[go: up one dir, main page]

KR102477549B1 - Apparatus for Auxiliary Charging and Battery Cooling and Engine Block Cooling Using Wind Power In Electric Vehicle - Google Patents

Apparatus for Auxiliary Charging and Battery Cooling and Engine Block Cooling Using Wind Power In Electric Vehicle Download PDF

Info

Publication number
KR102477549B1
KR102477549B1 KR1020200176903A KR20200176903A KR102477549B1 KR 102477549 B1 KR102477549 B1 KR 102477549B1 KR 1020200176903 A KR1020200176903 A KR 1020200176903A KR 20200176903 A KR20200176903 A KR 20200176903A KR 102477549 B1 KR102477549 B1 KR 102477549B1
Authority
KR
South Korea
Prior art keywords
air
battery
wind power
engine
branch pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020200176903A
Other languages
Korean (ko)
Other versions
KR20220087594A (en
Inventor
김기섭
Original Assignee
김기섭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김기섭 filed Critical 김기섭
Priority to KR1020200176903A priority Critical patent/KR102477549B1/en
Publication of KR20220087594A publication Critical patent/KR20220087594A/en
Application granted granted Critical
Publication of KR102477549B1 publication Critical patent/KR102477549B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/06Arrangement in connection with cooling of propulsion units with air cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K16/00Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • B60L8/006Converting flow of air into electric energy, e.g. by using wind turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/11Combinations of wind motors with apparatus storing energy storing electrical energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • F03D9/32Wind motors specially adapted for installation in particular locations on moving objects, e.g. vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K16/00Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind
    • B60K2016/003Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind solar power driven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/94Mounting on supporting structures or systems on a movable wheeled structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Secondary Cells (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

본 발명은 외부에서 유입되는 풍력을 이용하여 발전된 전기에너지를 배터리에 충전함과 더불어 엔진 및 배터리를 냉각시키는 장치에 관한 것으로, 전기차량에서 풍력을 이용한 보조 충전 및 엔진과 배터리 냉각장치에 있어서, 상기 전기차량(1)의 내부에 복수로 설치되어 차량의 주행 중에 외부에서 유입된 공기를 제1분기관(11) 및 제2분기관(12)을 통해 배출하는 에어덕트(10); 상기 에어덕트(10)의 제1분기관(11)에서 배출된 공기의 압력에 의해 복수의 날개편으로 이루어진 풍차팬(41)의 회전에 의하여 전기에너지를 생성하여 공급하는 풍력발전기(40); 상기 에어덕트(10)의 제2분기관(12)에서 배출되어 엔진 및 ECU(20)의 표면을 거친 공기를 흡입하여 배터리팩(70)의 표면에 공기를 분사하는 공기분배기(30); 상기 풍력발전기(40)에서 공급된 전기에너지로 냉매를 압축하여 배터리팩(70)의 저면에 설치된 냉매파이프(60)로 순환시키는 냉매컴프레서(50)를 포함하는 것이다.The present invention relates to a device for cooling an engine and a battery as well as charging a battery with electrical energy generated by using wind power coming in from the outside. A plurality of air ducts 10 installed inside the electric vehicle 1 to discharge air introduced from the outside through the first branch pipe 11 and the second branch pipe 12 while the vehicle is running; a wind power generator 40 generating and supplying electrical energy by rotation of a windmill fan 41 composed of a plurality of blades by the pressure of the air discharged from the first branch pipe 11 of the air duct 10; an air distributor (30) for sucking in the air exhausted from the second branch pipe (12) of the air duct (10) and injecting the air onto the surface of the battery pack (70); It includes a refrigerant compressor 50 that compresses the refrigerant with the electric energy supplied from the wind power generator 40 and circulates it through the refrigerant pipe 60 installed on the bottom of the battery pack 70.

Figure R1020200176903
Figure R1020200176903

Description

전기차량에서 풍력을 이용한 보조 충전 및 엔진과 배터리 냉각장치{Apparatus for Auxiliary Charging and Battery Cooling and Engine Block Cooling Using Wind Power In Electric Vehicle}Apparatus for Auxiliary Charging and Battery Cooling and Engine Block Cooling Using Wind Power In Electric Vehicle}

본 발명은 전기차량에 관한 것으로, 더욱 상세하게는 외부에서 유입되는 풍력을 이용하여 발전된 전기에너지를 배터리에 충전함과 더불어 엔진 및 배터리를 냉각시키는 장치에 관한 것이다.The present invention relates to an electric vehicle, and more particularly, to a device for cooling an engine and a battery while charging a battery with electrical energy generated by using wind power introduced from the outside.

일반적으로 전기차량(Electric Vehicle, EV)은 화석 연료의 연소를 바탕으로 구동하는 것이 아닌 배터리에 충전된 전기를 동력으로 하는 친환경 자동차이다. 화석 연료를 사용하지 않기 때문에 소음과 배기가스 배출이 거의 없고, 적은 고장, 긴 수명 및 간편한 운전 조작 등의 장점이 있다. 이와 더불어 하이브리드 전기차량(Hybrid Electric Vehicle, HEV)은 서로 다른 두 종류 이상의 동력원을 효율적으로 조합하여 차량을 구동시키는 것을 의미한다. 하이브리드 전기차량은 가솔린이나 디젤 등의 연료를 사용하는 엔진과 전기모터에 의해 구동력을 얻는 차량을 의미한다.In general, an electric vehicle (EV) is an eco-friendly vehicle powered by electricity charged in a battery rather than driven by combustion of fossil fuel. Since it does not use fossil fuels, it has advantages such as little noise and exhaust gas emission, small breakdown, long lifespan, and easy operation. In addition, a hybrid electric vehicle (HEV) means driving a vehicle by efficiently combining two or more different types of power sources. A hybrid electric vehicle refers to a vehicle that obtains driving power by an engine using fuel such as gasoline or diesel and an electric motor.

이러한 전기차량에는 전기모터의 구동전력을 제공하는 고전압 배터리가 필수적으로 장착된다. 배터리는 차량 주행 중에 충전과 방전을 반복하면서 필요한 전력을 공급하게 된다. 통상 차량은 지역, 온도, 습도, 공기압 등 주행 환경의 변화가 매우 심하며, 실제 환경에서의 배터리의 충전과 방전은 실험실 조건에서 배터리의 충전과 방전 효율과는 상이하다. 또한, 저온이나 고온에서 배터리의 충전과 방전 효율은 저하되고, 습도가 높은 환경에서도 충전과 방전 효율이 저하된다.These electric vehicles are necessarily equipped with high-voltage batteries that provide driving power for electric motors. The battery supplies necessary power while repeatedly charging and discharging while the vehicle is driving. In general, vehicles vary greatly in the driving environment, such as region, temperature, humidity, and air pressure, and charging and discharging of batteries in real environments differ from battery charging and discharging efficiencies in laboratory conditions. In addition, the charging and discharging efficiency of the battery is lowered at low temperature or high temperature, and the charging and discharging efficiency is lowered even in a high humidity environment.

따라서 배터리 온도를 배터리의 최적의 성능을 발휘할 수 있는 일정 온도 범위로 유지하는 것이 필요하다. 전기차량에서 사용되는 고전압 배터리는 사용 중에 온도가 상승한다. 이를 위하여 배터리 시스템에는 배터리의 온도를 조절하는 장치가 설치된다. 더욱이 하이브리드 전기차량은 특성상 가장 많은 발열이 발생하는 부분이 엔진 및 ECU와 배터리팩이다. 더욱이 배터리팩의 심각한 발열이 차량 화재로 이어져 인명 및 재산상의 손실을 일으키는 경우가 있다.Therefore, it is necessary to maintain the temperature of the battery within a certain temperature range capable of exhibiting the optimum performance of the battery. High-voltage batteries used in electric vehicles become hot during use. To this end, a device for controlling the temperature of the battery is installed in the battery system. Moreover, due to the nature of hybrid electric vehicles, the parts that generate the most heat are the engine, ECU, and battery pack. Moreover, severe heat from the battery pack may lead to a vehicle fire, resulting in loss of life and property.

본 발명과 관련된 선행기술로, 특허문헌1의 하이브리드 전기차량의 배터리유닛 및 모터제어유닛 냉각시스템은 다수의 배터리셀을 내장하는 하우징으로 이루어진 배터리유닛; 상기 배터리유닛에 연통되어 차실내의 공기를 흡입하도록 형성된 공기흡입덕트; 상기 공기흡입덕트로 흡입된 공기가 상기 배터리유닛으로부터 토출되도록 구비된 배터리유닛의 토출구; 상기 토출구로부터 모터제어유닛으로 분지되는 MCU유입덕트; 상기 모터제어유닛을 바이패스하도록 상기 토출구로부터 분지된 바이패스덕트; 상기 모터제어유닛에서 토출되는 공기가 통과하는 MCU토출덕트; 상기 MCU토출덕트와 상기 바이패스덕트가 통합되는 통합덕트, 그리고 상기 통합덕트에 설치된 블로워팬을 포함하는 것이 개시되어 있다. 그러나 선행기술에 따르면, 공기흡입덕트에서 유입된 공기가 MCU의 상부를 거친 후 배터리유닛을 냉각시키고, 다시 MCU의 하부를 통과한 후 배출되므로 외부에서 유입된 공기가 복잡한 구조의 덕트를 거치는 동안 소음의 발생과 더불어 배터리유닛을 고르게 냉각시킬 수 없는 단점이 있었다.As a prior art related to the present invention, a battery unit and a motor control unit cooling system of a hybrid electric vehicle of Patent Document 1 include a battery unit composed of a housing in which a plurality of battery cells are embedded; an air intake duct communicating with the battery unit and sucking in air from the vehicle; a discharge port of the battery unit provided to discharge the air sucked into the air intake duct from the battery unit; MCU inlet duct branching from the outlet to the motor control unit; a bypass duct branched from the discharge port to bypass the motor control unit; an MCU discharge duct through which the air discharged from the motor control unit passes; Disclosed is an integrated duct in which the MCU discharge duct and the bypass duct are integrated, and a blower fan installed in the integrated duct. However, according to the prior art, the air introduced from the air intake duct cools the battery unit after passing through the upper part of the MCU, and then passes through the lower part of the MCU and is discharged. There was a disadvantage that the battery unit could not be cooled evenly with the occurrence of

대한민국 등록특허공보 제10-0802767호(2008.02.12., 공고)Republic of Korea Patent Registration No. 10-0802767 (2008.02.12., notice)

본 발명은 상기 문제를 해결하기 위하여, 전기차량의 주행 중에 유입되는 공기의 풍력을 이용하여 발전기를 작동시켜 전기를 발생시켜 배터리를 충전시키고, 유입된 공기로 엔진 및 ECU와 배터리를 냉각시키기 위한 것이 목적이다.In order to solve the above problems, the present invention is to operate a generator using wind power of air introduced while an electric vehicle is running to generate electricity to charge a battery, and to cool an engine, an ECU, and a battery with the introduced air. It is purpose.

