KR102607149B1 - 광학 검사를 이용한 프로세스 모니터링 방법 - Google Patents
광학 검사를 이용한 프로세스 모니터링 방법 Download PDFInfo
- Publication number
- KR102607149B1 KR102607149B1 KR1020227005582A KR20227005582A KR102607149B1 KR 102607149 B1 KR102607149 B1 KR 102607149B1 KR 1020227005582 A KR1020227005582 A KR 1020227005582A KR 20227005582 A KR20227005582 A KR 20227005582A KR 102607149 B1 KR102607149 B1 KR 102607149B1
- Authority
- KR
- South Korea
- Prior art keywords
- processor
- wafer
- inspection
- defects
- defect
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007689 inspection Methods 0.000 title claims abstract description 90
- 238000000034 method Methods 0.000 title claims abstract description 83
- 230000008569 process Effects 0.000 title claims abstract description 40
- 230000003287 optical effect Effects 0.000 title claims description 90
- 238000012544 monitoring process Methods 0.000 title claims description 30
- 230000007547 defect Effects 0.000 claims abstract description 135
- 238000010801 machine learning Methods 0.000 claims abstract description 19
- 235000012431 wafers Nutrition 0.000 claims description 75
- 230000035945 sensitivity Effects 0.000 claims description 13
- 238000013508 migration Methods 0.000 claims description 10
- 230000005012 migration Effects 0.000 claims description 10
- 239000011159 matrix material Substances 0.000 claims description 9
- 238000009826 distribution Methods 0.000 claims description 7
- 238000004891 communication Methods 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 3
- 238000005204 segregation Methods 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 abstract description 27
- 238000013459 approach Methods 0.000 abstract description 3
- 238000001514 detection method Methods 0.000 description 27
- 238000004519 manufacturing process Methods 0.000 description 17
- 238000005286 illumination Methods 0.000 description 15
- 238000003070 Statistical process control Methods 0.000 description 11
- 238000003384 imaging method Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 10
- 238000004422 calculation algorithm Methods 0.000 description 8
- 238000013500 data storage Methods 0.000 description 8
- 238000013461 design Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000012552 review Methods 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 235000006719 Cassia obtusifolia Nutrition 0.000 description 1
- 235000014552 Cassia tora Nutrition 0.000 description 1
- 244000201986 Cassia tora Species 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/9501—Semiconductor wafers
- G01N21/9505—Wafer internal defects, e.g. microcracks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/9501—Semiconductor wafers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/0008—Industrial image inspection checking presence/absence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/246—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8854—Grading and classifying of flaws
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8887—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10056—Microscopic image
- G06T2207/10061—Microscopic image from scanning electron microscope
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/06—Recognition of objects for industrial automation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Software Systems (AREA)
- Quality & Reliability (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Multimedia (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Data Mining & Analysis (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Artificial Intelligence (AREA)
- Signal Processing (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
도 1은 본 개시에 따른 방법의 실시예에 대한 흐름도이다.
도 2는 광대역 플라즈마(broad band plasma, BBP) 광학 검사를 이용한 프로세스 모니터링을 위한 메트릭스를 나타내는 차트를 포함한다.
도 3은 본 명세서에 개시된 실시예들을 사용한 SPC를 보여주는 차트이다.
도 4는 본 명세서에 개시된 실시예들을 사용한 신호 강도를 보여주는 차트이다.
도 5는 본 명세서에 개시된 실시예들을 사용한 신호 스프레드를 나타내는 차트이다.
도 6은 본 개시에 따른 시스템의 실시예에 대한 도면이다.
Claims (18)
- 방법에 있어서,
광학 검사 툴을 사용하여 복수의 웨이퍼들을 광학적으로 검사하여 이미지들을 생성하는 단계;
프로세서를 사용하여, 머신 러닝-기반 분류자들로 상기 이미지들로부터 피처들(features)을 추출하는 단계;
상기 프로세서를 사용하여, 상기 피처들 및 상기 웨이퍼에 대해 검출된 모든 이벤트들의 모집단(population)으로부터 모니터링 메트릭스(monitoring metrics)를 결정하는 단계;
상기 프로세서에서, 주사 전자 현미경(scanning electron microscope)으로부터 상기 웨이퍼들의 분류된 결함들을 수신하는 단계;
상기 프로세서를 사용하여, 검사 문턱값들과 관련하여 상기 분류된 결함들에 대한 분리성 메트릭스(separability metrics)를 결정하는 단계 - 상기 분리성 메트릭스는 상기 분류된 결함들의 모집단 분포를 설명함 -; 및
상기 프로세서를 사용하여, 상기 웨이퍼들에 대해 상기 결함들의 분리성 추세(separability trend)들을 결정하는 단계
를 포함하는, 방법. - 제1 항에 있어서,
상기 광학 검사 툴은 광대역 플라즈마 검사 툴인, 방법. - 제1 항에 있어서,
상기 프로세서를 사용하여 상기 웨이퍼에 대해 상기 검출된 이벤트들로부터 뉴슨스(nuisance)들을 필터링하는 단계를 더 포함하는, 방법. - 제3 항에 있어서,
상기 프로세서를 사용하여 상기 웨이퍼에 대해 상기 검출된 이벤트들의 각각에 대한 신뢰도(confidence) 값들을 결정하는 단계를 더 포함하는, 방법. - 제4 항에 있어서,
상기 프로세서를 사용하여 검사 문턱값들에 대한 결함 이동(defect movement)을 결정하는 단계를 더 포함하는, 방법. - 제5 항에 있어서,
상기 결함 이동을 결정하는 단계는, 상기 검출된 모든 이벤트들을 신뢰도 축(confidence axis) 상에 투영하는 단계; 및
상기 신뢰도 축을 따른 상기 분류된 결함들의 움직임을 문턱값에 대하여 모니터링하는 단계
를 포함하는, 방법. - 제5 항에 있어서,
상기 결함 이동을 결정하는 단계는, 수율에 영향을 미치는 프로세스 변경들 및 검사 민감도(inspection sensitivity)에 영향을 미치는 프로세스 변경들로부터 상기 결함 이동을 분류하는 단계를 포함하는, 방법. - 제1 항에 있어서,
상기 분리성 추세들은 상기 분류된 결함들이 캡처되는 신뢰도를 모니터링하는, 방법. - 제8 항에 있어서,
상기 분리성 추세들은 신호 강도(signal strength)를 모니터링하는, 방법. - 제8 항에 있어서,
상기 분리성 추세들은 신호 스프레드(signal spread)를 모니터링하는, 방법. - 프로세서가 제1 항의 방법을 실행하게 지시하도록 구성된 프로그램을 저장하는 비일시적 컴퓨터 판독가능 매체.
- 시스템에 있어서,
광학 검사 툴로서,
광원;
웨이퍼를 유지하도록 구성된 스테이지; 및
검출기
를 포함하는 상기 광학 검사 툴; 및
상기 검출기와 전자 통신하는 프로세서로서,
상기 검출기로부터의 데이터를 사용하여 복수의 웨이퍼들의 이미지들을 생성하고;
프로세서를 사용하여 머신 러닝-기반 분류자들로 상기 이미지들로부터 피처들을 추출하고;
상기 피처들 및 상기 웨이퍼에 대해 검출된 모든 이벤트들의 모집단으로부터 모니터링 메트릭스를 결정하고;
주사 전자 현미경으로부터 상기 웨이퍼들의 분류된 결함들을 수신하고;
검사 문턱값들과 관련하여 상기 분류된 결함들에 대한 분리성 메트릭스를 결정하고 - 상기 분리성 메트릭스는 상기 분류된 결함들의 모집단 분포를 설명함 -;
상기 웨이퍼들에 대해 상기 결함들의 분리성 추세들을 결정하도록
구성된 상기 프로세서
를 포함하는, 시스템. - 제12 항에 있어서,
상기 광원은 광대역 플라즈마 소스인, 시스템. - 제12 항에 있어서,
상기 프로세서는 또한, 상기 웨이퍼에 대해 상기 검출된 이벤트들로부터 뉴슨스를 필터링하도록 구성된, 시스템. - 제14 항에 있어서,
상기 프로세서는 또한, 상기 웨이퍼에 대해 상기 검출된 이벤트들의 각각에 대한 신뢰도 값들을 결정하도록 구성된, 시스템. - 제15 항에 있어서,
상기 프로세서는 또한, 검사 문턱값들에 대한 결함 이동을 결정하도록 구성된, 시스템. - 제16 항에 있어서,
상기 결함 이동을 결정하는 것은,
상기 검출된 모든 이벤트들을 신뢰도 축 상에 투영하는 것; 및
상기 신뢰도 축을 따른 상기 분류된 결함들의 움직임을 문턱값에 대하여 모니터링하는 것
을 포함하는, 시스템. - 제16 항에 있어서,
상기 결함 이동을 결정하는 것은, 수율에 영향을 미치는 프로세스 변경들 및 검사 민감도에 영향을 미치는 프로세스 변경들로부터 상기 결함 이동을 분류하는 것을 포함하는, 시스템.
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN201941031131 | 2019-08-01 | ||
IN201941031131 | 2019-08-01 | ||
US201962902224P | 2019-09-18 | 2019-09-18 | |
US62/902,224 | 2019-09-18 | ||
US16/940,373 US11379969B2 (en) | 2019-08-01 | 2020-07-27 | Method for process monitoring with optical inspections |
US16/940,373 | 2020-07-27 | ||
PCT/US2020/044366 WO2021022100A1 (en) | 2019-08-01 | 2020-07-31 | Method for process monitoring with optical inspections |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220041126A KR20220041126A (ko) | 2022-03-31 |
KR102607149B1 true KR102607149B1 (ko) | 2023-11-29 |
Family
ID=74230563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020227005582A Active KR102607149B1 (ko) | 2019-08-01 | 2020-07-31 | 광학 검사를 이용한 프로세스 모니터링 방법 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11379969B2 (ko) |
KR (1) | KR102607149B1 (ko) |
CN (1) | CN114174812B (ko) |
TW (1) | TWI844712B (ko) |
WO (1) | WO2021022100A1 (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7019090B1 (ja) * | 2021-09-30 | 2022-02-14 | Kddi株式会社 | 情報出力装置、情報出力方法及びプログラム |
US20240142883A1 (en) * | 2022-10-31 | 2024-05-02 | Kla Corporation | Overlay Estimation Based on Optical Inspection and Machine Learning |
US20250087450A1 (en) * | 2023-09-13 | 2025-03-13 | Kla Corporation | Optics for In-Situ Scanning Electron Microscope Repair |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110164809A1 (en) | 2005-03-24 | 2011-07-07 | Hisae Shibuya | Method And Apparatus For Detecting Pattern Defects |
US20120117010A1 (en) | 2009-07-23 | 2012-05-10 | Makoto Ono | Device for classifying defects and method for adjusting classification |
US20140198975A1 (en) | 2011-09-07 | 2014-07-17 | Hitachi High-Technologies Corporation | Region-of-interest determination apparatus, observation tool or inspection tool, region-of-interest determination method, and observation method or inspection method using region-of-interest determination method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8331669B2 (en) * | 2009-08-25 | 2012-12-11 | Siemens Aktiengesellschaft | Method and system for interactive segmentation using texture and intensity cues |
JP5948262B2 (ja) * | 2013-01-30 | 2016-07-06 | 株式会社日立ハイテクノロジーズ | 欠陥観察方法および欠陥観察装置 |
US9183624B2 (en) * | 2013-06-19 | 2015-11-10 | Kla-Tencor Corp. | Detecting defects on a wafer with run time use of design data |
JP6546826B2 (ja) * | 2015-10-08 | 2019-07-17 | 株式会社日立パワーソリューションズ | 欠陥検査方法、及びその装置 |
WO2018132321A1 (en) * | 2017-01-10 | 2018-07-19 | Kla-Tencor Corporation | Diagnostic methods for the classifiers and the defects captured by optical tools |
US11037286B2 (en) * | 2017-09-28 | 2021-06-15 | Applied Materials Israel Ltd. | Method of classifying defects in a semiconductor specimen and system thereof |
US10809635B2 (en) * | 2017-11-20 | 2020-10-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Defect inspection method and defect inspection system |
US10670536B2 (en) * | 2018-03-28 | 2020-06-02 | Kla-Tencor Corp. | Mode selection for inspection |
US11321633B2 (en) * | 2018-12-20 | 2022-05-03 | Applied Materials Israel Ltd. | Method of classifying defects in a specimen semiconductor examination and system thereof |
-
2020
- 2020-07-27 US US16/940,373 patent/US11379969B2/en active Active
- 2020-07-31 WO PCT/US2020/044366 patent/WO2021022100A1/en active Application Filing
- 2020-07-31 CN CN202080053899.7A patent/CN114174812B/zh active Active
- 2020-07-31 KR KR1020227005582A patent/KR102607149B1/ko active Active
- 2020-07-31 TW TW109126085A patent/TWI844712B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110164809A1 (en) | 2005-03-24 | 2011-07-07 | Hisae Shibuya | Method And Apparatus For Detecting Pattern Defects |
US20120117010A1 (en) | 2009-07-23 | 2012-05-10 | Makoto Ono | Device for classifying defects and method for adjusting classification |
US20140198975A1 (en) | 2011-09-07 | 2014-07-17 | Hitachi High-Technologies Corporation | Region-of-interest determination apparatus, observation tool or inspection tool, region-of-interest determination method, and observation method or inspection method using region-of-interest determination method |
Also Published As
Publication number | Publication date |
---|---|
CN114174812B (zh) | 2022-12-16 |
US20210035282A1 (en) | 2021-02-04 |
US11379969B2 (en) | 2022-07-05 |
TWI844712B (zh) | 2024-06-11 |
KR20220041126A (ko) | 2022-03-31 |
TW202113337A (zh) | 2021-04-01 |
CN114174812A (zh) | 2022-03-11 |
WO2021022100A1 (en) | 2021-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102330733B1 (ko) | 적응형 뉴슨스 필터 | |
KR102607149B1 (ko) | 광학 검사를 이용한 프로세스 모니터링 방법 | |
US10698325B2 (en) | Performance monitoring of design-based alignment | |
US10557802B2 (en) | Capture of repeater defects on a semiconductor wafer | |
CN114341630B (zh) | 等概率缺陷检测 | |
KR102790734B1 (ko) | 다중 수집 채널로부터의 정보의 결합에 의한 디자인 대 웨이퍼 이미지 상관 관계 | |
KR102719204B1 (ko) | 노이즈 특성에 기초한 서브케어 영역의 클러스터링 | |
TWI869611B (zh) | 用於缺陷偵測之系統及方法、及非暫時性電腦可讀儲存媒體 | |
US12100132B2 (en) | Laser anneal pattern suppression | |
KR102737243B1 (ko) | 웨이퍼 결함 검출을 위한 투영 및 거리 분할 알고리즘 | |
US12056867B2 (en) | Image contrast metrics for deriving and improving imaging conditions | |
US20240221141A1 (en) | Pattern segmentation for nuisance suppression | |
TWI885269B (zh) | 用以成像半導體晶圓之方法及系統,以及非暫時性電腦可讀媒體 | |
US20250037261A1 (en) | High-quality wide-spectrum data by generative ai |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0105 | International application |
Patent event date: 20220218 Patent event code: PA01051R01D Comment text: International Patent Application |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20231030 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20231123 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20231123 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |