KR102472891B1 - Aluminum alloy for casting having excellent thermal conductance, and casting method therefor - Google Patents
Aluminum alloy for casting having excellent thermal conductance, and casting method therefor Download PDFInfo
- Publication number
- KR102472891B1 KR102472891B1 KR1020200111883A KR20200111883A KR102472891B1 KR 102472891 B1 KR102472891 B1 KR 102472891B1 KR 1020200111883 A KR1020200111883 A KR 1020200111883A KR 20200111883 A KR20200111883 A KR 20200111883A KR 102472891 B1 KR102472891 B1 KR 102472891B1
- Authority
- KR
- South Korea
- Prior art keywords
- less
- casting
- thermal conductivity
- aluminum alloy
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005266 casting Methods 0.000 title claims abstract description 62
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims description 41
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 78
- 239000010936 titanium Substances 0.000 claims abstract description 43
- 239000011777 magnesium Substances 0.000 claims abstract description 37
- 239000011572 manganese Substances 0.000 claims abstract description 35
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 30
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000012535 impurity Substances 0.000 claims abstract description 26
- 230000014509 gene expression Effects 0.000 claims abstract description 24
- 239000011651 chromium Substances 0.000 claims abstract description 23
- 239000010949 copper Substances 0.000 claims abstract description 22
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 21
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000010703 silicon Substances 0.000 claims abstract description 15
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052796 boron Inorganic materials 0.000 claims abstract description 14
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 14
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims abstract description 14
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 11
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 11
- 229910052802 copper Inorganic materials 0.000 claims abstract description 11
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 11
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 10
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 10
- 229910052751 metal Inorganic materials 0.000 claims description 36
- 239000002184 metal Substances 0.000 claims description 36
- 239000000956 alloy Substances 0.000 claims description 23
- 229910045601 alloy Inorganic materials 0.000 claims description 22
- 238000004519 manufacturing process Methods 0.000 claims description 19
- 239000011701 zinc Substances 0.000 claims description 17
- 238000004512 die casting Methods 0.000 claims description 15
- 238000002844 melting Methods 0.000 claims description 10
- 230000008018 melting Effects 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 238000000137 annealing Methods 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 238000007664 blowing Methods 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000003303 reheating Methods 0.000 claims description 3
- 238000010079 rubber tapping Methods 0.000 claims description 3
- 239000000047 product Substances 0.000 description 38
- 230000000052 comparative effect Effects 0.000 description 30
- 230000000694 effects Effects 0.000 description 12
- 230000007547 defect Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 6
- 229910001208 Crucible steel Inorganic materials 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000005275 alloying Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000003749 cleanliness Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910018134 Al-Mg Inorganic materials 0.000 description 2
- 229910018467 Al—Mg Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000009716 squeeze casting Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- DBGSRZSKGVSXRK-UHFFFAOYSA-N 1-[2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]acetyl]-3,6-dihydro-2H-pyridine-4-carboxylic acid Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CCC(=CC1)C(=O)O DBGSRZSKGVSXRK-UHFFFAOYSA-N 0.000 description 1
- LLQHSBBZNDXTIV-UHFFFAOYSA-N 6-[5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-4,5-dihydro-1,2-oxazol-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC1CC(=NO1)C1=CC2=C(NC(O2)=O)C=C1 LLQHSBBZNDXTIV-UHFFFAOYSA-N 0.000 description 1
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000005495 investment casting Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D17/00—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/02—Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
- B22D21/04—Casting aluminium or magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/043—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Continuous Casting (AREA)
Abstract
열전도율이 우수한 주조용 알루미늄 합금이 제공된다.
본 발명의 열전도율이 우수한 주조용 알루미늄 합금은, 중량%로, 실리콘(Si): 0.5~2.3%, 철(Fe): 0.6~1.8%, 티타늄(Ti):0.01~0.2%, 보론(B):0.005~0.05%, 스트론튬(Sr): 0.1~0.3%, 잔여 알루미늄(Al) 및 기타 불가피한 불순물을 포함하고, 상기 불순물은, 구리(Cu): 0.08% 이하, 망간(Mn): 0.05% 이하, 마그네슘(Mg): 0.05% 이하, 크롬(Cr): 0.1% 이하 및 아연(Zn): 0.1%이하 중 선택된 1종 이상을 포함하고, 그리고 하기 관계식 1-4를 각각 만족한다. An aluminum alloy for casting having excellent thermal conductivity is provided.
Casting aluminum alloy with excellent thermal conductivity of the present invention, in weight%, silicon (Si): 0.5 ~ 2.3%, iron (Fe): 0.6 ~ 1.8%, titanium (Ti): 0.01 ~ 0.2%, boron (B) : 0.005 to 0.05%, strontium (Sr): 0.1 to 0.3%, residual aluminum (Al) and other unavoidable impurities, including copper (Cu): 0.08% or less, manganese (Mn): 0.05% or less , Magnesium (Mg): 0.05% or less, Chromium (Cr): 0.1% or less, and Zinc (Zn): 0.1% or less, and satisfies each of the following relational expressions 1-4.
Description
본 발명은 각종 주조공정(중력 주조, 스퀴즈주조, 금형 고속 주조, 반응고 주조)에 제한 없이 적용될 수 있는 알루미늄 합금 및 그 주조방법에 관한 것으로, 보다 상세하게는, RRU, RRH, MMU, Filter 등과 같은 기구물에 포함된 Heat Sink 등의 제조를 위한 박판 주조에 이용될 수 있는 열전도율이 우수한 알루미늄 합금 및 주조방법에 관한 것이다. The present invention relates to an aluminum alloy that can be applied without limitation to various casting processes (gravity casting, squeeze casting, mold high-speed casting, semi-solid casting) and a casting method thereof, and more specifically, to RRU, RRH, MMU, Filter, etc. It relates to an aluminum alloy with excellent thermal conductivity and a casting method that can be used for casting thin plates for the manufacture of heat sinks included in the same equipment.
일반적으로 각 종 전기 기계 제품 등의 제품의 방열판(heat sink)의 제조에는 다이캐스팅 주조법이 주로 이용되고 있다. 이러한 다이캐스팅은 필요한 주조형상에 완전히 일치하도록 정확하게 기계가공된 금형에 용융금속을 주입하여 금형과 똑같은 주물을 얻는 정밀주조법이다. 이러한 다이캐스팅법은 얻어지는 주물의 치수가 정확하다는 장점 외에 기계적 성질이 우수하며, 대량생산이 가능하다는 특징이 있다. In general, a die casting casting method is mainly used to manufacture heat sinks for products such as various electric machine products. Such die casting is an investment casting method in which a casting identical to a mold is obtained by injecting molten metal into a mold accurately machined to completely match a required casting shape. In addition to the advantage that the dimensions of the casting obtained are accurate, this die casting method has excellent mechanical properties and is characterized in that mass production is possible.
한편 이러한 다이캐스팅에 이용되는 알루미늄 합금으로는 주조성이 우수한 Al-Si계 합금 및 Al-Mg계 합금 등이 주로 사용되고 있다. 그런데 Al-Si계 합금 또는 Al-Mg계 합금의 경우, 주조성은 우수하나 열전도도가 90~140W/mK로 낮기 때문에, 160W/mK 이상의 높은 열전도도를 필요로 하는 전기, 전자 및 자동차용 방열부품에는 사용이 제한되어 왔다.Meanwhile, as aluminum alloys used for such die casting, Al-Si alloys and Al-Mg alloys having excellent castability are mainly used. However, in the case of Al-Si-based alloys or Al-Mg-based alloys, their castability is excellent, but their thermal conductivity is as low as 90 to 140 W/mK, so heat dissipation for electric, electronic, and automobile applications that require high thermal conductivity of 160 W/mK or more is required. The use of parts has been limited.
이와 같은 높은 열전도도를 요구하는 방열부품에는, 종래 열전도도가 220W/mK 이상으로 매우 높은 순 알루미늄을 그대로 다이캐스팅한 제품이 전기, 전자제품용 로터 등에 일부 사용되고 있는데, 순 알루미늄은 열전도도는 매우 우수하지만 인장 강도가 낮고 주조성이 좋지 않기 때문에, 열전도도와 함께 우수한 기계적 특성을 요구하는 구조용 부품에까지 적용하기에는 한계가 있다.For heat dissipation parts that require such high thermal conductivity, die-casting products of pure aluminum with a very high thermal conductivity of 220W/mK or more are used in parts such as rotors for electric and electronic products. Pure aluminum has very excellent thermal conductivity However, since it has low tensile strength and poor castability, there is a limit to its application to structural parts that require excellent mechanical properties as well as thermal conductivity.
이러한 다이캐스팅 주조품은 여러 분야에 사용되고 있으나, 특히, 현재에는 통신네트워크 부품 LTE/5G 기지국, 중계기 제품 등에서 갈수록 안테나 내장화 대용량화에 따라 CPU, 통신 모듈과 같은 반도체 부품에서 다량의 열이 발생하고 있으므로, 그 발생된 열을 효과적으로 배출할 수 있는 방열판의 제조가 중요해지고 있다.These die-casting products are used in various fields, but in particular, as a large amount of heat is generated from semiconductor components such as CPU and communication modules due to the increasing capacity of embedded antennas in communication network parts such as LTE/5G base stations and repeaters, Manufacturing of a heat sink capable of effectively dissipating generated heat has become important.
이러한 방열판의 제조에 이용되는 종래의 소재로서 Si9(Sr)을 들 수 있으며, 상기 Si9(Sr)은 규격 상 Si가 6~7중량%, Fe 0.5~0.7중량%, Sr 0.01~0.02중량%, 기타 불순물 0.03중량% 이하 및 잔부 Al의 조성을 가지고 있다. 그런데 상기 소재로 제조되는 방열제품의 인장 강도는 180N/mm2, 항복강도 90N/mm2, 연신율 5% 및 열전도율 160W/mk 수준으로서, 광역 커버리지를 가지는 5G 통신장비와 같이 기구물의 크기가 대형화되고 부품이 집약되고 있는 기술영역에는 효과적으로 적용될 수 없다는 한계가 있었다. As a conventional material used in the manufacture of such a heat sink, Si9 (Sr) may be mentioned, and the Si9 (Sr) contains 6 to 7% by weight of Si, 0.5 to 0.7% by weight of Fe, 0.01 to 0.02% by weight of Sr, It has a composition of less than 0.03% by weight of other impurities and the balance of Al. However, the tensile strength of the heat dissipation product made of the above material is 180 N/mm2, yield strength 90 N/mm2, elongation 5%, and thermal conductivity 160 W/mk. There was a limit that it could not be effectively applied to the technology area being concentrated.
본 발명은 5G 통신장비와 같은 기구물 제작에 효과적으로 이용될 수 있는, 박판 주조(1T), 고열전도도(190~210W/mK) 및 항복강도(50~70N/mm2)를 갖는 열전도율이 우수한 주조용 알루미늄 합금 및 그 주조방법을 제공함을 목적으로 한다. The present invention is cast aluminum having excellent thermal conductivity with thin plate casting (1T), high thermal conductivity (190 ~ 210W / mK) and yield strength (50 ~ 70N / mm2), which can be effectively used in the manufacture of instruments such as 5G communication equipment Its purpose is to provide an alloy and its casting method.
또한 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들에 한정되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.In addition, the technical problems to be achieved in the present invention are not limited to the above-mentioned technical problems, and other technical problems not mentioned are clearly understood by those skilled in the art from the description below. It could be.
본 발명의 일측면은, One aspect of the present invention,
중량%로, 실리콘(Si): 0.5~2.3%, 철(Fe): 0.6~1.8%, 티타늄(Ti):0.01~0.2%, 보론(B):0.005~0.05%, 스트론튬(Sr): 0.1~0.3%, 잔여 알루미늄(Al) 및 기타 불가피한 불순물을 포함하고, In weight percent, silicon (Si): 0.5 to 2.3%, iron (Fe): 0.6 to 1.8%, titanium (Ti): 0.01 to 0.2%, boron (B): 0.005 to 0.05%, strontium (Sr): 0.1 ~0.3%, containing residual aluminum (Al) and other unavoidable impurities,
상기 불순물은, 구리(Cu): 0.08% 이하, 망간(Mn): 0.05% 이하, 마그네슘(Mg): 0.05% 이하, 크롬(Cr): 0.1% 이하 및 아연(Zn): 0.1%이하 중 선택된 1종 이상을 포함하고, 그리고 The impurities are selected from copper (Cu): 0.08% or less, manganese (Mn): 0.05% or less, magnesium (Mg): 0.05% or less, chromium (Cr): 0.1% or less, and zinc (Zn): 0.1% or less. contains one or more species, and
하기 관계식 1-4를 각각 만족하는 열전도율이 우수한 주조용 알루미늄 합금을 제공한다. An aluminum alloy for casting having excellent thermal conductivity that satisfies each of the following relational expressions 1-4 is provided.
[관계식 1][Relationship 1]
1.1중량%≤ Si+Fe ≤4.1중량%1.1% by weight ≤ Si+Fe ≤ 4.1% by weight
[관계식 2][Relationship 2]
0.8≤ Si/Fe ≤3.80.8 ≤ Si/Fe ≤ 3.8
[관계식 3][Relationship 3]
2.0≤[(Si+Fe)/(Ti+B+Sr)]≤ 7.72.0≤[(Si+Fe)/(Ti+B+Sr)]≤ 7.7
[관계식 4][Relationship 4]
2.9≤ [(Si+Fe)/(Cu+Mn+Mg+Cr+Zn)] ≤58.02.9≤ [(Si+Fe)/(Cu+Mn+Mg+Cr+Zn)] ≤58.0
본 발명에서 상기 관계식 1에 의해 정의되는 Si+Fe 값이 1.6~2.9중량%인 것이 바람직하다. In the present invention, it is preferable that the Si+Fe value defined by the relational expression 1 is 1.6 to 2.9% by weight.
또한 상기 관계식 2에 의해 정의되는 Si/Fe 함량비가 1.6~3.3인 것이 바람직하다.In addition, it is preferable that the Si / Fe content ratio defined by the relational expression 2 is 1.6 to 3.3.
또한 상기 관계식 3에 의해 정의되는 (Si+Fe)/(Ti+B+Sr) 함량비가 4.27~7.7 인 것이 보다 바람직하다. In addition, it is more preferable that the (Si+Fe)/(Ti+B+Sr) content ratio defined by the relational expression 3 is 4.27 to 7.7.
또한 상기 관계식 4에 의해 정의되는 [(Si+Fe)/(Cu+Mn+Mg+Cr+Zn)] 함량비가 32.0~58.0의 범위를 가짐이 바람직하다.In addition, the [(Si+Fe)/(Cu+Mn+Mg+Cr+Zn)] content ratio defined by the relational expression 4 preferably has a range of 32.0 to 58.0.
또한 본 발명의 주조용 알루미늄 합금은, 중량%로, 실리콘(Si): 1.0~2.0%, 철(Fe): 0.6~0.9%, 티타늄(Ti):0.02~0.1%, 보론(B):0.005~0.025% 및 스트론튬(Sr): 0.15~0.25%을 포함하는 것이 바람직하다. In addition, the casting aluminum alloy of the present invention, in weight percent, silicon (Si): 1.0 to 2.0%, iron (Fe): 0.6 to 0.9%, titanium (Ti): 0.02 to 0.1%, boron (B): 0.005 ~ 0.025% and strontium (Sr): 0.15 ~ 0.25% is preferably included.
또한 상기 불순물은 중량%로, 구리(Cu): 0.005% 이하, 망간(Mn): 0.005% 이하, 마그네슘(Mg): 0.005% 이하, 크롬(Cr): 0.015% 이하 및 아연(Zn): 0.02%이하 중 선택된 1종 이상을 포함함이 바람직하다.In addition, the impurities are, by weight, copper (Cu): 0.005% or less, manganese (Mn): 0.005% or less, magnesium (Mg): 0.005% or less, chromium (Cr): 0.015% or less, and zinc (Zn): 0.02% or less It is preferable to include one or more selected from % or less.
본 발명의 알루미늄 합금은 항복강도가 50~70N/mm2이상이고, 열전도도가 190~210W/mK 범위를 만족할 수 있다. The aluminum alloy of the present invention may have a yield strength of 50 to 70 N/mm2 or more, and a thermal conductivity of 190 to 210 W/mK.
또한 본 발명의 다른 측면은, Another aspect of the present invention is
상기와 같은 조성성분을 갖는 알루미늄 합금을 용융시키는 공정; a step of melting an aluminum alloy having the above components;
상기 용융된 알루미늄 합금 용탕을 이용하여 주조함으로써 주조품을 얻는 공정; 및 상기 a step of obtaining a cast product by casting using the molten aluminum alloy molten metal; and above
주조품을 150~250℃의 온도범위에서 1~2시간 동안 어닐링처리 후 공냉하는 공정;을 포함하는 열전도율이 우수한 알루미늄 주조합금 제조방법에 관한 것이다. It relates to a method for manufacturing an aluminum cast alloy having excellent thermal conductivity, including a step of annealing the cast product at a temperature range of 150 to 250 ° C. for 1 to 2 hours and then air cooling.
상기 알루미늄 합금 용탕을 제조하는 공정은, The process of manufacturing the aluminum alloy molten metal,
알루미늄을 용해로에 장입한 후 그 용융점 이상의 온도로 가열함으로써 Al 용탕을 제조하는 제1 공정; 740~770℃의 온도에서 Si와 Fe를 용탕에 투입하는 제2 공정; 680~720℃의 온도에서 TiB 모합금을 용탕에 투입하는 제3 공정; 재승온하여 730~770℃에서 Sr을 용탕에 투입하는 제4 공정; 740~760℃ 온도에서 Ar(아르곤)가스로 15~20분 취입함으로써 용탕 내 가스 및 산화물 등 불순물을 제거하는 제5 공정; 및 680~700℃의 온도에서 용탕을 출탕하는 제6 공정;을 포함할 수 있다. A first step of producing molten Al by charging aluminum into a melting furnace and then heating it to a temperature equal to or higher than its melting point; A second step of injecting Si and Fe into molten metal at a temperature of 740 to 770 ° C; A third step of injecting the TiB master alloy into the molten metal at a temperature of 680 to 720 ° C; A fourth step of reheating and injecting Sr into the molten metal at 730 to 770 ° C; A fifth process of removing impurities such as gas and oxides in the molten metal by blowing Ar (argon) gas at a temperature of 740 to 760 ° C for 15 to 20 minutes; and a sixth step of tapping the molten metal at a temperature of 680 to 700°C.
