KR102451262B1 - Composition for Multicure type flame-retardant finish and Processing Method using the same and Fabric thereby - Google Patents
Composition for Multicure type flame-retardant finish and Processing Method using the same and Fabric thereby Download PDFInfo
- Publication number
- KR102451262B1 KR102451262B1 KR1020210038584A KR20210038584A KR102451262B1 KR 102451262 B1 KR102451262 B1 KR 102451262B1 KR 1020210038584 A KR1020210038584 A KR 1020210038584A KR 20210038584 A KR20210038584 A KR 20210038584A KR 102451262 B1 KR102451262 B1 KR 102451262B1
- Authority
- KR
- South Korea
- Prior art keywords
- flame
- fabric
- retardant
- retardant processing
- curing type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003063 flame retardant Substances 0.000 title claims abstract description 170
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 title claims abstract description 154
- 239000004744 fabric Substances 0.000 title claims abstract description 115
- 239000000203 mixture Substances 0.000 title claims abstract description 54
- 238000003672 processing method Methods 0.000 title claims abstract description 27
- 238000012545 processing Methods 0.000 claims abstract description 64
- 238000001723 curing Methods 0.000 claims abstract description 60
- 239000002131 composite material Substances 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims abstract description 21
- 238000003848 UV Light-Curing Methods 0.000 claims abstract description 15
- 239000000654 additive Substances 0.000 claims description 30
- 239000003431 cross linking reagent Substances 0.000 claims description 30
- 230000000996 additive effect Effects 0.000 claims description 25
- 229910052760 oxygen Inorganic materials 0.000 claims description 24
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical group NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 23
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 21
- 239000001301 oxygen Substances 0.000 claims description 21
- FLCAEMBIQVZWIF-UHFFFAOYSA-N 6-(dimethylamino)-2-methylhex-2-enamide Chemical compound CN(C)CCCC=C(C)C(N)=O FLCAEMBIQVZWIF-UHFFFAOYSA-N 0.000 claims description 14
- -1 Dichloro tetrakis Chemical compound 0.000 claims description 9
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 238000010025 steaming Methods 0.000 claims description 5
- FYBFGAFWCBMEDG-UHFFFAOYSA-N 1-[3,5-di(prop-2-enoyl)-1,3,5-triazinan-1-yl]prop-2-en-1-one Chemical compound C=CC(=O)N1CN(C(=O)C=C)CN(C(=O)C=C)C1 FYBFGAFWCBMEDG-UHFFFAOYSA-N 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 4
- UBIJTWDKTYCPMQ-UHFFFAOYSA-N hexachlorophosphazene Chemical compound ClP1(Cl)=NP(Cl)(Cl)=NP(Cl)(Cl)=N1 UBIJTWDKTYCPMQ-UHFFFAOYSA-N 0.000 claims description 3
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 claims 2
- 229920000742 Cotton Polymers 0.000 abstract description 44
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 35
- 239000011574 phosphorus Substances 0.000 abstract description 35
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 33
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 abstract description 18
- 238000005406 washing Methods 0.000 abstract description 16
- 239000004753 textile Substances 0.000 abstract description 14
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract description 8
- 239000011521 glass Substances 0.000 abstract description 5
- 239000001569 carbon dioxide Substances 0.000 abstract description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract description 4
- 239000012795 eco-friendly flame retardant Substances 0.000 abstract description 3
- 238000005265 energy consumption Methods 0.000 abstract description 3
- 230000007613 environmental effect Effects 0.000 abstract description 3
- 229920001187 thermosetting polymer Polymers 0.000 abstract description 3
- 239000000178 monomer Substances 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 239000000835 fiber Substances 0.000 description 14
- 238000005979 thermal decomposition reaction Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 238000000576 coating method Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000004132 cross linking Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 229920002678 cellulose Polymers 0.000 description 6
- 239000001913 cellulose Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 229910052736 halogen Inorganic materials 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 210000002268 wool Anatomy 0.000 description 4
- 229920000297 Rayon Polymers 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000004043 dyeing Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000002964 rayon Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 2
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 2
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 235000009120 camo Nutrition 0.000 description 2
- 235000005607 chanvre indien Nutrition 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- ZTWTYVWXUKTLCP-UHFFFAOYSA-L ethenyl-dioxido-oxo-$l^{5}-phosphane Chemical compound [O-]P([O-])(=O)C=C ZTWTYVWXUKTLCP-UHFFFAOYSA-L 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000002366 halogen compounds Chemical class 0.000 description 2
- 239000011487 hemp Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 238000009991 scouring Methods 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- GJKGAPPUXSSCFI-UHFFFAOYSA-N 2-Hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone Chemical compound CC(C)(O)C(=O)C1=CC=C(OCCO)C=C1 GJKGAPPUXSSCFI-UHFFFAOYSA-N 0.000 description 1
- VDWUSFSNVMZTBG-UHFFFAOYSA-N 2-dimethoxyphosphorylethyl prop-2-enoate Chemical compound COP(=O)(OC)CCOC(=O)C=C VDWUSFSNVMZTBG-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- BTWXCEHDVIPQOY-UHFFFAOYSA-N OCCOC1=CC=C(C=C1)C(C(C)(C)O)=O.OCCOC1=CC=C(C=C1)C(C(C)(C)O)=O Chemical compound OCCOC1=CC=C(C=C1)C(C(C)(C)O)=O.OCCOC1=CC=C(C=C1)C(C(C)(C)O)=O BTWXCEHDVIPQOY-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- QLZHNIAADXEJJP-UHFFFAOYSA-N Phenylphosphonic acid Chemical class OP(O)(=O)C1=CC=CC=C1 QLZHNIAADXEJJP-UHFFFAOYSA-N 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000000980 acid dye Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- BSBSDQUZDZXGFN-UHFFFAOYSA-N cythioate Chemical compound COP(=S)(OC)OC1=CC=C(S(N)(=O)=O)C=C1 BSBSDQUZDZXGFN-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 125000003963 dichloro group Chemical group Cl* 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000012757 flame retardant agent Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000009998 heat setting Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 239000012796 inorganic flame retardant Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- WLKALBXHGZQMSK-UHFFFAOYSA-N n-dimethoxyphosphoryl-n-(hydroxymethyl)propanamide Chemical compound CCC(=O)N(CO)P(=O)(OC)OC WLKALBXHGZQMSK-UHFFFAOYSA-N 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002903 organophosphorus compounds Chemical class 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- AJFJJTYOLHZAIE-UHFFFAOYSA-N phosphoric acid;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OP(O)(O)=O AJFJJTYOLHZAIE-UHFFFAOYSA-N 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- FAUOSXUSCVJWAY-UHFFFAOYSA-N tetrakis(hydroxymethyl)phosphanium Chemical class OC[P+](CO)(CO)CO FAUOSXUSCVJWAY-UHFFFAOYSA-N 0.000 description 1
- 238000001029 thermal curing Methods 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/322—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
- D06M13/44—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen containing nitrogen and phosphorus
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06C—FINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
- D06C7/00—Heating or cooling textile fabrics
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M10/00—Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
- D06M10/001—Treatment with visible light, infrared or ultraviolet, X-rays
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2200/00—Functionality of the treatment composition and/or properties imparted to the textile material
- D06M2200/30—Flame or heat resistance, fire retardancy properties
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
본 발명은 복합경화형 방염가공조성물, 이를 이용한 직물방염가공방법 및 이를 이용한 방염가공직물에 관한 것으로서, 보다 상세하게는 열스팀경화성 및 자외선경화성을 갖는 인계 방염제를 포함하는 복합경화형 방염가공조성물, 이를 이용한 직물방염가공방법 및 이를 이용한 방염가공직물에 관한 것이다.
본 발명에 의하면, 기존 열경화 방식을 이용한 방염가공의 환경문제, 에너지 과소비, 과다한 이산화탄소 배출 등의 문제점을 해결할 수 있을 뿐 아니라, 방염성능이 우수하면서도 세탁내구성을 가지고, 기존 면섬유용 내구성 방염제들의 가공 후 과다한 포름알데히드 유리 문제도 해결할 수 있어 면섬유에 대한 새로운 친환경 방염제 및 가공법으로 응용가능하다.The present invention relates to a composite curing type flame-retardant processing composition, a textile flame-retardant processing method using the same, and a flame-resistant processing fabric using the same, and more particularly, a composite curing type flame-retardant processing composition comprising a phosphorus-based flame retardant having heat steam curing and UV curing properties, and using the same It relates to a fabric flame-retardant processing method and a flame-retardant processing fabric using the same.
According to the present invention, it is possible to solve problems such as environmental problems, excessive energy consumption, and excessive carbon dioxide emissions of flame-retardant processing using the conventional thermosetting method, and has excellent flame-retardant performance and washing durability, and processing of existing durable flame-retardants for cotton fibers Since it can also solve the problem of excessive formaldehyde glass afterward, it can be applied as a new eco-friendly flame retardant and processing method for cotton fibers.
Description
본 발명은 복합경화형 방염가공조성물, 이를 이용한 직물방염가공방법 및 이를 이용한 방염가공직물에 관한 것으로서, 보다 상세하게는 열스팀경화성 및 자외선경화성을 갖는 인계 방염제를 포함하는 복합경화형 방염가공조성물, 이를 이용한 직물방염가공방법 및 이를 이용한 방염가공직물에 관한 것이다.The present invention relates to a composite curing type flame-retardant processing composition, a textile flame-retardant processing method using the same, and a flame-retardant processing fabric using the same, and more particularly, a composite curing type flame-retardant processing composition comprising a phosphorus-based flame retardant having heat steam curing and UV curing properties, and using the same It relates to a fabric flame-retardant processing method and a flame-retardant processing fabric using the same.
방염가공이란 직물 등 가연성 섬유제품에 화학적으로 약제 처리를 함으로써 화재전파에 대한 저항성 또는 자기소화성을 부여하는 가공으로 정의된다.Flame-retardant processing is defined as processing that gives resistance to fire propagation or self-extinguishing properties by chemically treating combustible textile products such as fabrics.
이러한 방염가공의 방법으로는 섬유고분자를 합성할 때 방염성 단량체를 공중합시키는 방법, 방사시 방사원액에 방염제를 첨가하는 방법, 방염 가공제를 섬유에 고착 또는 코팅시키는 가공방법 등이 있고, 특히 중합과 방사하지 않는 천연섬유의 경우 후처리 가공방법이 널리 사용되고 있으며, 이러한 후처리 가공방법으로 pad-dry-cure(PDC) 방식에 따라 가공하는 것이 일반적이다.As a method of such flame-retardant processing, there are a method of copolymerizing a flame-retardant monomer when synthesizing a fiber polymer, a method of adding a flame-retardant to a spinning dope solution during spinning, a processing method of fixing or coating the flame-retardant processing agent to the fiber, and in particular, polymerization and For natural fibers that are not spun, post-treatment processing methods are widely used, and it is common to process them according to the pad-dry-cure (PDC) method as such post-treatment processing methods.
또한, 방염제로서는 붕소(B), 질소(N), 인(P), 주석(Sn), 규소(Si), 염소(Cl), 브롬(Br) 등을 함유하는 물질이 방염효과가 있어 널리 사용되고 있으며 특히 인, 브롬, 질소 등을 함유하는 물질은 방염효과가 우수한 것으로 알려져 있다. In addition, as a flame retardant, a material containing boron (B), nitrogen (N), phosphorus (P), tin (Sn), silicon (Si), chlorine (Cl), bromine (Br), etc. has a flame retardant effect and is widely used. In particular, materials containing phosphorus, bromine, nitrogen, etc. are known to have excellent flame retardant effects.
이중 현재 사용량이 증가하고 있는 인계 방염제는 응축상 방염기구에 의한 것으로 보다 낮은 온도에서 분해가 일어나게 되어 섬유를 축합 및 가교 시켜 불연성 잔류탄화물의 형성을 촉진하여 가연성 물질의 양을 감소시켜 방염성을 부여하게 된다. 그리고 인(P)만을 함유하는 화합물 보다는 질소를 첨가하여 방염가공을 하였을 경우 인과 질소의 상승작용에 의해서 더욱 우수한 방염효과를 나타내는 것으로 알려져 있다.Among them, phosphorus-based flame retardants, which are currently being used, are due to the condensed phase flame retardant mechanism, which decomposes at a lower temperature, condenses and cross-links the fibers to promote the formation of non-combustible residual carbides, thereby reducing the amount of combustible materials and providing flame retardancy. do. And, it is known that, when flame-retardant processing is performed by adding nitrogen rather than a compound containing only phosphorus (P), a more excellent flame-retardant effect is exhibited by the synergistic action of phosphorus and nitrogen.
한편, 면, 레이온 등 셀룰로스계 섬유는 불꽃이나 열에 의해 쉽게 연소되는 가연성 물질 중 하나로 의류나 침장류, 가구류 등에 다양한 용도에서 화재 전파능력을 가지므로 이를 감소시키기 위해 세계 각국에서는 섬유제품에 대한 각종 방염규제와 법령이 제정되어 있고 방염가공에 대한 소비자들의 관심과 요구도 점차 확대되고 있다.On the other hand, cellulosic fibers such as cotton and rayon are one of the combustible materials that are easily combusted by flame or heat and have fire propagation ability in various uses such as clothing, bedding, and furniture. and laws have been enacted, and consumers' interest and demand for flame-retardant processing are gradually expanding.
일반적으로 후가공에 의한 섬유의 방염처리는 유기 인 화합물 또는 할로겐 화합물을 이용하여 자기소화성을 부여하고 세탁내구성을 갖게 한다. 하지만 할로겐계 방염제의 경우 자체 독성과 연소 시 할로겐 산 등 부식가스로 인해 인체와 환경에 악영향을 줄 수 있기에 사용이 점차 제한되고 있는 추세이다.In general, flame-retardant treatment of fibers by post-processing uses organic phosphorus compounds or halogen compounds to provide self-extinguishing properties and to have washing durability. However, in the case of halogen-based flame retardants, their use is gradually being restricted because they can adversely affect the human body and the environment due to their toxicity and corrosive gases such as halogen acids during combustion.
따라서 최근에는 무기계 입자나 유기 인계 방염제를 이용한 방염가공에 대한 연구가 활발히 진행되고 있다. 인 화합물의 경우 열분해 경로를 바꾸어 발열량을 감소시키고 잔류탄화물의 양을 증가시키는 응축상 메커니즘으로 작용하므로 할로겐 화합물과는 달리 연소과정 중에 부식가스를 다량 발생시키지 않는다.Therefore, recently, research on flame-retardant processing using inorganic particles or organic phosphorus-based flame retardants has been actively conducted. In the case of a phosphorus compound, it does not generate a large amount of corrosive gas during the combustion process, unlike halogen compounds, because it changes the thermal decomposition path and acts as a condensation phase mechanism to reduce the calorific value and increase the amount of residual carbide.
또한 섬유제품에 방염성을 부여하기 위한 새로운 후가공 기술도 보고되고 있는데 대부분이 방염제의 불용화나 코팅, 그라프팅, 가교 등을 형성함으로써 얻어진다. 특히, 방염코팅은 knife나 roller로 일면에만 처리하는 후면 코팅, 가공제의 사용량을 절감시키는 거품 코팅 등을 이용하여 고기능성 섬유제품에 적용할 수 있다는 장점을 갖는다. In addition, new post-processing techniques for imparting flame retardancy to textiles have been reported, and most are obtained by insolubilizing the flame retardant or forming coating, grafting, or crosslinking. In particular, the flame-retardant coating has the advantage that it can be applied to high-functional textile products by using a back coating that is processed only on one side with a knife or roller, and a foam coating that reduces the amount of processing agent used.
하지만 섬유제품에 대한 방염코팅은 대부분 열을 에너지원으로 사용하여 경화하므로 다량의 물 및 용제 사용, 이로 인한 환경오염의 발생, 고온의 열처리에 의한 높은 에너지소비 및 섬유 물성 저하 등 단점이 있어 열경화 방식에 의한 코팅공정을 대체할 수 있는 보다 친환경적이고 에너지 절감형 코팅기술 개발이 요구되고 있다.However, most of the flame retardant coatings for textile products are cured by using heat as an energy source. There is a demand for the development of more eco-friendly and energy-saving coating technology that can replace the coating process by the method.
식물성 섬유 중 셀룰로스 함량이 가장 높은 면(Cotton)섬유는 생분해성을 갖는 자원순환형 고분자소재로서 우수한 기계적 물성, 흡습성, 우수한 촉감, 착용 쾌적성 등을 지니고 있어 세계적으로 가장 많이 이용되고 있다. Cotton fiber, which has the highest cellulose content among vegetable fibers, is a biodegradable, resource-circulating polymer material, and has excellent mechanical properties, hygroscopicity, excellent touch, and wear comfort.
그러나 다른 섬유에 비해 상대적으로 열분해 온도와 발화온도가 낮은 가연성 소재로서 화재가 발생하는 환경에서 근무하는 작업자 및 소방관의 안전 보호성 강화를 위해 면 섬유의 연소성을 감소시키는 연구가 활발히 진행되고 있다. However, as a combustible material with a relatively low thermal decomposition temperature and ignition temperature compared to other fibers, studies to reduce the combustibility of cotton fibers are being actively conducted to strengthen the safety and protection properties of workers and firefighters working in a fire environment.
최근 할로겐계 방염제 사용 금지와 더불어 발암가능성이 있는 포름알데히드(Formaldehyde)등 섬유제품의 유해물질 유리에 대한 규제가 강화되고 있다. 따라서 인체유해물질을 배출하지 않으면서, 우수한 방염성과 내구성을 가진 새로운 친환경 방염제 개발과 이를 이용한 친환경 섬유제품 개발이 요구되고 있다. Recently, along with the ban on the use of halogen-based flame retardants, regulations on the glass of harmful substances in textile products such as formaldehyde, which may be carcinogenic, are being strengthened. Therefore, there is a demand for the development of a new eco-friendly flame retardant with excellent flame retardancy and durability without emitting harmful substances to the human body, and the development of eco-friendly textile products using the same.
면 섬유와 공유결합을 형성하여 반복 세탁에 견딜 수 있는 내구성 방염가공제는 가공 후 섬유제품의 강도, 촉감,외관 등 물성 저하를 최소화하면서도 포름알데히드등 인체에 유해한 물질을 유리시키지 않아야 한다. A durable flame retardant that can withstand repeated washing by forming a covalent bond with cotton fibers should not release substances harmful to the human body such as formaldehyde while minimizing deterioration in physical properties such as strength, feel, and appearance of textile products after processing.
면 섬유에 대한 내구성 방염가공은 주로 반응성 인계 방염제가 사용되어 왔고, 인계 방염제의 성능은 인 함량이 높을수록 우수하며 고온에서 생성되는 인산에 의한 탈수/가교 작용이 주된 방염메커니즘으로 알려져 있다. Reactive phosphorus-based flame retardants have been mainly used for durable flame-retardant processing of cotton fibers, and the performance of phosphorus-based flame-retardants is superior as the phosphorus content is higher.
현재 상업적으로 활발히 사용되는 면섬유에 대한 내구성 방염가공제에는 “N-Methylol dimethylphosphonopropionamide(Pyrovatex)”와 “Tetrakis(hydroxymethyl) phosphonium salt/urea condensates(Proban)”가 대표적이다. “N-Methylol dimethylphosphonopropionamide (Pyrovatex)” and “Tetrakis (hydroxymethyl) phosphonium salt/urea condensates (Proban)” are representative of the commercially active durable flame-retardant agents for cotton fibers.
전자는 방염가공 후 포름알데히드가 유리될 수 있으며, 후자는 장기 세탁 내구성이 우수하나, 생산과정에서 암모니아 기체 사용 또는 가공 제품에서 포름알데히드 유리 등 단점이 있어 새로운 무포름알데히드 방염제 및 친환경 내구성 방염가공의 개발이 요구된다.The former can release formaldehyde after flame-retardant processing, and the latter has excellent long-term washing durability, but has disadvantages such as the use of ammonia gas in the production process or formaldehyde glass in processed products. development is required.
비할로겐 (halogen free)계 저유해성 방염제는 할로겐 물질을 대체하리라 예상되고 현재 비할로겐 저유해성 방염제의 개발은 수화금속 화합물과 실리콘계 방염제, 질소계 방염제, 기타 무기 화합물들이 대두되고 있지만 그 중 안정성과 내구성이 우수한 인계 방염제를 중심으로 한 연구가 집중되고 있다. Non-halogen-based low-hazard flame retardants are expected to replace halogen substances. Currently, hydrated metal compounds, silicone-based flame retardants, nitrogen-based flame retardants, and other inorganic compounds are emerging for the development of non-halogen low-toxic flame retardants, but among them, stability and durability. Research is focused on this excellent phosphorus-based flame retardant.
또한 일반적인 습식 후처리 방식은 경화원으로 고온의 열을 이용하여 가공제액을 섬유에 처리해 경화 또는 코팅시키므로, 높은 열에 의한 섬유제품의 태를 변화시켜 제품의 물성과 성능의 저하유발, 다량의 에너지 소비 및 이산화탄소의 배출, 폐수 발생이 많은 환경오염 유발 등으로 새로운 경화 방식의 도입이 요구되어진다.In addition, the general wet post-treatment method uses high-temperature heat as a curing source to treat and harden or coat the fiber with a processing agent solution. And the introduction of a new hardening method is required due to the emission of carbon dioxide and environmental pollution that generates a lot of wastewater.
한편, 자외선은 가시광선보다 짧은 파장을 가진 전자기파로 조사 파장에 따라 조사표면 유기물의 분자결합을 절단하고 산화시킬 수 있을 뿐 아니라 용이하게 광경화성 단량체를 중합 및 가교화시킬 수 있다. 이에 자외선 조사경화를 이용한 방염가공에 관한 연구는 열경화 방염제로 판매하던 vinyl phosphonate oligomer인 Fyrol76의 비닐기를 이용하여 섬유제품에 자외선 경화 방염가공에 도입되어, 근래에는 phosphate diacrylate/triacrylate, methacrylated phosphate, hyperbranched polyphosphate acrylate, acrylated benzenephosphonates, dimethyl(2-acryloxyethyl)phosphonate and oligomeric vinyl phosphonate 등의 자외선 경화형 방염제들의 합성과 이를 이용한 무기계 방염제 또는 바인더와의 열적거동에 관한 연구가 활발히 보고되고 있다.On the other hand, ultraviolet light is an electromagnetic wave having a shorter wavelength than visible light, and it can cut and oxidize molecular bonds of the irradiated surface organic material according to the irradiation wavelength, and can easily polymerize and crosslink the photocurable monomer. Therefore, research on flame-retardant processing using UV-irradiation curing was introduced into UV-curing flame-retardant processing for textile products using the vinyl group of Fyrol76, a vinyl phosphonate oligomer sold as a heat-setting flame retardant, and recently, phosphate diacrylate/triacrylate, methacrylated phosphate, and hyperbranched. Studies on the synthesis of UV-curable flame retardants such as polyphosphate acrylate, acrylated benzenephosphonates, dimethyl(2-acryloxyethyl)phosphonate and oligomeric vinyl phosphonate and their thermal behavior with inorganic flame retardants or binders are being actively reported.
자외선을 이용한 경화기술은 높은 경화속도, 친환경성 및 높은 에너지 절감효과로 인해 다양한 분야에서 기존의 열경화 방식을 대체하고 있다. 예를 들면, 광중합이나 광가교 반응을 기반으로 한 UV 경화 기술은 면직물의 DP가공, 양모의 방축가공, 면직물의 친환경적 무염(無鹽) 염색, 양모/면 혼방직물의 유니온 염색, PET 니트의 편면 발수가공, 광그라프트된 PET 직물의 산성염료염색 등 고기능성 섬유제품 제조에 응용되고 있으며, 이는 환경문제 유발, 에너지 과소비, 과다한 이산화탄소 배출 등의 염색가공산업의 원인이 되고 있는 기존 열경화 방식을대체하는 하나의 대안이 될 것으로 보인다.The curing technology using ultraviolet light is replacing the existing thermal curing method in various fields due to its high curing speed, eco-friendliness and high energy saving effect. For example, UV curing technology based on photopolymerization or photocrosslinking reaction is DP processing of cotton fabric, preshrinking processing of wool, eco-friendly dye-free dyeing of cotton fabric, union dyeing of wool/cotton blend fabric, one side of PET knit It is applied to the manufacture of high-functional textile products such as water-repellent processing and acid dye dyeing of optically grafted PET fabrics. It appears to be an alternative to
이에, 본 발명자들은 열스팀경화성과 자외선 경화성을 갖는 수용성 사이클로포스파젠 유도체, 가교제, 첨가제 등을 포함하는 인/질소계 방염제 조성물을 직물에 패딩하고, 이를 열스팀과 자외선 조사에 의하여 경화시킴으로써 방염성능과 세탁내구성이 향상된 방염가공 섬유제품이 제조됨을 확인하고 본 발명을 완성하기에 이르렀다.Accordingly, the present inventors have padded the fabric with a phosphorus/nitrogen-based flame retardant composition comprising a water-soluble cyclophosphazene derivative, a crosslinking agent, an additive, etc. having heat steam curing and UV curing properties, and curing it by heat steam and UV irradiation to achieve flame retardant performance It was confirmed that a flame-retardant processed textile product with improved washing durability and washing durability was manufactured, and thus the present invention was completed.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 열스팀경화성 및 자외선경화성을 갖는 인계 방염제를 포함하는 복합경화형 방염가공조성물, 이를 이용한 직물방염가공방법 및 이를 이용한 방염가공직물을 제공하는 것이다.An object of the present invention for solving the above problems is to provide a composite curing type flame retardant composition comprising a phosphorus-based flame retardant having heat steam curability and UV curability, a fabric flame processing method using the same, and a flame retardant fabric using the same.
상기 과제를 해결하기 위한 본 발명의 제 1실시예에 따른 복합경화형 방염가공조성물은 수용성 사이클로포스파젠 유도체, 가교제, 첨가제를 포함한다.The composite curing type flame retardant composition according to the first embodiment of the present invention for solving the above problems includes a water-soluble cyclophosphazene derivative, a crosslinking agent, and an additive.
상기 수용성 사이클로포스파젠 유도체는 수불용성 헥사클로로포스파젠 1몰 대비 3 내지 10몰의 디메틸아미노프로필메타크릴아미드(Dimthylaminopropylmethacrylamide, DMAPMA)를 반응시켜 수용성이 부여된 것을 특징으로 한다.The water-soluble cyclophosphazene derivative is characterized in that water solubility is imparted by reacting 3 to 10 moles of dimethylaminopropylmethacrylamide (DMAPMA) with respect to 1 mole of water-insoluble hexachlorophosphazene.
상기 수용성 사이클로포스파젠 유도체는 디클로로 테트라키스 N-[3(디메틸아미노)프로필]-N-메타크릴로일 사이클로포스파젠 (Dichloro tetrakis N-[3-(Dimethylamino)propyl]-N-methacryloyl cylcophosphazene, DCTDCP)인 것을 특징으로 한다.The water-soluble cyclophosphazene derivative is dichloro tetrakis N-[3(dimethylamino)propyl]-N-methacryloyl cyclophosphazene (Dichloro tetrakis N-[3-(Dimethylamino)propyl]-N-methacryloyl cylcophosphazene, DCTDCP) ) is characterized as
상기 수용성 사이클로포스파젠 유도체는 복합경화형 방염가공조성물 전체 중량 대비 20 내지 50% 포함되는 것을 특징으로 한다.The water-soluble cyclophosphazene derivative is characterized in that it is contained in an amount of 20 to 50% based on the total weight of the composite curing type flame-retardant composition.
상기 가교제는 1,3,5-트리아크릴로헥사하이드로-1,3,5-트리아진(1,3,5-Triacryloylhexahydro-1,3,5-triazine)이며, 수용성 사이클로포스파젠 유도체 중량 대비 5 내지 15% 포함하는 것을 특징으로 한다.The crosslinking agent is 1,3,5-triacrylohexahydro-1,3,5-triazine (1,3,5-Triacryloylhexahydro-1,3,5-triazine), 5 based on the weight of the water-soluble cyclophosphazene derivative It is characterized in that it contains 15% to 15%.
상기 첨가제는 아크릴아미드(Acrylaminde)이며, 수용성 사이클로포스파젠 유도체 중량 대비 15 내지 25% 포함하는 것을 특징으로 한다.The additive is acrylamide (Acrylaminde), characterized in that it contains 15 to 25% by weight of the water-soluble cyclophosphazene derivative.
본 발명의 제 2실시예에 따른 복합경화형 방염가공조성물은 제 1실시예에 따른 복합경화형 방염가공조성물에 광개시제를 더 포함하는 것으로, 상기 광개시제는 수소치환형 광개시제, 광붕괴형 광개시제 또는 이들의 조합 중 어느 하나를 사용하는 것을 특징으로 한다.The composite curing type flame-retardant processing composition according to the second embodiment of the present invention further comprises a photoinitiator in the composite curing type flame-retardant processing composition according to the first embodiment, wherein the photoinitiator is a hydrogen-substituted type photoinitiator, a photodisintegration type photoinitiator, or a combination thereof. It is characterized by using any one of them.
상기 과제를 해결하기 위한 본 발명의 제 1실시예에 따른 복합경화형 방염가공조성물을 이용한 직물의 방염가공방법은 정련된 직물을 수용성 사이클로포스파젠 유도체로 처리하는 1차 패딩단계와 1차 패딩처리된 직물을 열스팀처리하는 열스팀경화단계와 열스팀처리된 직물을 가교제, 첨가제로 처리하는 2차 패딩단계와 2차 패딩처리된 직물을 자외선처리하는 자외선경화단계를 포함하는 것을 특징으로 한다.The flame-retardant processing method of a fabric using a composite curing type flame-retardant composition according to a first embodiment of the present invention for solving the above problems is a first padding step of treating the refined fabric with a water-soluble cyclophosphazene derivative and the first padding process It is characterized in that it comprises a heat steam curing step of heat-steaming the fabric, a second padding step of treating the heat-steamed fabric with a crosslinking agent and an additive, and a UV curing step of UV-treating the second padded fabric.
본 발명의 제 2실시예에 따른 복합경화형 방염가공조성물을 이용한 직물의 방염가공방법은 정련된 직물을 수용성 사이클로포스파젠 유도체로 처리하는 1차 패딩단계와 1차 패딩처리된 직물을 열스팀처리하는 열스팀경화단계와 열스팀처리된 직물을 가교제, 첨가제 및 광개시제로 처리하는 2차 패딩단계와 2차 패딩처리된 직물을 자외선처리하는 자외선경화처리단계를 포함하는 것을 특징으로 한다.The flame-retardant processing method of a fabric using the composite curing type flame-retardant composition according to the second embodiment of the present invention comprises a first padding step of treating a refined fabric with a water-soluble cyclophosphazene derivative and a heat steam treatment of the first padded fabric. It characterized in that it comprises a heat steam curing step, a secondary padding step of treating the heat-steamed fabric with a crosslinking agent, an additive, and a photoinitiator, and a UV curing step of treating the second padded fabric with ultraviolet rays.
본 발명의 방염가공직물은 상술된 방염가공조성물 및 직물방염가공방법에 의해 가공처리된 것으로, 한계산소지수가 25 내지 35인 것을 특징으로 한다.The flame-retardant fabric of the present invention is processed by the aforementioned flame-retardant composition and fabric flame-retardant processing method, and is characterized in that the limiting oxygen index is 25 to 35.
상술한 바와 같이, 본 발명에 따른 복합경화형 방염가공조성물, 이를 이용한 직물방염가공방법 및 이를 이용한 방염가공직물에 의하면 기존 열경화 방식을 이용한 방염가공의 환경문제, 에너지 과소비, 과다한 이산화탄소 배출 등의 문제점을 해결할 수 있을 뿐 아니라, 방염성능이 우수하면서도 세탁내구성을 가지고, 기존 면섬유용 내구성 방염제들의 가공 후 과다한 포름알데히드 유리 문제도 해결할 수 있어 면섬유에 대한 새로운 친환경 방염제 및 가공법으로 응용가능한 효과가 있다.As described above, according to the composite curing type flame-retardant processing composition according to the present invention, the textile flame-retardant processing method using the same, and the flame-resistant processing fabric using the same, the environmental problems of the flame-retardant processing using the existing thermosetting method, excessive energy consumption, problems such as excessive carbon dioxide emission In addition to being able to solve the problem of excessive formaldehyde glass after processing of existing durable flame retardants for cotton fibers, it has excellent flame retardant performance and washing durability.
도 1은 본 발명에 따른 복합경화형 방염가공조성물의 실시예 및 비교예로 사용된 화합물의 구조.
도 2는 본 발명에 따른 방염가공직물의 표면구조를 보여주는 SEM사진으로, (a) 미처리 면직물이고, (b) 30% DCTDCP와 11.4% TAHT 및 18.4% AAm로 처리된 방염가공 면직물.
