이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
(용어의 정의)
본 명세서에서,
및
는 다른 치환기에 연결되는 결합을 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소, 할로겐기, 시아노기, 니트로기, 히드록시기, 카보닐기, 에스테르기, 이미드기, 아미노기, 포스핀옥사이드기, 알콕시기, 아릴옥시기, 알킬티옥시기, 아릴티옥시기, 알킬술폭시기, 아릴술폭시기, 실릴기, 붕소기, 알킬기, 사이클로알킬기, 알케닐기, 아릴기, 아르알킬기, 아르알케닐기, 알킬아릴기, 알킬아민기, 아랄킬아민기, 헤테로아릴아민기, 아릴아민기, 아릴포스핀기, 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로아릴로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수도 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸, 사이클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 방향족성(aromaticity)을 갖는 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 비페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난쓰레닐기, 트리페닐레닐기, 파이레닐기, 페릴레닐기, 크라이세닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴은 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로아릴로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로아릴의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기, 아릴실릴기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다.
(화합물)
본 발명은 상기 화학식 1로 표시되는 화합물을 제공한다.
구체적으로, 상기 화학식 1로 표시되는 화합물은, 1,3,5-트리아진(triazine)을 코어로 하며, 세 개의 서로 다른 치환기가 결합된 구조이다.
보다 구체적으로, 상기 코어에 결합된 세 개의 서로 다른 치환기는, 치환 또는 비치환된 C10-60의 아릴(Ar1), 치환 또는 비치환된 C5-60 헤테로아릴(Ar2), 그리고 치환된 벤조[b]나프토[2,3-d]퓨라닐이다.
여기서, Ar1 및 Ar2는 각각 상기 코어와 단일 결합되지만, 상기 치환된 벤조[b]나프토[2,3-d]퓨라닐은 상기 코어와 단일 결합되거나 연결기(L)을 매개로 결합될 수 있다.
한편, 상기 치환된 벤조[b]나프토[2,3-d]퓨라닐은, R1 중 어느 하나가 치환 또는 비치환된 C10-60 아릴, 또는 치환 또는 비치환된 C5-60 헤테로아릴(Ar3)로 치환된 것이다.
상기 화학식 1로 표시되는 화합물을 유기층의 구성 요소로 포함하는 유기 발광 소자는, 상기 세 개의 서로 다른 치환기가 조합되어 나타내는 시너지 효과로, 고효율 및 장수명 특성을 나타낼 수 있다.
이하, 상기 화학식 1 및 이 화학식으로 표시되는 화합물을 상세히 설명하면 다음과 같다.
바람직하게는, 상기 화학식 1은 하기 화학식 1-1 내지 1-3 중 어느 하나로 표시된다:
[화학식 1-1]
[화학식 1-2]
[화학식 1-3]
상기 화학식 1-1 내지 1-3에서, Ar1 내지 Ar3, R1 및 R2의 정의는 전술한 바와 같다.
바람직하게는, R2는 모두 수소이다.
바람직하게는, 단일 결합, 페닐렌 또는 나프탈렌디일이다.
바람직하게는, Ar1 및 Ar2는 각각 독립적으로, 페닐, 비페닐릴, 나프틸, 디벤조퓨라닐, 디벤조티오페닐, 또는 페난쓰레닐이고; 상기 Ar1 및 Ar2는 각각 독립적으로, 비치환되거나, 하나 이상의 페닐 또는 나프틸로 치환된다.
바람직하게는, Ar3는 페닐, 비페닐릴, 터페닐릴, 나프틸, 디벤조퓨라닐, 디벤조티오페닐, 또는 페난쓰레닐이고; 상기 Ar3는 비치환되거나, 하나 이상의 페닐로 치환된다.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기와 같다:
.
.
상기 화학식 1로 표시되는 화합물은 하기 반응식 1과 같은 제조 방법으로 제조할 수 있다:
[반응식 1]
상기 반응식 1에서, Ar1 내지 Ar3 및 L은 앞서 정의한 바와 같다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
(유기 발광 소자)
한편, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극, 상기 제1 전극과 대향하여 구비된 제2 전극, 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.
본 발명의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.
또한, 상기 유기물 층은 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층을 포함할 수 있고, 상기 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 상기 유기물층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함한다.
본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 발광층 이외에, 상기 제1전극과 상기 발광층 사이의 정공주입층 및 정공수송층, 및 상기 발광층과 상기 제2전극 사이의 전자수송층 및 전자주입층을 더 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수 또는 더 많은 수의 유기층을 포함할 수 있다.
또한, 본 발명에 따른 유기 발광 소자는, 상기 제1 전극이 양극이고 상기 제2 전극은 음극인, 기판 상에 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는, 상기 제1 전극이 음극이고 상기 제2 전극은 양극인, 기판 상에 음극, 1층 이상의 유기물층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.
도 1은 기판(1), 양극(2), 정공수송층(3), 발광층(4), 전자주입 및 수송층(5) 및 음극(6)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공수송층에 포함될 수 있다.
도 2는 기판(1), 양극(2), 정공주입층(7), 정공수송층(3), 전자억제층(8), 발광층(4), 정공저지층(9), 전자주입 및 수송층(5) 및 음극(6)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층, 정공수송층, 또는 전자억제층에 포함될 수 있다.