상기 주조는 다이캐스팅 주조일 수 있다. The casting may be a die casting casting.
상술한 바와 같은 구성의 본 발명은, 높은 유동성을 확보하여 박판 주조가 가능하면서, 고열전도율이 달성가능한 주조용 알루미늄 합금을 유효하게 제공할 수 있다. 구체적으로, 본 발명은 항복강도 50~70N/mm2(ASTM E8/E8M-16a 기준), 열전도율 190~210W/mK[laser Flash 법 기준] 및 박판성형 1T 까지 주조 가능한 알루미늄 합금재를 효과적으로 제공할 수 있는 장점이 있다. The present invention configured as described above can effectively provide an aluminum alloy for casting capable of achieving high thermal conductivity while ensuring high fluidity and enabling thin plate casting. Specifically, the present invention can effectively provide an aluminum alloy material with a yield strength of 50 to 70 N/mm2 (based on ASTM E8/E8M-16a), a thermal conductivity of 190 to 210 W/mK [based on the laser flash method], and castable up to 1T in sheet molding. There are advantages to being
도 1(a-b)는 본 발명의 실시예에 따라 제조된 주조품에 대한 주조불량 정도를 보여주는 제품사진으로서, 도 1(a)은 본 발명의 주조품(발명예 4)을, 그리고 도 1(b)는 본 발명의 조건을 벗어난 주조품(비교예 1)을 나타내는 사진이다. Figure 1 (a-b) is a product picture showing the degree of casting defects for the cast product manufactured according to an embodiment of the present invention, Figure 1 (a) is a cast product (invention example 4) of the present invention, and Figure 1 (b) is a photograph showing a cast product (Comparative Example 1) out of the conditions of the present invention.
이하, 본 발명을 설명한다.Hereinafter, the present invention will be described.
본 발명의 일측면에 따른 열전도율이 우수한 주조용 알루미늄 합금은, 중량%로, 실리콘(Si): 0.5~2.3%, 철(Fe): 0.6~1.8%, 티타늄(Ti):0.01~0.2%, 보론(B):0.005~0.05%, 스트론튬(Sr): 0.1~0.3%, 잔여 알루미늄(Al) 및 기타 불가피한 불순물을 포함하고, 상기 불순물은, 구리(Cu): 0.08% 이하, 망간(Mn): 0.05% 이하, 마그네슘(Mg): 0.05% 이하, 크롬(Cr): 0.1% 이하 및 아연(Zn): 0.1%이하 중 선택된 1종 이상을 포함하고, 그리고 하기 관계식 1-4를 각각 만족한다.Casting aluminum alloy having excellent thermal conductivity according to one aspect of the present invention, in weight%, silicon (Si): 0.5 ~ 2.3%, iron (Fe): 0.6 ~ 1.8%, titanium (Ti): 0.01 ~ 0.2%, Boron (B): 0.005 to 0.05%, strontium (Sr): 0.1 to 0.3%, residual aluminum (Al) and other unavoidable impurities, including copper (Cu): 0.08% or less, manganese (Mn) : 0.05% or less, magnesium (Mg): 0.05% or less, chromium (Cr): 0.1% or less, and zinc (Zn): 0.1% or less, and satisfies each of the following relational expressions 1-4 .
본 발명은 기지금속 알루미늄의 주조성을 향상시킬 수 있는 Si와 알루미늄 기지에 고용되어 고용강화 효과를 얻을 수 있는 Fe의 함량 및 그 함량비 등을 적정하게 제어한다. 또한 상기 Si와 Fe원소들의 전체 함량 대비 불순원소의 전체함량의 비 등을 일정범위로 제어함을 특징으로 한다.The present invention properly controls the content and content ratio of Si, which can improve the castability of base metal aluminum, and Fe, which can be dissolved in an aluminum matrix to obtain a solid solution strengthening effect. In addition, it is characterized in that the ratio of the total content of the impurity elements to the total content of the Si and Fe elements is controlled within a certain range.
이에 의해, 주조성이 우수하고, 나아가, 제조된 주조품의 항복강도 및 열전도특성이 우수한 알루미늄 합금을 제공할 수 있음을 확인하고 본 발명을 제시하는 것이다.Accordingly, it is confirmed that it is possible to provide an aluminum alloy having excellent castability and, furthermore, excellent yield strength and thermal conductivity characteristics of manufactured cast products, and the present invention is proposed.
이하, 상기 각 합금원소의 첨가 및 함량 한정이유를 설명하며, 여기에서, "%"란 중량 %를 의미한다.Hereinafter, the reasons for adding and limiting the content of each alloying element will be described, and here, "%" means weight %.
·실리콘(Si): 0.5~2.3% Silicon (Si): 0.5 to 2.3%
본 발명에서 실리콘(Si)은 소지 알루미늄에 합금원소로 첨가되어 주조성을 향상시키고 고용강화 효과에 따라서 인장강도를 증가시킬 수 있는 원소이다. 본 발명에서는 실리콘(Si) 함량을 0.5~2.3% 범위로 제한함이 바람직하다. 만일 실리콘 함량이 0.5% 미만이면 합금의 주조성이 저하되어 다이캐스팅에 의하여 제품을 성형할 때에 일부 미성형부가 발생되어 주조품의 건전성이 크게 훼손될 수 있고, 상기 실리콘의 함량이 2.3%를 초과하면 열전도도가 저하되어, 본 발명에서 목적으로 하는 190W/mK 이상의 열전도도를 얻을 수 없기 때문이다. 보다 바람직하게는, 상기 실리콘의 첨가량을 1.0~2.0% 범위로 제어하는 것이다. In the present invention, silicon (Si) is an element that can be added as an alloying element to base aluminum to improve castability and increase tensile strength according to the solid solution strengthening effect. In the present invention, it is preferable to limit the silicon (Si) content to the range of 0.5 to 2.3%. If the silicon content is less than 0.5%, the castability of the alloy is lowered, and when forming a product by die casting, some unmolded parts are generated, which can greatly damage the soundness of the cast product. If the silicon content exceeds 2.3%, heat conduction This is because the conductivity is lowered and the thermal conductivity of 190 W/mK or more, which is the target in the present invention, cannot be obtained. More preferably, the amount of silicon added is controlled in the range of 1.0 to 2.0%.
철(Fe): 0.6~1.8%Iron (Fe): 0.6 to 1.8%
본 발명에서 철(Fe)은 상온에서 알루미늄에의 고용도가 0.052중량%로서 매우 낮아 주조 후에는 대부분 Al3Fe 등의 금속간화합물로 정출되기 때문에 알루미늄에 첨가되어 알루미늄의 열전도도 저하를 최소화하면서 강도를 증가시킬 수 있고, 동시에 다이캐스팅에 의하여 알루미늄 합금 제품을 성형할 때에 금형소착을 줄일 수 있도록 하는 합금원소이다. 본 발명에서는 철(Fe) 함량을 0.6~1.8% 범위로 제한함이 바람직하다. 만일 상기 철의 함량이 0.6% 미만이면 금형소착 방지 효과가 낮아져 다이캐스팅에 의하여 제품을 성형할 때에 일부 금형부위에 제품의 소착 현상이 발생하고 기계적 강도도 충분하지 못하게 되고, 상기 철의 함량이 1.8%를 초과하면 합금내에서 Fe-부화상(Fe-rich상)이 과도하게 정출되어, 합금의 주조성을 저하시키기 때문이다. 보다 바람직하게는, 상기 철의 함량을 0.6~0.9% 범위로 제어하는 것이다. In the present invention, since iron (Fe) has a very low solid solubility of 0.052% by weight in aluminum at room temperature, it is mostly crystallized as an intermetallic compound such as AlFe after casting, so it is added to aluminum to minimize the decrease in thermal conductivity of aluminum and increase strength. It is an alloying element that can increase and at the same time reduce mold seizure when forming an aluminum alloy product by die casting. In the present invention, it is preferable to limit the iron (Fe) content to the range of 0.6 to 1.8%. If the iron content is less than 0.6%, the effect of preventing mold sticking is lowered, and when the product is molded by die casting, the product sticks to some mold parts and the mechanical strength is not sufficient, and the iron content is 1.8% This is because if it exceeds , the Fe-enriched phase (Fe-rich phase) is excessively crystallized in the alloy, thereby degrading the castability of the alloy. More preferably, the iron content is controlled in the range of 0.6 to 0.9%.
·타타늄(Ti):0.02~0.2% ・Titanium (Ti): 0.02~0.2%
본 발명에서 티타늄(Ti)은 Ti 5% 모합금의 형태로 투입되며, 결정립 미세화 및 주조재의 크랙방지 효과를 얻을 수 있는 합금원소이다. 또한 알루미늄 입자를 미세화시키므로 열전도 전위 이동을 용이하게하고, 조직을 미세화시키므로 박육 성형에 용이하게 한다. 즉, Ti은 40 나노미크론 이하의 Ti상에 Al(2+, 3+가)이 석출물을 이루어, 알루미늄의 입자를 미세화시켜서 열전달 전위의 이동을 월활하게 하고, 주조 조직이 좋게하며 박판 성형을 가능하게 하는 유용한 성분이다. 본 발명에서는 이러한 Ti 함량을 0.02~0.2% 범위로 제어함이 바람직하다. 만일 Ti 함량이 0.02% 미만이면 알루미늄 입자 미세화효과를 통한 주조성능 개선 및 열전도율 개선 효과가 거의 없고, 0.2%를 초과하면 열전도율 저하의 문제가 있다. In the present invention, titanium (Ti) is added in the form of a Ti 5% master alloy, and is an alloying element capable of obtaining crystal grain refinement and crack prevention effects of cast materials. In addition, since the aluminum particles are miniaturized, the heat conduction potential movement is facilitated, and the structure is miniaturized, thereby facilitating thin molding. In other words, Ti forms a precipitate of Al (2+, 3+) on Ti of 40 nanomicrons or less, which refines aluminum particles to facilitate the movement of heat transfer potential, improve the casting structure, and enable thin plate forming. It is a useful ingredient that makes In the present invention, it is preferable to control the Ti content in the range of 0.02 to 0.2%. If the Ti content is less than 0.02%, there is little effect of improving casting performance and thermal conductivity through the aluminum particle refinement effect, and if the Ti content exceeds 0.2%, there is a problem of thermal conductivity deterioration.
보다 바람직하게는, Ti 함량을 0.02~0.1% 범위로 제어하는 것이다. More preferably, the Ti content is controlled in the range of 0.02 to 0.1%.
·보론(B):0.005~0.05% Boron (B): 0.005~0.05%
본 발명에서 보론(B)는 Ti 5%와 결합된 모합금의 형태로 용탕에 투입된다. 이러한 보론을 첨가함으로써 용탕의 청정도가 개선되고, 조직이 미세화될 뿐만 아니라 전기전도율 증대가 가능하다. 본 발명에서는 상기 보론의 첨가량을 0.005~0.05% 범위로 제어함에 바람직하다. 만일 보론의 함량이 0.005% 미만이면, 용탕 청정도 개선 효과가 뚜렷하지 않고, 입자미세화 효과도 크지 않다. 0.05%를 초과하면 제품 표면 처리시 불량이 생길 수 있고 비용 증가의 문제가 있다. 보다 바람직하게는, 상기 보론의 첨가량을 0.005~0.025% 범위로 제어하는 것이다.In the present invention, boron (B) is added to the molten metal in the form of a master alloy combined with 5% of Ti. By adding such boron, the cleanliness of the molten metal is improved, the structure is refined, and the electrical conductivity is increased. In the present invention, it is preferable to control the addition amount of boron in the range of 0.005 to 0.05%. If the boron content is less than 0.005%, the effect of improving the cleanliness of the molten metal is not clear and the effect of particle refinement is not great. If it exceeds 0.05%, defects may occur during product surface treatment and there is a problem of cost increase. More preferably, the addition amount of boron is controlled in the range of 0.005 to 0.025%.
·스트론튬(Sr): 0.1~0.3%Strontium (Sr): 0.1 to 0.3%
본 발명에서 스트론튬(Sr)은 침상의 실리콘 조직을 구형의 조직으로 개량하는 역할은 한다. 따라서 본 발명에서 스트론튬(Sr)은 제조된 주조품의 기계적 성질을 개선하고 주조품질을 향상시킬뿐만 아니라, 열전도율을 증가시는데 유효한 원소이다. 본 발명에서는 상기 스트론튬(Sr)의 첨가량을 0.1~0.3% 범위로 제어함이 바람직하다. 만일 스트론튬(Sr)의 첨가량이 0.1% 미만이면 제품 성형을 위해 재용해시 Sr이 대부분 Fading 되어 위 효과를 볼 수 없으며, 0.3%를 초과하면 Sr의 산화가 강한 성질로 용탕 내부에 산화물이 발생 될 수 있어 기계적 성질 및 열전도율이 저하 될 수 있으며, 불필요하게 원가가 증대되는 문제가 있다. 보다 바람직하게는, 상기 스트론튬(Sr)의 첨가량을 0.15~0.25% 범위로 관하는 것이다. In the present invention, strontium (Sr) serves to improve acicular silicon tissue into a spherical tissue. Therefore, in the present invention, strontium (Sr) is an effective element for improving the mechanical properties and casting quality of the cast product, as well as increasing the thermal conductivity. In the present invention, it is preferable to control the addition amount of the strontium (Sr) in the range of 0.1 to 0.3%. If the amount of strontium (Sr) added is less than 0.1%, most of Sr will fade when re-melted for product molding, and the above effect cannot be seen. As a result, mechanical properties and thermal conductivity may be deteriorated, and costs are unnecessarily increased. More preferably, the amount of strontium (Sr) added is within the range of 0.15 to 0.25%.
·Si+Fe·Si+Fe
[관계식 1][Relationship 1]
1.1중량%≤ Si+Fe ≤4.1중량%1.1% by weight ≤ Si+Fe ≤ 4.1% by weight
본 발명에서는 상기 관계식 1에 의해 정의되는 Si와 Fe 합금원소의 합을 1.1중량% 이상 4.1중량% 이하의 범위로 제한함이 바람직하다. 만일 상기 Si와 Fe 원소 함량의 합이 1.1중량% 미만이면, 항복강도가 기준을 충족시키지 못해 가공성이 저하됨과 아울러, 주조품에서 용탕의 이동 통로인 게이트, 런너, 오버플로우가 용이하게 분리되지 않는 문제가 있고, 4.1중량%를 초과하면 열전도율이 목표 기준을 충족시키지 못할 수가 있다. In the present invention, it is preferable to limit the sum of Si and Fe alloy elements defined by the relational expression 1 to 1.1% by weight or more and 4.1% by weight or less. If the sum of the Si and Fe element contents is less than 1.1% by weight, the yield strength does not meet the standard, and the workability is lowered, and the gate, runner, and overflow, which are the moving passages of the molten metal in the casting product, are not easily separated. , and if it exceeds 4.1% by weight, the thermal conductivity may not meet the target standard.
보다 바람직하게는, 상기 관계식 1에 의해 정의되는 Si+Fe 값을 1.6~2.9중량%의 범위로 관리하는 것이다. More preferably, the Si + Fe value defined by the relational expression 1 is managed in the range of 1.6 to 2.9% by weight.
·Si/Fe·Si/Fe
[관계식 2][Relationship 2]
0.8≤ Si/Fe ≤3.80.8 ≤ Si/Fe ≤ 3.8
본 발명에서는 또한 상기 관계식 2에 의해 정의되는 Si/Fe 함량비를 0.8 이상 3.8이하의 범위로 관리함이 바람직하다. 만일 상기 Si/Fe 비가 0.8 미만이면 Fe 함량 증대로 인한 유동성 저하의 문제가 있고, 3.8을 초과하면 용탕이 금형에 소착되어 연속 작업이 어려워지는 문제가 있을 수 있다. In the present invention, it is also preferable to manage the Si / Fe content ratio defined by the relational expression 2 in the range of 0.8 or more and 3.8 or less. If the Si / Fe ratio is less than 0.8, there is a problem of fluidity deterioration due to an increase in Fe content, and if it exceeds 3.8, there may be a problem that continuous operation is difficult because the molten metal is stuck to the mold.
보다 바람직하게는, 상기 관계식 2에 의해 정의되는 Si/Fe 함량비를 1.6~ 3.3의 범위로 관리하는 것이다. More preferably, the Si / Fe content ratio defined by the relational expression 2 is managed in the range of 1.6 to 3.3.
·(Si+Fe)/(Ti+B+Sr)·(Si+Fe)/(Ti+B+Sr)
[관계식 3][Relationship 3]
2.0≤[(Si+Fe)/(Ti+B+Sr)]≤ 7.72.0≤[(Si+Fe)/(Ti+B+Sr)]≤ 7.7
본 발명에서는 또한 상기 관계식 3에 의해 정의되는 (Si+Fe)/(Ti+B+Sr) 함량비를 2.0 이상 7.7 이하의 범위로 관리함이 바람직하다. 만일 상기 함량비가 2.0 미만이면 본 발명에서 요구하는 열전도율 및 기계적 강도, 주조성을 위한 용탕 청정도, 알루미늄 입자 미세화 효과, 치밀한 미세조직 형성, 주조성 확보 등이 기대 수준보다 낮아지는 문제가 있고, 7.7을 초과하면 열전도율이 저하되는 문제가 있을 수 있다. In the present invention, it is also preferable to manage the (Si+Fe)/(Ti+B+Sr) content ratio defined by the relational expression 3 in the range of 2.0 or more and 7.7 or less. If the content ratio is less than 2.0, there is a problem that the thermal conductivity and mechanical strength required in the present invention, the cleanliness of the molten metal for castability, the effect of refining aluminum particles, the formation of a dense microstructure, and the securing of castability are lower than expected levels, and 7.7 If it is exceeded, there may be a problem in that the thermal conductivity is lowered.
보다 바람직하게는, 상기 관계식 3에 의해 정의되는 (Si+Fe)/(Ti+B+Sr) 함량비를 4.27~7.7 범위로 제어하는 것이다. More preferably, the (Si+Fe)/(Ti+B+Sr) content ratio defined by the relational expression 3 is controlled in the range of 4.27 to 7.7.
기타, 본 발명의 알루미늄 합금은 잔여 성분으로 소지 알루미늄과 불가피한 불순물을 포함한다. 본 발명에서 불순물의 함량 제어는 알루미늄 합금을 이용하여 제조된 주조품의 방열특성 등에 큰 영향을 주므로 그 함량을 가급적 줄이는 것이 바람직하다.In addition, the aluminum alloy of the present invention contains base aluminum and unavoidable impurities as residual components. In the present invention, since the control of the content of impurities has a great effect on the heat dissipation characteristics of a cast product manufactured using an aluminum alloy, it is preferable to reduce the content as much as possible.
본 발명의 알루미늄 합금에서, 상기 불순물은, 중량%로, 구리(Cu): 0.08% 이하, 망간(Mn): 0.05% 이하, 마그네슘(Mg): 0.05% 이하, 크롬(Cr): 0.1% 이하 및 아연(Zn): 0.1%이하 중 선택된 1종 이상을 포함할 수 있다. In the aluminum alloy of the present invention, the impurities are, by weight, copper (Cu): 0.08% or less, manganese (Mn): 0.05% or less, magnesium (Mg): 0.05% or less, chromium (Cr): 0.1% or less and zinc (Zn): 0.1% or less.
그리고 본 발명에서는 상기 불순물의 총합을 0.20중량% 이하로 제한함이 바람직하며, 보다 바람직하게는 0.10중량%이하, 가장 바람직하게는 0.05중량% 이하로 제한하는 것이다. 이하, 개개의 불순물의 함량 첨가 및 그 제한사유를 살펴본다. In the present invention, the total amount of the impurities is preferably limited to 0.20% by weight or less, more preferably 0.10% by weight or less, and most preferably 0.05% by weight or less. Hereinafter, the addition of the content of each impurity and the reason for its limitation will be examined.
·구리(Cu): 0.08% 이하·Copper (Cu): 0.08% or less
본 발명에서 구리는 절삭 가공성을 개선시키나 내식성을 저하시키며, 첨가 시 Si, Fe와 상을 이루어 전위의 이동을 방해하므로 그 함량을 0.08% 이하로 관리함이 바람직하며, 보다 바람직하게는 0.005% 이하로 관리하는 것이다.In the present invention, copper improves cutting workability but lowers corrosion resistance, and when added, it forms a phase with Si and Fe to hinder the movement of dislocations, so it is preferable to manage its content to 0.08% or less, more preferably to 0.005% or less. is to manage
·망간(Mn): 0.05% 이하Manganese (Mn): 0.05% or less
망간은 천이원소로써 재결정 온도를 증가시키고, 열간가공에서 섬유조직의 형성을 촉진시켜 결정립 성장을 억제하므로 그 함량을 0.05% 이하로 관리함이 바람직하며, 보다 바람직하게는 0.005% 이하로 관리하는 것이다. Manganese, as a transition element, increases the recrystallization temperature and promotes the formation of fibrous tissue in hot working to suppress crystal grain growth, so the content is preferably managed to 0.05% or less, more preferably 0.005% or less.
·마그네슘(Mg): 0.05% 이하Magnesium (Mg): 0.05% or less
마그네슘은 일반적으로 Al과 결합하여 Al2Mg2상을 형성하여 강도, 연성 및 내식성을 증가시키는 원소이나, 그 함량이 과다하면 열전도율이 10 W/mK 이상 저하되므로 0.05% 이하 범위로 관리함이 바람직하며, 보다 바람직하게는, 0.005% 이하로 관리하는 것이다.Magnesium is an element that generally combines with Al to form an Al 2 Mg 2 phase to increase strength, ductility and corrosion resistance. However, if its content is excessive, the thermal conductivity is reduced by more than 10 W / mK, so it is desirable to manage it in the range of 0.05% or less , More preferably, it is to manage to 0.005% or less.
·크롬(Cr): 0.1% 이하Chromium (Cr): 0.1% or less
크롬은 응력부식 균열을 방지하고 내식성을 향상시키나, 열전도율을 저하시키므로 그 함량을 0.1% 이하로 관리함이 바람직하며, 보다 바람직하게는, 0.015% 이하로 관리하는 것이다.Chromium prevents stress corrosion cracking and improves corrosion resistance, but lowers thermal conductivity, so it is preferable to manage the content to 0.1% or less, more preferably, to manage to 0.015% or less.
·아연(Zn):0.1% 이하Zinc (Zn): 0.1% or less
아연은 항복강도 증가시키나 열전도율을 저하시키므로 그 함량을 0.1% 이하로 관리함이 바람직하며, 보다 바람직하게는, 0.02% 이하로 관리하는 것이다. Zinc increases the yield strength but lowers the thermal conductivity, so it is preferable to manage the content to 0.1% or less, more preferably, to manage to 0.02% or less.
·[(Si+Fe)/(Cu+Mn+Mg+Cr+Zn)] ・[(Si+Fe)/(Cu+Mn+Mg+Cr+Zn)]
[관계식 4][Relationship 4]
2.9≤ [(Si+Fe)/(Cu+Mn+Mg+Cr+Zn)] ≤ 58.02.9≤ [(Si+Fe)/(Cu+Mn+Mg+Cr+Zn)] ≤ 58.0
본 발명에서는 상기 관계식 4에 의해 정의되는 [(Si+Fe)/(Cu+Mn+Mg+Cr+Zn)] 값을 2.9 이상 52.0 이하의 범위로 관리함이 바람직하다. 만일 상기 값이 2.9 미만이면 불순물 함유량에 따른 열전도율 저하의 문제가 있고, 58.0을 초과하면 열전도율이 더 이상 증가하지 않을 뿐만 아니라, 지나치게 초고순도 재료를 선택함에 따라 원가, 제조 공정 및 양산성이 비효율화가 되는 문제가 있다. In the present invention, it is preferable to manage the [(Si+Fe)/(Cu+Mn+Mg+Cr+Zn)] value defined by the relational expression 4 in the range of 2.9 or more and 52.0 or less. If the value is less than 2.9, there is a problem of thermal conductivity deterioration due to the impurity content, and if it exceeds 58.0, the thermal conductivity does not increase any more, and cost, manufacturing process, and mass productivity are inefficient due to excessively selecting ultra-high purity materials. there is a problem
나아가, 본 발명에서는 상기 관계식 4에 의해 정의되는 [(Si+Fe)/(Cu+Mn+Mg+Cr+Zn)] 값이 32.0~58.0의 범위를 만족하는 것이 보다 바람직하다. Furthermore, in the present invention, it is more preferable that the value of [(Si+Fe)/(Cu+Mn+Mg+Cr+Zn)] defined by the relational expression 4 satisfies the range of 32.0 to 58.0.
다음으로, 본 발명의 전술한 열전도성이 우수한 알루미늄 합금 주조품의 제조방법을 설명한다.Next, the manufacturing method of the above-described aluminum alloy cast product having excellent thermal conductivity of the present invention will be described.
본 발명의 알루미늄 주조품의 방법은, 상기와 같이 조성된 알루미늄 합금을 용융시키는 공정; 상기 용융된 알루미늄 합금 용탕을 이용하여 주조함으로써 주조품을 얻는 공정; 및 상기 주조품을 150~250℃의 온도범위에서 1~2시간 동안 어닐링처리 후 공냉하는 공정;을 포함할 수 있다. The aluminum casting method of the present invention includes a step of melting the aluminum alloy formed as described above; a step of obtaining a cast product by casting using the molten aluminum alloy molten metal; and a step of annealing the cast product at a temperature range of 150 to 250° C. for 1 to 2 hours and then air-cooling.
본 발명에서는 먼저, 알루미늄 합금 용탕을 제조한다. In the present invention, first, an aluminum alloy molten metal is manufactured.
구체적으로, 상기 알루미늄 합금 용탕을 제조하는 공정은, 알루미늄을 용해로에 장입한 후 그 용융점 이상의 온도로 가열함으로써 Al 용탕을 제조하는 제1 공정; 740~770℃의 온도에서 Si와 Fe를 용탕에 투입하는 제2 공정; 680~720℃의 온도에서 TiB 모합금을 용탕에 투입하는 제3 공정; 재승온하여 730~770℃에서 Sr을 용탕에 투입하는 제4 공정; 740~760℃ 온도에서 Ar(아르곤)가스로 15~20분 취입함으로써 용탕 내 가스 및 산화물 등 불순물을 제거하는 제5 공정; 및 680~700℃의 온도에서 용탕을 출탕하는 제6 공정;을 포함할 수 있다. 상기 제1 공정은 용탕 내 산화물을 줄이기 위해 적정 온도에서 짧은 시간 내에 합금을 완료하기 위한 공정이며, 제2 공정은 고비중 합금인 Sr 모합금을 투입하기 위해 설정된 온도를 제어하는 공정이며, 제3 공정은 용탕의 청정등을 위하여 B를 투입하기 위한 온도를 제어하는 공정이며, 제4 공정은 Ti를 원활하게 교반하기 위한 온도를 제어하는 공정이며, 그리고 제5 공정은 Ar 가스를 이용하여 15분 정도 탈가스 처리 시, 용탕의 온도 저하를 고려하여 용탕의 온도를 제어하는 공정이다. Specifically, the process of manufacturing the aluminum alloy molten metal includes a first step of manufacturing Al molten metal by charging aluminum into a melting furnace and then heating it to a temperature equal to or higher than its melting point; A second step of injecting Si and Fe into molten metal at a temperature of 740 to 770 ° C; A third step of injecting the TiB master alloy into the molten metal at a temperature of 680 to 720 ° C; A fourth step of reheating and injecting Sr into the molten metal at 730 to 770 ° C; A fifth process of removing impurities such as gas and oxides in the molten metal by blowing Ar (argon) gas at a temperature of 740 to 760 ° C for 15 to 20 minutes; and a sixth step of tapping the molten metal at a temperature of 680 to 700°C. The first process is a process for completing the alloy within a short time at an appropriate temperature to reduce oxides in the molten metal, the second process is a process for controlling the set temperature to introduce Sr master alloy, a high specific gravity alloy, and the third process The process is a process of controlling the temperature for inputting B to clean the molten metal, the fourth process is a process of controlling the temperature to smoothly stir Ti, and the fifth process is a process of 15 minutes using Ar gas. It is a process of controlling the temperature of the molten metal in consideration of the temperature drop of the molten metal during the degassing process.
이어, 본 발명에서는 상기 제조된 알루미늄 용탕을 이용하여 주조함으로써 알루미늄 합금 주조품을 제조한다. 본 발명은 상기 주조방법에 제한되지 않으며, 중력 주조, 스퀴즈주조, 다이캐이스팅 주조, 금형 고속 주조, 반응고 주조 등을 이용할 수 있으며, 바람직하게는 다이캐스팅 주조를 이용하는 것이다. Subsequently, in the present invention, an aluminum alloy cast product is manufactured by casting using the prepared aluminum molten metal. The present invention is not limited to the above casting method, and gravity casting, squeeze casting, die casting casting, mold high-speed casting, semi-solid casting, etc. may be used, and preferably die casting casting is used.
그리고 본 발명에서는 상기 알루미늄 합금 주조품을 어닐링처리함으로써 최종 주조품을 얻을 수 있다. 이러한 어닐링처리 공정은 열전도율 개선 및 기계적 특성 향상 목적을 위하여 실시되며, 본 발명에서는 상기 어닐링 온도범위를 150~250℃로 제어함이 바람직하다. 만일 상기 온도가 150℃ 미만이면 어닐링 시간이 길어져야 하므로 원가가 상승되며, 250℃를 초과하면 성분조성비를 고려하여 주조품 내 가스 함유량을 가정했을 때 주조 제품이 블리스터가 발생되는 문제가 있다. And in the present invention, a final cast product can be obtained by annealing the aluminum alloy cast product. This annealing process is carried out for the purpose of improving thermal conductivity and mechanical properties, and in the present invention, it is preferable to control the annealing temperature range to 150 ~ 250 ℃. If the temperature is less than 150 ° C., the annealing time must be increased, so the cost is increased, and if it exceeds 250 ° C., there is a problem that blisters occur in the cast product when the gas content in the cast product is assumed in consideration of the component composition ratio.
바람직하게는 상기 어닐링시간을 1~2 시간으로 제어하는 것이다. Preferably, the annealing time is controlled to 1 to 2 hours.
상술한 바와 제조공정을 통하여 제조된 본 발명의 알루미늄 합금 주조품은, 항복강도가 50~70N/mm2이고, 열전도도가 190~210W/mK 범위를 만족할 수 있다. The aluminum alloy cast product of the present invention manufactured through the above-described manufacturing process may have a yield strength of 50 to 70 N/mm2 and a thermal conductivity of 190 to 210 W/mK.
이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.
(실시예)(Example)
하기 표 1과 같은 조성 성분을 만족하는 알루미늄 합금의 원료를 준비한 후, 이를 전기저항식 용해로에 장입하여 대기 중에서 원료를 용해하여 용탕을 각각 제조하였다. 이후, 이들을 다이캐스팅으로 고압 주조하여 알루미늄 합금 주조편을 각각 제조하였다. 한편 본 다이캐이스팅에는 도시바 250톤 및 우베 3550t 설비를 이용하였다. After preparing a raw material of an aluminum alloy that satisfies the composition components shown in Table 1 below, it was charged into an electric resistance melting furnace to melt the raw material in the air to prepare molten metal. Thereafter, they were cast at high pressure by die casting to prepare aluminum alloy cast pieces, respectively. Meanwhile, Toshiba 250 ton and Ube 3550 ton facilities were used for this die casting.
상기와 같이 제조된 주편에 대하여, 항복 강도 및 열전도율을 측정하여 하기 표 2에 나타내었다. 또한 상기 주편의 주조성을 확인하기 위하여, 주조품 200개 작업 기준(주조 사이클 제품 1EA당 약 3분) 주조불량 여부를 육안으로 평가하였다. With respect to the cast steel prepared as described above, yield strength and thermal conductivity were measured and shown in Table 2 below. In addition, in order to confirm the castability of the cast steel, casting defects were visually evaluated for 200 castings (approximately 3 minutes per casting cycle product 1EA).
한편 본 실험에서 상기 항복강도는 ASTM E8/E8M-16a 기준에 근거하여 측정하였다.그리고 열전도율은 레이저플래쉬법, NETZSCH LFA Analysis(KS L 1604)에 근거하여 측정하였으며, 구체적으로, 지름 12.5~12.8mm와 두께 1~3mm의 시편을 마련하여, 25℃의 온도 및 15% R.H 습도하에서 레이저플래쉬법, NETZSCH LFA Analysis(KS L 1604)에 근거하여 측정하였다. 그리고 상기 주편에 대한 주조성은 주조품에 대한 주조불량을 관찰결과, 불량률이 1% 이하인 경우을 "상", 불량률 5% 이하인 경우를 "중", 그리고 불량률이 10% 이하인 경우를 "하"로 평가하였다. Meanwhile, in this experiment, the yield strength was measured based on the ASTM E8/E8M-16a standard. And the thermal conductivity was measured based on the laser flash method and NETZSCH LFA Analysis (KS L 1604), specifically, with a diameter of 12.5 to 12.8 mm. and a specimen having a thickness of 1 to 3 mm was prepared and measured according to the laser flash method and NETZSCH LFA Analysis (KS L 1604) under a temperature of 25 ° C and a humidity of 15% R.H. In addition, as a result of observing casting defects for cast products, the castability of the cast steel was evaluated as "high" when the defect rate was 1% or less, "medium" when the defect rate was 5% or less, and "low" when the defect rate was 10% or less. did
*표 1에서 잔여 성분은 Al이며, A*는 (Si+Fe)/(Ti+B+Sr) 함량비를, B*는 불순원소(Cu+Mn+Mg+Cr+Zn)들의 함량의 합을, 그리고 C*는 [(Si+Fe)/(Cu+Mn+Mg+Cr+Zn)] 함량비를 나타낸다. *In Table 1, the remaining component is Al, A* is the content ratio of (Si+Fe)/(Ti+B+Sr), and B* is the sum of the content of impurity elements (Cu+Mn+Mg+Cr+Zn) , and C* represents the [(Si+Fe)/(Cu+Mn+Mg+Cr+Zn)] content ratio.
그리고 하기 표 2는 상기 표 1의 불순물을 이루는 개개의 불순원소들의 함량을 나타낸다. Table 2 below shows the contents of individual impurity elements constituting the impurities in Table 1 above.
상기 표 1-3에 나타난 바와 같이, 알루미늄 합금 조성성분비가 본 발명의 범위를 만족하는 발명예 1-8의 경우 모두 우수한 주조성을 가질 뿐만 아니라, 항복강도 및 열전도율 또한 우수함을 확인할 수 있다. 특히, (Si+Fe)/(Cu+Mn+Mg+Cr+Zn) 함량비 32.0~58.0, (Si+Fe)/(Ti+B+Sr) 함량비 4.27~7.7 및 Si/Fe 비 1.6~3.3을 만족하는 발명예 4-5가 그렇지 않은 발명예 1-3 및 발명예 6-8 대비 가장 우수한 열전도율 특성등을 보임을 알 수 있다. As shown in Table 1-3, it can be seen that all of Inventive Examples 1-8, in which the aluminum alloy composition ratio satisfies the range of the present invention, not only have excellent castability, but also have excellent yield strength and thermal conductivity. In particular, (Si+Fe)/(Cu+Mn+Mg+Cr+Zn) content ratio 32.0 to 58.0, (Si+Fe)/(Ti+B+Sr) content ratio 4.27 to 7.7 and Si/Fe ratio 1.6 to It can be seen that Inventive Examples 4-5 satisfying 3.3 show the most excellent thermal conductivity characteristics compared to Inventive Examples 1-3 and Inventive Examples 6-8 that do not.
이에 대하여, 비교예 1은 (Si+Fe)/(Ti+B+Sr) 함량비 및 (Si+Fe)/(Cu+Mn+Mg+Cr+Zn) 함량비가 본 발명의 범위를 벗어난 경우로서, 특히, 주편의 열전도율이 나빴다. In contrast, Comparative Example 1 is a case where the (Si + Fe) / (Ti + B + Sr) content ratio and (Si + Fe) / (Cu + Mn + Mg + Cr + Zn) content ratio are out of the scope of the present invention. , In particular, the thermal conductivity of cast steel was poor.
또한 비교예 2-3은 (Si+Fe)/(Ti+B+Sr) 함량비가 본 발명의 범위를 벗어난 경우로서, 주편의 항복강도 및 열전도율이 아주 나빠졌다. In Comparative Example 2-3, the (Si+Fe)/(Ti+B+Sr) content ratio was outside the scope of the present invention, and the yield strength and thermal conductivity of the cast steel were very poor.
또한 비교예 4-6은 (Si+Fe)/(Cu+Mn+Mg+Cr+Zn) 함량비가 본 발명의 범위를 벗어난 경우로서, 열전도율이 대폭 낮아지는 것으로 관찰되어 불순물이 열전도율이 미치는 영향을 뚜렷하게 확인 할 수 있다.In Comparative Examples 4-6, the (Si+Fe)/(Cu+Mn+Mg+Cr+Zn) content ratio is outside the range of the present invention, and it is observed that the thermal conductivity is significantly lowered, so that the effect of impurities on the thermal conductivity is reduced. can be clearly identified.
나아가, 비교예 7-8은 Si/Fe 함량비가 본 발명의 범위를 벗어난 경우로서, 열전도율, 주조성 및 기계적 특성이 저하되었다. Furthermore, in Comparative Examples 7 and 8, the Si/Fe content ratio was out of the range of the present invention, and the thermal conductivity, castability, and mechanical properties were deteriorated.
한편 도 1(a-b)는 본 발명의 실시예에 따라 제조된 주조품에 대한 주조불량 정도를 보여주는 제품사진으로서, 도 1(a)은 본 발명의 주조품(발명예 4)을, 그리고 도 1(b)는 본 발명의 조건을 벗어난 주조품(비교예 1)을 나타내는 사진이다. On the other hand, Figure 1 (a-b) is a product picture showing the degree of casting defects for the cast product manufactured according to an embodiment of the present invention, Figure 1 (a) is a cast product (invention example 4) of the present invention, and Figure 1 (b) ) is a photograph showing a cast product (Comparative Example 1) out of the conditions of the present invention.
이상에서 설명한 바와 같이, 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예에 관하여 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 따라서 본 발명의 권리 범위는 설명된 실시 예에 국한되어 정해져서는 안 되며, 후술하는 청구범위뿐만 아니라, 이와 균등한 것들에 의해 정해져야 한다.As described above, the detailed description of the present invention has been described with respect to the preferred embodiments of the present invention, but those skilled in the art to which the present invention belongs can make various modifications without departing from the scope of the present invention. Of course this is possible. Therefore, the scope of the present invention should not be limited to the described embodiments and should not be defined, and should be defined by not only the claims described later, but also those equivalent thereto.
Claims (17)
상기 불순물은, 구리(Cu): 0.08% 이하, 망간(Mn): 0.05% 이하, 마그네슘(Mg): 0.05% 이하, 크롬(Cr): 0.1% 이하 및 아연(Zn): 0.1%이하 중 선택된 1종 이상을 0.05~0.38% 범위로 포함하고, 그리고
하기 관계식 1-4를 각각 만족하는 열전도율이 우수한 주조용 알루미늄 합금.
[관계식 1]
1.1중량%≤ Si+Fe ≤4.1중량%
[관계식 2]
0.8≤ Si/Fe ≤3.8
[관계식 3]
2.0≤[(Si+Fe)/(Ti+B+Sr)]≤ 7.7
[관계식 4]
2.9≤ [(Si+Fe)/(Cu+Mn+Mg+Cr+Zn)] ≤58.0
In weight percent, silicon (Si): 0.5 to 2.3%, iron (Fe): 0.6 to 1.8%, titanium (Ti): 0.01 to 0.2%, boron (B): 0.005 to 0.05%, strontium (Sr): 0.1 ~0.3%, containing residual aluminum (Al) and other unavoidable impurities,
The impurities are selected from copper (Cu): 0.08% or less, manganese (Mn): 0.05% or less, magnesium (Mg): 0.05% or less, chromium (Cr): 0.1% or less, and zinc (Zn): 0.1% or less. containing one or more species in the range of 0.05 to 0.38%, and
An aluminum alloy for casting having excellent thermal conductivity that satisfies the following relational expressions 1-4, respectively.
[Relationship 1]
1.1% by weight ≤ Si+Fe ≤ 4.1% by weight
[Relationship 2]
0.8 ≤ Si/Fe ≤ 3.8
[Relationship 3]
2.0≤[(Si+Fe)/(Ti+B+Sr)]≤ 7.7
[Relationship 4]
2.9≤ [(Si+Fe)/(Cu+Mn+Mg+Cr+Zn)] ≤58.0
The casting aluminum alloy having excellent thermal conductivity according to claim 1, wherein the Si+Fe value defined by the relational expression 1 is 1.6 to 2.9% by weight.
The casting aluminum alloy having excellent thermal conductivity according to claim 1, wherein the Si/Fe content ratio defined by the relational expression 2 is 1.6 to 3.3.
The casting aluminum alloy having excellent thermal conductivity according to claim 1, wherein the (Si+Fe)/(Ti+B+Sr) content ratio defined by the relational expression 3 is 4.27 to 7.7.
The method of claim 1, wherein the casting aluminum alloy, in weight percent, silicon (Si): 1.0 ~ 2.0%, iron (Fe): 0.6 ~ 0.9%, titanium (Ti): 0.02 ~ 0.1%, boron (B ): 0.005 to 0.025% and strontium (Sr): 0.15 to 0.25%, characterized in that it comprises an aluminum alloy for casting with excellent thermal conductivity.
The method of claim 1, wherein the impurities are, by weight%, copper (Cu): 0.005% or less, manganese (Mn): 0.005% or less, magnesium (Mg): 0.005% or less, chromium (Cr): 0.015% or less, and zinc (Zn): An aluminum alloy for casting having excellent thermal conductivity, characterized in that it contains at least one selected from among 0.02% or less.
The casting according to claim 1, wherein the [(Si+Fe)/(Cu+Mn+Mg+Cr+Zn)] content ratio defined by the relational expression 4 has a range of 32.0 to 58.0. aluminum alloy.
The aluminum alloy for casting according to claim 1, wherein the aluminum alloy has a yield strength of 50 to 70 N/mm2 or more and a thermal conductivity of 190 to 210 W/mK.
상기 용융된 알루미늄 합금 용탕을 이용하여 주조함으로써 주조품을 얻는 공정; 및
상기 주조품을 150~250℃의 온도범위에서 1~2시간 동안 어닐링처리 후 공냉하는 공정;을 포함하는 열전도율이 우수한 알루미늄 주조합금 제조방법.
[관계식 1]
1.1중량%≤ Si+Fe ≤4.1중량%
[관계식 2]
0.8≤ Si/Fe ≤3.8
[관계식 3]
2.0≤[(Si+Fe)/(Ti+B+Sr)]≤ 7.7
[관계식 4]
2.9≤ [(Si+Fe)/(Cu+Mn+Mg+Cr+Zn)] ≤58.0
In weight percent, silicon (Si): 0.5 to 2.3%, iron (Fe): 0.6 to 1.8%, titanium (Ti): 0.01 to 0.2%, boron (B): 0.005 to 0.05%, strontium (Sr): 0.1 ~ 0.3%, residual aluminum (Al) and other unavoidable impurities, including copper (Cu): 0.08% or less, manganese (Mn): 0.05% or less, magnesium (Mg): 0.05% or less, chromium ( Cr): 0.1% or less and zinc (Zn): 0.1% or less, including at least one selected from 0.05 to 0.38%, and melting an aluminum alloy that satisfies each of the following relations 1-4;
a step of obtaining a cast product by casting using the molten aluminum alloy molten metal; and
An aluminum cast alloy manufacturing method having excellent thermal conductivity, including a step of air-cooling the cast product after annealing for 1 to 2 hours in a temperature range of 150 to 250 ° C.
[Relationship 1]
1.1% by weight ≤ Si+Fe ≤ 4.1% by weight
[Relationship 2]
0.8 ≤ Si/Fe ≤ 3.8
[Relationship 3]
2.0≤[(Si+Fe)/(Ti+B+Sr)]≤ 7.7
[Relationship 4]
2.9≤ [(Si+Fe)/(Cu+Mn+Mg+Cr+Zn)] ≤58.0
10. The method of claim 9, wherein the value of Si+Fe defined by the relational expression 1 is 1.6 to 2.9% by weight.
The method of claim 9, wherein the Si/Fe content ratio defined by the relational expression 2 is 1.6 to 3.3.