도 3은 본 발명에 따른 방염가공직물과 미처리 면직물의 열적 거동을 비교한 그래프.
도 4는 본 발명에 따른 복합경화형 방염가공조성물 중 인계 단량체, 가교제, 첨가제, 미가공 면직물 및 방염가공 직물의 FT-IR 스펙트럼.1 is a structure of a compound used as an Example and Comparative Example of a composite curing type flame retardant composition according to the present invention.
2 is a SEM photograph showing the surface structure of the flame-retardant fabric according to the present invention, (a) an untreated cotton fabric, (b) a flame-retardant cotton fabric treated with 30% DCTDCP, 11.4% TAHT and 18.4% AAm.
Figure 3 is a graph comparing the thermal behavior of the flame-retardant fabric and untreated cotton fabric according to the present invention.
4 is an FT-IR spectrum of a phosphorus-based monomer, a cross-linking agent, an additive, an unprocessed cotton fabric and a flame-retardant fabric in the composite curing type flame-retardant composition according to the present invention.
본 발명의 구체적 특징 및 이점들은 이하에서 첨부도면을 참조하여 상세히 설명한다. 이에 앞서 본 발명에 관련된 기능 및 그 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 구체적인 설명을 생략하기로 한다.Specific features and advantages of the present invention will be described in detail below with reference to the accompanying drawings. Prior to this, if it is determined that the detailed description of the function and its configuration related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description will be omitted.
본 발명의 제 1실시예에 따른 복합경화형 방염가공조성물은 인계 방염제로 수용성 사이클로포스파젠 유도체, 가교제, 첨가제를 포함한다.The composite curing type flame retardant composition according to the first embodiment of the present invention includes a water-soluble cyclophosphazene derivative, a crosslinking agent, and an additive as a phosphorus-based flame retardant.
인계 방염제에 포함된 인은 열분해경로를 변경하여 열분해 온도와 속도를 효과적으로 감소시켜 방염성을 가질 수 있도록 하며, 방염가공에 의한 방염효율을 높이기 위해서는 방염제 내의 인의 함량과 가교구조가 적정한 수준에 달하도록 인계 방염제, 가교체 및 첨가제의 농도의 설계가 중요하다.Phosphorus contained in the phosphorus-based flame retardant changes the thermal decomposition path to effectively reduce the thermal decomposition temperature and speed to have flame retardancy. The design of the concentrations of flame retardants, crosslinkers and additives is important.
상기 수용성 사이클로포스파젠 유도체는 수불용성 헥사클로로포스파젠 1몰 대비 3 내지 10몰의 디메틸아미노프로필메타크릴아미드(Dimthylaminopropylmethacrylamide, DMAPMA)를 반응시켜 수용성이 부여된 것이다. The water-soluble cyclophosphazene derivative is water-soluble by reacting 3 to 10 moles of dimethylaminopropylmethacrylamide (DMAPMA) with respect to 1 mole of water-insoluble hexachlorophosphazene.
보다 상세하게는, 상기 수용성 사이클로포스파젠 유도체는 디클로로 테트라키스 N-[3(디메틸아미노)프로필]-N-메타크릴로일 사이클로포스파젠 (Dichloro tetrakis N-[3-(Dimethylamino)propyl]-N-methacryloyl cylcophosphazene, DCTDCP)이며, 상기 DCTDCP는 HCCP를 용매인 Tetrahydrofuran(THF)에 용해 후More specifically, the water-soluble cyclophosphazene derivative is dichloro tetrakis N-[3(dimethylamino)propyl]-N-methacryloyl cyclophosphazene (Dichloro tetrakis N-[3-(Dimethylamino)propyl]-N -methacryloyl cylcophosphazene, DCTDCP), and the DCTDCP is after dissolving HCCP in Tetrahydrofuran (THF) as a solvent
디메틸아미노프로필메타크릴아미드(DimthylaminopropylmDimethylaminopropylmethacrylamide (Dimthylaminopropylm)
ethacrylamide, DMAPMA)과 트리에탄놀아민(TEA)을 용해시킨 용액A solution of ethacrylamide, DMAPMA) and triethanolamine (TEA)
에 dropping funnel을 통해 한 방울씩 첨가하고, 이 때 온도는 25℃로 고Add dropwise through the dropping funnel to the
정하여 반응속도가 조절되며, 이 후 실온에서 10시간 동안 반응을 진행하여 합성된다. The reaction rate is controlled by setting it, and then the reaction is carried out at room temperature for 10 hours to synthesize it.
이후, 생성 및 침전된 염을 필터링 및 진공건조를 통해 THF를 제거한 후, H2O 로 정제하여 미반응한 HCCP를 제거된다. 정제된 합성액은 진공건조기로 H2O를 제거하여 최종적으로 DCTDCP가 수득된다.Thereafter, the generated and precipitated salts are filtered to remove THF through vacuum drying, and then purified with H 2 O to remove unreacted HCCP. The purified synthetic solution is finally obtained by removing H 2 O with a vacuum dryer to obtain DCTDCP.
상기 수용성 사이클로포스파젠 유도체는 복합경화형 방염가공조성물 전체 중량 대비 20 내지 50% 포함되며, 상기 수용성 사이클로포스파젠 유도체가 복합경화형 방염가공조성물 전체 중량 대비 20% 미만으로 첨가되면 방염효과 및 한계산소지수가 낮고, 50%를 초과할 경우 첨가량 대비 방염 및 난연 효과 증가가 미미하기 때문에 상기 첨가량 범위를 벗어나지 않는 것이 바람직하다.The water-soluble cyclophosphazene derivative is contained in an amount of 20 to 50% based on the total weight of the complex-curable flame-retardant composition, and when the water-soluble cyclophosphazene derivative is added in an amount of less than 20% based on the total weight of the complex-curable flame-retardant composition, the flame retardant effect and the limiting oxygen index are reduced. Low, if it exceeds 50%, it is preferable not to deviate from the range of the addition amount because the increase in the flame retardant and flame retardant effect is insignificant compared to the amount added.
상기 가교제는 수용성 사이클로포스파젠 유도체를 경화시키고, 고착율 및 방염성을 높이기 위한 것이라면 한정하지 않으나, 바람직하게는, 1,3,5-트리아크릴로헥사하이드로-1,3,5-트리아진(1,3,5-Triacryloylhexahydro-1,3,5-triazine)를 사용할 수 있다. The crosslinking agent is not limited as long as it is for curing the water-soluble cyclophosphazene derivative and improving the fixing rate and flame retardancy, but preferably, 1,3,5-triacrylohexahydro-1,3,5-triazine (1 ,3,5-Triacryloylhexahydro-1,3,5-triazine) can be used.
이때, 상기 가교제는 수용성 사이클로포스파젠 유도체 중량 대비 5 내지 15% 포함되며, 상기 첨가량 범위에서 수용성 사이클로포스파젠 유도체와 가교가 원활하고, 높은 한계산소지수를 가질 수 있다. 바람직하게는, 상기 가교제는 수용성 사이클로포스파젠 유도체 중량 대비 10 내지 12% 포함될 수 있으며, 더욱 바람직하게는, 상기 가교제는 수용성 사이클로포스파젠 유도체 중량 대비 11.4% 포함될 수 있다.In this case, the crosslinking agent is contained in an amount of 5 to 15% based on the weight of the water-soluble cyclophosphazene derivative, and can be easily crosslinked with the water-soluble cyclophosphazene derivative in the added amount range and have a high limiting oxygen index. Preferably, the crosslinking agent may be included in an amount of 10 to 12% based on the weight of the water-soluble cyclophosphazene derivative, and more preferably, the crosslinking agent may be included in an amount of 11.4% based on the weight of the water-soluble cyclophosphazene derivative.
상기 첨가제는 수용성 사이클로포스파젠 유도체와 공중합을 촉진하고, 고착율 및 방염성을 높이기 위한 것이라면 한정하지 않으나, 바람직하게는, 아크릴아미드(Acrylaminde)계를 사용할 수 있다.The additive is not limited as long as it promotes copolymerization with the water-soluble cyclophosphazene derivative and improves the fixing rate and flame retardancy, but preferably, an acrylamide (Acrylaminde) type may be used.
상기 첨가제는 수용성 사이클로포스파젠 유도체 중량 대비 15 내지 25% 포함되며, 바람직하게는, 상기 첨가제는 수용성 사이클로포스파젠 유도체 중량 대비 15 내지 20% 포함될 수 있으며, 더욱 바람직하게는, 상기 가교제는 수용성 사이클로포스파젠 유도체 중량 대비 18.4% 포함될 수 있다.The additive may be included in an amount of 15 to 25% based on the weight of the water-soluble cyclophosphazene derivative, preferably, the additive may be included in an amount of 15 to 20% based on the weight of the water-soluble cyclophosphazene derivative, and more preferably, the crosslinking agent is a water-soluble cyclophosphazene derivative. It may be included in an amount of 18.4% based on the weight of the phazene derivative.
본 발명의 제 2실시예에 따른 복합경화형 방염가공조성물은 제 1실시예에 따른 복합경화형 방염가공조성물에 광개시제를 더 포함하는 것으로, 상기 광개시제는 수소치환형 광개시제, 광붕괴형 광개시제 또는 이들의 조합 중 어느 하나를 사용할 수 있다. The composite curing type flame-retardant processing composition according to the second embodiment of the present invention further comprises a photoinitiator in the composite curing type flame-retardant processing composition according to the first embodiment, wherein the photoinitiator is a hydrogen-substituted type photoinitiator, a photodisintegration type photoinitiator, or a combination thereof. Either one can be used.
바람직하게는, 상기 광개시제는 2-하이드록시-4'-(2-하이드록시에톡시)-2-메틸프로피오페논(2-Hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone)를 사용할 수 있다.Preferably, the photoinitiator uses 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone (2-Hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone). can
상기 광개시제는 수용성 사이클로포스파젠 유도체, 가교제 및 첨가제를 혼합한 전체 중량대비 5 내지 10% 첨가될 수 있으며, 바람직하게는, 6 내지 8% 첨가되며, 더욱 바람직하게는 7% 첨가될 수 있다. The photoinitiator may be added in an amount of 5 to 10% based on the total weight of the water-soluble cyclophosphazene derivative, the crosslinking agent and the additive, preferably, 6 to 8%, and more preferably 7%.
이하, 본 발명에 따른 복합경화형 방염가공조성물을 이용한 직물의 방염가공방법을 설명하도록 한다. Hereinafter, a flame-retardant processing method of a fabric using the composite curing type flame-retardant processing composition according to the present invention will be described.
본 발명의 제 1실시예에 따른 복합경화형 방염가공조성물을 이용한 직물의 방염가공방법은 상술된 제 1실시예에 따른 복합경화형 방염가공조성물을 이용한 직물의 방염가공방법으로 정련된 직물을 수용성 사이클로포스파젠 유도체로 처리하는 1차 패딩단계와 1차 패딩처리된 직물을 열스팀처리하는 열스팀경화단계와 열스팀처리된 직물을 가교제, 첨가제로 처리하는 2차 패딩단계와 2차 패딩처리된 직물을 자외선처리하는 자외선경화단계를 포함한다. The flame-retardant processing method of a fabric using the composite curing type flame-retardant processing composition according to the first embodiment of the present invention is a water-soluble cycloforce The first padding step of treating the Pazen derivative, the heat steam curing step of heat-steaming the first padded fabric, the second padding step of treating the heat-steamed fabric with a crosslinking agent and an additive, and the second padded fabric It includes a UV curing step of UV treatment.
상기 직물은 천연섬유, 합성섬유 또는 이들의 혼방재질을 포함할 수 있으며, 방염처리가 필요한 섬유라면 이에 한정하지 않는다. 구체적인 예로는, 상기 직물은 면, 모, 견, 마, 레이온, 나일론, 폴리에스터 등을 포함할 수 있으며, 바람직하게는, 면직물 및 면혼방직물을 사용할 수 있다.The fabric may include a natural fiber, a synthetic fiber, or a blend material thereof, and is not limited thereto, as long as it requires a flame retardant treatment. Specific examples, the fabric may include cotton, wool, silk, hemp, rayon, nylon, polyester, and the like, and preferably, a cotton fabric and a cotton blend fabric may be used.
1차 패딩단계를 수행하기에 앞서 직물은 정련처리하여 불순물을 제거하게 되며, 정련처리는 탄산소다 수용액을 이용하여 수행될 수 있다. 보다 상세하게는, 상기 정련처리는 3 내지 10 ℃ 의 10 내지 30 (w/v)% 탄산소다 수용액에 직물을 15 내지 60분간 침지처리 후 롤러로 압착처리하여 수행된다.Prior to performing the first padding step, the fabric is scoured to remove impurities, and the scouring treatment may be performed using an aqueous sodium carbonate solution. More specifically, the scouring treatment is performed by immersing the fabric in 10 to 30 (w/v)% sodium carbonate aqueous solution at 3 to 10° C. for 15 to 60 minutes, followed by compression treatment with a roller.
1차 패딩단계에서는 정련된 직물을 수용성 사이클로포스파젠 유도체에 침지 및 압착처리하며, 상기 수용성 사이클로포스파젠 유도체는 복합경화형 방염가공조성물 전체 중량 대비 20 내지 50% 가 되도록 첨가된다.In the first padding step, the refined fabric is immersed and pressed in a water-soluble cyclophosphazene derivative, and the water-soluble cyclophosphazene derivative is added in an amount of 20 to 50% based on the total weight of the composite curing type flame retardant composition.
열스팀경화단계에서는 1차 패딩처리된 직물에 100 내지 140 ℃ 의 열스팀을 5 내지 15분간 가하게 된다.In the heat steam curing step, heat steam at 100 to 140 ° C. is applied to the first padded fabric for 5 to 15 minutes.
2차 패딩단계에서는 열스팀처리된 직물을 가교제, 첨가제에 침지 및 압착처리하는 단계로, 이때, 상기 가교제는 수용성 사이클로포스파젠 유도체 중량 대비 5 내지 15% 첨가되며, 상기 첨가제는 수용성 사이클로포스파젠 유도체 중량 대비 15 내지 25%로 첨가된다.In the second padding step, the heat-steamed fabric is immersed in a crosslinking agent and an additive and pressed. In this case, the crosslinking agent is added in an amount of 5 to 15% based on the weight of the water-soluble cyclophosphazene derivative, and the additive is a water-soluble cyclophosphazene derivative. 15 to 25% by weight.
자외선경화단계에서는 2차 패딩처리된 직물에 자외선을 조사하여 경화시키는 단계로, 자외선 조사에너지는 15 내지 30 J/㎠ 로 제어되며, 바람직하게는, 25 J/㎠로 제어된다. 이때, 자외선 경화는 80W/cm의 출력을 갖는 연속식 자외선조사기(Continuous UV-curing machine)를 사용하여 수행될 수 있다. In the UV curing step, the secondary padded fabric is cured by irradiating UV rays, and the UV irradiation energy is controlled to 15 to 30 J/cm 2 , preferably, to 25 J/cm 2 . In this case, UV curing may be performed using a continuous UV-curing machine having an output of 80 W/cm.
본 발명의 제 2실시예에 따른 복합경화형 방염가공조성물을 이용한 직물의 방염가공방법은 상술된 제 2실시예에 따른 복합경화형 방염가공조성물을 이용한 직물의 방염가공방법으로 정련된 직물을 수용성 사이클로포스파젠 유도체로 처리하는 1차 패딩단계와 1차 패딩처리된 직물을 열스팀처리하는 열스팀경화단계와 열스팀처리된 직물을 가교제, 첨가제 및 광개시제로 처리하는 2차 패딩단계와 2차 패딩처리된 직물을 자외선처리하는 자외선경화단계를 포함한다. The flame-retardant processing method of the fabric using the composite curing type flame-retardant composition according to the second embodiment of the present invention is a fabric scoured by the flame-retardant processing method of the fabric using the composite curing type flame-retardant processing composition according to the second embodiment described above with a water-soluble cycloforce. The first padding step of treating the Pazen derivative, the heat steam curing step of heat-steaming the first padded fabric, the second padding step of treating the heat-steamed fabric with a crosslinking agent, additive and photoinitiator, and the second padding step It includes a UV curing step of UV treatment of the fabric.
본 발명의 제 2실시예에 따른 복합경화형 방염가공조성물을 이용한 직물의 방염가공방법은 상술된 본 발명의 제 1실시예에 따른 복합경화형 방염가공조성물을 이용한 직물의 방염가공방법 중 2차 패딩단계에서 광개시제를 추가로 첨가하는 것으로, 상기 광개시제는 수용성 사이클로포스파젠 유도체, 가교제 및 첨가제를 혼합한 전체 중량대비 5 내지 10% 로 첨가된다.The flame-retardant processing method of the fabric using the composite curing type flame-retardant composition according to the second embodiment of the present invention is a secondary padding step of the flame-retardant processing method of the fabric using the composite curing type flame-retardant processing composition according to the first embodiment of the present invention. In addition, the photoinitiator is added in an amount of 5 to 10% based on the total weight of the water-soluble cyclophosphazene derivative, the crosslinking agent and the additive.
이하, 본 발명의 다른 양태로서, 본 발명의 방염가공직물을 설명하도록 한다.Hereinafter, as another aspect of the present invention, the flame retardant fabric of the present invention will be described.
본 발명의 방염가공직물은 상술된 방염가공조성물 및 직물방염가공방법에 의해 가공처리된 것으로, 상기 직물은 천연섬유, 합성섬유 또는 이들의 혼방재질을 포함할 수 있으며, 방염처리가 필요한 섬유라면 이에 한정하지 않는다. 구체적인 예로는, 상기 직물은 면, 모, 견, 마, 레이온, 나일론, 폴리에스터 등을 포함할 수 있으며, 바람직하게는, 면직물 및 면혼방직물을 사용할 수 있다.The flame-retardant fabric of the present invention is processed by the aforementioned flame-retardant composition and fabric flame-retardant processing method, and the fabric may include a natural fiber, a synthetic fiber, or a mixture thereof, and if a fiber requiring a flame-retardant treatment, this do not limit Specific examples, the fabric may include cotton, wool, silk, hemp, rayon, nylon, polyester, and the like, and preferably, a cotton fabric and a cotton blend fabric may be used.
본 발명의 방염가공직물은 방염가공조성물로 가공처리되어 미처리 직물 대비 한계산소지수를 25 내지 35로 증가시킬 수 있으며, 우수한 세탁 내구성을 갖는다.The flame-retardant fabric of the present invention can be processed with a flame-retardant composition to increase the limiting oxygen index to 25 to 35 compared to the untreated fabric, and has excellent washing durability.
이하, 본 발명을 바람직한 일 실시예를 참조하여 다음에서 구체적으로 상세하게 설명한다. 단, 다음의 실시예는 본 발명을 구체적으로 예시하기 위한 것이며, 이것만으로 한정하는 것은 아니다.Hereinafter, the present invention will be described in detail below with reference to a preferred embodiment. However, the following examples are intended to specifically illustrate the present invention, and are not limited thereto.
1. 복합경화형 방염가공조성물의 제조1. Preparation of composite curing type flame-retardant processing composition
(1) 사용된 직물은 평직의 정련, 표백된 면직물(120g/m2)로 사용하였다.(1) The fabric used was a plain weave scoured, bleached cotton fabric (120 g/m 2 ).
(2) 복합경화형 방염가공조성물은 다음과 같이 구성하였다.(2) Composite curing type flame retardant composition is as follows composed.
-인계단량체:Dichloro tetrakisN-[3-(Dimethylamino)propyl]-N-methacryloyl cylcophosphazene(DCTDCP)-Phosphorus monomer: Dichloro tetrakisN-[3-(Dimethylamino)propyl]-N-methacryloyl cylcophosphazene (DCTDCP)
- 광개시제 : 2-Hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone(PI)- Photoinitiator: 2-Hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone (PI)
- 가교제 : 1,3,5-Triacryloylhexahydro-1,3,5-triazine(TAHT) - Crosslinking agent: 1,3,5-Triacryloylhexahydro-1,3,5-triazine (TAHT)
- 첨가제 : Acrylamide(AAm)- Additive: Acrylamide (AAm)
2. 방염 부여 공정2. Flame-retardant imparting process
면직물을 Na2CO3 20% 수용액에 6℃, 30분 침지 후 롤러를 이용하여 1차 패딩 후 스팀 및 자외선 경화형 인계 단량체(30wt%)에 침지 후 롤러를 이용하여 2차 패딩 후 120℃에서 10분간 처리 하였다. 가교제와 첨가제의 농도는 인계 방염제 대비 몰비를 고려하여 가교제는 11.4%, 첨가제는 18.4%를 첨가하여 롤러를 이용하여 3차 패딩 후 자외선 조사를 D-bulb 80W/cm의 출력을 가지는 연속식 자외선 조사기(Continuous UV-curing machine, Lichtzen)를 사용하였으며 각 직물 면에 25J/cm2씩 조사하여 면직물을 가공하였다. 광개시제는 인계 단량체, 가교제, 첨가제 전체 무게 대비 7%로 고정하여 가공제액을 제조하였고, 직물을 침지하고 실험실용 롤러를 사용하여 패딩비(WPU) 95%로 고정하였다.After immersing the cotton fabric in Na 2 CO 3 20% aqueous solution at 6℃ for 30 minutes, first padding using a roller, immersion in steam and UV-curable phosphorus monomer (30wt%), and second padding using a roller, then at 120℃ 10 minutes were processed. In consideration of the molar ratio of the crosslinking agent and the additive, 11.4% of the crosslinking agent and 18.4% of the additive were added in consideration of the molar ratio of the phosphorus-based flame retardant. (Continuous UV-curing machine, Lichtzen) was used and the cotton fabric was processed by irradiating 25J/cm 2 to each fabric side. The photoinitiator was fixed at 7% of the total weight of the phosphorus-based monomer, crosslinking agent, and additive to prepare a processing solution, and the fabric was immersed and fixed at a padding ratio (WPU) of 95% using a laboratory roller.
3. 고착율 및 한계산소지수의 측정3. Measurement of fixation rate and limiting oxygen index
(1) 평가인자(1) Evaluation factor
고착율(Add-on, A%)은 고착된 가공제의 비율과 부여량에 대한 수세 후 잔류가공제의 비율을 나타낸 것으로, 다음과 같이 계산한다. The fixation rate (Add-on, A%) indicates the ratio of the fixed processing agent and the ratio of the remaining processing agent after washing to the applied amount, and is calculated as follows.
A(%) = {(W3-W1) / W1}×100A(%) = {(W 3 -W 1 ) / W 1 }×100
(W1:광경화 전의 시료무게, W3:광경화된 시료의 수세 후 무게)(W 1 : sample weight before photo-curing, W 3 : weight of photo-cured sample after washing)
한계산소지수(Limiting oxygen index)는 직물이 연소를 지속시키기 위해 필요한 최소 산수부피 함량비를 의미한다. 한계산소지수 측정기(Yasuda Seiki Seisakusho, Japan)를 이용하여 ISO 4589:2000법으로 섬유 시료가 연소를 지속시키기 위해 필요한 최소 산소부피 함량비인 LOI (limiting oxygen index)를 측정하였다.The limiting oxygen index means the minimum acid water volume content ratio required for a fabric to sustain combustion. The limiting oxygen index (LOI), which is the minimum oxygen volume content ratio required for the fiber sample to sustain combustion, was measured by the ISO 4589:2000 method using a limiting oxygen index measuring instrument (Yasuda Seiki Seisakusho, Japan).
(2) 상기 합성 단량체 종류 간 당량비에 따른 합성 물성변화를 표 1에 나타내었다. 하기의 표 1은 HCCP와 DMAPMA의 당량비에 따른 사이클로포스파젠 유도체의 물성 변화이다. 도 1은 본 발명에 따른 복합경화형 방염가공조성물의 실시예 및 비교예로 사용된 화합물의 구조를 보여준다.(2) Table 1 shows the changes in synthetic properties according to the equivalence ratio between the types of the synthetic monomers. Table 1 below shows changes in physical properties of cyclophosphazene derivatives according to the equivalent ratio of HCCP and DMAPMA. 1 shows the structure of the compound used in Examples and Comparative Examples of the composite curing type flame-retardant processing composition according to the present invention.
표 1에서 나타낸 바와 같이, 실시예 1, 2, 3은 HCCP에 합성단량체 DMAPMA를 당량비에 따라 합성을 진행하였다. 수율은 약 85% 이었으며, UV경화성을 가지게 되었다. 실시예 1, 2는 60%까지의 수용성 특성이 부여되었으나, 실시예 3은 수용성 특성이 13%까지 발현되었다. 비교예 1은 합성 단량체를 첨가하지 않은 순수 HCCP의 수불용성의 특성을 나타낸다. 비교예 2는 HCCP반응에 단량체로 AAm를 이용한 것으로 합성반응이 원활히 이루어지지 않으므로 수용성 인계 방염제 합성용 단량체로 DMAPMA를 이용하였다.As shown in Table 1, Examples 1, 2, and 3 were synthesized according to the equivalence ratio of the synthetic monomer DMAPMA to HCCP. The yield was about 85%, and it became UV curable. Examples 1 and 2 were given water-soluble properties of up to 60%, but in Example 3, water-soluble properties were expressed up to 13%. Comparative Example 1 shows the water insolubility of pure HCCP to which no synthetic monomer was added. In Comparative Example 2, AAm was used as a monomer for the HCCP reaction, and since the synthesis reaction was not performed smoothly, DMAPMA was used as a monomer for synthesizing a water-soluble phosphorus flame retardant.
(3) 상기 수용성 인계 단량체의 종류 및 농도에 따른 방염가공 결과를 고착율 및 한계산소지수를 측정하여 하기 표 2에 나타내었다.(3) The results of the flame-retardant processing according to the type and concentration of the water-soluble phosphorus-based monomer are shown in Table 2 below by measuring the fixing rate and the limiting oxygen index.
표 2에서 나타낸 바와 같이, 인계 단량체로서 비교예 1과 2의 HCCP와 TCTDCP(10% 농도 제외)를 사용하는 경우 수불용성의 특성을 지니고 있기에 유기용매를 사용하여야 한다. 한편 실시예 1과 2의 DCTDCP와 HDCP의 경우 수용성을 지니기에 증류수에 쉽게 고농도로 용해된다. DCTDCP와 HDCP를 동일한 무게 조건으로 사용하였을 때 고착율은 HDCP가 높은 것을 확인할 수 있었으나 한계산소지수는 DCTDCP가 더 나은 효과를 보였다. 이는 분자구조상 HDCP가 DCTDCP 보다 인 함량이 낮아 방염성 부여 효과가 낮기 때문이다. As shown in Table 2, when HCCP and TCTDCP (excluding 10% concentration) of Comparative Examples 1 and 2 are used as phosphorus-based monomers, an organic solvent must be used because they have water-insoluble characteristics. On the other hand, DCTDCP and HDCP of Examples 1 and 2 are easily dissolved in distilled water at a high concentration because they have water solubility. When DCTDCP and HDCP were used under the same weight conditions, it was confirmed that HDCP had a high fixation rate, but DCTDCP showed better effect on the limiting oxygen index. This is because HDCP has a lower phosphorus content than DCTDCP in terms of molecular structure, and thus has a low flame retardancy effect.
(4) 상기 가교제의 종류 및 농도에 따른 방염가공 결과를 고착율 및 한계산소지수를 측정하여 하기 표 3에 나타내었다.(4) The results of the flame-retardant processing according to the type and concentration of the cross-linking agent were measured by the fixing rate and the limiting oxygen index, and are shown in Table 3 below.
표 3에서 나타낸 바와 같이, 실시예 1과 2, 비교예 2, 3은 DCTDCP 30%에 대하여 가교제를 당량비로 고려하였을 때의 무게%를 사용하였다. 유사한 농도에서 TAHT는 Methylenebisacrylamide(MBA)보다 높은 한계산소지수(LOI)를 나타내고 특히 TAHT 11.4% 농도에서 인계방염제의 가교가 가장 효율적이기 때문으로 그 이상 농도에서는 고착율이 증가함에도 불구하고 LOI가 오히려 감소하였기 때문이다. 그러나 AAm를 사용하면 고착율과 한계산소지수가 가장 높으나 세탁내구성이 없었으며, DMAPMA를 사용하면 한계산소지수가 감소하게 되어 적절한 가교제로서 TAHT를 사용하였다.As shown in Table 3, Examples 1 and 2 and Comparative Examples 2 and 3 used weight % when considering the crosslinking agent as an equivalent ratio with respect to DCTDCP 30%. At a similar concentration, TAHT shows a higher limiting oxygen index (LOI) than methylenebisacrylamide (MBA), and in particular, the phosphorus-based flame retardant cross-linking is most efficient at a concentration of 11.4% of TAHT. because it did However, when AAm was used, the fixation rate and the threshold oxygen index were the highest, but there was no washing durability. When DMAPMA was used, the threshold oxygen index decreased. appropriate TAHT was used as a crosslinking agent.
(5) 상기 첨가제 농도에 따른 방염가공 직물의 특성을 고착율 및 한계산소지수를 측정하여 하기 표 4에 나타내었다.(5) The properties of the flame-retardant fabric according to the concentration of the additive are shown in Table 4 below by measuring the fixing rate and the limiting oxygen index.
(메타)아크릴아마이드류의 첨가제가 혼합될 경우 인계단량체와의 공중합을 촉진하므로 고착율과 방염성이 증가한다. 표 4에서 비교예 1은 DCTDCP 30%와 TAHT 11.4%만 처리한 경우이고, 실시예 1과 비교예 2는 DCTDCP 30%와 TAHT 11.4%에 중량 대비 AAm이나 DMAPMA를 추가한 것이다. AAm의 경우 중량분율 18.4%에서 가장 한계산소지수가 우수함을 확인할 수 있었다. 첨가제 농도가 증가함에 따라 고착율은 계속 증가하지만 LOI 증가가 미미하여AAm 18.4% 농도에서 가장 우수하였다. 비교예 2의 DMAPMA를 공단량체로 사용한 경우 오히려 한계산소지수가 감소하였다. When an additive of (meth)acrylamide is mixed, it promotes copolymerization with the phosphorus-based monomer, thereby increasing the fixing rate and flame retardancy. In Table 4, Comparative Example 1 is a case in which only DCTDCP 30% and TAHT 11.4% are treated, and in Example 1 and Comparative Example 2, AAm or DMAPMA is added to DCTDCP 30% and TAHT 11.4% by weight. In the case of AAm, it was confirmed that the limiting oxygen index was the best at 18.4% of the weight fraction. As the additive concentration increased, the fixation rate continued to increase, but the increase in LOI was insignificant. When DMAPMA of Comparative Example 2 was used as a comonomer, the limiting oxygen index was rather decreased.
4. FE-SEM4. FE-SEM
FE-SEM (JSM 6500F, JOEL)을 사용하여 방염가공된 면직물의 표면 미세 구조를 관찰하였다. Using FE-SEM (JSM 6500F, JOEL), the surface microstructure of the flame-retardant cotton fabric was observed.
도 2는 본 발명에 따른 방염가공직물의 표면구조를 보여주는 SEM사진으로, (a) 미처리 면직물이고, (b) 30% DCTDCP와 11.4% TAHT 및 18.4% AAm로 처리된 방염가공 면직물이다.2 is a SEM photograph showing the surface structure of the flame-retardant fabric according to the present invention, (a) an untreated cotton fabric, and (b) a flame-retardant cotton fabric treated with 30% DCTDCP, 11.4% TAHT and 18.4% AAm.
그 결과, 30% DCTDCP에 11.4% TAHT와 함께 18.4% AAm를 혼합하여 방염가공된 면직물은 경화된 방염제가 표면과 내부에 고착되어 있는 것을 확인할 수 있었다. 이는 DCTDCP가 셀룰로스와 반응하여 방염제가 공유결합 또는 가교를 형성하며 TAHT와 AAm의 양이 증가함에 따라 방염제의 가교 네트워크가 강화되기 때문이다. As a result, it was confirmed that the cured flame retardant was adhered to the surface and the inside of the cotton fabric which was flame-processed by mixing 18.4% AAm with 11.4% TAHT in 30% DCTDCP. This is because DCTDCP reacts with cellulose to form a covalent bond or cross-linkage of the flame retardant, and the cross-linking network of the flame retardant is strengthened as the amounts of TAHT and AAm increase.
5. 방염가공된 면직물의 열적 거동의 변화5. Changes in Thermal Behavior of Flame Retardant Cotton Fabrics
방염가공된 직물의 열적 거동을 확인하기 위해 열중량분석기(TGA Q500, TA Instruments)를 사용하여 20℃/min의 승온속도로 실온에서 600℃까지의 중량 변화를 측정하여 표 5에 나타내었다. 도 3은 본 발명에 따른 방염가공직물과 미처리 면직물의 열적 거동을 비교한 것이다.In order to confirm the thermal behavior of the flame-retardant fabric, the weight change from room temperature to 600° C. was measured using a thermogravimetric analyzer (TGA Q500, TA Instruments) at a temperature increase rate of 20° C./min, and is shown in Table 5. 3 is a comparison of the thermal behavior of the flame-retardant fabric and the untreated cotton fabric according to the present invention.
상기 표 5를 참고하면, TAHT와 AAm를 혼합하여 처리한 면직물에서는 미처리 면직물과 비교하여 열분해 경로가 변경되고 최대 열분해 온도 및 속도가 함께 감소한 것을 확인할 수 있다.Referring to Table 5, it can be seen that in the cotton fabric treated by mixing TAHT and AAm, the thermal decomposition path is changed and the maximum thermal decomposition temperature and rate are reduced as compared to the untreated cotton fabric.
미처리 직물의 최대 열분해 온도는 389℃이었으나, 30% DCTDCP와 11.4% TAHT, 18.4% AAm로 처리한 후 300℃로 크게 감소하였다. 또한 최대 열분해속도도 크게 감소하였고 잔류탄화물은 미처리 면의 6%에서 44%로 크게 증가하였다. The maximum thermal decomposition temperature of the untreated fabric was 389 °C, but was significantly reduced to 300 °C after treatment with 30% DCTDCP, 11.4% TAHT, and 18.4% AAm. In addition, the maximum thermal decomposition rate was also greatly reduced, and the residual carbide significantly increased from 6% to 44% of the untreated cotton.
또한 DCTDCP와 TAHT 및 AAm를 혼합 가공된 면직물의 경우 방염제가 면직물의 잔류탄화물 증가에 기여한 정도를 평가하기 위해 Residue number(Nr)를 계산하여 인계 방염제의 방염기구를 확인하였다.In addition, in the case of cotton fabrics mixed with DCTDCP, TAHT and AAm, the flame retardant mechanism of phosphorus-based flame retardants was confirmed by calculating the Residue number (N r ) to evaluate the extent to which the flame retardant contributed to the increase of residual carbide in the cotton fabric.
Residue number (Nr) = (Rf/F) / (Ru)Residue number (N r ) = (R f /F) / (R u )
위의 식에서 Rf는 처리된 직물의 잔류탄화물의 양(%)이고 Ru와 F는 각각 미처리 직물의 잔류탄화물의 양(%)과 처리된 직물에서의 섬유만의 무게비이다. In the above formula, Rf is the amount of residual carbide in the treated fabric (%), and Ru and F are the weight ratio of the residual carbide in the untreated fabric (%) to the weight of fibers alone in the treated fabric, respectively.
방염가공된 면 섬유의 잔류 탄화물 수(Nr)도 1.0에서 18.6으로 증가하였다. 따라서 셀룰로스 및 TAHT와 AAm의 반응을 통해 가교된 DCTDCP가 고온에서 열분해되어 인산을 생성한 후 셀룰로스의 탈수 및 가교 반응을 촉진함으로써 가연성 물질의 양을 줄이고 전체 발열량 감소에 기여한다고 볼 수 있다. 또한 방염제의 가교네트워크의 열분해에 의해 발생한 질소화합물은 셀룰로스의 탈수 및 가교에 상승적으로 작용하여 셀룰로스 자체의 열분해 경로를 변화시킴으로써 잔류 탄화물 양을 증가시켰다. 따라서 방염가공 직물은 인과 질소의 작용을 통한 응축상 방염기구를 따른다고 볼 수 있다.The residual carbide number (Nr) of the flame-retardant cotton fiber also increased from 1.0 to 18.6. Therefore, DCTDCP crosslinked through the reaction of cellulose and TAHT with AAm is thermally decomposed at high temperature to generate phosphoric acid, and then promotes the dehydration and crosslinking reaction of cellulose, thereby reducing the amount of combustible materials and contributing to the reduction of total calorific value. In addition, the nitrogen compound generated by thermal decomposition of the crosslinking network of the flame retardant increased the amount of residual carbide by changing the thermal decomposition path of the cellulose itself by acting synergistically on the dehydration and crosslinking of cellulose. Therefore, it can be seen that the flame-retardant fabric follows the condensed phase flame-retardant mechanism through the action of phosphorus and nitrogen.
6. 세탁내구성 (AATCC TM 61-2006 2A)의 평가6. Evaluation of washing durability (AATCC TM 61-2006 2A)
세탁횟수를 달리하여 한계산소지수 및 세탁내구성을 평가하였다.The marginal oxygen index and washing durability were evaluated by varying the number of washings.
하기의 표 6은 세탁횟수에 따른 방염가공 면직물의 한계산소지수를 보여준다. Table 6 below shows the limiting oxygen index of the flame-retardant cotton fabric according to the number of washing.
상기 표 6을 참고하면, 인계 방염제를 첨가한 경우 10회 세탁에 대해 내구성을 가지고, TAHT와 AAm을 첨가하면 경화성능이 증가하여 우수한 내구성을 가짐을 확인할 수 있었다. 이는 인의 함량이 증가하고 경화성능이 증가하여 가교도가 높아지기 때문인 것으로 판단된다.Referring to Table 6, it was confirmed that when phosphorus-based flame retardant was added, it had durability for 10 washes, and when TAHT and AAm were added, curing performance was increased and thus excellent durability was confirmed. This is considered to be because the phosphorus content increases and the curing performance increases, thereby increasing the degree of crosslinking.
7. 방염 가공된 면직물의 표면분석7. Surface analysis of flame-retardant cotton fabric
FT-IR(FT-IR 300E, JASCO)분석은 미처리 직물의 스펙트럼과 방염처리후 수세한 면직물의 스펙트럼을 측정하였고 기준 스펙트럼인 미처리 직물의 스펙트럼을 처리 시료의 흡광도에서 소거하여 관능기 변화를 통한 광경화성을 평가하였고, 자외선 경화형 인계 방염제에 첨가제로 TAHT와 AAm를 혼합 처리하였을 때의 특성을 확인하였다.FT-IR (FT-IR 300E, JASCO) analysis measured the spectrum of untreated fabric and the spectrum of cotton fabric washed after flame-retardant treatment. was evaluated, and the characteristics when TAHT and AAm were mixed as additives to the UV-curable phosphorus-based flame retardant were confirmed.
도 4는 본 발명에 따른 복합경화형 방염가공조성물 중 인계 단량체, 가교제, 첨가제, 미가공 면직물 및 방염가공 직물의 FT-IR 스펙트럼을 나타낸 것이다. 4 shows FT-IR spectra of phosphorus-based monomers, cross-linking agents, additives, unprocessed cotton fabrics and flame-retardant fabrics in the composite curing type flame-retardant composition according to the present invention.
TAHT의 C=O와 C=C는 1655cm-1와 1610cm-1에서 나타났으며, AAm의 N-H, C=O와 C=C는 각각 3334cm-1, 1667cm-1와 1610cm-1에서 나타났다. DCTDCP의 P=N과 P-Cl 결합이 각각 1184cm-1와 598cm-1에서 보였다. 방염가공된 면직물은 DCTDCP, TAHT와 AAm피크가 모두 나타났고, 가공 직물의 흡광도에서 미처리의 피크를 차감한 그래프에서 C=O 대비 C=C가 감소하고 N-H는 증가하여 방염가공된 면직물은 DCTDCP, TAHT 및 AAm와 반응하여 가교된 방염제 네트워크가 도입됨을 알 수 있다.C=O and C=C of TAHT were shown at 1655 cm -1 and 1610 cm -1 , and NH, C=O and C=C of AAm were shown at 3334 cm -1 , 1667 cm -1 and 1610 cm -1 , respectively. DCTDCP showed P=N and P-Cl bonds at 1184 cm -1 and 598 cm -1 , respectively. DCTDCP, TAHT, and AAm peaks were all shown in the flame-retardant cotton fabric, and in the graph that subtracted the untreated peak from the absorbance of the processed fabric, C=C decreased compared to C=O and NH increased. It can be seen that a crosslinked flame retardant network is introduced by reaction with TAHT and AAm.
이상과 같이 본 발명은 첨부된 도면을 참조하여 바람직한 실시예를 중심으로 설명하였지만 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명의 특허청구범위에 기재된 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변형하여 실시할 수 있다. 따라서 본 발명의 범주는 이러한 많은 변형의 예들을 포함하도록 기술된 청구범위에 의해서 해석되어야 한다.As described above, the present invention has been mainly described with reference to the accompanying drawings, but those of ordinary skill in the art to which the present invention pertains within the scope not departing from the technical spirit and scope described in the claims of the present invention Various modifications or variations of the present invention can be practiced. Accordingly, the scope of the present invention should be construed by the appended claims to include examples of many such modifications.
상기한 바와 같이, 본 발명의 복합경화형 방염가공조성물, 이를 이용한 직물방염가공방법 및 이를 이용한 방염가공직물은 기존 열경화 방식을 이용한 방염가공의 환경문제, 에너지 과소비, 과다한 이산화탄소 배출 등의 문제점을 해결할 수 있을 뿐 아니라, 방염성능이 우수하면서도 세탁내구성을 가지고, 기존 면섬유용 내구성 방염제들의 가공 후 과다한 포름알데히드 유리 문제도 해결할 수 있어 면섬유에 대한 새로운 친환경 방염제 및 가공법으로 응용가능하다.As described above, the composite curing type flame-retardant processing composition of the present invention, a textile flame-retardant processing method using the same, and a flame-resistant processing fabric using the same can solve problems such as environmental problems, energy consumption, and excessive carbon dioxide emissions of flame-retardant processing using the existing thermosetting method. In addition, it has excellent flame retardant performance and washing durability, and it can solve the problem of excessive formaldehyde glass after processing of existing durable flame retardants for cotton fibers, so it can be applied as a new eco-friendly flame retardant and processing method for cotton fibers.
Claims (11)
상기 수용성 사이클로포스파젠 유도체는
수불용성 헥사클로로포스파젠 1몰 대비 3 내지 10몰의 디메틸아미노프로필메타크릴아미드(Dimthylaminopropylmethacrylamide, DMAPMA)를 반응시켜 수용성이 부여된 것을 특징으로 하는
복합경화형 방염가공조성물.
Contains water-soluble cyclophosphazene derivatives, crosslinking agents, and additives,
The water-soluble cyclophosphazene derivative is
Characterized in that water solubility is imparted by reacting 3 to 10 moles of dimethylaminopropylmethacrylamide (DMAPMA) with respect to 1 mole of water-insoluble hexachlorophosphazene
Composite curing type flame-retardant processing composition.
상기 수용성 사이클로포스파젠 유도체는
디클로로 테트라키스 N-[3(디메틸아미노)프로필]-N-메타크릴로일 사이클로포스파젠 (Dichloro tetrakis N-[3-(Dimethylamino)propyl]-N-methacryloyl cylcophosphazene, DCTDCP)인 것을 특징으로 하는
복합경화형 방염가공조성물.
The method of claim 1,
The water-soluble cyclophosphazene derivative is
Dichloro tetrakis N- [3 (dimethylamino) propyl] -N- methacryloyl cyclophosphazene (Dichloro tetrakis N- [3- (Dimethylamino) propyl] -N-methacryloyl cylcophosphazene, DCTDCP) characterized in that
Composite curing type flame-retardant processing composition.
상기 수용성 사이클로포스파젠 유도체는
복합경화형 방염가공조성물 전체 중량 대비 20 내지 50% 포함되는 것을 특징으로 하는
복합경화형 방염가공조성물.
The method of claim 1,
The water-soluble cyclophosphazene derivative is
Composite curing type flame-retardant processing composition, characterized in that it contains 20 to 50% of the total weight
Composite curing type flame-retardant processing composition.
상기 가교제는
1,3,5-트리아크릴로헥사하이드로-1,3,5-트리아진(1,3,5-Triacryloylhexahydro-1,3,5-triazine)이며, 수용성 사이클로포스파젠 유도체 중량 대비 5 내지 15% 포함하는 것을 특징으로 하는
복합경화형 방염가공조성물.
The method of claim 1,
The crosslinking agent
1,3,5-triacrylohexahydro-1,3,5-triazine (1,3,5-Triacryloylhexahydro-1,3,5-triazine), 5 to 15% by weight of the water-soluble cyclophosphazene derivative characterized by including
Composite curing type flame-retardant processing composition.
상기 첨가제는
아크릴아미드(Acrylaminde)이며, 수용성 사이클로포스파젠 유도체 중량 대비 15 내지 25% 포함하는 것을 특징으로 하는
복합경화형 방염가공조성물.
The method of claim 1,
The additive is
Acrylamide (Acrylaminde), characterized in that it contains 15 to 25% by weight of the water-soluble cyclophosphazene derivative
Composite curing type flame-retardant processing composition.
상기 복합경화형 방염가공조성물은 광개시제를 더 포함하며,
상기 광개시제는
수소치환형 광개시제, 광붕괴형 광개시제 또는 이들의 조합 중 어느 하나를 사용하는 것을 특징으로 하는
복합경화형 방염가공조성물.
The method of claim 1,
The composite curing type flame-retardant processing composition further comprises a photoinitiator,
The photoinitiator is
Hydrogen-substituted photoinitiator, photodegradation-type photoinitiator, characterized in that any one of a combination thereof is used
Composite curing type flame-retardant processing composition.
정련된 직물을 수용성 사이클로포스파젠 유도체로 처리하는 1차 패딩단계와
1차 패딩처리된 직물을 열스팀처리하는 열스팀경화단계와
열스팀처리된 직물을 가교제, 첨가제로 처리하는 2차 패딩단계와
2차 패딩처리된 직물을 자외선처리하는 자외선경화단계를 포함하는 것을 특징으로 하는
복합경화형 방염가공조성물을 이용한 직물방염가공방법.
In the flame-retardant processing method of a fabric using the composite curing type flame-retardant processing composition of any one of claims 1, 3 to 6,
The first padding step of treating the scoured fabric with a water-soluble cyclophosphazene derivative;
A heat-steam curing step of heat-steaming the first padded fabric and
The second padding step of treating the heat-steamed fabric with a crosslinking agent and additives, and
characterized in that it comprises a UV curing step of UV treatment of the secondary padded fabric
Fabric flame-retardant processing method using a composite curing type flame-retardant processing composition.
정련된 직물을 수용성 사이클로포스파젠 유도체로 처리하는 1차 패딩단계와
1차 패딩처리된 직물을 열스팀처리하는 열스팀경화단계와
열스팀처리된 직물을 가교제, 첨가제 및 광개시제로 처리하는 2차 패딩단계와
2차 패딩처리된 직물을 자외선처리하는 자외선경화처리단계를 포함하는 것을 특징으로 하는
복합경화형 방염가공조성물을 이용한 직물방염가공방법.
In the flame-retardant processing method of a fabric using the composite curing type flame-retardant processing composition of any one of claims 1, 3 to 7,
The first padding step of treating the scoured fabric with a water-soluble cyclophosphazene derivative;
A heat-steam curing step of heat-steaming the first padded fabric and
A secondary padding step of treating the heat-steamed fabric with a crosslinking agent, additive and photoinitiator;
characterized in that it comprises a UV curing treatment step of UV treatment of the secondary padded fabric
Fabric flame-retardant processing method using a composite curing type flame-retardant processing composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210038584A KR102451262B1 (en) | 2021-03-25 | 2021-03-25 | Composition for Multicure type flame-retardant finish and Processing Method using the same and Fabric thereby |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210038584A KR102451262B1 (en) | 2021-03-25 | 2021-03-25 | Composition for Multicure type flame-retardant finish and Processing Method using the same and Fabric thereby |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102451262B1 true KR102451262B1 (en) | 2022-10-06 |
Family
ID=83597486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210038584A Active KR102451262B1 (en) | 2021-03-25 | 2021-03-25 | Composition for Multicure type flame-retardant finish and Processing Method using the same and Fabric thereby |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102451262B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116284640A (en) * | 2022-12-08 | 2023-06-23 | 浙江理工大学 | A kind of preparation method of flame-retardant water-based polyurethane finishing agent for polyester fabric |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001172863A (en) * | 1999-12-21 | 2001-06-26 | Gantsu Kasei Kk | Water-resistant, flame-retardant nonwoven fabric |
WO2004083295A1 (en) * | 2003-03-19 | 2004-09-30 | Fuji Electric Holdings Co. Ltd. | Reactive flame retardants and flame-retarded resin products made by using the same |
KR100756557B1 (en) | 2006-04-27 | 2007-09-11 | (주)리디아 | Flame retardant nonwoven fabric and fabric using flame retardant rayon yarn |
JP2008088217A (en) * | 2006-09-29 | 2008-04-17 | Fushimi Pharm Co Ltd | Flame retardant comprising reactive group-containing cyclic phosphazene compound and method for producing the same |
KR20100052663A (en) | 2008-11-11 | 2010-05-20 | 금오공과대학교 산학협력단 | Production of uv-curable phosphorous- containing flame retardants |
KR101079678B1 (en) | 2008-08-04 | 2011-11-03 | 최인영 | Flame-Retardant Treatment of Fabrics |
KR20180013988A (en) * | 2015-05-28 | 2018-02-07 | 오츠카 가가쿠 가부시키가이샤 | Allylphenoxycyclophosphazene compounds and process for their preparation |
-
2021
- 2021-03-25 KR KR1020210038584A patent/KR102451262B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001172863A (en) * | 1999-12-21 | 2001-06-26 | Gantsu Kasei Kk | Water-resistant, flame-retardant nonwoven fabric |
WO2004083295A1 (en) * | 2003-03-19 | 2004-09-30 | Fuji Electric Holdings Co. Ltd. | Reactive flame retardants and flame-retarded resin products made by using the same |
KR100756557B1 (en) | 2006-04-27 | 2007-09-11 | (주)리디아 | Flame retardant nonwoven fabric and fabric using flame retardant rayon yarn |
JP2008088217A (en) * | 2006-09-29 | 2008-04-17 | Fushimi Pharm Co Ltd | Flame retardant comprising reactive group-containing cyclic phosphazene compound and method for producing the same |
KR101079678B1 (en) | 2008-08-04 | 2011-11-03 | 최인영 | Flame-Retardant Treatment of Fabrics |
KR20100052663A (en) | 2008-11-11 | 2010-05-20 | 금오공과대학교 산학협력단 | Production of uv-curable phosphorous- containing flame retardants |
KR20180013988A (en) * | 2015-05-28 | 2018-02-07 | 오츠카 가가쿠 가부시키가이샤 | Allylphenoxycyclophosphazene compounds and process for their preparation |
Non-Patent Citations (2)
Title |
---|
Molecules 2019, 24, 17, 3100 * |
Thomas Mayer-Gall 외 8명, molecules 2019, 24, 3100.(공개일:2019.08.26.) 1부.* * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116284640A (en) * | 2022-12-08 | 2023-06-23 | 浙江理工大学 | A kind of preparation method of flame-retardant water-based polyurethane finishing agent for polyester fabric |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lu et al. | A bio-based macromolecular phosphorus-containing active cotton flame retardant synthesized from starch | |
Liu et al. | Eco-friendly flame retardant and smoke suppression coating containing boron compounds and phytic acids for nylon/cotton blend fabrics | |
Liao et al. | A biological reactive flame retardant for flame retardant modification of cotton fabric | |
Kim et al. | Synergistic UV-curable flame-retardant finish of cotton using comonomers of vinylphosphonic acid and acrylamide | |
Xie et al. | Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen | |
Ding et al. | Highly effective and durable PN synergistic flame retardant containing ammonium phosphate and phosphonate for cotton fabrics | |
RU2638212C2 (en) | Phosphorus-containing polymer, product and method for their production | |
KR102451262B1 (en) | Composition for Multicure type flame-retardant finish and Processing Method using the same and Fabric thereby | |
Shi et al. | An eco-friendly B/P/N flame retardant for its fabrication of high-effective and durable flame-retardant cotton fabric | |
Jin et al. | Investigation on flame retardancy of sulfur/nitrogen-based compounds for polyamide 6 fabric through facile exhaustion route | |
Lee et al. | Synergistic flame-retardant finishing of cotton using dichlorotriazinyl phosphonate and triethanolamine | |
Sun et al. | Anti-ultraviolet and semi-durable flame-retardant viscose fabrics fabricated by modified tea polyphenols | |
Jeon et al. | Eco-friendly, less toxic, and washing-durable flame-retardant finishing for cotton fabrics using a blocked isocyanate and 3-(dimethylphosphono)-N-methylolpropionamide | |
Cheng et al. | A novel durable flame retardant rich in phosphate ester groups for cotton fabrics | |
CN115677754B (en) | B/P/N ternary synergistic flame retardant and preparation method and application thereof | |
Cheng et al. | Reactive phytate-based intumescent flame-retardant toward sustainable and durable functional coating of silk fabric | |
Qiang-Lin et al. | A phosphorus-nitrogen flame-retardant: Synthesis and application in cotton fabrics | |
KR101072914B1 (en) | Flame-retardant Finish of Fabrics Using UV-curable Phosphorous-containing Monomers | |
He et al. | Pre-oxidation of cellulose controlled by the nitrogen-phosphorus compound catalyst to prepare fibers with ultra-high flame retardancy | |
US20130196135A1 (en) | Fiber blend, spun yarn, textile material, and method for using the textile material | |
Jinping et al. | Graft copolymerization modification of silk fabric with an organophosphorus flame retardant | |
Shi et al. | A facile surface phosphorylation grafting strategy to fabricate durable flame-retardant wool fabric | |
CN118957989A (en) | Flame retardant cellulose fiber and preparation method thereof | |
Uddin | Recent development in combining flame-retardant and easy-care finishing for cotton | |
Xin et al. | Easy-care treatments for fabrics and garments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20210325 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20220818 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20220927 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20220930 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20220930 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |