
    상기 멀티빔 소자는 상기 안내된 광의 일부를 산란시키도록 구성된 회절 격자, 미세 반사 소자 및 미세 굴절 소자 중 하나 이상을 포함하는,
    멀티뷰 디스플레이.
  14. 제 11 항에 있어서,
    상기 멀티뷰 픽셀의 형상은 상기 멀티뷰 디스플레이에 의하여 디스플레이될 상기 멀티뷰 이미지의 컨텐츠를 기반으로 동적으로 재구성되는,
    멀티뷰 디스플레이.
  15. 멀티뷰 디스플레이의 동작 방법으로서, 상기 방법은,
    서로 이격된 복수의 멀티빔 소자들을 이용하여 멀티뷰 이미지의 상이한 뷰 방향들에 대응되는 상이한 주 각도 방향들을 갖는 지향성 광빔들을 제공하는 단계;
    상기 멀티뷰 이미지를 디스플레이 하기 위하여 광 밸브들의 어레이를 이용하여 상기 지향성 광빔들을 변조하는 단계 - 상기 광 밸브 어레이 중 한 세트의 광 밸브들은 멀티뷰 픽셀로서 배열된 복수의 멀티빔 소자들 중 하나의 멀티빔 소자에 대응되고 그리고 상기 멀티빔 소자로부터의 지향성 광빔들을 변조하도록 구성됨 -; 및
    상기 멀티뷰 디스플레이의 조건을 기반으로 동적 시야(field of view; FOV)를 갖는 상기 멀티뷰 이미지를 제공하기 위하여 상기 멀티뷰 디스플레이의 조건에 따라 상기 멀티뷰 디스플레이의 동작 중에 실시간으로 상기 멀티뷰 픽셀의 형상을 동적으로 재구성하는 단계;
    를 포함하는 동작 방법.
  16. 제 15 항에 있어서,
    도광체를 따라 광을 안내된 광으로서 안내하는 단계를 더 포함하고,
    상기 복수의 멀티빔 소자들의 멀티빔 소자는 상기 안내된 광의 일부를 복수의 상기 지향성 광빔들로서 상기 도광체로부터 산란시키도록 구성되며,
    상기 멀티빔 소자의 크기는 상기 광 밸브 어레이 내의 광 밸브의 크기와 유사한,
    동작 방법.
  17. 제 15 항에 있어서,
    상기 멀티뷰 픽셀의 형상은 상기 광 밸브 어레이 상에서 타일링 가능한,
    동작 방법.
  18. 제 15 항에 있어서,
    상기 멀티뷰 디스플레이의 조건을 제공하기 위하여, 상기 멀티뷰 디스플레이의 배향을 모니터링 하는 단계 및 상기 멀티뷰 디스플레이에 대한 사용자의 위치를 모니터링하는 단계 중 하나 또는 둘 모두를 더 포함하고,
    상기 멀티뷰 픽셀의 형상을 동적으로 재구성하는 단계는, 상기 멀티뷰 이미지의 상기 동적 FOV를 결정하기 위하여 상기 모니터링된 배향 및 상기 모니터링된 사용자의 위치 중 하나 또는 둘 모두를 이용하는,
    동작 방법.
  19. 제 15 항에 있어서,
    상기 멀티뷰 디스플레이의 조건은 상기 멀티뷰 디스플레이 상에 디스플레이되는 상기 멀티뷰 이미지의 컨텐츠에 의하여 결정되는,
    동작 방법.
  20. 제 15 항에 있어서,
    상기 멀티뷰 픽셀의 형상을 동적으로 재구성하는 단계는, 길이보다 큰 폭을 갖는 제 1 직사각 형상과 길이보다 작은 폭을 갖는 제 2 직사각 형상 간에 전환하는 단계를 포함하고,
    상기 제 1 직사각 형상은 수평 방향으로 더 많은 개수의 뷰들을 제공하며,
    상기 제 2 직사각 형상은 수직 방향으로 더 많은 개수의 뷰들을 제공하는,
    동작 방법.
KR1020217002755A 2018-06-29 2018-06-29 동적으로 재구성 가능한 멀티뷰 픽셀들을 갖는 멀티뷰 디스플레이 및 방법 Active KR102609196B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2018/040420 WO2020005291A1 (en) 2018-06-29 2018-06-29 Multiview display and method with dynamically reconfigurable multiview pixels

Publications (2)

Publication Number Publication Date
KR20210013770A KR20210013770A (ko) 2021-02-05
KR102609196B1 true KR102609196B1 (ko) 2023-12-05

Family

ID=68986738

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217002755A Active KR102609196B1 (ko) 2018-06-29 2018-06-29 동적으로 재구성 가능한 멀티뷰 픽셀들을 갖는 멀티뷰 디스플레이 및 방법

Country Status (8)

Country Link
US (1) US12216296B2 (ko)
EP (1) EP3814833B1 (ko)
JP (1) JP7256830B2 (ko)
KR (1) KR102609196B1 (ko)
CN (1) CN112368629B (ko)
CA (1) CA3101585C (ko)
TW (1) TWI833750B (ko)
WO (1) WO2020005291A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7256830B2 (ja) 2018-06-29 2023-04-12 レイア、インコーポレイテッド 動的に再構成可能なマルチビューピクセルを用いるマルチビューディスプレイおよび方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020008674A1 (en) * 2000-04-29 2002-01-24 Korea Institute Of Science And Technology Multi-view image display system
WO2017041072A1 (en) * 2015-09-05 2017-03-09 Leia Inc. Multibeam diffraction grating-based display with head tracking
WO2017213676A1 (en) * 2016-06-08 2017-12-14 Leia Inc. Angular subpixel rendering multiview display using shifted multibeam elements

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4829365A (en) * 1986-03-07 1989-05-09 Dimension Technologies, Inc. Autostereoscopic display with illuminating lines, light valve and mask
US7084841B2 (en) 2000-04-07 2006-08-01 Tibor Balogh Method and apparatus for the presentation of three-dimensional images
JP3605572B2 (ja) 2001-03-28 2004-12-22 大阪大学長 三次元映像表示装置及び点状光出射部材及び点状光透過部材
JP3576521B2 (ja) * 2001-11-02 2004-10-13 独立行政法人 科学技術振興機構 立体表示方法及びその装置
GB2405519A (en) * 2003-08-30 2005-03-02 Sharp Kk A multiple-view directional display
GB0403932D0 (en) 2004-02-21 2004-03-24 Koninkl Philips Electronics Nv Improving image quality in a 3D image display device
JP4327758B2 (ja) * 2005-03-24 2009-09-09 株式会社東芝 立体画像表示装置
US20070120763A1 (en) 2005-11-23 2007-05-31 Lode De Paepe Display system for viewing multiple video signals
JP4813226B2 (ja) * 2006-03-24 2011-11-09 シャープ株式会社 表示装置及び表示方法
JP4267668B2 (ja) * 2007-03-08 2009-05-27 株式会社日立製作所 立体像表示装置
KR101345303B1 (ko) * 2007-03-29 2013-12-27 삼성전자주식회사 스테레오 또는 다시점 영상의 입체감 조정 방법 및 장치
WO2010009908A1 (en) * 2008-07-21 2010-01-28 Seereal Technologies S.A. Light modulating device
CN100583145C (zh) * 2008-08-04 2010-01-20 清华大学 基于内容相关图像尺寸调整的保真度评测方法
JP2010243941A (ja) 2009-04-09 2010-10-28 Panasonic Corp 立体画像表示装置およびマルチビュー表示装置
PL2494405T3 (pl) * 2009-10-30 2015-06-30 Koninklijke Philips Nv Wielowidokowe urządzenie wyświetlające
KR101897479B1 (ko) * 2009-11-03 2018-09-12 코닌클리케 필립스 엔.브이. 오토스테레오스코픽 디스플레이 디바이스
KR101073512B1 (ko) * 2010-05-20 2011-10-17 한국과학기술연구원 시역 확장을 이용한 3차원 영상 표시 장치
US9036158B2 (en) 2010-08-11 2015-05-19 Apple Inc. Pattern projector
US8994763B2 (en) * 2011-03-25 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method of the same
KR101807692B1 (ko) * 2011-06-01 2017-12-12 삼성전자주식회사 다시점 3차원 영상 디스플레이 장치 및 방법
KR20130025767A (ko) 2011-09-02 2013-03-12 엘지디스플레이 주식회사 배리어 패널 및 이를 포함하는 입체영상 표시장치
GB2507462A (en) * 2011-12-19 2014-05-07 David James Variable multi-view display
KR101322910B1 (ko) * 2011-12-23 2013-10-29 한국과학기술연구원 다수의 관찰자에 적용가능한 동적 시역 확장을 이용한 다시점 3차원 영상표시장치 및 그 방법
EP2611152A3 (en) * 2011-12-28 2014-10-15 Samsung Electronics Co., Ltd. Display apparatus, image processing system, display method and imaging processing thereof
TW201326982A (zh) 2011-12-29 2013-07-01 Ind Tech Res Inst 顯示裝置
KR101316795B1 (ko) * 2012-02-02 2013-10-11 한국과학기술연구원 시역 평탄화 및 동적 크로스토크 최소화를 위한 무안경식 3차원 영상표시장치
US9389415B2 (en) 2012-04-27 2016-07-12 Leia Inc. Directional pixel for use in a display screen
US9459461B2 (en) 2012-05-31 2016-10-04 Leia Inc. Directional backlight
US9201270B2 (en) * 2012-06-01 2015-12-01 Leia Inc. Directional backlight with a modulation layer
US9671566B2 (en) 2012-06-11 2017-06-06 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
US9298168B2 (en) 2013-01-31 2016-03-29 Leia Inc. Multiview 3D wrist watch
KR20140134512A (ko) * 2013-05-14 2014-11-24 삼성디스플레이 주식회사 입체 영상 표시 장치 및 입체 영상 표시 방법
CN109100887B (zh) 2013-07-30 2021-10-08 镭亚股份有限公司 背光体、电子显示器、多视图显示器和操作方法
CN106104372B (zh) * 2014-03-21 2020-11-27 瑞尔D斯帕克有限责任公司 定向显示装置以及定向显示设备
US9557466B2 (en) * 2014-07-30 2017-01-31 Leia, Inc Multibeam diffraction grating-based color backlighting
CN104460115B (zh) * 2014-12-31 2017-09-01 苏州大学 一种多视角像素指向型背光模组及裸眼3d显示装置
WO2016111708A1 (en) * 2015-01-10 2016-07-14 Leia Inc. Two-dimensional/three-dimensional (2d/3d) switchable display backlight and electronic display
KR102243288B1 (ko) * 2015-01-28 2021-04-22 레이아 인코포레이티드 3차원(3d) 전자 디스플레이
US10798371B2 (en) 2015-09-05 2020-10-06 Leia Inc. Multiview display with head tracking
WO2017041079A1 (en) * 2015-09-05 2017-03-09 Leia Inc. Angular subpixel rendering multiview display using shifted multibeam diffraction gratings
US10802212B2 (en) 2015-09-05 2020-10-13 Leia Inc. Angular subpixel rendering multiview display using shifted multibeam elements
KR20170029210A (ko) * 2015-09-07 2017-03-15 삼성전자주식회사 무안경 3d 디스플레이 장치 및 그 제어 방법
HK1255642A1 (zh) 2016-01-30 2019-08-23 镭亚股份有限公司 基於多波束元件的背光和使用該背光的顯示器
KR101756671B1 (ko) * 2016-02-15 2017-07-11 엘지디스플레이 주식회사 입체 영상 표시 장치 및 그 구동 방법
EP3211601B1 (en) * 2016-02-25 2018-10-31 Dassault Systèmes Rendering the global illumination of a 3d scene
CN109154430B (zh) 2016-05-23 2020-12-08 镭亚股份有限公司 基于衍射多束元件的背光体
CN106707533A (zh) * 2017-03-24 2017-05-24 京东方科技集团股份有限公司 一种三维显示装置
JP7256830B2 (ja) 2018-06-29 2023-04-12 レイア、インコーポレイテッド 動的に再構成可能なマルチビューピクセルを用いるマルチビューディスプレイおよび方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020008674A1 (en) * 2000-04-29 2002-01-24 Korea Institute Of Science And Technology Multi-view image display system
WO2017041072A1 (en) * 2015-09-05 2017-03-09 Leia Inc. Multibeam diffraction grating-based display with head tracking
WO2017213676A1 (en) * 2016-06-08 2017-12-14 Leia Inc. Angular subpixel rendering multiview display using shifted multibeam elements

Also Published As

Publication number Publication date
EP3814833A4 (en) 2021-12-29
TW202001376A (zh) 2020-01-01
JP7256830B2 (ja) 2023-04-12
EP3814833C0 (en) 2024-10-23
US20210149213A1 (en) 2021-05-20
CN112368629B (zh) 2022-10-11
TWI833750B (zh) 2024-03-01
JP2021529343A (ja) 2021-10-28
CA3101585A1 (en) 2020-01-02
EP3814833A1 (en) 2021-05-05
EP3814833B1 (en) 2024-10-23
KR20210013770A (ko) 2021-02-05
WO2020005291A1 (en) 2020-01-02
CA3101585C (en) 2023-02-28
CN112368629A (zh) 2021-02-12
US12216296B2 (en) 2025-02-04

Similar Documents

Publication Publication Date Title
US10838134B2 (en) Multibeam element-based backlight and display using same
KR102609200B1 (ko) 다방향 백라이트, 다중 사용자 멀티뷰 디스플레이 및 방법
KR102394898B1 (ko) 백릿 투명 디스플레이, 투명 디스플레이 시스템, 및 방법
JP6971324B2 (ja) バックライト、マルチビューディスプレイ、およびテーパ付きコリメータを使用する方法
KR102367309B1 (ko) 마이크로 렌즈를 구비한 멀티빔 소자 기반 백라이트 및 이를 이용한 디스플레이
KR20210069729A (ko) 광학 마스크 소자들을 갖는 멀티뷰 백라이트, 디스플레이 및 방법
KR102370247B1 (ko) 멀티뷰 백라이트, 멀티뷰 디스플레이 및 오프셋 멀티빔 소자들을 이용하는 방법
US20220113554A1 (en) Multiview backlight, display, and method having a multibeam element within a light guide
KR20190051992A (ko) 투명 디스플레이 및 방법
KR20210037005A (ko) 사용자 추적 기능이 있는 멀티뷰 디스플레이, 시스템 및 방법
US12216296B2 (en) Multiview display and method with dynamically reconfigurable multiview pixels
HK40042347B (en) Multiview display and method with dynamically reconfigurable multiview pixels
HK40042347A (en) Multiview display and method with dynamically reconfigurable multiview pixels
HK40025180B (en) Backlit transparent display, transparent display system, and method

Legal Events

Date Code Title Description
PA0105 International application

Patent event date: 20210127

Patent event code: PA01051R01D

Comment text: International Patent Application

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20220926

Patent event code: PE09021S01D

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20230424

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20231003

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20231129

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20231130

End annual number: 3

Start annual number: 1

PG1601 Publication of registration