본 발명은 상기 목적을 달성하기 위하여, 전기차량에서 풍력을 이용한 보조 충전 및 엔진과 배터리 냉각장치에 있어서, 상기 전기차량의 내부에 복수로 설치되어 차량의 주행 중에 외부에서 유입된 공기를 제1분기관 및 제2분기관을 통해 배출하는 에어덕트; 상기 에어덕트의 제1분기관에서 배출된 공기의 압력에 의해 복수의 날개편으로 이루어진 풍차팬의 회전에 의하여 전기에너지를 생성하여 공급하는 풍력발전기; 상기 에어덕트의 제2분기관에서 배출되어 엔진 및 ECU의 표면을 거친 공기를 흡입하여 배터리팩의 표면에 공기를 분사하는 공기분배기; 상기 풍력발전기에서 공급된 전기에너지로 냉매를 압축하여 배터리팩의 저면에 설치된 냉매파이프로 순환시키는 냉매컴프레서를 포함하는 전기차량에서 풍력을 이용한 보조 충전 및 엔진과 배터리 냉각장치를 제공한 것이 특징이다.In order to achieve the above object, the present invention provides an auxiliary charging device using wind power and an engine and battery cooling device for an electric vehicle, which is installed in a plurality of parts inside the electric vehicle and removes air introduced from the outside while the vehicle is running. An air duct discharged through the engine and the second branch pipe; a wind power generator generating and supplying electrical energy by rotation of a windmill fan composed of a plurality of blades by the pressure of the air discharged from the first branch pipe of the air duct; an air distributor for sucking air discharged from the second branch pipe of the air duct and passing through surfaces of the engine and ECU and injecting air onto the surface of the battery pack; It is characterized by providing an auxiliary charging and engine and battery cooling device using wind power in an electric vehicle including a refrigerant compressor that compresses refrigerant with electrical energy supplied from the wind power generator and circulates it through a refrigerant pipe installed on the bottom of the battery pack.

또한, 본 발명에서, 상기 에어덕트에 제3분기관이 분기되어 엔진 및 ECU의 저면에 공기를 분사할 수 있다.In addition, in the present invention, the third branch pipe is branched from the air duct to inject air to the bottom of the engine and the ECU.

또한, 본 발명에서, 상기 풍력발전기에서 생성된 전기에너지를 배터리 충전전원으로 변환한 후 배터리를 충전할 수 있다.In addition, in the present invention, the battery can be charged after converting the electrical energy generated by the wind turbine into battery charging power.

또한, 본 발명에서, 상기 공기분배기에는 복수의 분사관이 구비되어 배터리팩의 표면에 각각 설치될 수 있다.In addition, in the present invention, the air distributor may be provided with a plurality of injection tubes, respectively, installed on the surface of the battery pack.

또한, 본 발명에서, 상기 풍차팬의 일측에 엔진 및 ECU로 공기를 송풍하는 냉각팬이 구성될 수 있다.Also, in the present invention, a cooling fan for blowing air to the engine and the ECU may be configured on one side of the windmill fan.

또한, 본 발명에서, 상기 에어덕트는 엔진 및 ECU의 정면, 측면, 상면, 하면 중 어느 하나 이상에 설치된 냉각팬 및 풍력발전기가 일체 구비된 풍차팬을 회전시킬 수 있다.Further, in the present invention, the air duct may rotate a cooling fan installed on at least one of the front, side, upper, and lower surfaces of the engine and the ECU and a windmill fan integrally equipped with a wind generator.

본 발명에 따르면, 전기차량의 주행 중에 외부에서 유입된 공기를 이용하여 전기에너지를 생성하여 배터리의 충전이나 냉매를 압축하여 배터리팩을 냉각시킬 수 있고, 또, 외부에서 유입된 공기를 엔진 및 ECU의 표면과 배터리팩의 표면을 냉각시킬 수 있어 전기차량의 에너지 효율을 극대화하고 엔진이나 배터리팩의 과열로 인한 화재발생을 미연에 예방한 이점이 있다.According to the present invention, electric energy can be generated using air introduced from the outside while the electric vehicle is running to charge the battery or cool the battery pack by compressing the refrigerant, and the air introduced from the outside can be used to cool the engine and the ECU. It can cool the surface of the battery pack and the surface of the battery pack, maximizing the energy efficiency of the electric vehicle and preventing fires caused by overheating of the engine or battery pack.

도 1은 본 발명에 따른 실시 예로, 전기차량에서 풍력을 이용한 보조 충전 및 엔진과 배터리 냉각장치를 나타낸 블록도이다.
도 2는 본 발명에 따른 전기차량에서 풍력을 이용한 보조 충전 및 엔진과 배터리 냉각장치의 설치를 나타낸 측면 개략도이다.
도 3은 본 발명에 따른 전기차량에서 풍력을 이용한 보조 충전 및 엔진과 배터리 냉각장치의 설치를 나타낸 평면 개략도이다.
도 4는 본 발명에 따른 다른 실시 예로, 전기차량에서 풍력을 이용한 보조 충전 및 엔진과 배터리 냉각장치를 나타낸 개략도이다.
도 5는 본 발명에 따른 또 다른 실시 예로, 전기차량에서 풍력을 이용한 보조 충전 및 엔진과 배터리 냉각장치를 나타낸 개략도이다.
도 6은 본 발명에 따른 또 다른 실시 예로, 전기차량에서 풍력을 이용한 보조 충전 및 엔진과 배터리 냉각장치를 나타낸 개략도이다.
1 is a block diagram showing an auxiliary charging system using wind power and an engine and battery cooling device in an electric vehicle as an embodiment according to the present invention.
2 is a schematic side view showing auxiliary charging using wind power and installation of an engine and battery cooling device in an electric vehicle according to the present invention.
3 is a plan schematic view showing auxiliary charging using wind power and installation of an engine and battery cooling device in an electric vehicle according to the present invention.
4 is a schematic diagram showing an auxiliary charging system using wind power and an engine and battery cooling device in an electric vehicle according to another embodiment of the present invention.
5 is a schematic diagram showing an auxiliary charging system using wind power and an engine and battery cooling device in an electric vehicle as another embodiment according to the present invention.
6 is a schematic diagram showing an auxiliary charging system using wind power and an engine and battery cooling device in an electric vehicle as another embodiment according to the present invention.

이하, 본 발명에 따른 전기차량에서 풍력을 이용한 보조 충전 및 엔진과 배터리 냉각장치에 관한 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, an embodiment related to auxiliary charging using wind power and an engine and battery cooling device in an electric vehicle according to the present invention will be described in detail with reference to the accompanying drawings.

도 1에서, 에어덕트(10)는 전기차량(1)의 내부에 복수로 설치된다. 즉, 엔진룸(2)이 전기차량(1)의 앞쪽에 설치된 경우에 에어덕트(10)는 전기차량(1)의 전면에 설치되고, 엔진룸(2)이 전기차량(1)의 뒤쪽에 설치된 경우에 에어덕트(10)는 전기차량(1)의 측면에 설치된다. 따라서 에어덕트(10)는 전기차량(1)이 주행 중에 공기가 쉽게 유입되는 위치나 공기저항을 최소화할 수 있는 위치에 설치되는 것이 좋고, 전기차량(1)의 엔진룸(2)의 위치에 따라 설치 위치가 달라질 것이다. 더욱이 전기차량(1)의 내부에 설치된 에어덕트(10)는 외부에서 공기가 유입되는 단일의 입구가 전기차량(1)의 전면이나 측면의 표면에 노출되도록 설치된다. 그리고 에어덕트(10)는 입구에서 유입된 공기가 복수의 분기관을 통해 배출되는 복수의 출구가 구성될 수 있다.In FIG. 1 , a plurality of air ducts 10 are installed inside the electric vehicle 1 . That is, when the engine room 2 is installed in front of the electric vehicle 1, the air duct 10 is installed in the front of the electric vehicle 1, and the engine room 2 is installed in the rear of the electric vehicle 1. When installed, the air duct 10 is installed on the side of the electric vehicle 1. Therefore, the air duct 10 is preferably installed at a location where air easily flows in while the electric vehicle 1 is running or where air resistance can be minimized, and is located in the engine room 2 of the electric vehicle 1. Installation location will vary accordingly. Furthermore, the air duct 10 installed inside the electric vehicle 1 is installed so that a single inlet through which air is introduced from the outside is exposed on the front or side surface of the electric vehicle 1. In addition, the air duct 10 may include a plurality of outlets through which air introduced from the inlet is discharged through a plurality of branch pipes.

풍력발전기(40)는 에어덕트(10)의 제1분기관(11)에서 배출된 공기의 압력에 의해 전기에너지를 생성하는 것이다. 풍력발전기(40)는 공기의 압력에 의하여 회전하는 날개편으로 이루어진 풍차팬(41)의 회전축과 축 결합된다. 그리고 풍차팬(41)의 회전에 의하여 전자기력에 전기에너지를 생성하는 고정자와 회전자를 포함한다. 풍력발전기(40)에서 발생된 전기에너지는 컨버터를 거쳐 배터리의 충전전원으로 출력되거나 공조기의 냉매컴프레서(50)의 구동전원으로 출력될 수 있다. 또한, 풍차팬(41)의 일측, 즉, 엔진 및 ECU(20) 쪽으로 냉각팬(42)이 구성되어 풍차팬(41)의 회전과 함께 회전되어 엔진 및 ECU(20)로 공기를 송풍한다.The wind power generator 40 generates electrical energy by the pressure of the air discharged from the first branch pipe 11 of the air duct 10 . The wind power generator 40 is shaft-coupled with a rotational shaft of a windmill fan 41 made of blades rotating by air pressure. And it includes a stator and a rotor that generate electric energy in electromagnetic force by the rotation of the windmill fan (41). The electrical energy generated by the wind power generator 40 may be output as charging power of a battery through a converter or output as driving power of the refrigerant compressor 50 of the air conditioner. In addition, a cooling fan 42 is configured to one side of the windmill fan 41, that is, toward the engine and ECU 20, and rotates along with the rotation of the windmill fan 41 to blow air to the engine and ECU 20.

공기분배기(30)는 에어덕트(10)의 제2분기관(12)에서 배출된 공기를 흡입하여 배터리팩(70)의 표면에 분사하는 것이다. 공기분배기(30)는 엔진 및 ECU(20)의 상단이나 측단 또는 하단의 표면 일측에 설치된다. 더욱이 공기분배기(30)는 엔진 및 ECU(20)의 표면을 따라 공기가 유입되는 단일의 입구가 설치된다. 공기분배기(30)의 출구는 배터리팩(70)의 표면에 일정 간격으로 위치될 수 있도록 복수로 형성된다. 따라서 공기분배기(30)는 엔진 및 ECU(20)의 표면을 따라 유입된 공기를 배터리팩(70)의 표면에 고르게 분사되도록 한다.The air distributor 30 sucks air discharged from the second branch pipe 12 of the air duct 10 and sprays it on the surface of the battery pack 70 . The air distributor 30 is installed on one side of the upper, side or lower surface of the engine and ECU 20 . Furthermore, the air distributor 30 has a single inlet through which air is introduced along the surfaces of the engine and ECU 20 . The outlet of the air distributor 30 is formed in plurality so as to be positioned on the surface of the battery pack 70 at regular intervals. Accordingly, the air distributor 30 evenly sprays the air introduced along the surface of the engine and the ECU 20 to the surface of the battery pack 70 .

냉매컴프레서(50)는 풍력발전기(40)에서 공급된 전기에너지로 냉매를 압축하여 배터리팩(70)의 저면에 설치된 냉매파이프(60)로 순환시키는 것이다. 냉매컴프레서(50)는 배터리로부터 공급된 전기에너지로 냉매를 압축하여 냉매파이프(60)로 순환시킬 수도 있다. 냉매파이프(60)는 배터리팩(70)의 상단이나 하단 또는 측단에 설치될 수 있다.The refrigerant compressor 50 compresses the refrigerant with electrical energy supplied from the wind power generator 40 and circulates the refrigerant through the refrigerant pipe 60 installed on the bottom of the battery pack 70 . The refrigerant compressor 50 may compress the refrigerant with electric energy supplied from the battery and circulate it through the refrigerant pipe 60 . The refrigerant pipe 60 may be installed at the top or bottom of the battery pack 70 or at the side end.

도 2 및 도 3에서, 전기차량(1)의 주행 중에 전방으로부터 전기차량(1)의 내부에 설치된 에어덕트(10)의 입구로 공기가 유입되고, 유입된 공기는 에어덕트(10)의 제1분기관(11)으로 분할된 후에 제1분기관(11)의 출구에 설치된 풍차팬(41)의 날개편에 분사하여 풍차팬(41)을 회전시킨다. 풍차팬(41)이 회전하면서 풍력발전기(40)는 전기에너지를 생성하여 배터리의 충전전원으로 공급되거나 또는 냉매컴프레서(50)를 작동시키는 구동전원으로 공급된다. 또한, 풍차팬(41)에 엔진 및 ECU(20) 쪽으로 설치된 냉각팬(42)이 회전되어 엔진 및 ECU(20)로 공기를 송풍함으로써 엔진 및 ECU(20)의 냉각을 도모한다.2 and 3, while the electric vehicle 1 is running, air is introduced from the front to the inlet of the air duct 10 installed inside the electric vehicle 1, and the introduced air flows into the air duct 10. After being divided into one branch pipe (11), the windmill fan (41) is rotated by spraying onto the blades of the windmill fan (41) installed at the outlet of the first branch pipe (11). As the windmill fan 41 rotates, the wind power generator 40 generates electrical energy, which is supplied as charging power for the battery or driving power for operating the refrigerant compressor 50. In addition, the cooling fan 42 installed toward the engine and ECU 20 in the windmill fan 41 rotates to blow air to the engine and ECU 20, thereby cooling the engine and ECU 20.

또한, 에어덕트(10)의 제2분기관(12)으로 분할된 공기는 제2분기관(12)의 출구에 설치된 엔진 및 ECU(20)의 표면에 분사되어 엔진 및 ECU(20)를 냉각시킨다. 그리고 엔진 및 ECU(20)의 표면을 따라 분사된 공기는 엔진 및 ECU(20)의 측면에 설치된 공기분배기(30)의 입구로 흡입된 후 배터리팩(70)의 표면으로 일정 간격을 두고 설치된 복수의 분사관(31)으로 분사되어 배터리팩(70)을 냉각시킨다. 이때, 제2분기관(12)에서 분사된 공기는 엔진 및 ECU(20)의 측면을 따라 흐르는 동안 엔진 및 ECU(20)의 측면에 설치된 차단막(3)에 의해 공기분배기(30)의 입구로 유입되도록 설치된다. 더욱이 에어덕트(10)에 제3분기관이 분기되어 엔진 및 ECU(20)의 저면에 공기를 분사할 수 있을 것이다.In addition, the air divided into the second branch pipe 12 of the air duct 10 is injected to the surface of the engine and ECU 20 installed at the outlet of the second branch pipe 12 to cool the engine and ECU 20. let it In addition, the air injected along the surface of the engine and ECU 20 is sucked into the inlet of the air distributor 30 installed on the side of the engine and ECU 20, and then the air is installed on the surface of the battery pack 70 at regular intervals. is sprayed into the injection pipe 31 to cool the battery pack 70. At this time, the air injected from the second branch pipe 12 flows along the sides of the engine and ECU 20 to the inlet of the air distributor 30 by the blocking film 3 installed on the sides of the engine and ECU 20. installed to inlet. Furthermore, the third branch pipe is branched from the air duct 10 so that air can be injected to the bottom of the engine and the ECU 20 .

또한, 제2분기관(12)에서 배출되어 풍차팬(41)을 거친 공기가 엔진 및 ECU(20)의 측면으로 공급되도록 하는 분사관이 더 설치될 수 있다.In addition, an injection pipe may be further installed so that air discharged from the second branch pipe 12 and passed through the windmill fan 41 is supplied to the side of the engine and the ECU 20 .

본 발명의 다른 실시 예로, 도 4에서, 에어덕트(10)가 엔진 및 ECU(20)의 양측 전방 아래에 설치된 것으로, 에어덕트(10)의 제1분기관(11)에서 배출된 공기는 풍차팬(41)을 회전시켜 풍력발전기(40)에서 전기에너지를 생성하여 공급되도록 한다. 그리고 에어덕트(10)의 제2분기관(12)에서 배출된 공기는 엔진 및 ECU(20)의 저면을 따라 흐르는 동안 엔진 및 ECU(20)를 냉각시킨 후, 엔진 및 ECU(20)의 후방에 설치된 배터리팩(70)의 표면을 따라 흐르는 동안 배터리팩(70)을 냉각시킨다. 또한, 냉매컴프레서(50)는 풍력발전기(40)나 배터리팩(70)으로부터 공급된 전기에너지로 구동되어 냉매를 압축한 후 냉매파이프(60)로 순환시키는 동안 배터리팩(70)을 냉각시킬 수 있다.As another embodiment of the present invention, in FIG. 4, the air duct 10 is installed below the front of both sides of the engine and ECU 20, and the air discharged from the first branch pipe 11 of the air duct 10 is a windmill. By rotating the fan 41, the wind power generator 40 generates and supplies electrical energy. In addition, the air discharged from the second branch pipe 12 of the air duct 10 cools the engine and ECU 20 while flowing along the bottom surface of the engine and ECU 20, and then discharges from the rear of the engine and ECU 20. Cools the battery pack 70 while flowing along the surface of the battery pack 70 installed in the. In addition, the refrigerant compressor 50 is driven by electric energy supplied from the wind power generator 40 or the battery pack 70 to compress the refrigerant and cool the battery pack 70 while circulating it through the refrigerant pipe 60. have.

또한, 본 발명의 또 다른 실시 예로, 도 5에서, 에어덕트(10)가 엔진 및 ECU(20)의 전방 아래에 설치된 것으로, 에어덕트(10)에서 배출된 공기는 풍차팬(41)을 회전시켜 풍력발전기(40)에서 전기에너지를 생성하여 공급되도록 한다. 그리고 냉매컴프레서(50)는 풍력발전기(40)나 배터리팩(70)으로부터 공급된 전기에너지로 구동되어 냉매를 압축한 후 냉매파이프(60)로 순환시키는 동안 배터리팩(70)을 냉각시킬 수 있다.In addition, as another embodiment of the present invention, in FIG. 5, the air duct 10 is installed below the front of the engine and ECU 20, and the air discharged from the air duct 10 rotates the windmill fan 41. So that the wind generator 40 generates and supplies electrical energy. In addition, the refrigerant compressor 50 is driven by electric energy supplied from the wind power generator 40 or the battery pack 70 to compress the refrigerant and cools the battery pack 70 while circulating it through the refrigerant pipe 60. .

또한, 본 발명의 다른 실시 예로, 도 6에서, 전기차량(1)의 엔진룸(2)이 뒤쪽에 설치된 경우로, 전기차량(1)의 주행 중에 측면에 설치된 에어덕트(10)의 입구로 공기가 유입되면, 제1분기관(11)에서 배출된 공기는 풍차팬(41)을 회전시켜 풍력발전기(40)에서 전기에너지를 생성하여 공급되도록 한다. 그리고 에어덕트(10)의 제2분기관(12)에서 배출된 공기는 엔진 및 ECU(20)의 하단, 측단 및 상단을 거쳐 흐르는 동안 엔진 및 ECU(20)를 냉각시킨다. 또, 엔진 및 ECU(20)의 상부 전방에 설치된 공기분배기(30)로 유입된 공기는 공기분배기(30)에서 일정 간격으로 구비된 복수의 분사관(31)을 통해 배터리팩(70)의 표면에 분사하여 배터리팩(70)을 냉각시킨다. 또한, 냉매컴프레서(50)는 풍력발전기(40)나 배터리팩(70)으로부터 공급된 전기에너지로 구동되어 냉매를 압축한 후 냉매파이프(60)로 순환시키는 동안 배터리팩(70)을 냉각시킬 수 있다.In addition, as another embodiment of the present invention, in FIG. 6, in the case where the engine room 2 of the electric vehicle 1 is installed at the rear, the air duct 10 installed on the side during driving of the electric vehicle 1 is inlet. When air is introduced, the air discharged from the first branch pipe 11 rotates the windmill fan 41 so that the wind turbine 40 generates and supplies electrical energy. The air discharged from the second branch pipe 12 of the air duct 10 cools the engine and ECU 20 while flowing through the lower end, side end, and upper end of the engine and ECU 20 . In addition, the air introduced into the air distributor 30 installed in the upper front of the engine and ECU 20 passes through a plurality of injection pipes 31 provided at regular intervals in the air distributor 30 to the surface of the battery pack 70. to cool the battery pack 70. In addition, the refrigerant compressor 50 is driven by electric energy supplied from the wind power generator 40 or the battery pack 70 to compress the refrigerant and cool the battery pack 70 while circulating it through the refrigerant pipe 60. have.

이상의 설명에서 본 발명은 특정의 실시 예와 관련하여 도시 및 설명하였지만, 청구범위에 의해 나타난 발명의 사상 및 영역으로부터 벗어나지 않는 한도 내에서 다양한 개조 및 변화가 가능하다는 것을 이 기술분야에서 통상의 지식을 가진 자라면 누구나 쉽게 알 수 있을 것이다.In the above description, the present invention has been shown and described in relation to specific embodiments, but it is common knowledge in the art that various modifications and changes are possible without departing from the spirit and scope of the invention indicated by the claims. Anyone who has it will be able to easily understand.

1: 전기차량 2: 엔진룸 3: 차단막
10: 에어덕트 11: 제1분기관 12: 제2분기관
20: 엔진 및 ECU
30: 공기분배기 31: 분사관
40: 풍력발전기 41: 풍차팬 42: 냉각팬
50: 냉매컴프레서
60: 냉매파이프
70: 배터리팩
1: electric vehicle 2: engine room 3: barrier
10: air duct 11: first branch pipe 12: second branch pipe
20: engine and ECU
30: air distributor 31: injection pipe
40: wind generator 41: windmill fan 42: cooling fan
50: refrigerant compressor
60: refrigerant pipe
70: battery pack

Claims (6)

전기차량(1)에서 풍력을 이용한 보조 충전 및 엔진과 배터리 냉각장치에 있어서,
상기 전기차량(1)의 내부에 복수로 설치되어 차량의 주행 중에 외부에서 유입된 공기를 제1분기관(11) 및 제2분기관(12)을 통해 배출하는 에어덕트(10);
상기 에어덕트(10)의 제1분기관(11)에서 배출된 공기의 압력에 의해 복수의 날개편으로 이루어진 풍차팬(41)의 회전에 의하여 전기에너지를 생성하여 공급하는 풍력발전기(40);
상기 에어덕트(10)의 제2분기관(12)에서 배출되어 엔진 및 ECU(20)의 표면을 거친 공기를 흡입하여 배터리팩(70)의 표면에 공기를 분사하는 공기분배기(30);
상기 풍력발전기(40)에서 공급된 전기에너지로 냉매를 압축하여 배터리팩(70)의 저면에 설치된 냉매파이프(60)로 순환시키는 냉매컴프레서(50);를 포함하고,
상기 에어덕트(10)에 제3분기관이 분기되어 엔진 및 ECU(20)의 저면에 공기를 분사하며,
상기 에어덕트(10)는 엔진 및 ECU(20)의 정면, 측면, 상면, 하면 중 어느 하나 이상에 설치된 냉각팬(42) 및 풍력발전기(40)가 일체 구비된 풍차팬(41)을 회전시키는, 전기차량에서 풍력을 이용한 보조 충전 및 엔진과 배터리 냉각장치.
In an auxiliary charging and engine and battery cooling device using wind power in an electric vehicle (1),
a plurality of air ducts 10 installed inside the electric vehicle 1 to discharge air introduced from the outside through the first branch pipe 11 and the second branch pipe 12 while the vehicle is running;
a wind power generator 40 generating and supplying electrical energy by rotation of a windmill fan 41 composed of a plurality of blades by the pressure of the air discharged from the first branch pipe 11 of the air duct 10;
an air distributor (30) for sucking in the air exhausted from the second branch pipe (12) of the air duct (10) and injecting the air onto the surface of the battery pack (70);
A refrigerant compressor (50) for compressing the refrigerant with the electric energy supplied from the wind power generator (40) and circulating it through the refrigerant pipe (60) installed on the bottom of the battery pack (70);
The third branch pipe is branched to the air duct 10 to inject air to the bottom of the engine and the ECU 20,
The air duct 10 rotates a cooling fan 42 installed on at least one of the front, side, upper, and lower surfaces of the engine and ECU 20 and a windmill fan 41 integrally equipped with a wind generator 40. , auxiliary charging using wind power in electric vehicles, and cooling of engines and batteries.
삭제delete 제1항에 있어서, 상기 풍력발전기(40)에서 생성된 전기에너지를 배터리 충전전원으로 변환한 후 배터리를 충전하는, 전기차량에서 풍력을 이용한 보조 충전 및 엔진과 배터리 냉각장치.
The apparatus of claim 1, wherein the electric energy generated by the wind power generator (40) is converted into battery charging power and then the battery is charged.
제1항에 있어서, 상기 공기분배기(30)에는 복수의 분사관(31)이 구비되어 배터리팩(70)의 표면에 각각 설치되는, 전기차량에서 풍력을 이용한 보조 충전 및 엔진과 배터리 냉각장치.
The apparatus of claim 1, wherein the air distributor (30) is provided with a plurality of injection pipes (31) and installed on the surface of the battery pack (70), respectively, for auxiliary charging using wind power and cooling the engine and battery in an electric vehicle.
삭제delete 삭제delete
KR1020200176903A 2020-12-17 2020-12-17 Apparatus for Auxiliary Charging and Battery Cooling and Engine Block Cooling Using Wind Power In Electric Vehicle Active KR102477549B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200176903A KR102477549B1 (en) 2020-12-17 2020-12-17 Apparatus for Auxiliary Charging and Battery Cooling and Engine Block Cooling Using Wind Power In Electric Vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200176903A KR102477549B1 (en) 2020-12-17 2020-12-17 Apparatus for Auxiliary Charging and Battery Cooling and Engine Block Cooling Using Wind Power In Electric Vehicle

Publications (2)

Publication Number Publication Date
KR20220087594A KR20220087594A (en) 2022-06-27
KR102477549B1 true KR102477549B1 (en) 2022-12-14

Family

ID=82247335

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200176903A Active KR102477549B1 (en) 2020-12-17 2020-12-17 Apparatus for Auxiliary Charging and Battery Cooling and Engine Block Cooling Using Wind Power In Electric Vehicle

Country Status (1)

Country Link
KR (1) KR102477549B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102818113B1 (en) * 2023-03-22 2025-06-11 강태삼 Electric car wind generator
US20250043769A1 (en) * 2023-08-01 2025-02-06 Prata Bruno Design Vehicle equipped with a wind power electricity generator
KR102678343B1 (en) * 2023-09-26 2024-06-25 주식회사 진영엔지니어링 Structure for Electric Vehicle Auxiliary Power Generation and Battery Pack Fire Suppression

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013467A (en) * 2000-04-28 2002-01-18 Mitsubishi Electric Corp Wind power generation device
JP4547811B2 (en) * 2000-10-03 2010-09-22 株式会社デンソー Vehicle cooling system
KR101661667B1 (en) * 2015-03-05 2016-09-30 동명대학교산학협력단 Air-conditioning system for vehicle using vortex tube
JP6024704B2 (en) * 2014-05-09 2016-11-16 株式会社デンソー Battery pack
KR101754497B1 (en) * 2015-11-18 2017-07-06 김홍운 Heat pump type air conditioning device for electric vehicle using wind power generator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100802767B1 (en) 2005-11-04 2008-02-12 현대자동차주식회사 Cooling system of battery unit and motor control unit of hybrid vehicle
KR20120056971A (en) * 2010-11-26 2012-06-05 현대자동차주식회사 Wind power generating system for the vehicle using the motor for cooling-fan

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013467A (en) * 2000-04-28 2002-01-18 Mitsubishi Electric Corp Wind power generation device
JP4547811B2 (en) * 2000-10-03 2010-09-22 株式会社デンソー Vehicle cooling system
JP6024704B2 (en) * 2014-05-09 2016-11-16 株式会社デンソー Battery pack
KR101661667B1 (en) * 2015-03-05 2016-09-30 동명대학교산학협력단 Air-conditioning system for vehicle using vortex tube
KR101754497B1 (en) * 2015-11-18 2017-07-06 김홍운 Heat pump type air conditioning device for electric vehicle using wind power generator

Also Published As

Publication number Publication date
KR20220087594A (en) 2022-06-27

Similar Documents

Publication Publication Date Title
KR102477549B1 (en) Apparatus for Auxiliary Charging and Battery Cooling and Engine Block Cooling Using Wind Power In Electric Vehicle
US10752129B2 (en) Battery heating in hybrid electric power plant
US8677948B2 (en) Variable speed high efficiency cooling system
CN108137161B (en) Auxiliary power unit with electrically driven compressor
US6798079B2 (en) Turbine power generator including supplemental parallel cooling and related methods
US11396889B2 (en) Supercharger and motor cooling method
EP3473547A1 (en) Integrated heat management for hybrid propulsion
CN100451491C (en) Cogeneration system
BR112017009722B1 (en) OVERCHARGING DEVICE FOR AN INTERNAL COMBUSTION ENGINE
WO2022237036A1 (en) Horizontal coaxial wind driven generator
CN101837727A (en) Cooling system for a vehicle
US7804185B1 (en) Non-fuel combusting stand alone air turbine engine
US10125610B2 (en) Air turbine engine for moving vehicle
JP2010112367A (en) Method and device for supercharging and generating electric power by wind power of moving body
US20110277467A1 (en) Hybrid air turbine engine with heat recapture system for moving vehicle
CN106374684A (en) Power supply device for rail vehicle and rail vehicle
CN114499043A (en) Direct-current generator set driven by internal combustion engine
RU2369764C1 (en) Power plant in vehicle
CN207892700U (en) A kind of internal-combustion engine system
US7377113B2 (en) Modular turbine generator and method of operation
CN220358970U (en) Generator set with high heat dissipation performance
JP6626357B2 (en) On-board charger cooling structure
CN119659956B (en) A hybrid electric power system for an aircraft engine and a design method thereof
CN113277059B (en) Hybrid power airship composed of gas turbine and hydrogen fuel cell and operation method
CN221299301U (en) Heat dissipation system of generator set

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20201217

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20220617

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20221209

PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20221209

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20221209

End annual number: 3

Start annual number: 1

PG1601 Publication of registration