[go: up one dir, main page]

KR102370924B1 - Hybrid Electric Vehicle for Sequential Start type Engine Cold Start - Google Patents

Hybrid Electric Vehicle for Sequential Start type Engine Cold Start Download PDF

Info

Publication number
KR102370924B1
KR102370924B1 KR1020170139985A KR20170139985A KR102370924B1 KR 102370924 B1 KR102370924 B1 KR 102370924B1 KR 1020170139985 A KR1020170139985 A KR 1020170139985A KR 20170139985 A KR20170139985 A KR 20170139985A KR 102370924 B1 KR102370924 B1 KR 102370924B1
Authority
KR
South Korea
Prior art keywords
engine
mhsg
starter
cold start
delete delete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020170139985A
Other languages
Korean (ko)
Other versions
KR20190046323A (en
Inventor
윤기봉
Original Assignee
현대자동차주식회사
기아 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아 주식회사 filed Critical 현대자동차주식회사
Priority to KR1020170139985A priority Critical patent/KR102370924B1/en
Publication of KR20190046323A publication Critical patent/KR20190046323A/en
Application granted granted Critical
Publication of KR102370924B1 publication Critical patent/KR102370924B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/006Starting of engines by means of electric motors using a plurality of electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • B60W30/194Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine related to low temperature conditions, e.g. high viscosity of hydraulic fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits specially adapted for starting of engines
    • F02N11/0862Circuits specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4833Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0695Inertia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/0223Cooling water temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0888DC/DC converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/022Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/023Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/20Control related aspects of engine starting characterised by the control method
    • F02N2300/2002Control related aspects of engine starting characterised by the control method using different starting modes, methods, or actuators depending on circumstances, e.g. engine temperature or component wear
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

본 발명의 하이브리드 차량의 순차시동방식 엔진 냉시동 방법은 엔진(2)의 시동에 따른 컨트롤러(10)의 엔진 회전수와 냉각수온의 검출로 판단된 엔진 냉시동 조건시 스타터(9)의 동작으로 엔진(2)의 시동이 이루어진 후 엔진(2)의 특정 엔진회전수 이상에서 스타터(9) 중지에 이은 MHSG(7)의 동작으로 엔진(2)의 시동을 완료함으로써 스타터(9)에 더한 MHSG(7)의 크랭킹 토크(cranking torque)인가로 엔진 시동성이 향상되고, 특히 MHSG의 크랭킹 토크가 엔진 크랭크(crank)와 보기류 벨트 시스템이 엔진 마찰(friction)을 이기고 회전하려는 시점과 연계됨으로써 엔진(2)에 적용된 보기류 시스템(4)의 벨트 슬립(slip) 약화와 함께 보기류 텐셔너의 충격 및 소음도 약화되는 특징을 갖는다.The sequential start method engine cold start method of the hybrid vehicle according to the present invention is the operation of the starter 9 when the engine cold start condition is determined by the detection of the engine speed and the coolant temperature of the controller 10 according to the start of the engine 2 . MHSG added to the starter 9 by completing the start of the engine 2 by the operation of the MHSG 7 following the stop of the starter 9 at a specific engine speed of the engine 2 or more after the engine 2 is started The engine startability is improved by applying the cranking torque of (7), and in particular, the cranking torque of the MHSG is linked with the timing at which the engine crank and the auxiliary belt system overcome engine friction to rotate. Along with weakening the belt slip of the accessory system 4 applied to the engine 2 , the impact and noise of the accessory tensioner are also weakened.

Description

순차시동방식 엔진 냉시동을 구현하는 하이브리드 차량{Hybrid Electric Vehicle for Sequential Start type Engine Cold Start}Hybrid Electric Vehicle for Sequential Start type Engine Cold Start

본 발명은 엔진 냉시동 제어가 적용된 하이브리드 차량에 관한 것으로, 특히 스타터와 MHSG(Mild Hybrid Starter & Generator)의 협조 제어로 엔진의 냉시동이 이루어지는 순차시동방식 엔진 냉시동제어가 적용된 하이브리드 차량에 관한 것이다.The present invention relates to a hybrid vehicle to which engine cold start control is applied, and more particularly, to a hybrid vehicle to which a sequential engine cold start control is applied in which the engine is cold started by cooperative control of a starter and a Mild Hybrid Starter & Generator (MHSG). .

일반적으로 하이브리드 차량{Hybrid Electric Vehicle)중 마일드 하이브리드 차량(Mild Hybrid Electric Vehicle)은 가솔린/디젤엔진과 함께 MHSG(Mild Hybrid Starter & Generator), 48V 배터리 및 LDC(Low Voltage DC/DC Converter)의 MHSG 시스템(통상, 48V MHSG 시스템)을 적용한다.In general, a mild hybrid electric vehicle among hybrid electric vehicles is a MHSG system of a MHSG (Mild Hybrid Starter & Generator), a 48V battery and an LDC (Low Voltage DC/DC Converter) along with a gasoline/diesel engine. (normally, 48V MHSG system) is applied.

그러므로 소배기량 엔진과 MHSG 시스템을 연계한 마일드 하이브리드 차량은 연비를 더욱 향상하면서 동시에 CO2를 크게 저감할 수 있다.Therefore, a mild hybrid vehicle that connects a small displacement engine and an MHSG system can further improve fuel efficiency and reduce CO2 significantly.

특히 마일드 하이브리드 차량은 MHSG 시스템을 통한 MHSG 크랭킹(cranking)으로 엔진 시동이 이루어지나 엔진의 냉시동 조건에서는 MHSG 대신 기존 스타터(예, Conventional Starter)로 시동이 이루어진다. 그 결과 냉시동 조건에서 MHSG 크랭킹시 보기류 벨트 내구력 저하로 발전되는 보기류 벨트 슬립 과다에 의한 동력 손실 및 소음 발생이 방지된다.In particular, the mild hybrid vehicle starts the engine by MHSG cranking through the MHSG system. As a result, power loss and noise generation due to excessive slip of the auxiliary belt, which is developed due to a decrease in the durability of the auxiliary belt during MHSG cranking under cold start conditions, is prevented.

국내공개특허공보 10-2010-0063308(2010년06월11일)Korean Patent Publication No. 10-2010-0063308 (June 11, 2010)

하지만 스타터(예, Conventional Starter)에 의한 냉시동 조건의 엔진 시동은 MHSG 관성(Inertial) 증가에 의한 시동성 저하를 가져올 수 있다.However, starting the engine under cold start conditions by a starter (eg, a conventional starter) may result in deterioration of startability due to an increase in MHSG inertial.

특히 MHSG 시스템 적용 마일드 하이브리드 차량에 적용된 양방향 텐셔너는 펜듈럼 타입의 더블 암 보기류 텐셔너로서, 이는 시동과 같은 급격한 각속도 변화시 벨트와 텐셔너의 상대운동이 충격 및 소음으로 발전됨에 기인된다.In particular, the two-way tensioner applied to the mild hybrid vehicle applied with the MHSG system is a pendulum-type double arm auxiliary tensioner, which is due to the fact that the relative motion of the belt and the tensioner develops into shock and noise when an abrupt change in angular velocity such as a start-up occurs.

이에 상기와 같은 점을 감안한 본 발명은 엔진의 냉시동시 스타터의 크랭킹 후 일정 엔진 회전수 이상에서 MHSG의 크랭킹 토크(cranking torque) 인가로 엔진 시동성을 향상시키고, 특히 MHSG의 크랭킹 토크가 엔진 크랭크(crank)와 보기류 벨트 시스템이 엔진 마찰(friction)을 이기고 회전하려는 시점과 연계됨으로써 보기류 벨트 슬립(slip) 약화와 함께 보기류 텐셔너의 충격 및 소음도 약화시켜주는 순차시동방식 엔진 냉시동을 구현하는 하이브리드 차량의 제공에 목적이 있다.Accordingly, the present invention in consideration of the above points improves engine startability by applying the cranking torque of the MHSG at a predetermined engine speed or more after the starter is cranked during cold start of the engine, and in particular, the cranking torque of the MHSG increases the engine The crank and auxiliary belt system overcomes engine friction and is linked with the timing to rotate, thereby weakening the auxiliary belt slip and reducing the impact and noise of the auxiliary tensioner. An object of the present invention is to provide a hybrid vehicle that implements the present invention.

상기와 같은 목적을 달성하기 위한 본 발명의 엔진 냉시동 방법은 엔진의 엔진 회전수와 냉각수온에 의한 엔진 냉시동 조건이 컨트롤러에 의해 판단되면, 스타터와 MHSG의 협조 제어가 적용된 순차적 MHSG 엔진시동 제어로 엔진 냉시동이 이루어지는 것을 특징으로 한다.The engine cold start method of the present invention for achieving the above object is a sequential MHSG engine start control to which the cooperative control between the starter and the MHSG is applied when the engine cold start condition according to the engine speed and the coolant temperature is determined by the controller. It is characterized in that the engine cold start is made.

바람직한 실시예로서, 상기 순차적 MHSG 엔진시동 제어는 보기류 시스템에 의한 상기 엔진의 엔진 마찰(friction)의 영향을 해소시켜준다.In a preferred embodiment, the sequential MHSG engine start control eliminates the effect of engine friction on the engine by the accessory system.

바람직한 실시예로서, 상기 엔진 회전수와 상기 냉각수온은 상기 엔진의 시동시 검출된다.In a preferred embodiment, the engine speed and the coolant temperature are detected when the engine is started.

바람직한 실시예로서, 상기 순차적 MHSG 엔진시동 제어는, (A) 상기 엔진 회전수와 상기 냉각수온이 상기 엔진 냉시동 조건으로 판단되는 단계, (B) 상기 엔진 냉시동 조건시 상기 스타터의 동작으로 상기 엔진의 시동이 이루어지는 단계, (C) 상기 스타터의 동작 후 상기 MHSG의 동작이 이루어져 상기 엔진에 대한 시동 완료가 이루어지는 단계로 수행된다.In a preferred embodiment, the sequential MHSG engine start control includes the steps of (A) determining the engine speed and the coolant temperature as the engine cold start condition, and (B) operating the starter under the engine cold start condition. A step of starting the engine, (C) the operation of the MHSG is performed after the operation of the starter, and the step of completing the starting of the engine is performed.

바람직한 실시예로서, 상기 스타터에 의한 상기 엔진의 시동은 상기 엔진의 스타터 엔진 크랭킹(cranking)으로 확인된다.In a preferred embodiment, the starting of the engine by the starter is confirmed by starter engine cranking of the engine.

바람직한 실시예로서, 상기 MHSG의 동작전 상기 엔진의 엔진회전수 검출이 이루어지고, 상기 엔진회전수 검출에 의한 엔진회전수 크기로 상기 MHSG의 동작 여부가 판단된다. 상기 MHSG를 동작시켜주는 상기 엔진회전수 크기는 설정값 이상이다. 상기 MHSG의 동작이 이루어지면 상기 스타터의 동작이 중지된다.As a preferred embodiment, the engine speed of the engine is detected before the operation of the MHSG, and whether or not the MHSG operates is determined based on the engine speed by detecting the engine speed. The engine speed for operating the MHSG is greater than or equal to a set value. When the operation of the MHSG is made, the operation of the starter is stopped.

바람직한 실시예로서, 상기 엔진 회전수와 상기 냉각수온이 상기 엔진 냉시동 조건에 적합하지 않은 경우 상기 엔진은 MHSG 엔진시동 제어로 시동되고, 상기 MHSG 엔진시동 제어는 상기 MHSG의 단독 제어로 상기 엔진이 제어된다.In a preferred embodiment, when the engine speed and the coolant temperature are not suitable for the engine cold start condition, the engine is started by MHSG engine start control, and the MHSG engine start control is performed by the MHSG alone. Controlled.

바람직한 실시예로서, 상기 엔진 냉시동 조건의 부적합에는 상기 엔진의 ISG(Idle Stop & GO) ON/OFF 동작이 포함된다.In a preferred embodiment, the failure of the engine cold start condition includes an ISG (Idle Stop & GO) ON/OFF operation of the engine.

그리고 상기와 같은 목적을 달성하기 위한 본 발명의 하이브리드 차량은 엔진; 상기 엔진의 시동에 따른 컨트롤러의 엔진 회전수와 냉각수온의 검출로 판단된 엔진 냉시동 조건시 스타터의 동작으로 엔진의 시동이 이루어진 후 엔진의 특정 엔진회전수 이상에서 스타터 중지에 이은 MHSG의 동작으로 엔진의 시동을 완료하는 컨트롤러; 가 포함되는 것을 특징으로 한다.And the hybrid vehicle of the present invention for achieving the above object includes an engine; In the case of engine cold start condition determined by the detection of the engine speed and coolant temperature of the controller according to the engine starting, the engine is started by the starter operation, and then the starter stops at a specific engine speed or more. a controller that completes the starting of the engine; characterized in that it is included.

바람직한 실시예로서, 상기 MHSG는 48V 배터리 및 LDC와 함께 48V MHSG 시스템을 구성한다.In a preferred embodiment, the MHSG constitutes a 48V MHSG system together with a 48V battery and LDC.

바람직한 실시예로서, 상기 컨트롤러는 시동토크 맵을 구비하고, 상기 시동토크 맵에는 상기 엔진 냉시동시 상기 스타터의 엔진 크랭킹과 상기 MHSG의 엔진 크랭킹의 각 출력 값이 데이터로 구축된다. 상기 컨트롤러는 차량탑재센서에서 검출한 상기 엔진 회전수와 상기 냉각수온을 입력 데이터로 처리하는 입력부, 상기 엔진 회전수와 상기 냉각수온에 기반되어 상기 냉시동 조건 신호를 출력하는 냉시동 출력부, 냉시동 조건 출력 신호로 상기 스타터를 제어하면서 상기 엔진의 엔진 회전수를 검출하는 냉시동 제어부, 상기 엔진의 특정한 엔진 회전수의 조건에서 상기 MHSG를 제어하는 MHSG 제어부로 구성된다.As a preferred embodiment, the controller includes a starting torque map, and the starting torque map is constructed as data of the engine cranking of the starter and the engine cranking of the MHSG when the engine is cold started. The controller includes an input unit that processes the engine speed and the coolant temperature detected by the vehicle-mounted sensor as input data, a cold start output unit that outputs the cold start condition signal based on the engine speed and the coolant temperature, It includes a cold start control unit that detects the engine rotation speed of the engine while controlling the starter with a starting condition output signal, and a MHSG control unit that controls the MHSG under the condition of a specific engine rotation speed of the engine.

이러한 본 발명의 하이브리드 차량은 순차시동방식 엔진 냉시동 제어가 구현됨으로써 하기와 같은 작용 및 효과를 구현한다.The hybrid vehicle of the present invention implements the following actions and effects by implementing the sequential start method engine cold start control.

첫째, 마일드 하이브리드 차량에서 스타터로 만 이루어지던 엔진 냉시동 대비 MHSG 이너셔 증가로 인한 시동성 저하가 방지된다. 둘째, MHSG 사용 불가이던 엔진 냉시동시 대비 보기류 벨트 슬립 과다에 의한 동력 손실 및 소음 발생을 저하시킴으로써 보기류 벨트 내구력 저하로 발전되지 않는다. 셋째, 엔진 냉시동시 보기류 시스템의 급격한 각속도 변화로 발생되는 벨트와 텐셔너의 상대운동이 약화됨으로써 펜듈럼 타입의 더블 암 보기류 텐셔너의 충격 및 소음 발생이 크게 약화된다. 넷째, 엔진 냉시동성 개선과 보기류 벨트 충격과 소음 약화를 통해 48V MHSG 시스템이 적용된 마일드 하이브리드 차량의 상품성이 크게 향상된다. First, compared to engine cold starting, which was performed only with the starter in mild hybrid vehicles, the decrease in startability due to increased MHSG inertia is prevented. Second, it does not develop into a decrease in the durability of the accessory belt by reducing the power loss and noise generation due to excessive belt slippage compared to the engine cold start when the MHSG was not available. Third, the relative motion between the belt and the tensioner caused by a sudden change in the angular velocity of the accessory system during cold engine start is weakened, thereby greatly weakening the impact and noise generation of the pendulum-type double arm accessory tensioner. Fourth, the marketability of mild hybrid vehicles to which the 48V MHSG system is applied is greatly improved by improving engine cold startability and reducing the impact and noise of auxiliary belts.

도 1은 본 발명에 따른 순차시동방식 엔진 냉시동 방법의 순서도이고, 도 2는 본 발명에 따른 순차시동방식 엔진 냉시동 제어가 적용된 마일드 하이브리드 차량의 예이며, 도 3은 본 발명에 따른 컨트롤러의 구성도이고, 도 4는 본 발명에 따른 순차시동방식 엔진 냉시동 제어의 효과가 예시된 실험을 통한 엔진시동 프로파일 선도의 예이다.1 is a flowchart of a method for cold starting a sequential start engine according to the present invention, FIG. 2 is an example of a mild hybrid vehicle to which a sequential start engine cold start control according to the present invention is applied, and FIG. 3 is a controller according to the present invention It is a configuration diagram, and FIG. 4 is an example of an engine starting profile diagram through an experiment exemplifying the effect of the sequential starting method engine cold start control according to the present invention.

이하 본 발명의 실시 예를 첨부된 예시도면을 참조로 상세히 설명하며, 이러한 실시 예는 일례로서 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 여러 가지 상이한 형태로 구현될 수 있으므로, 여기에서 설명하는 실시 예에 한정되지 않는다.Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying illustrative drawings, and since these embodiments are examples, those of ordinary skill in the art to which the present invention pertains may be implemented in various different forms. It is not limited to the embodiment.

도 1을 참조하면, 엔진 냉시동 방법은 검출된 엔진상태정보(S10)로부터 엔진 냉시동 조건 판단(S20)에 기반된 순차적 MHSG 엔진시동(S30~S80)과 MHSG 엔진시동(S90)으로 구분되어 엔진시동완료(S100)가 이루어진다.1, the engine cold start method is divided into sequential MHSG engine start (S30 to S80) and MHSG engine start (S90) based on engine cold start condition determination (S20) from detected engine state information (S10). Engine start completion (S100) is made.

그러므로 상기 냉시동 방법은 하이브리드 엔진의 냉시동을 스타터와 MHSG의 순차적 사용으로 시동이 이루어짐으로써 시동성 개선 및 소음 저감이 가능한 로직이다. 특히 상기 냉시동 방법은 엔진 시동성 향상이 이루어지는 과정에서 보기류 벨트 슬립(slip)을 작게 함으로써 48V 마일드 하이브리드 차량의 엔진 냉시동시 보기류 텐셔너에서 발생될 수 있던 충격 및 소음 현상을 해소한다.Therefore, the cold start method is a logic capable of improving startability and reducing noise by starting the hybrid engine by sequentially using the starter and the MHSG. In particular, the cold start method reduces the slip of the accessory belt in the process of improving engine startability, thereby resolving the shock and noise phenomenon that may occur in the tensioner of the accessory during the engine cold start of the 48V mild hybrid vehicle.

도 2를 참조하면, 차량(1)은 엔진(2), 보기류 시스템(3), 차량탑재센서(4), MHSG(Mild Hybrid Starter & Generator)(7), 스타터(9), 컨트롤러(10)를 포함한다.Referring to FIG. 2 , the vehicle 1 includes an engine 2 , an auxiliary system 3 , a vehicle-mounted sensor 4 , a Mild Hybrid Starter & Generator (MHSG) 7 , a starter 9 , and a controller 10 ) is included.

구체적으로 상기 엔진(2)은 내연기관으로 모터(도시되지 않음)와 함께 차량(1)의 동력을 발생시킨다. 상기 보기류 시스템(3)은 풀리와 풀리를 연결한 벨트 등으로 구성되어 엔진(2)의 크랭크 샤프트 회전력을 외부로 인출한다. 상기 차량탑재센서(4)는 엔진 회전수(Revolution Per Minute)와 냉각수온이 포함된 엔진관련 검출 데이터 등을 컨트롤러(10)로 전송한다. 상기 MHSG(7)는 48V 배터리 및 LDC(Low Voltage DC/DC Converter)와 함께 48V MHSG 시스템을 구성하고, MHSG 크랭킹(cranking)으로 엔진(2)을 시동하여준다. 상기 스타터(9)는 스타터 크랭킹(cranking)으로 엔진(2)을 시동하여준다.Specifically, the engine 2 is an internal combustion engine and generates power for the vehicle 1 together with a motor (not shown). The auxiliary system 3 is composed of a pulley and a belt connected to the pulley, and draws out the crankshaft rotational force of the engine 2 to the outside. The vehicle-mounted sensor 4 transmits engine-related detection data including engine revolutions per minute and coolant temperature to the controller 10 . The MHSG 7 forms a 48V MHSG system together with a 48V battery and an LDC (Low Voltage DC/DC Converter), and starts the engine 2 by MHSG cranking. The starter 9 starts the engine 2 by starter cranking.

그러므로 상기 차량(1)은 동력발생수단으로 엔진(2)과 모터(도시되지 않음)를 포함하는 하이브리드 차량이면서 스타터(9)와 함께 MHSG(7)에 의한 엔진시동이 이루어지는 마일드 하이브리드 차량이다.Therefore, the vehicle 1 is a hybrid vehicle including an engine 2 and a motor (not shown) as power generating means, and is a mild hybrid vehicle in which the engine is started by the MHSG 7 together with the starter 9 .

구체적으로 상기 컨트롤러(10)는 냉시동시 스타터(9)의 엔진 크랭킹(cranking)에 기반된 시동 토크맵의 한계성을 보기류 시스템(3)의 엔진 마찰(friction)을 제어인자로 한 MHSG(7)의 MHSG 크랭킹(cranking)으로 엔진(2)을 시동하여준다. 이를 위해 상기 컨트롤러(10)는 시동토크 맵(10-1)을 구비하고, 상기 시동토크 맵(10-1)은 보기류 시스템(3)의 풀리와 벨트 별 엔진 마찰 제어인자와 스타터(9) 및 MHSG(7)의 각 엔진 크랭킹(cranking)에 대한 매칭 데이터를 포함한다. 일례로 상기 매칭 데이터는 엔진(2)의 냉시동시 MHSG 크랭킹 토크(cranking torque)와 엔진 회전수 및 보기류 벨트 슬립을 적용한다.Specifically, the controller 10 controls the MHSG 7 using engine friction of the accessory system 3 as a control factor to limit the starting torque map based on engine cranking of the starter 9 during cold start. ) by MHSG cranking to start the engine (2). To this end, the controller 10 includes a starting torque map 10-1, and the starting torque map 10-1 is an engine friction control factor for each pulley and belt of the auxiliary system 3 and a starter 9 and matching data for each engine cranking of the MHSG 7 . For example, the matching data applies the MHSG cranking torque, engine speed, and accessory belt slip when the engine 2 is cold-started.

도 3을 참조하면, 상기 컨트롤러(10)는 로직 또는 하드웨어를 구성요소로 포함하고, 입력부(11), 냉시동 출력부(13), 냉시동 제어부(15), MHSG 제어부(17)로 구분된다.Referring to FIG. 3 , the controller 10 includes logic or hardware as components, and is divided into an input unit 11 , a cold start output unit 13 , a cold start control unit 15 , and an MHSG control unit 17 . .

이하 도 1의 순차시동방식 냉시동 방법을 도 2 내지 도 4를 참조로 상세히 설명한다. 이 경우 제어 주체는 냉시동 맵(10-1)과 연계된 컨트롤러(10)이고, 제어대상은 MHSG(7)와 스타터(9)이다.Hereinafter, the sequential start method of FIG. 1 will be described in detail with reference to FIGS. 2 to 4 . In this case, the controlling subject is the controller 10 associated with the cold start map 10 - 1 , and the controlling subject is the MHSG 7 and the starter 9 .

컨트롤러(10)는 엔진(2)의 시동이 검출(예, 이그니션 ON)되면, S10의 엔진상태정보 검출을 통해 S20의 엔진 냉시동 조건을 판단한다.When the start of the engine 2 is detected (eg, the ignition is ON), the controller 10 determines the engine cold start condition of S20 through the detection of the engine state information of S10 .

도 2와 도 3을 참조하면, 컨트롤러(10)는 입력부(11)를 통해 차량탑재센서(4)에서 검출한 엔진 회전수와 냉각수온을 입력 데이터로 처리한다. 그러면 냉시동 출력부(13)는 특정한 냉각수온으로 엔진(2)의 냉시동 조건을 확인하면서 특정한 엔진 회전수로 순차적 MHSG 엔진시동토크와 MHSG 엔진시동토크를 구분한다. 이 경우 상기 순차적 MHSG 엔진시동토크와 상기 MHSG 엔진시동토크의 구분이 이루어짐은 엔진(2)의 ISG(Idle Stop & GO) ON/OFF 동작이 고려됨에 따른 것으로, 만약 입력 데이터로 처리되는 엔진 회전수와 냉각수온이 엔진(2)의 완전 정지 후 검출값인 경우 엔진 냉시동 조건이므로 MHSG 엔진시동토크의 신호는 발생되지 않을 수 있다. 일례로 상기 특정한 냉각수온은 약 60℃ 이하로 상기 특정한 엔진 회전수는 약 10RPM 미만으로 적용될 수 있으나 이러한 특정 수치는 차량(1)의 종류에 따라 다르게 설정된다.2 and 3 , the controller 10 processes the engine rotation speed and coolant temperature detected by the vehicle-mounted sensor 4 through the input unit 11 as input data. Then, the cold start output unit 13 separates the MHSG engine starting torque and the MHSG engine starting torque sequentially at a specific engine revolution number while checking the cold starting condition of the engine 2 with a specific coolant temperature. In this case, the distinction between the sequential MHSG engine starting torque and the MHSG engine starting torque is made because the ISG (Idle Stop & GO) ON/OFF operation of the engine 2 is considered, and if the engine rotation speed processed as input data When the and coolant temperature are the detected values after the engine 2 is completely stopped, the MHSG engine starting torque signal may not be generated because it is an engine cold start condition. For example, the specific coolant temperature may be about 60° C. or less and the specific engine rotation speed may be applied to less than about 10 RPM, but this specific value is set differently depending on the type of vehicle 1 .

그 결과 컨트롤러(10)는 엔진 냉시동 조건시 순차적 MHSG 엔진시동의 시동토크 신호를 발생하고, 순차적 MHSG 엔진시동으로 MHSG(7)와 스타터(9)를 각각 제어한다.As a result, the controller 10 generates a starting torque signal for sequential MHSG engine start under the engine cold start condition, and controls the MHSG 7 and the starter 9 with sequential MHSG engine start, respectively.

컨트롤러(10)는 순차적 MHSG 엔진시동을 S30의 시동토크 맵 데이터 검출 단계, S40의 스타터 엔진시동 단계, S50 내지 S80에 따른 MHSG 엔진시동 단계를 수행한다.The controller 10 sequentially starts the MHSG engine by detecting the starting torque map data in S30, starting the starter engine in S40, and starting the MHSG engine according to S50 to S80.

도 2와 도 3을 참조하면, 컨트롤러(10)는 냉시동 제어부(15)를 통해 순차적 MHSG 엔진시동토크를 제어한다. 상기 냉시동 제어부(15)는 S30의 시동토크 맵 데이터 검출 단계에서 냉시동 출력부(13)의 순차적 MHSG 엔진시동토크 신호를 입력받고, S40의 스타터 엔진시동 단계에서 스타터(9)로 신호를 출력하여 스타터(9)를 동작시켜준다. 그 결과 엔진(2)은 스타터(9)를 통해 냉시동이 이루어진다.2 and 3 , the controller 10 sequentially controls the MHSG engine starting torque through the cold start control unit 15 . The cold start control unit 15 receives the sequential MHSG engine starting torque signal from the cold start output unit 13 in the starting torque map data detection step of S30, and outputs the signal to the starter 9 in the starter engine starting step of S40. to operate the starter (9). As a result, the engine 2 is cold-started through the starter 9 .

이어 컨트롤러(10)는 상기 MHSG 엔진시동을 S50의 엔진 크랭킹 검출 단계, S60의 엔진회전수 판단 단계, S70의 MHSG 크랭킹 토크 산출 단계, S80의 스타터 중지 및 MHSG 구동 단계로 수행한다. 이 경우 S60의 엔진회전수 판단 단계는 하기 식을 적용한다.Then, the controller 10 performs the MHSG engine starting in the engine cranking detection step S50, the engine rotation speed determination step S60, the MHSG cranking torque calculation step S70, the starter stop and the MHSG driving step S80. In this case, the following equation is applied to the step of determining the engine speed of S60.

MHSG 엔진회전수 판단 식 : 엔진회전수 > AMHSG engine speed judgment formula: engine speed > A

여기서 “엔진회전수”는 엔진(2)의 냉시동에 이은 차량탑재센서(4)의 검출 엔진회전수이고, “A"는 설정 엔진회전수로 약 10RPM으로 설정된다.Here, "engine rotation speed" is the engine rotation speed detected by the vehicle-mounted sensor 4 following the cold start of the engine 2, and "A" is set to about 10 RPM as the set engine rotation speed.

도 2와 도 3을 참조하면, 컨트롤러(10)의 냉시동 출력부(13)는 S50의 엔진 크랭킹 검출 단계에서 냉시동 출력부(13)에서 입력부(11)로 입력된 차량탑재센서(4)의 엔진 회전수로 엔진 크랭킹을 검출하고, 냉시동 제어부(15)에서 엔진(2)의 스타터 크랭킹후 검출된 엔진 회전수를 이용하여 S60의 엔진회전수 판단 단계에서 특정 엔진 회전수인 10RPM과 비교한다. 이어 S60의 엔진회전수 판단 단계에서 특정 엔진 회전수가 10RPM 이상인 경우 S70의 MHSG 크렝킹 토크 산출 단계에서 100RPM 이상의 엔진 회전수를 위한 MHSG(7)의 엔진 크랭킹 토크를 산출한 후 MHSG 제어부(17)로 MHSG 구동신호를 출력한다. 그러면 컨트롤러(10)의 MHSG 제어부(17)는 S80의 스타터 중지 및 MHSG 구동 단계에서 MHSG 구동신호로 MHSG(7)를 동작시켜준다.2 and 3 , the cold start output unit 13 of the controller 10 is a vehicle-mounted sensor 4 inputted from the cold start output unit 13 to the input unit 11 in the engine cranking detection step of S50. ) detects engine cranking at the engine speed of , and the cold start control unit 15 uses the detected engine speed after starter cranking of the engine 2 to determine the specific engine speed in the engine speed determination step of S60. Compare with 10 RPM. Next, if the specific engine speed is 10 RPM or more in the engine speed determination step of S60, the MHSG cranking torque calculation step of S70 calculates the engine cranking torque of the MHSG 7 for the engine speed of 100 RPM or more, and then the MHSG control unit 17 to output the MHSG driving signal. Then, the MHSG control unit 17 of the controller 10 operates the MHSG 7 with the MHSG driving signal in the starter stop and MHSG driving steps of S80.

그 결과 엔진(2)은 스타터(9)의 엔진 크랭킹 토크와 이에 이어진 MHSG(7)의 엔진 크랭킹 토크로 엔진 냉시동 조건에 맞춘 시동이 이루어진다.As a result, the engine 2 is started according to the engine cold start condition with the engine cranking torque of the starter 9 and the engine cranking torque of the MHSG 7 following it.

이어 컨트롤러(10)는 S00의 엔진시동완료 단계에서 순차적 MHSG 엔진시동을 종료하고, 이후에 이어지는 엔진 제어 로직을 통해 엔진(2)을 제어한다.Then, the controller 10 terminates the sequential MHSG engine start in the engine start completion step of S00, and then controls the engine 2 through the subsequent engine control logic.

한편 S90의 MHSG 엔진시동은 S20의 엔진 냉시동 조건 판단에서 MHSG 엔진시동토크 신호에 의한 엔진(2)의 시동으로서, 이는 스타터(9)의 개입이 없는 MHSG(7)에 의한 엔진(2)의 시동을 의미한다. 이 경우 엔진(2)의 ISG(Idle Stop & GO) ON/OFF 동작은 엔진 냉시동의 부적합 조건으로 적용됨으로써 엔진(2)의 ISG OFF 후 ISG ON시 MHSG 엔진시동이 적용된 엔진 시동이 이루어진다.On the other hand, the MHSG engine start of S90 is the start of the engine 2 by the MHSG engine starting torque signal in the engine cold start condition determination of S20, which is the engine 2 by the MHSG 7 without the intervention of the starter 9. means start. In this case, the ISG (Idle Stop & GO) ON/OFF operation of the engine 2 is applied as an unsuitable condition for engine cold starting, so that the MHSG engine start is applied when the ISG is turned on after the ISG OFF of the engine 2 is performed.

한편 도 4를 참조하면, MHSG(7)의 엔진 시동 프로파일과 스타터(9)의 엔진시동 프로파일의 차이로부터 MHSG(7)를 이용한 엔진 시동은 엔진 초폭에 의한 변동(fluctuation) 구간을 빠르게 통과함이 예시된다. 그 결과 상기 엔진시동 프로파일는 스타터(9) 단독의 엔진 냉시동 대비 스타터(9)와 MHSG(7)의 연계에 의한 엔진 냉시동은 엔진(2)의 냉시동성 개선과 함께 아이들 영역의 신속한 진입으로 시동시간도 단축되고, 특히 냉시동에 따른 보기류 시스템(4)의보기류 벨트 안정성이 크게 개선됨을 증명된다.On the other hand, referring to FIG. 4 , from the difference between the engine starting profile of the MHSG 7 and the engine starting profile of the starter 9 , the engine starting using the MHSG 7 quickly passes through a fluctuation section due to the initial explosion of the engine. is exemplified As a result, the engine starting profile shows that, compared to the engine cold start of the starter 9 alone, the engine cold start by the linkage of the starter 9 and the MHSG 7 starts with the rapid entry into the idle area along with the improvement of the cold start performance of the engine 2 . It is also proven that the time is shortened and, in particular, the stability of the accessory belt of the accessory system 4 is greatly improved according to the cold start.

전술된 바와 같이, 본 실시예에 따른 하이브리드 차량의 순차시동방식 엔진 냉시동 방법은 엔진(2)의 시동에 따른 컨트롤러(10)의 엔진 회전수와 냉각수온의 검출로 판단된 엔진 냉시동 조건시 스타터(9)의 동작으로 엔진(2)의 시동이 이루어진 후 엔진(2)의 특정 엔진회전수 이상에서 스타터(9) 중지에 이은 MHSG(7)의 동작으로 엔진(2)의 시동을 완료함으로써 스타터(9)에 더한 MHSG(7)의 크랭킹 토크(cranking torque)인가로 엔진 시동성이 향상되고, 특히 MHSG의 크랭킹 토크가 엔진 크랭크(crank)와 보기류 벨트 시스템이 엔진 마찰(friction)을 이기고 회전하려는 시점과 연계됨으로써 엔진(2)에 적용된 보기류 시스템(4)의 벨트 슬립(slip) 약화와 함께 보기류 텐셔너의 충격 및 소음도 약화된다.As described above, in the sequential start method engine cold start method of the hybrid vehicle according to the present embodiment, when the engine cold start condition is determined by the detection of the engine speed and the coolant temperature of the controller 10 according to the start of the engine 2 , After the engine 2 is started by the operation of the starter 9, the start of the engine 2 is completed by the operation of the MHSG 7 following the stop of the starter 9 at a specific engine speed of the engine 2 Engine startability is improved by applying the cranking torque of the MHSG 7 in addition to the starter 9. In particular, the cranking torque of the MHSG increases the engine friction between the engine crank and the auxiliary belt system. The impact and noise of the accessory tensioner are also weakened along with weakening of the belt slip of the accessory system 4 applied to the engine 2 by being associated with the timing of winning and turning.

1 : 차량 2 : 엔진
3 : 보기류 시스템 4 : 차량탑재센서
7 : MHSG(Mild Hybrid Starter & Generator)
9 : 스타터 10 : 컨트롤러
10-1 : 시동토크 맵 11 : 입력부
13 : 냉시동 출력부 15 : 냉시동 제어부
17 : MHSG 제어부
1: vehicle 2: engine
3: Auxiliary system 4: Vehicle-mounted sensor
7: MHSG (Mild Hybrid Starter & Generator)
9: starter 10: controller
10-1: starting torque map 11: input part
13: cold start output unit 15: cold start control unit
17: MHSG control unit

Claims (14)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 엔진;
상기 엔진의 시동에 따른 엔진 회전수와 냉각수온의 검출로 판단된 엔진 냉시동 조건시 스타터의 동작으로 엔진의 시동이 이루어진 후 엔진의 특정 엔진회전수 이상에서 스타터 중지에 이은 MHSG의 동작으로 엔진의 엔진 냉시동을 완료하는 컨트롤러;가 포함되고;
상기 컨트롤러는 시동토크 맵을 구비하고, 상기 시동토크 맵에는 상기 엔진 냉시동시 상기 스타터의 엔진 크랭킹(cranking)과 상기 MHSG의 엔진 크랭킹(cranking)의 각 출력 값이 데이터로 구축되는 것을 특징으로 하는 하이브리드 차량.
engine;
In the case of engine cold start condition determined by the detection of engine speed and coolant temperature according to engine starting, the engine is started by the starter operation, and then the engine is started by the MHSG operation following the starter stop at a specific engine speed or higher. A controller that completes the engine cold start; is included;
The controller includes a starting torque map, and each output value of engine cranking of the starter and engine cranking of the MHSG is constructed as data in the starting torque map when the engine is cold started hybrid vehicle.
청구항 11에 있어서, 상기 MHSG는 48V 배터리 및 LDC(Low Voltage DC/DC Converter)와 함께 48V MHSG 시스템을 구성하는 것을 특징으로 하는 하이브리드 차량.
The hybrid vehicle of claim 11 , wherein the MHSG constitutes a 48V MHSG system together with a 48V battery and a Low Voltage DC/DC Converter (LDC).
청구항 11에 있어서, 상기 컨트롤러는 엔진 시동시 검출된 상기 엔진 회전수와 상기 냉각수온에서 보기류 시스템에 의한 엔진 마찰 영향 해소를 위하여 엔진 냉시동 시 상기 스타터와 상기 MHSG의 협조 제어를 수행하고, 상기 엔진 회전수와 상기 냉각수온을 엔진 냉시동 조건으로 하여 상기 스타터의 엔진 시동 후 스타터 엔진 크랭킹으로 엔진 시동 확인 상태에서 검출된 엔진회전수 크기로 MHSG 동작을 판단하여 설정값 이상의 상기 엔진회전수 크기에서 스타터 중지와 함께 상기 MHSG를 구동하며, 반면 ISG ON/OFF 동작을 포함해 판단된 냉시동 조건의 미 충족 시 MHSG 단독 제어로 엔진 제어를 수행하는 것을 특징으로 하는 하이브리드 차량.
The method according to claim 11, wherein the controller performs cooperative control of the starter and the MHSG when the engine is cold starting in order to eliminate the effect of engine friction caused by the auxiliary system at the engine rotation speed and the coolant temperature detected when the engine is started, Using the engine speed and the coolant temperature as engine cold start conditions, after starting the engine of the starter, the MHSG operation is determined based on the engine speed detected in the engine start confirmation state by starter engine cranking, and the engine speed greater than or equal to the set value The hybrid vehicle, characterized in that the MHSG is driven together with the starter stop in the MHSG, and the engine control is performed by the MHSG alone control when the determined cold start condition including the ISG ON/OFF operation is not satisfied.
청구항 11에 있어서, 상기 컨트롤러는 입력부, 냉시동 출력부, 냉시동 제어부, MHSG 제어부를 포함하고;
상기 입력부는 차량탑재센서에서 검출한 상기 엔진 회전수와 상기 냉각수온을 입력 데이터로 처리하고, 상기 냉시동 출력부는 상기 엔진 회전수와 상기 냉각수온에 기반되어 냉시동 조건 신호를 출력하며, 상기 냉시동 제어부는 냉시동 조건 출력 신호로 상기 스타터를 제어하면서 상기 엔진의 엔진 회전수를 검출하고, 상기 MHSG 제어부는 상기 엔진의 특정한 엔진 회전수의 조건에서 상기 MHSG를 제어하는 것을 특징으로 하는 하이브리드 차량.
The method according to claim 11, wherein the controller includes an input unit, a cold start output unit, a cold start control unit, and an MHSG control unit;
The input unit processes the engine speed and the coolant temperature detected by the vehicle-mounted sensor as input data, and the cold start output unit outputs a cold start condition signal based on the engine speed and the coolant temperature. The hybrid vehicle according to claim 1, wherein the start control unit detects the engine speed of the engine while controlling the starter with the cold start condition output signal, and the MHSG control unit controls the MHSG under the condition of a specific engine speed of the engine.
KR1020170139985A 2017-10-26 2017-10-26 Hybrid Electric Vehicle for Sequential Start type Engine Cold Start Active KR102370924B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170139985A KR102370924B1 (en) 2017-10-26 2017-10-26 Hybrid Electric Vehicle for Sequential Start type Engine Cold Start

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170139985A KR102370924B1 (en) 2017-10-26 2017-10-26 Hybrid Electric Vehicle for Sequential Start type Engine Cold Start

Publications (2)

Publication Number Publication Date
KR20190046323A KR20190046323A (en) 2019-05-07
KR102370924B1 true KR102370924B1 (en) 2022-03-07

Family

ID=66656148

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170139985A Active KR102370924B1 (en) 2017-10-26 2017-10-26 Hybrid Electric Vehicle for Sequential Start type Engine Cold Start

Country Status (1)

Country Link
KR (1) KR102370924B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11619190B2 (en) 2020-08-03 2023-04-04 Ford Global Technologies, Llc Methods and system for estimating engine torque at low temperatures
CN113246960B (en) * 2021-05-19 2023-03-21 上汽通用五菱汽车股份有限公司 Engine cold start method, automobile and computer readable storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003148309A (en) 2001-11-09 2003-05-21 Nissan Motor Co Ltd Vehicular engine automatic stop-restarter
JP2007246030A (en) * 2006-03-17 2007-09-27 Fuji Heavy Ind Ltd Engine starter for hybrid vehicle
JP2011219050A (en) 2010-04-14 2011-11-04 Mitsubishi Electric Corp Apparatus for controlling engine of hybrid vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10060835A1 (en) * 2000-12-07 2002-06-13 Ina Schaeffler Kg Starting unit for an internal combustion engine
KR20080019815A (en) * 2006-08-29 2008-03-05 현대자동차주식회사 Cold start mechanism and method of hybrid vehicle
KR20100063308A (en) 2008-12-03 2010-06-11 현대자동차주식회사 Commercial mild hybrid vehicle
KR20170067523A (en) * 2015-12-08 2017-06-16 현대자동차주식회사 Apparatus for controlling mild hybrid vehicle and method using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003148309A (en) 2001-11-09 2003-05-21 Nissan Motor Co Ltd Vehicular engine automatic stop-restarter
JP2007246030A (en) * 2006-03-17 2007-09-27 Fuji Heavy Ind Ltd Engine starter for hybrid vehicle
JP2011219050A (en) 2010-04-14 2011-11-04 Mitsubishi Electric Corp Apparatus for controlling engine of hybrid vehicle

Also Published As

Publication number Publication date
KR20190046323A (en) 2019-05-07

Similar Documents

Publication Publication Date Title
JP3815441B2 (en) Internal combustion engine stop / start control device
CN106014745B (en) The starting device of mobile engine
JP2009167920A (en) Start control device
JP4666286B2 (en) Engine rotation stop control device
JP4428308B2 (en) Engine control device
JP5747991B2 (en) vehicle
JP2008215182A (en) Engine revolution stop control device
JP4451468B2 (en) How to start the engine
JP5929342B2 (en) Vehicle start control device
JP5247554B2 (en) Engine start control device
KR102370924B1 (en) Hybrid Electric Vehicle for Sequential Start type Engine Cold Start
JP5075145B2 (en) Control device for internal combustion engine
JP6112142B2 (en) Engine start control system
JP2018105200A (en) Vehicle drive system
WO2017208975A1 (en) Restarting control device
CN110700956B (en) Engine ignition control method and device
JP4057838B2 (en) How to start the engine
JP6662162B2 (en) Control device for internal combustion engine
JP7433577B2 (en) Vehicle vibration damping control device
JP2016070144A (en) Control device for internal combustion engine
JP7640290B2 (en) Idling stop control device
KR102463457B1 (en) ISG Ignition Control Method and Idle Stop and Go System thereof
JP5205494B2 (en) Vehicle control device
JP6881239B2 (en) Internal combustion engine control device
JP2012082698A (en) Engine revolution stop control device

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20171026

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20200928

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20171026

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20210902

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20220110

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20220302

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20220303

End annual number: 3

Start annual number: 1

PG1601 Publication of registration