본 발명에 따른 유기 발광 소자는, 상기 유기물층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자수송층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다.
일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.
상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금, 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물, ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금, LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 상기 정공 수송 물질로 상기 화학식 1로 표시되는 화합물을 사용하거나, 또는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 전자억제층은 상기 정공수송층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 정공이동도를 조절하고, 전자의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 하는 층을 의미한다. 상기 전자억제층은 전자저지물질을 포함하고, 이러한 전자저지물질의 예로 상기 화학식 1로 표시되는 화합물을 사용하거나, 또는 아릴아민 계열의 유기물 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물(Alq3), 카르바졸 계열 화합물, 이량체화 스티릴(dimerized styryl) 화합물, BAlq, 10-히드록시벤조 퀴놀린-금속 화합물, 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물, 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자, 스피로(spiro) 화합물, 폴리플루오렌, 루브렌 등이 있으나, 이에 한정되는 것은 아니다.
일 예로, 상기 발광층은 호스트로서 전술한 화학식 1로 표시되는 화합물을 단독으로 포함하거나; 제1 호스트로서 전술한 화학식 1로 표시되는 화합물을 포함함과 동시에 제2 호스트로서 하기 화학식 4로 표시되는 화합물을 더 포함할 수 있다:
[화학식 4]
상기 화학식 4에서,
A는 치환 또는 비치환된 나프탈렌 고리이고,
Ar4는 치환 또는 비치환된 C6-60 아릴이고,
L3 및 L4는 각각 독립적으로, 단일 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고,
Ar5 및 Ar6은 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴, 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴, 또는 아다만틸이며,
p는 0 내지 9인 정수이다.
바람직하게는, 상기 화학식 4는 하기 화학식 4-1 내지 4-3 중 어느 하나로 표시된다:
[화학식 4-1]
[화학식 4-2]
[화학식 4-3]
상기 화학식 4-1 내지 4-3에서, Ar4 내지 Ar6, L3, L4, 및 p의 정의는 전술한 바와 같다.
바람직하게는, Ar4는 페닐, 비페닐릴, 또는 나프틸이고; 상기 Ar4는 비치환되거나, 하나 이상의 터트-부틸 또는 페닐로 치환된다.
바람직하게는, L3 및 L4는 각각 독립적으로, 단일 결합, 페닐렌 또는 나프탈렌디일이고; 상기 L3 및 L4는 각각 독립적으로 비치환되거나, 하나 이상의 페닐로 치환된다.
바람직하게는, Ar5 및 Ar6은 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 디벤조퓨라닐, 디벤조티오페닐, 플루오레닐, 9,9-디메틸플루오레닐 또는 아다만틸이고; 상기 Ar5 및 Ar6은 각각 독립적으로 비치환되거나, 하나 이상의 터트-부틸 또는 페닐로 치환된다.
바람직하게는, p는 0이다.
상기 화학식 4로 표시되는 화합물의 대표적인 예는 하기와 같다:
도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되는 것은 아니다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되는 것은 아니다.
상기 도펀트 재료의 대표적인 예는 하기와 같다:
상기 정공저지층은 발광층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 전자이동도를 조절하고 정공의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 하는 층을 의미한다. 상기 정공저지층은 정공저지물질을 포함하고, 이러한 정공저지물질의 예로 트리아진을 포함한 아진류유도체, 트리아졸 유도체, 옥사디아졸 유도체, 페난트롤린 유도체, 포스핀옥사이드 유도체 등의 전자흡인기가 도입된 화합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 전자 주입 및 수송층은 전극으로부터 전자를 주입하고, 수취된 전자를 발광층까지 수송하는 전자수송층 및 전자주입층의 역할을 동시에 수행하는 층으로, 상기 발광층 또는 상기 정공저지층 상에 형성된다. 이러한 전자 주입 및 수송물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 전자 주입 및 수송물질의 예로는 8-히드록시퀴놀린의 Al 착물, Alq3를 포함한 착물, 유기 라디칼 화합물, 히드록시플라본-금속 착물, 트리아진 유도체 등이 있으나, 이들에만 한정되는 것은 아니다. 또는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물, 또는 질소 함유 5원환 유도체 등과 함께 사용할 수도 있으나, 이에 한정되는 것은 아니다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되는 것은 아니다.
본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.
상기 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
합성예 1
질소 분위기에서 화학식A (15g, 45.2mmol)와 sub1 (7.8g, 45.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.8g, 135.7mmol)를 물 56ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subA-1를 13.2g 제조하였다. (수율 77%, MS: [M+H]+= 379)
질소 분위기에서 subA-1 (15g, 39.6mmol)와 bis(pinacolato)diboron (11.1g, 43.6mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (5.8g, 59.4mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (0.7g, 1.2mmol) 및 tricyclohexylphosphine (0.7g, 2.4mmol)을 투입하였다. 8시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subA-1'를 12.8g 제조하였다. (수율 69%, MS: [M+H]+= 471)
질소 분위기에서 subA-1' (15g, 31.9mmol)와 Trz1 (8.5g, 31.9mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.2g, 95.7mmol)를 물 40ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물1를 11.7g 제조하였다. (수율 64%, MS: [M+H]+= 576)
합성예 2
질소 분위기에서 subA-1' (15g, 31.9mmol)와 Trz2 (15.3g, 31.9mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.2g, 95.7mmol)를 물 40ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물2를 17.3g 제조하였다. (수율 73%, MS: [M+H]+= 742)
합성예 3
질소 분위기에서 subA-1' (15g, 31.9mmol)와 Trz3 (13.5g, 31.9mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.2g, 95.7mmol)를 물 40ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물3를 18.4g 제조하였다. (수율 79%, MS: [M+H]+= 732)
합성예 4
질소 분위기에서 화학식A (15g, 45.2mmol)와 sub2 (5.5g, 45.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.8g, 135.7mmol)를 물 56ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subA-2를 11.7g 제조하였다. (수율 79%, MS: [M+H]+= 329)
질소 분위기에서 subA-2 (15g, 45.6mmol)와 bis(pinacolato)diboron (12.7g, 50.2mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (6.7g, 68.4mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (0.8g, 1.4mmol) 및 tricyclohexylphosphine (0.8g, 2.7mmol)을 투입하였다. 9시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subA-2'를 14.8g 제조하였다. (수율 77%, MS: [M+H]+= 421)
질소 분위기에서 subA-2' (15g, 35.7mmol)와 Trz4 (12.8g, 35.7mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.8g, 107.1mmol)를 물 44ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물4를 13.2g 제조하였다. (수율 60%, MS: [M+H]+= 616)
합성예 5
질소 분위기에서 subA-2' (15g, 35.7mmol)와 Trz5 (15.6g, 35.7mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.8g, 107.1mmol)를 물 44ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물5를 17g 제조하였다. (수율 73%, MS: [M+H]+= 652)
합성예 6
질소 분위기에서 화학식A (15g, 45.2mmol)와 sub3 (10.3g, 45.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.8g, 135.7mmol)를 물 56ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subA-3를 14.1g 제조하였다. (수율 72%, MS: [M+H]+= 435)
질소 분위기에서 subA-3 (15g, 34.5mmol)와 bis(pinacolato)diboron (9.6g, 37.9mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (5.1g, 51.7mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (0.6g, 1mmol) 및 tricyclohexylphosphine (0.6g, 2.1mmol)을 투입하였다. 8시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subA-3'를 12.7g 제조하였다. (수율 70%, MS: [M+H]+= 527)
질소 분위기에서 subA-3' (15g, 28.5mmol)와 Trz1 (7.6g, 28.5mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.8g, 85.5mmol)를 물 35ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.3mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물6를 13.7g 제조하였다. (수율 76%, MS: [M+H]+= 632)
합성예 7
질소 분위기에서 화학식A (15g, 45.2mmol)와 sub4 (10g, 45.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.8g, 135.7mmol)를 물 56ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subA-4를 11.6g 제조하였다. (수율 60%, MS: [M+H]+= 429)
질소 분위기에서 subA-3 (15g, 34.5mmol)와 bis(pinacolato)diboron (9.6g, 37.9mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (5.1g, 51.7mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (0.6g, 1mmol) 및 tricyclohexylphosphine (0.6g, 2.1mmol)을 투입하였다. 8시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subA-3'를 12.7g 제조하였다. (수율 70%, MS: [M+H]+= 527)
질소 분위기에서 subA-4' (15g, 28.8mmol)와 Trz6 (12.5g, 28.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12g, 86.5mmol)를 물 36ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.3mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물7를 16.6g 제조하였다. (수율 73%, MS: [M+H]+= 792)
합성예 8
질소 분위기에서 화학식A (15g, 45.2mmol)와 sub5 (9.6g, 45.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.8g, 135.7mmol)를 물 56ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subA-5를 14.8g 제조하였다. (수율 78%, MS: [M+H]+= 419)
질소 분위기에서 subA-5 (15g, 35.8mmol)와 bis(pinacolato)diboron (10g, 39.4mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (5.3g, 53.7mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (0.6g, 1.1mmol) 및 tricyclohexylphosphine (0.6g, 2.1mmol)을 투입하였다. 6시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subA-5'를 14.3g 제조하였다. (수율 76%, MS: [M+H]+= 527)
질소 분위기에서 subA-5' (15g, 28.5mmol)와 Trz1 (7.6g, 28.5mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.8g, 85.5mmol)를 물 35ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.3mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물8를 12.3g 제조하였다. (수율 70%, MS: [M+H]+= 616)
합성예 9
질소 분위기에서 화학식A (15g, 45.2mmol)와 sub6 (10.3g, 45.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.8g, 135.7mmol)를 물 56ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subA-6를 15.7g 제조하였다. (수율 80%, MS: [M+H]+= 435)
질소 분위기에서 subA-6 (15g, 34.5mmol)와 bis(pinacolato)diboron (9.6g, 37.9mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (5.1g, 51.7mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (0.6g, 1mmol) 및 tricyclohexylphosphine (0.6g, 2.1mmol)을 투입하였다. 8시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subA-6'를 11.6g 제조하였다. (수율 64%, MS: [M+H]+= 527)
질소 분위기에서 subA-6' (15g, 28.5mmol)와 Trz1 (7.6g, 28.5mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.8g, 85.5mmol)를 물 35ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.3mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물9를 14.4g 제조하였다. (수율 80%, MS: [M+H]+= 632)
합성예 10
질소 분위기에서 화학식A (15g, 45.2mmol)와 sub7 (9.6g, 45.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.8g, 135.7mmol)를 물 56ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subA-7를 12.3g 제조하였다. (수율 65%, MS: [M+H]+= 419)
질소 분위기에서 subA-7 (15g, 35.8mmol)와 bis(pinacolato)diboron (10g, 39.4mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (5.3g, 53.7mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (0.6g, 1.1mmol) 및 tricyclohexylphosphine (0.6g, 2.1mmol)을 투입하였다. 7시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subA-7'를 12.8g 제조하였다. (수율 70%, MS: [M+H]+= 511)
질소 분위기에서 subA-7' (15g, 29.4mmol)와 Trz1 (7.9g, 29.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.2g, 88.2mmol)를 물 37ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물10를 11.2g 제조하였다. (수율 62%, MS: [M+H]+= 616)
합성예 11
질소 분위기에서 화학식B (15g, 45.2mmol)와 sub2 (5.5g, 45.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.8g, 135.7mmol)를 물 56ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subB-1를 10.8g 제조하였다. (수율 73%, MS: [M+H]+= 329)
질소 분위기에서 subB-1 (15g, 45.6mmol)와 bis(pinacolato)diboron (12.7g, 50.2mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (6.7g, 68.4mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (0.8g, 1.4mmol) 및 tricyclohexylphosphine (0.8g, 2.7mmol)을 투입하였다. 9시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subB-1'를 13g 제조하였다. (수율 68%, MS: [M+H]+= 421)
질소 분위기에서 subB-1' (15g, 35.7mmol)와 Trz7 (11.3g, 35.7mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.8g, 107.1mmol)를 물 44ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물11를 12.5g 제조하였다. (수율 61%, MS: [M+H]+= 576)
합성예 12
질소 분위기에서 subB-1' (15g, 35.7mmol)와 Trz8 (14.1g, 35.7mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.8g, 107.1mmol)를 물 44ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물12를 15.8g 제조하였다. (수율 68%, MS: [M+H]+= 652)
합성예 13
질소 분위기에서 화학식B (15g, 45.2mmol)와 sub1 (7.8g, 45.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.8g, 135.7mmol)를 물 56ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subB-2를 10.8g 제조하였다. (수율 63%, MS: [M+H]+= 379)
질소 분위기에서 subB-2 (15g, 39.6mmol)와 bis(pinacolato)diboron (11.1g, 43.6mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (5.8g, 59.4mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (0.7g, 1.2mmol) 및 tricyclohexylphosphine (0.7g, 2.4mmol)을 투입하였다. 6시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subB-2'를 12.5g 제조하였다. (수율 67%, MS: [M+H]+= 471)
질소 분위기에서 subB-2' (15g, 31.9mmol)와 Trz9 (11g, 31.9mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.2g, 95.7mmol)를 물 40ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물13를 14.3g 제조하였다. (수율 69%, MS: [M+H]+= 652)
합성예 14
질소 분위기에서 subB-2' (15g, 31.9mmol)와 Trz10 (12.4g, 31.9mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.2g, 95.7mmol)를 물 40ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물14를 14.9g 제조하였다. (수율 76%, MS: [M+H]+= 616)
합성예 15
질소 분위기에서 화학식B (15g, 45.2mmol)와 sub8 (7.8g, 45.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.8g, 135.7mmol)를 물 56ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subB-3를 12.7g 제조하였다. (수율 74%, MS: [M+H]+= 379)
질소 분위기에서 subB-3 (15g, 35.8mmol)와 bis(pinacolato)diboron (10g, 39.4mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (5.3g, 53.7mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (0.6g, 1.1mmol) 및 tricyclohexylphosphine (0.6g, 2.1mmol)을 투입하였다. 10시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subB-3'를 11.1g 제조하였다. (수율 66%, MS: [M+H]+= 471)
질소 분위기에서 subB-3' (15g, 31.9mmol)와 Trz11 (16.9g, 31.9mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.2g, 95.7mmol)를 물 40ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물15를 20.2g 제조하였다. (수율 80%, MS: [M+H]+= 792)
합성예 16
질소 분위기에서 화학식B (15g, 45.2mmol)와 sub5 (9.6g, 45.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.8g, 135.7mmol)를 물 56ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subB-4를 12.3g 제조하였다. (수율 65%, MS: [M+H]+= 419)
질소 분위기에서 subB-4 (15g, 35.8mmol)와 bis(pinacolato)diboron (10g, 39.4mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (5.3g, 53.7mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (0.6g, 1.1mmol) 및 tricyclohexylphosphine (0.6g, 2.1mmol)을 투입하였다. 5시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subB-4'를 11.9g 제조하였다. (수율 65%, MS: [M+H]+= 511)
질소 분위기에서 subB-4' (15g, 29.4mmol)와 Trz1 (7.9g, 29.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.2g, 88.2mmol)를 물 37ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물16를 10.8g 제조하였다. (수율 60%, MS: [M+H]+= 616)
합성예 17
질소 분위기에서 화학식B (15g, 45.2mmol)와 sub7 (9.6g, 45.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.8g, 135.7mmol)를 물 56ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subB-5를 13.4g 제조하였다. (수율 71%, MS: [M+H]+= 419)
질소 분위기에서 subB-5 (15g, 35.8mmol)와 bis(pinacolato)diboron (10g, 39.4mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (5.3g, 53.7mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (0.6g, 1.1mmol) 및 tricyclohexylphosphine (0.6g, 2.1mmol)을 투입하였다. 8시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subB-5'를 11g 제조하였다. (수율 60%, MS: [M+H]+= 511)
질소 분위기에서 subB-5' (15g, 29.4mmol)와 Trz1 (7.9g, 29.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.2g, 88.2mmol)를 물 37ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물17를 11.2g 제조하였다. (수율 62%, MS: [M+H]+= 616)
합성예 18
질소 분위기에서 subB-4' (15g, 29.4mmol)와 Trz7 (9.3g, 29.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.2g, 88.2mmol)를 물 37ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물18를 14.3g 제조하였다. (수율 73%, MS: [M+H]+= 666)
합성예 19
질소 분위기에서 화학식C (15g, 45.2mmol)와 sub10 (10.3g, 45.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.8g, 135.7mmol)를 물 56ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-1를 14.5g 제조하였다. (수율 74%, MS: [M+H]+= 435)
질소 분위기에서 subC-1 (15g, 34.5mmol)와 bis(pinacolato)diboron (9.6g, 37.9mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (5.1g, 51.7mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (0.6g, 1mmol) 및 tricyclohexylphosphine (0.6g, 2.1mmol)을 투입하였다. 7시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-1'를 11.6g 제조하였다. (수율 64%, MS: [M+H]+= 527)
질소 분위기에서 subC-1' (15g, 28.5mmol)와 Trz12 (12g, 28.5mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.8g, 85.5mmol)를 물 35ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.3mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물19를 17.6g 제조하였다. (수율 79%, MS: [M+H]+= 784)
합성예 20
질소 분위기에서 화학식C (15g, 45.2mmol)와 sub2 (5.5g, 45.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.8g, 135.7mmol)를 물 56ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-2를 11.1g 제조하였다. (수율 75%, MS: [M+H]+= 329)
질소 분위기에서 subC-2 (15g, 45.6mmol)와 bis(pinacolato)diboron (12.7g, 50.2mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (6.7g, 68.4mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (0.8g, 1.4mmol) 및 tricyclohexylphosphine (0.8g, 2.7mmol)을 투입하였다. 6시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-2'를 14.4g 제조하였다. (수율 75%, MS: [M+H]+= 421)
질소 분위기에서 subC-2' (15g, 35.7mmol)와 Trz4 (12.8g, 35.7mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.8g, 107.1mmol)를 물 44ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물20를 15.1g 제조하였다. (수율 69%, MS: [M+H]+= 616)
합성예 21
질소 분위기에서 subC-2' (15g, 35.7mmol)와 Trz13 (15g, 35.7mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.8g, 107.1mmol)를 물 44ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물21를 16g 제조하였다. (수율 66%, MS: [M+H]+= 678)
합성예 22
질소 분위기에서 subC-2' (15g, 35.7mmol)와 Trz14 (9.6g, 35.7mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.8g, 107.1mmol)를 물 44ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물22를 18.2g 제조하였다. (수율 68%, MS: [M+H]+= 752)
합성예 23
질소 분위기에서 화학식C (15g, 45.2mmol)와 sub11 (9.6g, 45.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.8g, 135.7mmol)를 물 56ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-3를 13.4g 제조하였다. (수율 71%, MS: [M+H]+= 419)
질소 분위기에서 subC-3 (15g, 35.8mmol)와 bis(pinacolato)diboron (10g, 39.4mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (5.3g, 53.7mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (0.6g, 1.1mmol) 및 tricyclohexylphosphine (0.6g, 2.1mmol)을 투입하였다. 9시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-3'를 11.4g 제조하였다. (수율 68%, MS: [M+H]+= 471)
질소 분위기에서 subC-3' (15g, 29.4mmol)와 Trz1 (7.9g, 29.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.2g, 88.2mmol)를 물 37ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물23를 11g 제조하였다. (수율 61%, MS: [M+H]+= 616)
합성예 24
질소 분위기에서 화학식C (15g, 45.2mmol)와 sub6 (10.3g, 45.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.8g, 135.7mmol)를 물 56ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-4를 12g 제조하였다. (수율 61%, MS: [M+H]+= 435)
질소 분위기에서 subC-4 (15g, 34.5mmol)와 bis(pinacolato)diboron (9.6g, 37.9mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (5.1g, 51.7mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (0.6g, 1mmol) 및 tricyclohexylphosphine (0.6g, 2.1mmol)을 투입하였다. 6시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-4'를 11.4g 제조하였다. (수율 63%, MS: [M+H]+= 527)
질소 분위기에서 subC-4' (15g, 28.5mmol)와 Trz1 (7.6g, 28.5mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.8g, 85.5mmol)를 물 35ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.3mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물24를 11.7g 제조하였다. (수율 65%, MS: [M+H]+= 632)
합성예 25
질소 분위기에서 화학식C (15g, 45.2mmol)와 sub12 (9g, 45.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.8g, 135.7mmol)를 물 56ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-5를 12.1g 제조하였다. (수율 66%, MS: [M+H]+= 405)
질소 분위기에서 subC-5 (15g, 37mmol)와 bis(pinacolato)diboron (10.3g, 40.8mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (5.5g, 55.6mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (0.6g, 1.1mmol) 및 tricyclohexylphosphine (0.6g, 2.2mmol)을 투입하였다. 9시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-5'를 11.6g 제조하였다. (수율 63%, MS: [M+H]+= 497)
질소 분위기에서 subC-5' (15g, 30.2mmol)와 Trz15 (18.8g, 30.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.5g, 90.7mmol)를 물 38ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물25를 20.9g 제조하였다. (수율 76%, MS: [M+H]+= 910)
실시예 1
ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척했다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용했다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행했다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 정공주입층으로 하기 HI-1 화합물을 1150Å의 두께로 형성하되 하기 A-1 화합물을 1.5% 농도로 p-doping 했다. 상기 정공주입층 위에 하기 HT-1 화합물을 진공 증착하여 막 두께 800Å 의 정공수송층을 형성했다. 이어서, 상기 정공수송층 위에 막 두께 150Å으로 하기 EB-1 화합물을 진공 증착하여 전자억제층을 형성했다. 이어서, 상기 EB-1 증착막 위에 하기 화합물 1과 하기 Dp-7 화합물을 98:2의 중량비로 진공 증착하여 400Å 두께의 적색 발광층을 형성했다. 상기 발광층 위에 막 두께 30Å으로 하기 HB-1 화합물을 진공 증착하여 정공저지층을 형성했다. 이어서, 상기 정공저지층 위에 하기 ET-1 화합물과 하기 LiQ 화합물을 2:1의 중량비로 진공 증착하여 300Å의 두께로 전자 주입 및 수송층을 형성했다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å 두께로 리튬플로라이드(LiF)와 1,000Å 두께로 알루미늄을 증착하여 음극을 형성했다.
상기의 과정에서 유기물의 증착속도는 0.4~0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2ⅹ10-7 ~ 5ⅹ10-6 torr를 유지하여, 유기 발광 소자를 제작했다.
실시예 2 내지 25
실시예 1의 유기 발광 소자에서 화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 실시예 2 내지 25의 유기 발광 소자를 제조했다.
비교예 1 내지 12
실시예 1의 유기 발광 소자에서 화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 비교예 1 내지 12의 유기 발광 소자를 제조했다.
실시예 26 내지 75
실시예 1의 유기 발광 소자에서 화합물 1 대신 하기 표 2에 기재된 제1호스트와 제2호스트를 1:1 비율로 진공 공증착 진행 했으며 이것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시예 26 내지 75의 유기 발광 소자를 제조했다.
비교예 13 내지 36
실시예 1의 유기 발광 소자에서 화합물1 대신 하기 표 2에 기재된 제1호스트와 제2호스트를 1:1 비율로 진공 공증착 진행 했으며 이것을 제외하고는 상기 실시예 1과 동일한 방법으로 비교예 13 내지 36의 유기 발광 소자를 제조했다.
상기 실시예 1 내지 75 및 비교예 1 내지 36에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율을 측정(15mA/cm2 기준)하고 그 결과를 하기 표1 및 2에 나타냈다. 수명 T95는 휘도가 초기 휘도(7000 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다.
구분 |
물질 |
효율(cd/A) |
수명 T95(hr) |
발광색 |
실시예 1 |
화합물 1 |
23.4 |
184 |
적색 |
실시예 2 |
화합물 2 |
20.9 |
133 |
적색 |
실시예 3 |
화합물 3 |
20.8 |
155 |
적색 |
실시예 4 |
화합물 4 |
23.1 |
147 |
적색 |
실시예 5 |
화합물 5 |
23.5 |
160 |
적색 |
실시예 6 |
화합물 6 |
21.3 |
152 |
적색 |
실시예 7 |
화합물 7 |
22.9 |
143 |
적색 |
실시예 8 |
화합물 8 |
23.7 |
152 |
적색 |
실시예 9 |
화합물 9 |
21.3 |
158 |
적색 |
실시예 10 |
화합물 10 |
23.7 |
163 |
적색 |
실시예 11 |
화합물 11 |
21.8 |
151 |
적색 |
실시예 12 |
화합물 12 |
20.3 |
140 |
적색 |
실시예 13 |
화합물 13 |
23.4 |
159 |
적색 |
실시예 14 |
화합물 14 |
22.4 |
163 |
적색 |
실시예 15 |
화합물 15 |
22.0 |
143 |
적색 |
실시예 16 |
화합물 16 |
23.7 |
184 |
적색 |
실시예 17 |
화합물 17 |
23.1 |
189 |
적색 |
실시예 18 |
화합물 18 |
23.3 |
192 |
적색 |
실시예 19 |
화합물 19 |
20.1 |
151 |
적색 |
실시예 20 |
화합물 20 |
22.3 |
164 |
적색 |
실시예 21 |
화합물 21 |
21.9 |
142 |
적색 |
실시예 22 |
화합물 22 |
20.4 |
167 |
적색 |
실시예 23 |
화합물 23 |
22.3 |
158 |
적색 |
실시예 24 |
화합물 24 |
23.5 |
193 |
적색 |
실시예 25 |
화합물 25 |
20.4 |
167 |
적색 |
비교예 1 |
C-1 |
17.9 |
154 |
적색 |
비교예 2 |
C-2 |
17.4 |
133 |
적색 |
비교예 3 |
C-3 |
17.1 |
110 |
적색 |
비교예 4 |
C-4 |
18.1 |
138 |
적색 |
비교예 5 |
C-5 |
17.2 |
76 |
적색 |
비교예 6 |
C-6 |
17.9 |
134 |
적색 |
비교예 7 |
C-7 |
17.5 |
112 |
적색 |
비교예 8 |
C-8 |
17.0 |
98 |
적색 |
비교예 9 |
C-9 |
15.1 |
101 |
적색 |
비교예 10 |
C-10 |
17.8 |
129 |
적색 |
비교예 11 |
C-11 |
16.3 |
129 |
적색 |
비교예 12 |
C-12 |
20.4 |
129 |
적색 |
구분 |
제1호스트 |
제2호스트 |
구동전압(V) |
효율(cd/A) |
수명 T95(hr) |
발광색 |
실시예 26 |
화합물 1 |
Z-1 |
3.45 |
26.4 |
362 |
적색 |
실시예 27 |
화합물 2 |
3.53 |
23.2 |
301 |
적색 |
실시예 28 |
화합물 3 |
3.54 |
22.1 |
312 |
적색 |
실시예 29 |
화합물 4 |
3.57 |
23.0 |
294 |
적색 |
실시예 30 |
화합물 5 |
3.60 |
25.5 |
320 |
적색 |
실시예 31 |
화합물 6 |
3.58 |
20.4 |
301 |
적색 |
실시예 32 |
화합물 7 |
3.61 |
21.7 |
299 |
적색 |
실시예 33 |
화합물 8 |
3.43 |
26.7 |
347 |
적색 |
실시예 34 |
화합물 9 |
3.61 |
23.0 |
313 |
적색 |
실시예 35 |
화합물 10 |
3.54 |
24.2 |
327 |
적색 |
실시예 36 |
화합물 11 |
3.52 |
23.1 |
304 |
적색 |
실시예 37 |
화합물 12 |
3.60 |
25.8 |
297 |
적색 |
실시예 38 |
화합물 13 |
3.57 |
22.5 |
317 |
적색 |
실시예 39 |
화합물 14 |
3.54 |
22.0 |
324 |
적색 |
실시예 40 |
화합물 15 |
3.61 |
24.3 |
296 |
적색 |
실시예 41 |
화합물 16 |
3.41 |
26.8 |
352 |
적색 |
실시예 42 |
화합물 17 |
3.44 |
27.1 |
327 |
적색 |
실시예 43 |
화합물 18 |
3.40 |
26.3 |
359 |
적색 |
실시예 44 |
화합물 19 |
3.53 |
23.1 |
303 |
적색 |
실시예 45 |
화합물 20 |
3.62 |
25.3 |
320 |
적색 |
실시예 46 |
화합물 21 |
3.57 |
23.9 |
285 |
적색 |
실시예 47 |
화합물 22 |
3.60 |
22.4 |
294 |
적색 |
실시예 48 |
화합물 23 |
3.52 |
24.3 |
311 |
적색 |
실시예 49 |
화합물 24 |
3.42 |
26.5 |
353 |
적색 |
실시예 50 |
화합물 25 |
3.61 |
23.8 |
282 |
적색 |
실시예 51 |
화합물 1 |
Z-2 |
3.37 |
27.0 |
341 |
적색 |
실시예 52 |
화합물 2 |
3.50 |
24.1 |
324 |
적색 |
실시예 53 |
화합물 3 |
3.58 |
22.5 |
308 |
적색 |
실시예 54 |
화합물 4 |
3.51 |
23.8 |
312 |
적색 |
실시예 55 |
화합물 5 |
3.63 |
26.1 |
302 |
적색 |
실시예 56 |
화합물 6 |
3.54 |
21.0 |
329 |
적색 |
실시예 57 |
화합물 7 |
3.60 |
21.3 |
320 |
적색 |
실시예 58 |
화합물 8 |
3.45 |
27.3 |
334 |
적색 |
실시예 59 |
화합물 9 |
3.54 |
22.4 |
294 |
적색 |
실시예 60 |
화합물 10 |
3.58 |
23.7 |
318 |
적색 |
실시예 61 |
화합물 11 |
3.48 |
22.8 |
321 |
적색 |
실시예 62 |
화합물 12 |
3.55 |
25.9 |
304 |
적색 |
실시예 63 |
화합물 13 |
3.61 |
22.1 |
301 |
적색 |
실시예 64 |
화합물 14 |
3.55 |
22.6 |
311 |
적색 |
실시예 65 |
화합물 15 |
3.60 |
24.5 |
303 |
적색 |
실시예 66 |
화합물 16 |
3.46 |
27.2 |
322 |
적색 |
실시예 67 |
화합물 17 |
3.39 |
27.3 |
331 |
적색 |
실시예 68 |
화합물 18 |
3.45 |
26.7 |
364 |
적색 |
실시예 69 |
화합물 19 |
3.60 |
24.2 |
297 |
적색 |
실시예 70 |
화합물 20 |
3.58 |
25.8 |
312 |
적색 |
실시예 71 |
화합물 21 |
3.59 |
24.2 |
304 |
적색 |
실시예 72 |
화합물 22 |
3.54 |
21.8 |
290 |
적색 |
실시예 73 |
화합물 23 |
3.55 |
26.1 |
301 |
적색 |
실시예 74 |
화합물 24 |
3.40 |
26.9 |
335 |
적색 |
실시예 75 |
화합물 25 |
3.57 |
24.7 |
300 |
적색 |
비교예 13 |
C-1 |
Z-1 |
3.76 |
23.5 |
250 |
적색 |
비교예 14 |
C-2 |
3.93 |
22.0 |
217 |
적색 |
비교예 15 |
C-3 |
3.94 |
21.2 |
226 |
적색 |
비교예 16 |
C-4 |
3.91 |
21.8 |
238 |
적색 |
비교예 17 |
C-5 |
4.08 |
19.4 |
204 |
적색 |
비교예 18 |
C-6 |
3.95 |
20.4 |
213 |
적색 |
비교예 19 |
C-7 |
3.91 |
19.3 |
222 |
적색 |
비교예 20 |
C-8 |
3.73 |
22.4 |
248 |
적색 |
비교예 21 |
C-9 |
3.85 |
19.3 |
223 |
적색 |
비교예 22 |
C-10 |
3.91 |
21.8 |
254 |
적색 |
비교예 23 |
C-11 |
3.88 |
19.7 |
239 |
적색 |
비교예 24 |
C-12 |
3.73 |
22.4 |
271 |
적색 |
비교예 25 |
C-1 |
Z-2 |
3.73 |
23.8 |
247 |
적색 |
비교예 26 |
C-2 |
3.95 |
22.5 |
224 |
적색 |
비교예 27 |
C-3 |
3.90 |
21.7 |
243 |
적색 |
비교예 28 |
C-4 |
3.94 |
21.2 |
237 |
적색 |
비교예 29 |
C-5 |
4.02 |
19.9 |
214 |
적색 |
비교예 30 |
C-6 |
3.97 |
20.7 |
209 |
적색 |
비교예 31 |
C-7 |
3.94 |
19.8 |
248 |
적색 |
비교예 32 |
C-8 |
3.70 |
22.6 |
240 |
적색 |
비교예 33 |
C-9 |
3.86 |
19.7 |
253 |
적색 |
비교예 34 |
C-10 |
3.93 |
21.4 |
250 |
적색 |
비교예 35 |
C-11 |
3.84 |
20.3 |
242 |
적색 |
비교예 36 |
C-12 |
3.76 |
22.8 |
263 |
적색 |
실시예 1 내지 75 및 비교예 1 내지 36에 의해 제작된 유기 발광 소자에 전류를 인가하였을 때, 상기 표 1 및 2의 결과를 얻었다.
상기 실시예 1은 전자 차단층으로 화합물 [EB-1], 적색 발광층으로 화합물 1 /Dp-7을 사용하는 구조이다. 비교예 1 내지 36은 화합물 1 대신 C-1 내지 C-12를 사용하여 유기 발광 소자를 제조했다.
상기 표 1의 결과를 보면 본 발명의 화합물이 적색 발광층의 호스트로 사용 ?g을 때 비교예 물질에 비해서 효율 측면에서 크게 상승을 한 것으로 보아 호스트에서 적색 도판트로의 에너지 전달이 잘 이뤄진다는 것을 알 수 있었다. 또한 높은 효율을 유지하면서도 수명 특성을 2배 가까이 크게 개선 시킬 수 있는 것을 알 수 있었다. 이것은 결국 비교예 화합물 보다 본 발명의 화합물이 전자와 정공에 대한 안정도가 높기 때문이라 판단 할 수 있다.
상기 표 2의 결과는 두가지 종류의 호스트를 공증착 한 결과를 나타냈는데 제1호스트와 제2호스트를 1:1 비율로 사용했을 때 제1호스트만 사용한 결과 보다 더 우수한 결과를 나타냈다. 제2호스트를 사용함에 따라 정공의 양이 많아지면서 적색 발광층내에 전자와 정공이 더 안정적인 균형을 유지하게 되고 효율과 수명이 많이 상승 하는 것을 확인 할 수 있었다. 결론적으로 본 발명의 화합물을 적색 발광층의 호스트로 사용하였을 때 유기 발광 소자의 구동전압, 발광 효율 및 수명 특성을 개선할 수 있다는 것을 확인할 수 있다.