The method of claim 9, wherein the (Si+Fe)/(Ti+B+Sr) content ratio defined by the relational expression 3 is 4.27 to 7.7.
10. The method of claim 9, wherein the aluminum alloy for casting, in weight percent, silicon (Si): 1.0 ~ 2.0%, iron (Fe): 0.6 ~ 0.9%, titanium (Ti): 0.02 ~ 0.1%, boron (B ): 0.005 ~ 0.025% and strontium (Sr): 0.15 ~ 0.25% aluminum casting alloy manufacturing method with excellent thermal conductivity, characterized in that it comprises.
10. The method of claim 9, wherein the impurities are, by weight, copper (Cu): 0.005% or less, manganese (Mn): 0.005% or less, magnesium (Mg): 0.005% or less, chromium (Cr): 0.015% or less, and zinc (Zn): A method for producing an aluminum casting alloy having excellent thermal conductivity, characterized in that it contains at least one selected from among 0.02% or less.
The aluminum casting having excellent thermal conductivity according to claim 9, wherein the content ratio of [(Si+Fe)/(Cu+Mn+Mg+Cr+Zn)] defined by the relational expression 4 ranges from 32.0 to 58.0. alloy manufacturing method.
알루미늄을 용해로에 장입한 후 그 용융점 이상의 온도로 가열함으로써 Al 용탕을 제조하는 제1 공정; 740~770℃의 온도에서 Si와 Fe를 용탕에 투입하는 제2 공정; 680~720℃의 온도에서 TiB 모합금을 용탕에 투입하는 제3 공정; 재승온하여 730~770℃에서 Sr을 용탕에 투입하는 제4 공정; 740~760℃ 온도에서 Ar(아르곤)가스로 15~20분 취입함으로써 용탕 내 가스 및 산화물 등 불순물을 제거하는 제5 공정; 및 680~700℃의 온도에서 용탕을 출탕하는 제6 공정;을 포함하는 것을 특징으로 하는 열전도율이 우수한 알루미늄 주조합금 제조방법.
The method of claim 9, wherein the process of manufacturing the aluminum alloy molten metal,
A first step of producing molten Al by charging aluminum into a melting furnace and then heating it to a temperature equal to or higher than its melting point; A second step of injecting Si and Fe into molten metal at a temperature of 740 to 770 ° C; A third step of injecting the TiB master alloy into the molten metal at a temperature of 680 to 720 ° C; A fourth step of reheating and injecting Sr into the molten metal at 730 to 770 ° C; A fifth process of removing impurities such as gas and oxides in the molten metal by blowing Ar (argon) gas at a temperature of 740 to 760 ° C for 15 to 20 minutes; And a sixth step of tapping the molten metal at a temperature of 680 ~ 700 ℃; aluminum casting alloy manufacturing method with excellent thermal conductivity, characterized in that it comprises a.
10. The method of claim 9, wherein the casting is a die casting casting.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200111883A KR102472891B1 (en) | 2020-09-02 | 2020-09-02 | Aluminum alloy for casting having excellent thermal conductance, and casting method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200111883A KR102472891B1 (en) | 2020-09-02 | 2020-09-02 | Aluminum alloy for casting having excellent thermal conductance, and casting method therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220030102A KR20220030102A (en) | 2022-03-10 |
KR102472891B1 true KR102472891B1 (en) | 2022-12-02 |
Family
ID=80816449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200111883A Active KR102472891B1 (en) | 2020-09-02 | 2020-09-02 | Aluminum alloy for casting having excellent thermal conductance, and casting method therefor |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102472891B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116949323A (en) * | 2023-07-27 | 2023-10-27 | 中铝材料应用研究院有限公司 | Anodized die casting and preparation method thereof |
CN118547189A (en) * | 2024-06-18 | 2024-08-27 | 华劲新材料研究院(广州)有限公司 | A high-strength and corrosion-resistant die-cast aluminum alloy |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002256364A (en) | 2001-02-28 | 2002-09-11 | Mitsubishi Alum Co Ltd | Aluminum alloy for fin material of fin for heat exchanger and its production method |
WO2016068293A1 (en) | 2014-10-31 | 2016-05-06 | 株式会社Uacj | Aluminum alloy substrate for magnetic disk |
CN110079713A (en) | 2019-05-07 | 2019-08-02 | 中铝广西崇左稀钪新材料科技有限公司 | A kind of rare earth modified die-cast aluminum alloy material and preparation method thereof with high heat conductance |
CN110666127A (en) | 2019-09-17 | 2020-01-10 | 苏州工业园区艺达精密机械有限公司 | Novel method for improving hardness of die casting |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101426708B1 (en) | 2012-01-12 | 2014-08-07 | 한국생산기술연구원 | Al-Fe-Zn-Si ALLOY HAVING HIGH THERMAL CONDUCTIVITY FOR DIE CASTING |
KR101418773B1 (en) | 2012-01-12 | 2014-07-11 | 한국생산기술연구원 | Al-Zn-Fe-Mg ALLOY HAVING HIGH THERMAL CONDUCTIVITY FOR DIE CASTING |
US20160089860A1 (en) * | 2013-05-14 | 2016-03-31 | Uacj Corporation | Aluminum alloy material having thermal bonding function in single layer, manufacturing method for same, and aluminum bonded body using the aluminum alloy material |
JP5591414B1 (en) * | 2014-05-26 | 2014-09-17 | 日新製鋼株式会社 | Hot-worked Al-plated steel sheet with excellent workability |
EP3235916B1 (en) * | 2016-04-19 | 2018-08-15 | Rheinfelden Alloys GmbH & Co. KG | Cast alloy |
KR20170124963A (en) * | 2016-05-03 | 2017-11-13 | 손희식 | Corrosion resistant aluminium alloy for casting |
-
2020
- 2020-09-02 KR KR1020200111883A patent/KR102472891B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002256364A (en) | 2001-02-28 | 2002-09-11 | Mitsubishi Alum Co Ltd | Aluminum alloy for fin material of fin for heat exchanger and its production method |
WO2016068293A1 (en) | 2014-10-31 | 2016-05-06 | 株式会社Uacj | Aluminum alloy substrate for magnetic disk |
CN110079713A (en) | 2019-05-07 | 2019-08-02 | 中铝广西崇左稀钪新材料科技有限公司 | A kind of rare earth modified die-cast aluminum alloy material and preparation method thereof with high heat conductance |
CN110666127A (en) | 2019-09-17 | 2020-01-10 | 苏州工业园区艺达精密机械有限公司 | Novel method for improving hardness of die casting |
Also Published As
Publication number | Publication date |
---|---|
KR20220030102A (en) | 2022-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3805416B1 (en) | Aluminum alloy and preparation method and application thereof | |
US6773666B2 (en) | Al-Si-Mg-Mn casting alloy and method | |
EP3647440B1 (en) | Aluminum alloy and preparation method therefor | |
CN106350716A (en) | A high-strength aluminum alloy material for appearance parts and its preparation method | |
CN102676962A (en) | Method for manufacturing an extruded material of heat treatment type Al-Zn-Mg series aluminum alloy | |
KR101545970B1 (en) | Al-Zn ALLOY HAVING HIGH TENSILE STRENGTH AND HIGH THERMAL CONDUCTIVITY FOR DIE CASTING | |
US10508329B2 (en) | Aluminum alloy material for use in thermal conduction application | |
CN111945039B (en) | Die-casting aluminum alloy, aluminum alloy die-casting part and manufacturing method thereof | |
CN111101034A (en) | Low-rare-earth high-performance rare earth aluminum alloy and preparation method thereof | |
WO2018072368A1 (en) | Rare earth-copper alloy glass mold and preparation method therefor | |
KR20140034557A (en) | Al-cu alloy having high thermal conductivity for die casting | |
KR102472891B1 (en) | Aluminum alloy for casting having excellent thermal conductance, and casting method therefor | |
CN114855036B (en) | High-strength high-thermal-conductivity cast aluminum alloy, preparation method thereof and aluminum alloy product | |
KR102472890B1 (en) | Aluminum alloy for casting having excellent thermal conductance, and casting method therefor | |
KR101274089B1 (en) | High strength aluminum alloys for die casting | |
KR102381270B1 (en) | Aluminum alloy for casting having excellent thermal conductance | |
JP5688744B2 (en) | High strength and high toughness copper alloy forging | |
US20210404038A1 (en) | 2xxx aluminum lithium alloys | |
KR20210152776A (en) | Aluminum alloy for casting having excellent thermal conductance | |
KR102780398B1 (en) | Aluminum alloy for die casting having excellent strength, ductility and thermal conductivity, and manufacturing method for the same | |
CN109022970A (en) | 6000 line aluminium alloy of high anti intercrystalline corrosion of Mn, Zr composite alloying and preparation method thereof | |
KR102742846B1 (en) | Aluminum-scandium alloy and manufacturing method thereof | |
KR102617997B1 (en) | Manufacturing method of die casting Al alloy | |
WO2012111674A1 (en) | High-strength copper alloy forging | |
JPH04210438A (en) | Continuous casting mold material made of high strength cu alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20200902 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20220225 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20220830 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20221128 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20221129 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |