KR102391652B1 - Surbmerged arc weld joint having excellent low temperature toughness and method of manufacturing the same - Google Patents
Surbmerged arc weld joint having excellent low temperature toughness and method of manufacturing the same Download PDFInfo
- Publication number
- KR102391652B1 KR102391652B1 KR1020200179040A KR20200179040A KR102391652B1 KR 102391652 B1 KR102391652 B1 KR 102391652B1 KR 1020200179040 A KR1020200179040 A KR 1020200179040A KR 20200179040 A KR20200179040 A KR 20200179040A KR 102391652 B1 KR102391652 B1 KR 102391652B1
- Authority
- KR
- South Korea
- Prior art keywords
- less
- weld joint
- excellent low
- temperature toughness
- submerged arc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000011572 manganese Substances 0.000 claims abstract description 23
- 239000010949 copper Substances 0.000 claims abstract description 20
- 239000010955 niobium Substances 0.000 claims abstract description 17
- 239000010936 titanium Substances 0.000 claims abstract description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000012535 impurity Substances 0.000 claims abstract description 12
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 9
- 229910052802 copper Inorganic materials 0.000 claims abstract description 9
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 9
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 6
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000011733 molybdenum Substances 0.000 claims abstract description 6
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 6
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 6
- 239000011574 phosphorus Substances 0.000 claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- 239000010703 silicon Substances 0.000 claims abstract description 6
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 6
- 239000011593 sulfur Substances 0.000 claims abstract description 6
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 6
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910000831 Steel Inorganic materials 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 16
- 239000010959 steel Substances 0.000 claims description 16
- 238000003466 welding Methods 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 8
- 238000005496 tempering Methods 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 29
- 239000000203 mixture Substances 0.000 description 12
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 150000001247 metal acetylides Chemical class 0.000 description 5
- 229910000734 martensite Inorganic materials 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229910001563 bainite Inorganic materials 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3053—Fe as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/18—Submerged-arc welding
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/50—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Arc Welding In General (AREA)
Abstract
Description
본 발명은 저온인성이 우수한 서브머지드 아크 용접이음부 및 그 제조방법에 관한 것이다.The present invention relates to a submerged arc weld joint having excellent low-temperature toughness and a method for manufacturing the same.
일반적으로 관이음쇠는 배관의 방향을 변경하거나 관경을 변경하여 주배관에서 분기한 배관을 필요로 할 때 사용되는 배관재를 이야기한다. 주로 엘보(Elbow), 티(Tee), 리듀서(Reducer), 캡(Cap) 등이 있으며, 주로 피팅용 강재를 열처리하여 사용된다. 최근 피팅이 대구경화 되면서 고강도 피팅소재가 적용되고 있으며, A860-70의 경우 인장강도 550MPa 이상을 요구하고 있다. 대구경의 피팅의 경우 Seamless가 아닌 용접으로 제작되며 주로 서브머지드아크용접이 적용되고 있다. 피팅은 용접 후 적용되는 소재에 따라 열처리 공정을 거치게 되는데, A860-70(인장강도≥550MPa)의 경우, Quenching과 Tempering 열처리 공정이 적용된다. In general, a pipe fitting refers to a pipe material used when a branched pipe from the main pipe is required by changing the pipe direction or changing the pipe diameter. There are mainly Elbow, Tee, Reducer, Cap, etc., and it is mainly used by heat-treating fitting steel. Recently, as fittings have become larger in diameter, high-strength fitting materials are being applied, and in the case of A860-70, tensile strength of 550 MPa or more is required. In the case of large-diameter fittings, they are manufactured by welding rather than seamless, and submerged arc welding is mainly applied. Fittings go through a heat treatment process according to the material applied after welding. For A860-70 (tensile strength≥550 MPa), quenching and tempering heat treatment processes are applied.
한편, 용접에 의해 형성되는 용접이음부는 상기 열처리 공정시 급열 및 급냉을 겪게 되고 이때, 금속조직학적으로 그 부위는 결정립이 조대화되거나 취약한 조직으로 상변태가 발생하여 결국 모재 대비 품질 특성이 필연적으로 열화된다. 따라서, 피팅 구조물에서 열처리 후의 용접이음부의 기계적 물성을 확보하는 것은 중요한 기술적 과제로 대두되고 있다.On the other hand, the weld joint formed by welding undergoes rapid heating and rapid cooling during the heat treatment process. is deteriorated Therefore, securing the mechanical properties of the weld joint after heat treatment in the fitting structure is emerging as an important technical task.
본 발명의 일측면은 저온인성이 우수한 서브머지드 아크 용접이음부 및 그 제조방법을 제공하고자 하는 것이다.One aspect of the present invention is to provide a submerged arc welded joint having excellent low-temperature toughness and a method for manufacturing the same.
본 발명의 일 실시형태는 중량%로, 탄소(C): 0.045~0.10%, 실리콘(Si): 0.01~0.6%, 망간(Mn): 1.0~2.0%, 니켈(Ni): 0.5~0.9%, 몰리브덴(Mo): 0.2~1.0%, 구리(Cu): 0.1~0.3%, 티타늄(Ti): 0.01% 이하, 니오븀(Nb): 0.005% 이하, 바나듐(V): 0.02% 이하, 인(P): 0.015% 이하, 황(S): 0.015% 이하, 질소(N): 0.0020~0.016%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, -46℃에서의 충격에너지가 40J이상이고, 인장강도가 550MPa 이상인 저온인성이 우수한 서브머지드 아크 용접이음부를 제공한다.One embodiment of the present invention is by weight %, carbon (C): 0.045 to 0.10%, silicon (Si): 0.01 to 0.6%, manganese (Mn): 1.0 to 2.0%, nickel (Ni): 0.5 to 0.9% , molybdenum (Mo): 0.2 to 1.0%, copper (Cu): 0.1 to 0.3%, titanium (Ti): 0.01% or less, niobium (Nb): 0.005% or less, vanadium (V): 0.02% or less, phosphorus ( P): 0.015% or less, sulfur (S): 0.015% or less, nitrogen (N): 0.0020 to 0.016%, the remainder including Fe and other unavoidable impurities, the impact energy at -46°C is 40J or more, and tensile strength Provided is a submerged arc welded joint with excellent low-temperature toughness of 550 MPa or more.
본 발명의 다른 실시형태는 강재를 1.0~6.0KJ/mm의 입열량으로 서브머지드 아크 용접하여, 중량%로, 탄소(C): 0.045~0.10%, 실리콘(Si): 0.01~0.6%, 망간(Mn): 1.0~2.0%, 니켈(Ni): 0.5~0.9%, 몰리브덴(Mo): 0.2~1.0%, 구리(Cu): 0.1~0.3%, 티타늄(Ti): 0.01% 이하, 니오븀(Nb): 0.005% 이하, 바나듐(V): 0.02% 이하, 인(P): 0.015% 이하, 황(S): 0.015% 이하, 질소(N): 0.0020~0.016%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 용접이음부를 얻는 단계; 상기 용접이음부를 890~930℃까지 가열하는 단계; 상기 가열된 용접이음부를 수냉하는 단계; 및 상기 수냉된 용접이음부를 600~670℃에서 템퍼링하는 단계;를 포함하는 저온인성이 우수한 서브머지드 아크 용접이음부의 제조방법을 제공한다.Another embodiment of the present invention is by submerged arc welding steel materials with a heat input of 1.0 ~ 6.0 KJ / mm, by weight, carbon (C): 0.045 ~ 0.10%, silicon (Si): 0.01 ~ 0.6%, Manganese (Mn): 1.0 to 2.0%, Nickel (Ni): 0.5 to 0.9%, Molybdenum (Mo): 0.2 to 1.0%, Copper (Cu): 0.1 to 0.3%, Titanium (Ti): 0.01% or less, Niobium (Nb): 0.005% or less, vanadium (V): 0.02% or less, phosphorus (P): 0.015% or less, sulfur (S): 0.015% or less, nitrogen (N): 0.0020 to 0.016%, balance Fe and other unavoidable obtaining a weld joint containing impurities; heating the weld joint to 890 to 930°C; water cooling the heated weld joint; and tempering the water-cooled weld joint at 600 to 670°C.
본 발명의 일측면에 따르면, 저온인성이 우수한 서브머지드 아크 용접이음부 및 그 제조방법을 제공할 수 있다.According to one aspect of the present invention, it is possible to provide a submerged arc weld joint having excellent low-temperature toughness and a method for manufacturing the same.
이하, 본 발명의 일 실시형태에 따른 저온인성이 우수한 서브머지드 아크 용접이음부에 대하여 설명한다. 먼저, 합금조성에 대해서 설명한다. 다만, 하기 설명되는 합금조성의 함량은 별도의 언급이 없는 한 중량%를 의미한다.Hereinafter, a submerged arc welded joint having excellent low-temperature toughness according to an embodiment of the present invention will be described. First, the alloy composition will be described. However, the content of the alloy composition to be described below means wt% unless otherwise specified.
탄소(C): 0.045~0.10%Carbon (C): 0.045-0.10%
상기 C는 용접금속의 강도와 경도를 확보하기 위해 필요한 원소로서, 상술한 효과를 위해서 상기 C는 0.045% 이상 포함하는 것이 바람직하다. 다만, 상기 C의 함량이 0.10%를 초과하는 경우에는 열처리 후 탄화물 등의 생성으로 인해 강도가 높아져 용접이음부의 충격인성이 크게 저하될 수 있다. 따라서, 상기 C의 함량은 0.045~0.10%의 범위를 갖는 것이 바람직하다. 상기 C 함량의 하한은 0.05%인 것이 보다 바람직하고, 0.055%인 것이 보다 더 바람직하다. 상기 C 함량의 상한은 0.095%인 것이 보다 바람직하고, 0.085%인 것이 보다 더 바람직하다.The C is an element necessary to secure the strength and hardness of the weld metal, and for the above-described effect, the C is preferably included in an amount of 0.045% or more. However, when the content of C exceeds 0.10%, the strength is increased due to the generation of carbides after heat treatment, and the impact toughness of the weld joint may be greatly reduced. Therefore, the content of C is preferably in the range of 0.045 to 0.10%. The lower limit of the C content is more preferably 0.05%, and even more preferably 0.055%. The upper limit of the C content is more preferably 0.095%, and even more preferably 0.085%.
실리콘(Si): 0.01~0.6%Silicon (Si): 0.01~0.6%
상기 Si는 용착 금속의 탈산 효과를 위해 첨가되며, 상기 Si의 함량이 0.01% 미만인 경우에는 용접금속 내의 탈산 효과가 불충분하고, 용접 금속의 유동성을 저하시킨다. 반면, 0.6%를 초과하는 경우에는 용접 금속 내 도상 마르텐사이트(MA constituent)의 변태를 촉진시키며, 경화능을 상승시켜 충격인성이 저하되는 문제가 있다. 따라서, 상기 Si의 함량은 0.01~0.6%의 범위를 갖는 것이 바람직하다.The Si is added for the deoxidation effect of the weld metal, and when the content of Si is less than 0.01%, the deoxidation effect in the weld metal is insufficient and the fluidity of the weld metal is reduced. On the other hand, when it exceeds 0.6%, there is a problem in that the transformation of martensite (MA constituent) in the weld metal is promoted, and the hardenability is increased, so that the impact toughness is lowered. Accordingly, the Si content is preferably in the range of 0.01 to 0.6%.
망간(Mn): 1.0~2.0%Manganese (Mn): 1.0~2.0%
상기 Mn은 탈산, 탈황 작용 및 강도를 향상시키는데 필수적인 원소이다. 상기 Mn의 함량이 1.0% 미만일 경우에는 열처리(Quenching & Tempering) 후 결정립의 입도가 커지는 문제가 발생할 수 있다. 반면, 2.0%를 초과하는 경우에는 강도가 높아져 인성이 저하되는 문제가 있다. 따라서, 상기 Mn의 함량은 1.0~2.0%의 범위를 갖는 것이 바람직하다. 상기 Mn 함량의 상한은 1.9%인 것이 보다 바람직하고, 1.8%인 것이 보다 더 바람직하며, 1.7%인 것이 가장 바람직하다.The Mn is an essential element for improving deoxidation, desulfurization, and strength. When the content of Mn is less than 1.0%, there may be a problem in that the grain size of the grains increases after heat treatment (Quenching & Tempering). On the other hand, when it exceeds 2.0%, there is a problem in that the strength is increased and the toughness is lowered. Accordingly, the Mn content is preferably in the range of 1.0 to 2.0%. The upper limit of the Mn content is more preferably 1.9%, even more preferably 1.8%, and most preferably 1.7%.
니켈(Ni): 0.5~0.9%Nickel (Ni): 0.5-0.9%
상기 Ni는 고용 강화의 의해 매트릭스(matrix)의 강도 및 인성을 향상시키는 원소이다. 상기 효과를 위해서는 0.5% 이상 포함되는 것이 바람직하나, 0.9%를 초과할 경우에는 소입성을 크게 증가시켜 모재와의 과도한 강도 차이가 발생할 수 있다. 따라서, 상기 Ni의 함량은 0.5~0.9%의 범위를 갖는 것이 바람직하다. 상기 Ni 함량의 상한은 0.8%인 것이 보다 바람직하다.The Ni is an element that improves the strength and toughness of a matrix by solid solution strengthening. For the above effect, it is preferable that 0.5% or more is included, but when it exceeds 0.9%, hardenability is greatly increased and an excessive difference in strength with the base material may occur. Accordingly, the Ni content is preferably in the range of 0.5 to 0.9%. The upper limit of the Ni content is more preferably 0.8%.
몰리브덴(Mo): 0.2~1.0%Molybdenum (Mo): 0.2~1.0%
상기 Mo는 기지의 강도를 향상시키는 원소로서, 이러한 효과를 얻기 위해서는 0.2% 이상 포함하는 것이 바람직하나, 1.0%를 초과하는 경우에는 상기 효과가 포화될 뿐만 아니라, 용접 경화성이 크게 증가되고 마르텐사이트의 변태를 촉진시켜 인성을 저하시키는 문제가 있다. 따라서, 상기 Mo의 함량은 0.2~1.0%의 범위를 갖는 것이 바람직하다.The Mo is an element that improves the strength of the matrix, and it is preferable to include 0.2% or more in order to obtain this effect, but when it exceeds 1.0%, the effect is not only saturated, but also welding hardenability is greatly increased and martensite is There is a problem of reducing toughness by accelerating transformation. Therefore, the Mo content is preferably in the range of 0.2 to 1.0%.
구리(Cu): 0.1~0.3%Copper (Cu): 0.1~0.3%
상기 Cu는 기지에 고용되어 고용강화 효과로 인하여 강도 및 인성을 확보하는데 유리한 원소이며, 이러한 효과를 위해서는 0.1% 이상 포함하는 것이 바람직하다. 그러나 그 함량이 0.3%를 초과하는 경우에는 용접이음부에서 경화성을 증가시켜 인성을 저하시키는 문제가 있다. 따라서, 상기 Cu의 함량은 0.1~0.3%의 범위를 갖는 것이 바람직하다. The Cu is an element advantageous for securing strength and toughness due to the solid solution strengthening effect by being dissolved in the matrix, and for this effect, it is preferable to include 0.1% or more. However, when the content exceeds 0.3%, there is a problem in that the toughness is reduced by increasing the hardenability at the weld joint. Accordingly, the Cu content is preferably in the range of 0.1 to 0.3%.
티타늄(Ti): 0.01% 이하Titanium (Ti): 0.01% or less
상기 Ti는 일반적으로 탄화물을 형성시켜 강도를 향상시키는 원소로 알려져 있다. 그러나, 본 발명에서는 상기 Ti을 의도적으로 첨가하지 않으며, 불순물로서 함유되는 Ti의 함량을 매우 적은 양으로 제어함으로써 탄화물의 크기를 미세화시키고, 그 분율 또한 저감시켜 인성을 향상시킨다. 이를 위해서는, 상기 Ti의 함량이 0.01% 이하인 것이 바람직하다. 상기 Ti 함량은 0.006% 이하인 것이 보다 바람직하고, 0.005% 이하인 것이 보다 더 바람직하며, 0.003%이하인 것이 가장 바람직하다.The Ti is generally known as an element that improves strength by forming carbides. However, in the present invention, the Ti is not intentionally added, and the size of the carbide is refined by controlling the content of Ti contained as an impurity to a very small amount, and the toughness is improved by reducing the fraction. To this end, the Ti content is preferably 0.01% or less. The Ti content is more preferably 0.006% or less, even more preferably 0.005% or less, and most preferably 0.003% or less.
니오븀(Nb): 0.005% 이하Niobium (Nb): 0.005% or less
상기 Nb는 일반적으로 탄화물을 형성시켜 강도를 향상시키는 원소로 알려져 있다. 그러나, 본 발명에서는 상기 Nb를 의도적으로 첨가하지 않으며, 불순물로서 함유되는 Nb의 함량을 소량으로 억제함으로써 탄화물의 크기를 미세화시키고, 그 분율 또한 저감시켜 인성을 향상시킨다. 이를 위해서는, 상기 Nb의 함량이 0.005% 이하인 것이 바람직하다. 상기 Nb 함량은 0.004% 이하인 것이 보다 바람직하고, 0.003% 이하인 것이 보다 더 바람직하며, 0.002%이하인 것이 가장 바람직하다.The Nb is generally known as an element that improves strength by forming carbides. However, in the present invention, the Nb is not intentionally added, and the size of the carbide is refined by suppressing the content of Nb contained as an impurity to a small amount, and its fraction is also reduced to improve toughness. For this, the Nb content is preferably 0.005% or less. The Nb content is more preferably 0.004% or less, even more preferably 0.003% or less, and most preferably 0.002% or less.
바나듐(V): 0.02% 이하Vanadium (V): 0.02% or less
상기 V는 일반적으로 탄화물을 형성시켜 강도를 향상시키는 원소로 알려져 있다. 그러나, 본 발명에서는 상기 V를 의도적으로 첨가하지 않으며, 불순물로서 함유되는 V의 함량을 소량으로 억제함으로써 탄화물의 크기를 미세화시키고, 그 분율 또한 저감시켜 인성을 향상시킨다. 이를 위해서는, 상기 V의 함량이 0.02% 이하인 것이 바람직하다. 상기 V 함량은 0.015% 이하인 것이 보다 바람직하고, 0.010% 이하인 것이 보다 더 바람직하다.V is generally known as an element that improves strength by forming carbides. However, in the present invention, the V is not intentionally added, and the size of the carbide is refined by suppressing the content of V contained as an impurity to a small amount, and its fraction is also reduced to improve toughness. For this, the content of V is preferably 0.02% or less. The V content is more preferably 0.015% or less, and even more preferably 0.010% or less.
인(P): 0.015% 이하Phosphorus (P): 0.015% or less
상기 P는 고온 균열을 조장하는 불순물로서, 가능한 낮게 관리하는 것이 바람직하며, 0.015% 이하로 관리하여 저온 충격인성을 확보한다.The P is an impurity that promotes high-temperature cracking, and it is preferable to manage it as low as possible, and manage it to 0.015% or less to secure low-temperature impact toughness.
황(S): 0.015% 이하Sulfur (S): 0.015% or less
상기 S는 고온 균열을 조장하는 불순물로서, 가능한 낮게 관리하는 것이 바람직하며, 0.015% 이하로 관리하여 저온 충격인성을 확보한다.The S is an impurity that promotes high-temperature cracking, and it is preferable to manage it as low as possible, and manage it to 0.015% or less to secure low-temperature impact toughness.
질소(N): 0.0020~0.016%Nitrogen (N): 0.0020 to 0.016%
상기 N은 자유 질소의 증가를 초래하고 강도를 증가시키는 원소이다. 상술한 효과를 위해서는, 상기 N의 함량이 0.0020% 이상인 것이 바람직하나, 0.016%를 초과하게 되면 전위를 고착하여 인성을 저하키실 수 있다. 따라서, 상기 N의 함량은 0.0020~0.016%의 범위를 갖는 것이 바람직하다. 상기 N 함량의 하한은 0.0040%인 것이 보다 바람직하고, 0.0060%인 것이 보다 더 바람직하며, 0.0090%인 것이 가장 바람직하다.The N is an element that causes an increase in free nitrogen and increases strength. For the above-described effect, the N content is preferably 0.0020% or more, but when it exceeds 0.016%, dislocations may be fixed and toughness may be reduced. Therefore, the content of N is preferably in the range of 0.0020 to 0.016%. The lower limit of the N content is more preferably 0.0040%, even more preferably 0.0060%, and most preferably 0.0090%.
상술한 강 조성 이외에 나머지는 Fe 및 불가피한 불순물을 포함할 수 있다. 상기 불가피한 불순물은 통상의 철강 제조공정에서 의도되지 않게 혼입될 수 있는 것으로, 이를 전면 배제할 수는 없으며, 통상의 철강제조 분야의 기술자라면 그 의미를 쉽게 이해할 수 있다. 또한, 본 발명은, 앞서 언급한 강 조성 이외의 다른 조성의 첨가를 전면적으로 배제하는 것은 아니다.In addition to the above-described steel composition, the remainder may include Fe and unavoidable impurities. The unavoidable impurities may be unintentionally mixed in a typical steel manufacturing process, and this cannot be entirely excluded, and those skilled in the ordinary steel manufacturing field can easily understand the meaning. In addition, the present invention does not entirely exclude the addition of compositions other than the above-mentioned steel composition.
한편, 전술한 용접이음부의 합금조성은 하기 식 1로 정의되는 Ceq가 0.29~0.72인 것이 바람직하다. 상기 Ceq가 0.29 미만인 경우에는 모재 대비 용접이음부의 강도가 너무 낮아질 수 있으며, 반면, 0.72를 초과하는 경우에는 저온 충격인성이 저하될 수 있다. 따라서, 상기 Ceq는 0.29~0.72의 범위를 갖는 것이 바람직하다.On the other hand, it is preferable that the alloy composition of the above-described weld joint has Ceq defined by the following formula 1 of 0.29 to 0.72. If the Ceq is less than 0.29, the strength of the weld joint compared to the base material may be too low, whereas, if it exceeds 0.72, low-temperature impact toughness may be reduced. Accordingly, the Ceq preferably has a range of 0.29 to 0.72.
[식 1] Ceq = C + Mn/6 + (Ni+Cu)/15 + (Cr+Mo+V)/5 [Equation 1] Ceq = C + Mn/6 + (Ni+Cu)/15 + (Cr+Mo+V)/5
(단, 상기 [식 1]에서 C, Mn, Ni, Cu, Cr, Mo 및 V는 각 원소의 함량(중량%)을 의미함.)(However, in [Equation 1], C, Mn, Ni, Cu, Cr, Mo, and V mean the content (wt%) of each element.)
전술한 바와 같이 제공되는 본 발명의 용접이음부는 QT 열처리를 통해 우수한 저온인성을 갖는 것을 특징으로 하며, -46℃에서의 충격에너지가 40J이상이고, 인장강도가 550MPa 이상일 수 있다.The weld joint of the present invention provided as described above is characterized by having excellent low-temperature toughness through QT heat treatment, and the impact energy at -46°C is 40J or more, and the tensile strength may be 550MPa or more.
이하, 본 발명의 일 실시형태에 따른 저온인성이 우수한 서브머지드 아크 용접이음부의 제조방법에 대하여 설명한다. Hereinafter, a method for manufacturing a submerged arc weld joint having excellent low-temperature toughness according to an embodiment of the present invention will be described.
우선, 강재를 준비한다. 본 발명에서는 상기 강재의 합금조성이나 제조조건에 대하여 특별히 한정하지 않으며, 당해 기술분야에서 통상적으로 이요되는 모든 종류의 강재를 이용할 수 있다.First, the steel is prepared. In the present invention, the alloy composition or manufacturing conditions of the steel are not particularly limited, and all kinds of steels commonly used in the art may be used.
이후, 상기 준비된 강재를 1.0~6.0KJ/mm의 입열량으로 서브머지드 아크 용접하여 전술한 합금조성을 갖는 용접이음부를 얻는다. 상기 용접시 입열량이 1.0KJ/mm 미만인 경우에는 용접 자체가 불가능할 수 있고, 6.0KJ/mm를 초과하는 경우에는 용접이음부의 결정립이 조대화되어 강도와 충격인성을 저해한다. 따라서, 상기 입열량은 1.0~6.0KJ/mm의 범위를 갖는 것이 바람직하다. 상기 입열량의 상한은 5.0KJ/mm인 것이 보다 바람직하다.Then, the prepared steel material is submerged arc welding with a heat input of 1.0 ~ 6.0KJ / mm to obtain a weld joint having the above-described alloy composition. If the amount of heat input during welding is less than 1.0KJ/mm, welding itself may not be possible, and if it exceeds 6.0KJ/mm, the grains of the weld joint are coarsened, thereby impairing strength and impact toughness. Therefore, the amount of heat input preferably has a range of 1.0 ~ 6.0KJ / mm. As for the upper limit of the said heat input amount, it is more preferable that it is 5.0 KJ/mm.
이후, 상기 용접이음부를 890~930℃까지 가열한다. 상기 가열온도가 890℃ 미만인 경우에는 fully 오스테나이트 조직을 확보하기 어렵고, 930℃를 초과하는 경우에는 오스테나이트의 입도 조대화로 인하여 열처리 후 강도 및 인성의 확보가 어렵다는 단점이 있다. 따라서, 상기 가열온도는 890~930℃의 범위를 갖는 것이 바람직하다. Then, the welding joint is heated to 890 ~ 930 ℃. When the heating temperature is less than 890°C, it is difficult to secure a fully austenite structure, and when it exceeds 930°C, it is difficult to secure strength and toughness after heat treatment due to coarsening of the austenite grain size. Therefore, the heating temperature is preferably in the range of 890 to 930 ℃.
이후, 상기 가열된 용접이음부를 수냉한 뒤, 600~670℃에서 템퍼링한다. 상기 템퍼링 온도가 600℃ 미만인 경우에는 수냉 후 발생된 전위의 회복이 충분히 일어나지 않으며, 670℃를 초과하는 경우에는 마르텐사이트와 베이나이트의 lath 결합에 의해 유효 결정립 크기가 커지고 탄화물이 조대화되어 강도가 하락하는 문제가 있다. 따라서, 상기 템퍼링 온도는 600~670℃의 범위를 갖는 것이 바람직하다.Then, after cooling the heated weld joint with water, it is tempered at 600 ~ 670 ℃. When the tempering temperature is less than 600 ℃, recovery of dislocations generated after water cooling does not occur sufficiently, and when it exceeds 670 ℃, the effective grain size increases due to lath bonding of martensite and bainite, and the strength is increased by coarsening of carbides. There is a problem with falling. Therefore, the tempering temperature is preferably in the range of 600 ~ 670 ℃.
이하, 실시예를 통해 본 발명을 보다 상세히 설명한다. 다만, 하기 실시예는 본 발명을 보다 상세하게 설명하기 위한 예시일 뿐, 본 발명의 권리범위를 한정하지는 않는다.Hereinafter, the present invention will be described in more detail through examples. However, the following examples are only examples for explaining the present invention in more detail, and do not limit the scope of the present invention.
(실시예)(Example)
강재를 서브머지드 용접을 이용하여 3.0kJ/mm 입열량으로 맞대기 용접한 후, 하기 표 2의 조건으로 가열하고, 수냉한 뒤, 템퍼링하여 하기 표 1의 합금조성을 갖는 용접이음부를 제조하였다. 이 때, 가열 후 유지시간은 30분이었다. 이와 같이 제조된 용접이음부에 대하여 인장강도와 저온인성을 측정한 뒤, 하기 표 2에 나타내었다.After butt-welding the steel with a heat input of 3.0 kJ/mm using submerged welding, heating to the conditions of Table 2 below, cooling with water, and tempering to prepare a weld joint having an alloy composition shown in Table 1 below. At this time, the holding time after heating was 30 minutes. After measuring the tensile strength and low-temperature toughness of the welded joint thus prepared, it is shown in Table 2 below.
인장강도는 ASTM E08의 규격에 따른 시편을 제작한 뒤, 인장시험하여 측정하였다.Tensile strength was measured by manufacturing a specimen according to ASTM E08 and then performing a tensile test.
저온인성은 -46℃에서 샤르피 충격시험기를 통해 측정하였다.Low-temperature toughness was measured at -46°C using a Charpy impact tester.
상기 표 1 및 2를 통해 알 수 있듯이, 본 발명이 제안하는 합금조성 및 제조조건을 만족하는 발명예 1 내지 4의 경우에는 -46℃에서의 충격에너지가 40J이상이고, 인장강도가 550MPa 이상으로서, 우수한 강도 및 저온인성을 확보하고 있음을 알 수 있다.As can be seen from Tables 1 and 2, in the case of Inventive Examples 1 to 4 that satisfy the alloy composition and manufacturing conditions proposed by the present invention, the impact energy at -46°C is 40J or more, and the tensile strength is 550MPa or more. , it can be seen that excellent strength and low-temperature toughness are secured.
반면, 본 발명이 제안하는 합금조성 또는 제조조건을 만족하지 않는 비교예 1 내지 12의 경우에는 강도 또는 저온인성이 낮은 수준임을 알 수 있다.On the other hand, in the case of Comparative Examples 1 to 12, which do not satisfy the alloy composition or manufacturing conditions proposed by the present invention, it can be seen that the strength or low-temperature toughness is at a low level.
Claims (4)
-46℃에서의 충격에너지가 40J이상이고, 인장강도가 550MPa 이상인 저온인성이 우수한 서브머지드 아크 용접이음부.
By weight%, carbon (C): 0.045 to 0.10%, silicon (Si): 0.01 to 0.6%, manganese (Mn): 1.0 to 2.0%, nickel (Ni): 0.5 to 0.9%, molybdenum (Mo): 0.2 ~1.0%, copper (Cu): 0.1 to 0.3%, titanium (Ti): 0.01% or less, niobium (Nb): 0.005% or less, vanadium (V): 0.02% or less, phosphorus (P): 0.015% or less, Sulfur (S): 0.015% or less, nitrogen (N): 0.0020 to 0.016%, the remainder including Fe and other unavoidable impurities,
A submerged arc welded joint with excellent low-temperature toughness with an impact energy of 40J or more at -46℃ and a tensile strength of 550MPa or more.
상기 용접이음부는 하기 식 1로 정의되는 Ceq가 0.29~0.72인 저온인성이 우수한 서브머지드 아크 용접이음부.
[식 1] Ceq = C + Mn/6 + (Ni+Cu)/15 + (Cr+Mo+V)/5
(단, 상기 [식 1]에서 C, Mn, Ni, Cu, Cr, Mo 및 V는 각 원소의 함량(중량%)을 의미함.)
The method according to claim 1,
The weld joint is a submerged arc weld joint having excellent low-temperature toughness having a Ceq of 0.29 to 0.72, which is defined by Equation 1 below.
[Equation 1] Ceq = C + Mn/6 + (Ni+Cu)/15 + (Cr+Mo+V)/5
(However, in [Equation 1], C, Mn, Ni, Cu, Cr, Mo, and V mean the content (wt%) of each element.)
상기 용접이음부를 890~930℃까지 가열하는 단계; 및
상기 가열된 용접이음부를 수냉한 뒤, 600~670℃에서 템퍼링하는 단계;를 포함하는 저온인성이 우수한 서브머지드 아크 용접이음부의 제조방법.
Submerged arc welding of steel material with heat input of 1.0~6.0KJ/mm, by weight%, carbon (C): 0.045~0.10%, silicon (Si): 0.01~0.6%, manganese (Mn): 1.0~ 2.0%, Nickel (Ni): 0.5 to 0.9%, Molybdenum (Mo): 0.2 to 1.0%, Copper (Cu): 0.1 to 0.3%, Titanium (Ti): 0.01% or less, Niobium (Nb): 0.005% or less , Vanadium (V): 0.02% or less, Phosphorus (P): 0.015% or less, Sulfur (S): 0.015% or less, Nitrogen (N): 0.0020~0.016%, balance Welded joints containing Fe and other unavoidable impurities to obtain;
heating the weld joint to 890 to 930°C; and
A method of manufacturing a submerged arc weld joint having excellent low-temperature toughness, comprising: cooling the heated weld joint with water, and then tempering at 600 to 670°C.
상기 용접이음부는 하기 식 1로 정의되는 Ceq가 0.29~0.72인 저온인성이 우수한 서브머지드 아크 용접이음부의 제조방법.
[식 1] Ceq = C + Mn/6 + (Ni+Cu)/15 + (Cr+Mo+V)/5
(단, 상기 [식 1]에서 C, Mn, Ni, Cu, Cr, Mo 및 V는 각 원소의 함량(중량%)을 의미함.)
4. The method according to claim 3,
The welding joint is a method of manufacturing a submerged arc welded joint having excellent low-temperature toughness having a Ceq of 0.29 to 0.72, which is defined by Equation 1 below.
[Equation 1] Ceq = C + Mn/6 + (Ni+Cu)/15 + (Cr+Mo+V)/5
(However, in [Equation 1], C, Mn, Ni, Cu, Cr, Mo, and V mean the content (wt%) of each element.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200179040A KR102391652B1 (en) | 2020-12-18 | 2020-12-18 | Surbmerged arc weld joint having excellent low temperature toughness and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200179040A KR102391652B1 (en) | 2020-12-18 | 2020-12-18 | Surbmerged arc weld joint having excellent low temperature toughness and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102391652B1 true KR102391652B1 (en) | 2022-04-28 |
Family
ID=81446774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200179040A Active KR102391652B1 (en) | 2020-12-18 | 2020-12-18 | Surbmerged arc weld joint having excellent low temperature toughness and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102391652B1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11193443A (en) * | 1997-12-26 | 1999-07-21 | Nkk Corp | High-strength hot-rolled steel sheet for processing excellent in corrosion resistance and fatigue properties and method for producing the same |
JP2005271032A (en) * | 2004-03-24 | 2005-10-06 | Nippon Steel & Sumikin Welding Co Ltd | Flux-cored wire for electroslag welding |
JP2005349466A (en) * | 2004-06-14 | 2005-12-22 | Kobe Steel Ltd | Weld metal, welding wire, and electroslag welding method |
-
2020
- 2020-12-18 KR KR1020200179040A patent/KR102391652B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11193443A (en) * | 1997-12-26 | 1999-07-21 | Nkk Corp | High-strength hot-rolled steel sheet for processing excellent in corrosion resistance and fatigue properties and method for producing the same |
JP2005271032A (en) * | 2004-03-24 | 2005-10-06 | Nippon Steel & Sumikin Welding Co Ltd | Flux-cored wire for electroslag welding |
JP2005349466A (en) * | 2004-06-14 | 2005-12-22 | Kobe Steel Ltd | Weld metal, welding wire, and electroslag welding method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA3078406C (en) | Steel for coiled tubing with low yield ratio and ultra-high strength and preparation method thereof | |
US8313589B2 (en) | High-strength low-alloy steel excellent in high-pressure hydrogen environment embrittlement resistance characteristics and method for producing the same | |
EP2811045B1 (en) | Base metal for high-toughness clad steel plate giving weld with excellent toughness, and process for producing said clad steel plate | |
JP5657026B2 (en) | High-strength steel sheet with excellent post-weld heat treatment resistance and manufacturing method thereof | |
EP2159296B1 (en) | Hardened and tempered steel and method for producing parts of said steel | |
CN110088338B (en) | Steel for pressure vessel having excellent resistance to high-temperature tempering heat treatment and post-weld heat treatment, and method for manufacturing same | |
JPS629646B2 (en) | ||
JP5407478B2 (en) | High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same | |
JP3045856B2 (en) | Method for producing high toughness Cu-containing high tensile steel | |
JP5055783B2 (en) | Manufacturing method of high strength and high toughness steel | |
JP2019504192A (en) | High hardness wear resistant steel with excellent toughness and cut crack resistance, and method for producing the same | |
JP2008075107A (en) | Manufacturing method of high strength and high toughness steel | |
CN105937008A (en) | Thin-specification wear resisting steel and manufacturing method thereof | |
JP2000319726A (en) | Manufacturing method of high strength steel sheet with excellent weldability | |
KR102391652B1 (en) | Surbmerged arc weld joint having excellent low temperature toughness and method of manufacturing the same | |
JP2007217772A (en) | Manufacturing method of high strength and high toughness steel | |
JP5028761B2 (en) | Manufacturing method of high strength welded steel pipe | |
JP2002161330A (en) | Wear-resistant steel | |
KR102321317B1 (en) | Wire rod for welding rod nd method for manufacturing thereof | |
JPH0826395B2 (en) | 80 kgf / mm with excellent weldability (2) High-strength steel manufacturing method | |
KR910003883B1 (en) | Making process for high tension steel | |
CN102978533B (en) | High-strength and high-toughness alloy steel | |
JPH06240407A (en) | High corrosion resistance and high strength clad steel and method of manufacturing the same | |
JP5458923B2 (en) | Welded joint with excellent brittle fracture resistance | |
JP3716988B2 (en) | Cr-Mo steel excellent in strength and low-temperature toughness and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20201218 |
|
PA0201 | Request for examination | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20211220 Patent event code: PE09021S01D |
|
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20220224 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20220425 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20220426 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |