[go: up one dir, main page]

KR102366555B1 - 핵성장 지연을 이용한 영역 선택적 박막 형성 방법 - Google Patents

핵성장 지연을 이용한 영역 선택적 박막 형성 방법 Download PDF

Info

Publication number
KR102366555B1
KR102366555B1 KR1020210000980A KR20210000980A KR102366555B1 KR 102366555 B1 KR102366555 B1 KR 102366555B1 KR 1020210000980 A KR1020210000980 A KR 1020210000980A KR 20210000980 A KR20210000980 A KR 20210000980A KR 102366555 B1 KR102366555 B1 KR 102366555B1
Authority
KR
South Korea
Prior art keywords
carbon atoms
group
formula
chamber
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020210000980A
Other languages
English (en)
Inventor
김재민
김하나
최웅진
한지연
정주환
조현식
Original Assignee
주식회사 이지티엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이지티엠 filed Critical 주식회사 이지티엠
Priority to KR1020210000980A priority Critical patent/KR102366555B1/ko
Priority to JP2023540967A priority patent/JP7619683B2/ja
Priority to CN202280009152.0A priority patent/CN116829761A/zh
Priority to TW111100461A priority patent/TWI805171B/zh
Priority to US18/260,402 priority patent/US12252781B2/en
Priority to PCT/KR2022/000171 priority patent/WO2022149854A1/ko
Application granted granted Critical
Publication of KR102366555B1 publication Critical patent/KR102366555B1/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Magnetic Heads (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

본 발명의 일 실시예에 의하면, 영역 선택적 박막 형성 방법은, 핵성장 지연제를 기판이 놓여진 챔버의 내부에 공급하여, 상기 기판의 비성장영역에 흡착시키는 핵성장 지연제 공급 단계; 상기 챔버의 내부를 퍼지하는 단계; 상기 챔버의 내부에 전구체를 공급하여, 상기 기판의 성장영역에 흡착시키는 전구체 공급 단계; 상기 챔버의 내부를 퍼지하는 단계; 그리고 상기 챔버의 내부에 반응 물질을 공급하여 흡착된 상기 전구체와 반응하고 박막을 형성하는 박막 형성 단계를 포함한다.

Description

핵성장 지연을 이용한 영역 선택적 박막 형성 방법{METHOD OF SELECTIVE FORMATION OF THIN FILM}
본 발명은 박막 형성 방법에 관한 것으로, 더욱 상세하게는 핵성장 지연을 이용한 영역 선택적인 박막의 형성 방법에 관한 것이다.
반도체 소자의 패터닝은 다양한 물질층들의 배열과 리소그래피 또는 식각 공정을 이용하여 제조된다. 그러나 지난 수십년간 소자의 미세화가 가속화되었고 요구되는 패턴의 사이즈가 나노미터(nm) 수준으로 줄어 나노패턴 형성을 위해서는 비용 및 시간이 매우 증가하게 되었다. 또한, 후속 공정을 수행할 필요 없이 자체 정렬된(Self-alligned) 구조를 얻을 수 있는 선택적 증착 공정의 개발이 요구되고 있다.
한국공개특허공보 2007-0015958호(2007.02.06.)
본 발명의 목적은 영역에 따른 선택이 가능한 박막 형성 방법을 제공하는 데 있다.
본 발명의 또 다른 목적들은 다음의 상세한 설명으로부터 보다 명확해질 것이다.
본 발명의 일 실시예에 의하면, 영역 선택적 박막 형성 방법은, 핵성장 지연제를 기판이 놓여진 챔버의 내부에 공급하여, 상기 기판의 비성장영역에 흡착시키는 핵성장 지연제 공급 단계; 상기 챔버의 내부를 퍼지하는 단계; 상기 챔버의 내부에 전구체를 공급하여, 상기 기판의 성장영역에 흡착시키는 전구체 공급 단계; 상기 챔버의 내부를 퍼지하는 단계; 그리고 상기 챔버의 내부에 반응 물질을 공급하여 흡착된 상기 전구체와 반응하고 박막을 형성하는 박막 형성 단계를 포함한다.
상기 핵성장 지연제는 하기 <화학식 1>로 표시될 수 있다.
<화학식 1>
Figure 112021001057145-pat00001
상기 <화학식 1>에서, n=1,2이며, R은 수소 원자, 탄소수 1 내지 5의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.
상기 핵성장 지연제는 하기 <화학식 2>로 표시될 수 있다.
<화학식 2>
Figure 112021001057145-pat00002
상기 <화학식 2>에서, n은 각각 독립적으로 1 내지 5의 정수 중에서 선택된다.
상기 핵성장 지연제는 하기 <화학식 3>으로 표시될 수 있다.
<화학식 3>
Figure 112021001057145-pat00003
상기 <화학식 3>에서, n은 각각 독립적으로 0 내지 8의 정수 중에서 선택되고, R1은 각각 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 5의 알콕시기 또는 수소 원자 중에서 선택되며, R2는 각각 독립적으로 탄소수 1 내지 8의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.
상기 핵성장 지연제는 하기 <화학식 4>로 표시될 수 있다.
<화학식 4>
Figure 112021001057145-pat00004
상기 <화학식 4>에서, n은 각각 독립적으로 1 내지 8의 정수 중에서 선택되고, m은 각각 독립적으로 1 내지 5의 정수 중에서 선택되며, R1 또는 R2는 각각 독립적으로 탄소수 1 내지 8의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.
상기 핵성장 지연제는 하기 <화학식 5>로 표시될 수 있다.
<화학식 5>
Figure 112021001057145-pat00005
상기 <화학식 5>에서, n은 각각 독립적으로 1 내지 5의 정수 중에서 선택되고, m은 각각 독립적으로 0 내지 8의 정수 중에서 선택되며, R1은 각각 독립적으로 탄소수 1 내지 8의 알킬기 또는 수소 원자 중에서 선택되며, R2는 각각 독립적으로 탄소수 1 내지 8의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.
상기 핵성장 지연제는 하기 <화학식 6>로 표시될 수 있다.
<화학식 6>
Figure 112021001057145-pat00006
상기 <화학식 6>에서, n은 각각 독립적으로 1 내지 8의 정수 중에서 선택되고, m은 각각 독립적으로 1내지 6의 정수 중에서 선택되며, R1 또는 R2는 각각 독립적으로 탄소수 1 내지 8의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.
상기 핵성장 지연제는 하기 <화학식 7>로 표시될 수 있다.
<화학식 7>
Figure 112021001057145-pat00007
상기 <화학식 7>에서, n은 각각 독립적으로 0 내지 5의 정수 중에서 선택되고, m은 각각 독립적으로 1내지 5의 정수 중에서 선택되며, R은 각각 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 3 내지 10의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.
상기 핵성장 지연제는 하기 <화학식 8>로 표시될 수 있다.
<화학식 8>
Figure 112021001057145-pat00008
상기 <화학식 8>에서, n은 각각 독립적으로 0 내지 8의 정수 중에서 선택되고, R1 내지 R3은 각각 독립적으로 탄소수 1 내지 8의 알킬기이며, R4는 수소, 탄소수가 1 내지 6의 알킬기, 탄소수가 1 내지 8의 알콕시기 중에서 선택된다.
상기 비성장영역은 1족 내지 13족 원소 중 하나 이상을 중심원소로 하는 금속 함유막일 수 있다.
상기 금속 함유막은 Zr, Hf, Ti을 포함하는 4족 원소 중 하나 이상을 중심원소로 하는 금속 함유막일 수 있다.
상기 금속 함유막은 Nb 및 Ta을 포함하는 5족 원소 중 하나 이상을 중심원소로 하는 금속 함유막일 수 있다.
상기 금속 함유막은 W을 포함하는 6족 원소 중 하나 이상을 중심원소로 하는 금속 함유막일 수 있다.
상기 금속 함유막은 Cu을 포함하는 11족 원소 중 하나 이상을 중심원소로 하는 금속 함유막일 수 있다.
상기 금속 함유막은 Al을 포함하는 13족 원소 중 하나 이상을 중심원소로 하는 금속 함유막일 수 있다.
상기 금속 함유막은 금속 자체일 수 있다.
상기 금속 함유막은 금속 산화물일 수 있다.
상기 금속 함유막은 금속 질화물일 수 있다.
상기 성장영역은 Si, Ge을 포함하는 14족 원소 중 하나 이상을 중심원소로 할 수 있다.
상기 성장영역은 실리콘 함유막일 수 있다.
상기 실리콘 함유막은 Si, SiO, SiN, SiCN, C-doped SiN, SiON 중 선택된 하나 이상일 수 있다.
상기 성장영역은 게르마늄 함유막일 수 있다.
상기 전구체는 Si, Ge 을 포함하는 14족 원소 중 하나 이상을 중심원소로 하는 유기 화합물일 수 있다.
상기 전구체는 하기 <화학식 9>로 표시될 수 있다.
<화학식 9>
Figure 112021001057145-pat00009
상기 <화학식 9>에서, M은 Si, Ge 을 포함하는 14족 원소 중 하나이며, R1 내지 R4는 각각 독립적으로 수소 원자, 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 12의 아릴기, 탄소수 1 내지 10의 알킬아민기, 탄소수 1 내지 10의 다이알킬 아민기, 탄소수 6 내지 12의 아릴아민기, 탄소수 7 내지 13의 아랄킬아민기, 탄소수 3 내지 10의 사이클릭 아민기, 탄소수 3 내지 10의 헤테로사이클릭 아민기, 탄소수 6 내지 12의 헤테로아릴아민기, 탄소수 2 내지 10의 알킬실릴아민기, 아자이드기 또는 할로겐 중에서 선택된다.
상기 전구체는 하기 <화학식 10>로 표시될 수 있다.
<화학식 10>
Figure 112021001057145-pat00010
상기 <화학식 10>에서, M은 Si, Ge 을 포함하는 14족 원소 중 하나이며, R1 내지 R6은 각각 독립적으로 수소 원자, 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 12의 아릴기, 탄소수 1 내지 10의 알킬아민기, 탄소수 1 내지 10의 다이알킬 아민기, 탄소수 6 내지 12의 아릴아민기, 탄소수 7 내지 13의 아랄킬아민기, 탄소수 3 내지 10의 사이클릭 아민기, 탄소수 3 내지 10의 헤테로사이클릭 아민기, 탄소수 6 내지 12의 헤테로아릴아민기, 탄소수 2 내지 10의 알킬실릴아민기, 아자이드기 또는 할로겐 중에서 선택된다.
상기 전구체는 하기 <화학식 11>로 표시될 수 있다.
<화학식 11>
Figure 112021001057145-pat00011
상기 <화학식 11>에서, M은 Si, Ge 을 포함하는 14족 원소 중 하나이며, R1 내지 R5는 각각 독립적으로 수소 원자, 탄소수 1 내지 10의 알킬기 중에서 선택되고, R6 내지 R9는 각각 독립적으로 수소 원자, 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 12의 아릴기, 탄소수 1 내지 10의 알킬아민기, 탄소수 1 내지 10의 다이알킬 아민기, 탄소수 6 내지 12의 아릴아민기, 탄소수 7 내지 13의 아랄킬아민기, 탄소수 3 내지 10의 사이클릭 아민기, 탄소수 3 내지 10의 헤테로사이클릭 아민기, 탄소수 6 내지 12의 헤테로아릴아민기, 탄소수 2 내지 10의 알킬실릴아민기, 아자이드기 또는 할로겐 중에서 선택된다.
상기 전구체는 하기 <화학식 12>로 표시될 수 있다.
<화학식 12>
Figure 112021001057145-pat00012
상기 <화학식 12>에서, M은 Si, Ge 을 포함하는 14족 원소 중 하나이며, R1 내지 R10은 각각 독립적으로 수소 원자, 탄소수 1 내지 10의 알킬기 중에서 선택되고, R11 내지 R14는 각각 독립적으로 수소 원자, 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 12의 아릴기, 탄소수 1 내지 10의 알킬아민기, 탄소수 1 내지 10의 다이알킬 아민기, 탄소수 6 내지 12의 아릴아민기, 탄소수 7 내지 13의 아랄킬아민기, 탄소수 3 내지 10의 사이클릭 아민기, 탄소수 3 내지 10의 헤테로사이클릭 아민기, 탄소수 6 내지 12의 헤테로아릴아민기, 탄소수 2 내지 10의 알킬실릴아민기, 아자이드기 또는 할로겐 중에서 선택된다.
상기 전구체는 하기 <화학식 13>로 표시될 수 있다.
<화학식 13>
Figure 112021001057145-pat00013
상기 <화학식 13>에서, M은 Si, Ge 을 포함하는 14족 원소 중 하나이며, R1 내지 R6은 각각 독립적으로 수소 원자, 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 12의 아릴기, 탄소수 1 내지 10의 알킬아민기, 탄소수 1 내지 10의 다이알킬 아민기, 탄소수 6 내지 12의 아릴아민기, 탄소수 7 내지 13의 아랄킬아민기, 탄소수 3 내지 10의 사이클릭 아민기, 탄소수 3 내지 10의 헤테로사이클릭 아민기, 탄소수 6 내지 12의 헤테로아릴아민기, 탄소수 2 내지 10의 알킬실릴아민기, 아자이드기 또는 할로겐 중에서 선택된다.
상기 반응 물질은 O3, O2, H2O, H2O2, N2O, NH3 중 하나 이상일 수 있다.
상기 박막은 화학기상 증착법(Metal Organic Chemical Vapor Deposition, MOCVD) 또는 원자층 증착법(Atomic layer Deposition, ALD)에 의해 형성될 수 있다.
본 발명의 일 실시예에 의하면, 핵성장 지연제가 비성장영역에 흡착된 상태에서 후속적으로 공급되는 전구체가 비성장영역에 흡착되는 것을 방지하며, 이를 통해 비성장영역에 박막이 형성되는 것을 방지할 수 있다.
도 1은 본 발명의 일 실시예에 따른 박막 형성 방법을 개략적으로 나타내는 흐름도이다.
도 2는 도 1에 따른 공급 주기를 개략적으로 나타내는 그래프이다.
도 3 및 도 4는 본 발명의 비교예에 따른 사이클별 실리콘 산화막의 두께를 나타내는 도면이다.
도 5 및 도 6은 본 발명의 일 실시예에 따른 사이클별 실리콘 산화막의 두께를 나타내는 도면이다.
이하, 본 발명의 바람직한 실시예들을 첨부된 도 1 내지 도 6을 참고하여 더욱 상세히 설명한다. 본 발명의 실시예들은 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명하는 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 실시예들은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 상세하게 설명하기 위해서 제공되는 것이다. 따라서 도면에 나타난 각 요소의 형상은 보다 분명한 설명을 강조하기 위하여 과장될 수 있다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용 오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본원 명세서 전체에서, 용어 "알킬"또는 "알킬기"는, 1 내지 12 개의 탄소 원자, 1 내지 10 개의 탄소 원자, 1 내지 8 개의 탄소 원자, 1 내지 5 개의 탄소 원자, 1 내지 3 개의 탄소 원자, 3 내지 8 개의 탄소 원자, 또는 3 내지 5 개의 탄소 원자를 갖는 선형 또는 분지형 알킬기를 포함한다. 예를 들어, 상기 알킬기로는 메틸기, 에틸기, n-프로필기(nPr), iso-프로필기(iPr), n-부틸기(nBu), tert-부틸기(tBu), iso-부틸기(iBu), sec-부틸기(sBu), n-펜틸기, tert-펜틸기, iso-펜틸기, sec-펜틸기, 네오펜틸기, 3-펜틸기, 헥실기, 이소헥실기, 헵틸기, 4,4-디메틸펜틸기, 옥틸기, 2,2,4-트리메틸펜틸기, 노닐기, 데실기, 운데실기, 도데실기, 및 이들의 이성질체 등을 들 수 있으나, 이에 제한되지 않을 수 있다.
본원 명세서 전체에서, 용어 "막"은 "막" 또는 "박막"을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
원자층 증착법으로 박막을 증착할 경우, 초기 사이클에서는 기판 또는 하부막 위에 반응물이 증착되지 않으며, 이후 증착되기까지 여러 번의 사이클이 필요할 수 있다. 이와 같은 시기를 잠복기(incubation time)라고 하며, 잠복기는 반응물의 특성, 증착되는 기판 또는 하부막의 성질 등의 여러 조건에 따라 달라질 수 있다. 본 발명은 종래 기술의 한계를 극복하고 ALD 증착 공정 및 잠복기의 차이를 이용하여 박막 물질의 선택적 증착을 위한 개선된 방법을 제공하고자 한다.
도 1은 본 발명의 일 실시예에 따른 박막 형성 방법을 개략적으로 나타내는 흐름도이며, 도 2는 도 1에 따른 공급 주기를 개략적으로 나타내는 그래프이다.
기판은 공정챔버의 내부로 로드되며, 이하의 ALD 공정 조건은 조정된다. ALD 공정 조건은 기판 또는 공정챔버의 온도, 챔버 압력, 가스 유동률을 포함할 수 있다.
먼저, 기판은 챔버의 내부에 공급된 핵성장 지연제에 노출되며, 핵성장 지연제는 기판의 표면에 흡착된다. 기판은 비성장영역 및 성장영역을 가지며, 핵성장 지연제는 비성장영역 및 성장영역에 흡착되어, 후속 공정에서 전구체가 흡착되는 것을 방해한다.
비성장영역은 1족 내지 13족 원소 중 하나 이상을 중심원소로 하는 금속 함유막일 수 있다. 구체적으로, 금속 함유막은 Zr, Hf, Ti을 포함하는 4족 원소 중 하나 이상을 중심원소로 하는 금속 함유막, Nb 및 Ta을 포함하는 5족 원소 중 하나 이상을 중심원소로 하는 금속 함유막, W을 포함하는 6족 원소 중 하나 이상을 중심원소로 하는 금속 함유막, Cu을 포함하는 11족 원소 중 하나 이상을 중심원소로 하는 금속 함유막, Al을 포함하는 13족 원소 중 하나 이상을 중심원소로 하는 금속 함유막이거나, 금속 자체 또는 금속 산화물이나 금속 질화물일 수 있다.
성장영역은 Si, Ge을 포함하는 14족 원소 중 하나 이상을 중심원소로 할 수 있다. 구체적으로, 성장영역은 실리콘 함유막일 수 있으며, 실리콘 함유막은 Si, SiO, SiN, SiCN, C-doped SiN, SiON 중 선택된 하나 이상일 수 있다. 또한, 성장영역은 게르마늄 함유막일 수 있다.
핵성장 지연제는 하기 <화학식 1>로 표시될 수 있다.
<화학식 1>
Figure 112021001057145-pat00014
상기 <화학식 1>에서, n=1,2이며, R은 수소 원자, 탄소수 1 내지 5의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.
핵성장 지연제는 하기 <화학식 2>로 표시될 수 있다.
<화학식 2>
Figure 112021001057145-pat00015
상기 <화학식 2>에서, n은 각각 독립적으로 1 내지 5의 정수 중에서 선택된다.
핵성장 지연제는 하기 <화학식 3>으로 표시될 수 있다.
<화학식 3>
Figure 112021001057145-pat00016
상기 <화학식 3>에서, n은 각각 독립적으로 0 내지 8의 정수 중에서 선택되고, R1은 각각 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 5의 알콕시기 또는 수소 원자 중에서 선택되며, R2는 각각 독립적으로 탄소수 1 내지 8의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.
핵성장 지연제는 하기 <화학식 4>로 표시될 수 있다.
<화학식 4>
Figure 112021001057145-pat00017
상기 <화학식 4>에서, n은 각각 독립적으로 1 내지 8의 정수 중에서 선택되고, m은 각각 독립적으로 1 내지 5의 정수 중에서 선택되며, R1 또는 R2는 각각 독립적으로 탄소수 1 내지 8의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.
핵성장 지연제는 하기 <화학식 5>로 표시될 수 있다.
<화학식 5>
Figure 112021001057145-pat00018
상기 <화학식 5>에서, n은 각각 독립적으로 1 내지 5의 정수 중에서 선택되고, m은 각각 독립적으로 0 내지 8의 정수 중에서 선택되며, R1은 각각 독립적으로 탄소수 1 내지 8의 알킬기 또는 수소 원자 중에서 선택되며, R2는 각각 독립적으로 탄소수 1 내지 8의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.
핵성장 지연제는 하기 <화학식 6>로 표시될 수 있다.
<화학식 6>
Figure 112021001057145-pat00019
상기 <화학식 6>에서, n은 각각 독립적으로 1 내지 8의 정수 중에서 선택되고, m은 각각 독립적으로 1내지 6의 정수 중에서 선택되며, R1 또는 R2는 각각 독립적으로 탄소수 1 내지 8의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.
핵성장 지연제는 하기 <화학식 7>로 표시될 수 있다.
<화학식 7>
Figure 112021001057145-pat00020
상기 <화학식 7>에서, n은 각각 독립적으로 0 내지 5의 정수 중에서 선택되고, m은 각각 독립적으로 1내지 5의 정수 중에서 선택되며, R은 각각 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 3 내지 10의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.
핵성장 지연제는 하기 <화학식 8>로 표시될 수 있다.
<화학식 8>
Figure 112021001057145-pat00021
상기 <화학식 8>에서, n은 각각 독립적으로 0 내지 8의 정수 중에서 선택되고, R1 내지 R3은 각각 독립적으로 탄소수 1 내지 8의 알킬기이며, R4는 수소, 탄소수가 1 내지 6의 알킬기, 탄소수가 1 내지 8의 알콕시기 중에서 선택된다.
이후, 챔버의 내부에 퍼지가스(예를 들어, Ar과 같은 비활성가스)를 공급하여, 미흡착 핵성장 지연제 또는 부산물을 제거하거나 정화한다.
이후, 기판은 챔버의 내부에 공급된 전구체에 노출되며, 전구체는 기판의 표면에 흡착된다. 전구체는 Si, Ge 을 포함하는 14족 원소 중 하나 이상을 중심원소로 하는 유기 화합물일 수 있다.
전구체는 하기 <화학식 9>로 표시될 수 있다.
<화학식 9>
Figure 112021001057145-pat00022
상기 <화학식 9>에서, M은 Si, Ge 을 포함하는 14족 원소 중 하나이며, R1 내지 R4는 각각 독립적으로 수소 원자, 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 12의 아릴기, 탄소수 1 내지 10의 알킬아민기, 탄소수 1 내지 10의 다이알킬 아민기, 탄소수 6 내지 12의 아릴아민기, 탄소수 7 내지 13의 아랄킬아민기, 탄소수 3 내지 10의 사이클릭 아민기, 탄소수 3 내지 10의 헤테로사이클릭 아민기, 탄소수 6 내지 12의 헤테로아릴아민기, 탄소수 2 내지 10의 알킬실릴아민기, 아자이드기 또는 할로겐 중에서 선택된다.
전구체는 하기 <화학식 10>로 표시될 수 있다.
<화학식 10>
Figure 112021001057145-pat00023
상기 <화학식 10>에서, M은 Si, Ge 을 포함하는 14족 원소 중 하나이며, R1 내지 R6은 각각 독립적으로 수소 원자, 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 12의 아릴기, 탄소수 1 내지 10의 알킬아민기, 탄소수 1 내지 10의 다이알킬 아민기, 탄소수 6 내지 12의 아릴아민기, 탄소수 7 내지 13의 아랄킬아민기, 탄소수 3 내지 10의 사이클릭 아민기, 탄소수 3 내지 10의 헤테로사이클릭 아민기, 탄소수 6 내지 12의 헤테로아릴아민기, 탄소수 2 내지 10의 알킬실릴아민기, 아자이드기 또는 할로겐 중에서 선택된다.
전구체는 하기 <화학식 11>로 표시될 수 있다.
<화학식 11>
Figure 112021001057145-pat00024
상기 <화학식 11>에서, M은 Si, Ge 을 포함하는 14족 원소 중 하나이며, R1 내지 R5는 각각 독립적으로 수소 원자, 탄소수 1 내지 10의 알킬기 중에서 선택되고, R6 내지 R9는 각각 독립적으로 수소 원자, 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 12의 아릴기, 탄소수 1 내지 10의 알킬아민기, 탄소수 1 내지 10의 다이알킬 아민기, 탄소수 6 내지 12의 아릴아민기, 탄소수 7 내지 13의 아랄킬아민기, 탄소수 3 내지 10의 사이클릭 아민기, 탄소수 3 내지 10의 헤테로사이클릭 아민기, 탄소수 6 내지 12의 헤테로아릴아민기, 탄소수 2 내지 10의 알킬실릴아민기, 아자이드기 또는 할로겐 중에서 선택된다.
전구체는 하기 <화학식 12>로 표시될 수 있다.
<화학식 12>
Figure 112021001057145-pat00025
상기 <화학식 12>에서, M은 Si, Ge 을 포함하는 14족 원소 중 하나이며, R1 내지 R10은 각각 독립적으로 수소 원자, 탄소수 1 내지 10의 알킬기 중에서 선택되고, R11 내지 R14는 각각 독립적으로 수소 원자, 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 12의 아릴기, 탄소수 1 내지 10의 알킬아민기, 탄소수 1 내지 10의 다이알킬 아민기, 탄소수 6 내지 12의 아릴아민기, 탄소수 7 내지 13의 아랄킬아민기, 탄소수 3 내지 10의 사이클릭 아민기, 탄소수 3 내지 10의 헤테로사이클릭 아민기, 탄소수 6 내지 12의 헤테로아릴아민기, 탄소수 2 내지 10의 알킬실릴아민기, 아자이드기 또는 할로겐 중에서 선택된다.
전구체는 하기 <화학식 13>로 표시될 수 있다.
<화학식 13>
Figure 112021001057145-pat00026
상기 <화학식 13>에서, M은 Si, Ge 을 포함하는 14족 원소 중 하나이며, R1 내지 R6은 각각 독립적으로 수소 원자, 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 12의 아릴기, 탄소수 1 내지 10의 알킬아민기, 탄소수 1 내지 10의 다이알킬 아민기, 탄소수 6 내지 12의 아릴아민기, 탄소수 7 내지 13의 아랄킬아민기, 탄소수 3 내지 10의 사이클릭 아민기, 탄소수 3 내지 10의 헤테로사이클릭 아민기, 탄소수 6 내지 12의 헤테로아릴아민기, 탄소수 2 내지 10의 알킬실릴아민기, 아자이드기 또는 할로겐 중에서 선택된다.
이후, 챔버의 내부에 퍼지가스(예를 들어, Ar과 같은 비활성가스)를 공급하여, 미흡착 전구체 또는 부산물을 제거하거나 정화한다.
이후, 기판은 챔버의 내부에 공급된 반응 물질에 노출되며, 기판의 표면에 박막이 형성된다. 반응 물질은 전구체층과 반응하여 박막을 형성하며, 반응 물질은 O3, O2, H2O, H2O2, N2O, NH3 중 하나 이상일 수 있다(반응 물질은 산화물, 질화물을 형성하기 위한 것이며, 필요에 따라 예시된 물질 이외의 물질로 대체될 수 있다).
이후, 챔버의 내부에 퍼지가스(예를 들어, Ar과 같은 비활성가스)를 공급하여, 미반응 물질 또는 부산물을 제거하거나 정화한다.
- 실시예
앞서 설명한 핵성장 지연제를 사용하여 Si, SiN, SiO, TiN, HfO, NbO 하부막 상에 각각 실리콘 산화막을 형성하였으며, 하부막은 기판 자체 또는 ALD 공정을 통해 형성하였다. ALD 공정을 통해 실리콘 산화막을 형성하였으며, ALD 공정 온도는 320℃, 반응 물질은 O3 가스를 사용하였다.
ALD 공정을 통한 실리콘 산화막 형성 과정은 아래와 같으며, 아래 과정을 1사이클로 하여 진행하였다(도 1 및 2 참고).
1) 반응 챔버 내에 핵성장 지연제를 공급하여 기판에 흡착
2) 반응 챔버 내에 Ar 가스를 공급하여 미흡착 핵성장 지연제 또는 부산물을 제거
3) Ar을 캐리어 가스로 하여, 실리콘 전구체 DIPAS(Diisopropylamino Silane)를 반응 챔버에 공급하고 기판에 실리콘 전구체를 흡착
4) 반응 챔버 내에 Ar 가스를 공급하여 미흡착 실리콘 전구체 또는 부산물을 제거
5) O3 가스를 반응 챔버에 공급하여 실리콘 산화막을 형성
6) 반응 챔버 내에 Ar 가스를 공급하여 미반응물질 또는 부산물을 제거
- 비교예
앞서 설명한 핵성장 지연제를 사용하지 않고 Si, SiN, SiO, TiN, HfO, NbO 하부막 상에 각각 실리콘 산화막을 형성하였으며, 하부막은 기판 자체 또는 ALD 공정을 통해 형성하였다. ALD 공정을 통해 실리콘 산화막을 형성하였으며, ALD 공정 온도는 320℃, 반응 물질은 O3 가스를 사용하였다.
ALD 공정을 통한 실리콘 산화막 형성 과정은 아래와 같으며, 아래 과정을 1사이클로 하여 진행하였다.
1) Ar을 캐리어 가스로 하여, 실리콘 전구체 DIPAS(Diisopropylamino Silane)를 반응 챔버에 공급하고 기판에 실리콘 전구체를 흡착
2) 반응 챔버 내에 Ar 가스를 공급하여 미흡착 실리콘 전구체 또는 부산물을 제거
3) O3 가스를 반응 챔버에 공급하여 실리콘 산화막을 형성
4) 반응 챔버 내에 Ar 가스를 공급하여 미반응물질 또는 부산물을 제거
도 3 및 도 4는 본 발명의 비교예에 따른 사이클별 실리콘 산화막의 두께를 나타내는 도면이며, 도 5 및 도 6은 본 발명의 일 실시예에 따른 사이클별 실리콘 산화막의 두께를 나타내는 도면이다.
비교예의 경우, Si 함유 전구체로 사용된 DIPAS가 하부막(또는 기판)에 따른 선택성 없이 잠복기를 갖지 않는 반면, 실시예의 경우, 하부막(또는 기판)에 따른 잠복기가 다르게 나타나며, 특정 사이클에서 완전한 선택적 성장이 가능함을 알 수 있다.
이와 같은 결과는 핵성장 지연제가 하부막(또는 기판)에 따른 흡착 세기(정도)를 달리하여 잠복기에 차이가 발생한 것으로 해석된다. 즉, 흡착 세기(정도)가 강한 하부막(또는 기판)의 경우, 전구체 흡착을 방해하는 효과가 커서 전구체 흡착 및 핵생성이 어렵고 핵생성 밀도가 낮은 반면, 흡착 세기(정도)가 약한 하부막(또는 기판)의 경우, 전구체 흡착을 방해하는 효과가 작아 전구체 흡착 및 핵생성이 용이하고 핵생성 밀도가 큰 것으로 해석되며, 기타 복합적인 원인에 의한 결과로 원하는 선택성을 얻을 수 있다.
이상에서 본 발명을 실시예를 통하여 상세하게 설명하였으나, 이와 다른 형태의 실시예들도 가능하다. 그러므로, 이하에 기재된 청구항들의 기술적 사상과 범위는 실시예들에 한정되지 않는다.

Claims (30)

  1. 핵성장 지연제를 기판이 놓여진 챔버의 내부에 공급하여, 상기 기판의 비성장영역 및 성장영역에 흡착시키는 핵성장 지연제 공급 단계;
    상기 챔버의 내부를 퍼지하는 단계;
    상기 챔버의 내부에 전구체를 공급하는 전구체 공급 단계;
    상기 챔버의 내부를 퍼지하는 단계; 및
    상기 챔버의 내부에 반응 물질을 공급하여 흡착된 상기 전구체와 반응하고 박막을 형성하는 박막 형성 단계를 포함하되,
    상기 비성장영역은 1족 내지 13족 원소 중 하나 이상을 중심원소로 하는 금속 함유막인, 영역 선택적 박막 형성 방법.
  2. 제1항에 있어서,
    상기 핵성장 지연제는 하기 <화학식 1>로 표시되는, 영역 선택적 박막 형성 방법.
    <화학식 1>
    Figure 112021001057145-pat00027

    상기 <화학식 1>에서, n=1,2이며,
    R은 수소 원자, 탄소수 1 내지 5의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.
  3. 핵성장 지연제를 기판이 놓여진 챔버의 내부에 공급하여, 상기 기판의 비성장영역 및 성장영역에 흡착시키는 핵성장 지연제 공급 단계;
    상기 챔버의 내부를 퍼지하는 단계;
    상기 챔버의 내부에 전구체를 공급하는 전구체 공급 단계;
    상기 챔버의 내부를 퍼지하는 단계; 및
    상기 챔버의 내부에 반응 물질을 공급하여 흡착된 상기 전구체와 반응하고 박막을 형성하는 박막 형성 단계를 포함하되,
    상기 핵성장 지연제는 하기 <화학식 2>로 표시되는, 영역 선택적 박막 형성 방법.
    <화학식 2>
    Figure 112021148890029-pat00028

    상기 <화학식 2>에서, n은 각각 독립적으로 1 내지 5의 정수 중에서 선택된다.
  4. 핵성장 지연제를 기판이 놓여진 챔버의 내부에 공급하여, 상기 기판의 비성장영역 및 성장영역에 흡착시키는 핵성장 지연제 공급 단계;
    상기 챔버의 내부를 퍼지하는 단계;
    상기 챔버의 내부에 전구체를 공급하는 전구체 공급 단계;
    상기 챔버의 내부를 퍼지하는 단계; 및
    상기 챔버의 내부에 반응 물질을 공급하여 흡착된 상기 전구체와 반응하고 박막을 형성하는 박막 형성 단계를 포함하되,
    상기 핵성장 지연제는 하기 <화학식 3>으로 표시되는, 영역 선택적 박막 형성 방법.
    <화학식 3>
    Figure 112021148890029-pat00029

    상기 <화학식 3>에서, n은 각각 독립적으로 0 내지 8의 정수 중에서 선택되고,
    R1은 각각 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 5의 알콕시기 또는 수소 원자 중에서 선택되며,
    R2는 각각 독립적으로 탄소수 1 내지 8의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.
  5. 핵성장 지연제를 기판이 놓여진 챔버의 내부에 공급하여, 상기 기판의 비성장영역 및 성장영역에 흡착시키는 핵성장 지연제 공급 단계;
    상기 챔버의 내부를 퍼지하는 단계;
    상기 챔버의 내부에 전구체를 공급하는 전구체 공급 단계;
    상기 챔버의 내부를 퍼지하는 단계; 및
    상기 챔버의 내부에 반응 물질을 공급하여 흡착된 상기 전구체와 반응하고 박막을 형성하는 박막 형성 단계를 포함하되,
    상기 핵성장 지연제는 하기 <화학식 4>로 표시되는, 영역 선택적 박막 형성 방법.
    <화학식 4>
    Figure 112021148890029-pat00030

    상기 <화학식 4>에서, n은 각각 독립적으로 1 내지 8의 정수 중에서 선택되고,
    m은 각각 독립적으로 1 내지 5의 정수 중에서 선택되며,
    R1 또는 R2는 각각 독립적으로 탄소수 1 내지 8의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.
  6. 핵성장 지연제를 기판이 놓여진 챔버의 내부에 공급하여, 상기 기판의 비성장영역 및 성장영역에 흡착시키는 핵성장 지연제 공급 단계;
    상기 챔버의 내부를 퍼지하는 단계;
    상기 챔버의 내부에 전구체를 공급하는 전구체 공급 단계;
    상기 챔버의 내부를 퍼지하는 단계; 및
    상기 챔버의 내부에 반응 물질을 공급하여 흡착된 상기 전구체와 반응하고 박막을 형성하는 박막 형성 단계를 포함하되,
    상기 핵성장 지연제는 하기 <화학식 5>로 표시되는, 영역 선택적 박막 형성 방법.
    <화학식 5>
    Figure 112021148890029-pat00031

    상기 <화학식 5>에서, n은 각각 독립적으로 1 내지 5의 정수 중에서 선택되고,
    m은 각각 독립적으로 0 내지 8의 정수 중에서 선택되며,
    R1은 각각 독립적으로 탄소수 1 내지 8의 알킬기 또는 수소 원자 중에서 선택되며,
    R2는 각각 독립적으로 탄소수 1 내지 8의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.
  7. 핵성장 지연제를 기판이 놓여진 챔버의 내부에 공급하여, 상기 기판의 비성장영역 및 성장영역에 흡착시키는 핵성장 지연제 공급 단계;
    상기 챔버의 내부를 퍼지하는 단계;
    상기 챔버의 내부에 전구체를 공급하는 전구체 공급 단계;
    상기 챔버의 내부를 퍼지하는 단계; 및
    상기 챔버의 내부에 반응 물질을 공급하여 흡착된 상기 전구체와 반응하고 박막을 형성하는 박막 형성 단계를 포함하되,
    상기 핵성장 지연제는 하기 <화학식 6>로 표시되는, 영역 선택적 박막 형성 방법.
    <화학식 6>
    Figure 112021148890029-pat00032

    상기 <화학식 6>에서, n은 각각 독립적으로 1 내지 8의 정수 중에서 선택되고,
    m은 각각 독립적으로 1내지 6의 정수 중에서 선택되며,
    R1 또는 R2는 각각 독립적으로 탄소수 1 내지 8의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.
  8. 핵성장 지연제를 기판이 놓여진 챔버의 내부에 공급하여, 상기 기판의 비성장영역 및 성장영역에 흡착시키는 핵성장 지연제 공급 단계;
    상기 챔버의 내부를 퍼지하는 단계;
    상기 챔버의 내부에 전구체를 공급하는 전구체 공급 단계;
    상기 챔버의 내부를 퍼지하는 단계; 및
    상기 챔버의 내부에 반응 물질을 공급하여 흡착된 상기 전구체와 반응하고 박막을 형성하는 박막 형성 단계를 포함하되,
    상기 핵성장 지연제는 하기 <화학식 7>로 표시되는, 영역 선택적 박막 형성 방법.
    <화학식 7>
    Figure 112021148890029-pat00033

    상기 <화학식 7>에서, n은 각각 독립적으로 0 내지 5의 정수 중에서 선택되고,
    m은 각각 독립적으로 1내지 5의 정수 중에서 선택되며,
    R은 각각 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 3 내지 10의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.
  9. 핵성장 지연제를 기판이 놓여진 챔버의 내부에 공급하여, 상기 기판의 비성장영역 및 성장영역에 흡착시키는 핵성장 지연제 공급 단계;
    상기 챔버의 내부를 퍼지하는 단계;
    상기 챔버의 내부에 전구체를 공급하는 전구체 공급 단계;
    상기 챔버의 내부를 퍼지하는 단계; 및
    상기 챔버의 내부에 반응 물질을 공급하여 흡착된 상기 전구체와 반응하고 박막을 형성하는 박막 형성 단계를 포함하되,
    상기 핵성장 지연제는 하기 <화학식 8>로 표시되는, 영역 선택적 박막 형성 방법.
    <화학식 8>
    Figure 112021148890029-pat00034

    상기 <화학식 8>에서, n은 각각 독립적으로 0 내지 8의 정수 중에서 선택되고,
    R1 내지 R3은 각각 독립적으로 탄소수 1 내지 8의 알킬기이며,
    R4는 수소, 탄소수가 1 내지 6의 알킬기, 탄소수가 1 내지 8의 알콕시기 중에서 선택된다.
  10. 삭제
  11. 제1항에 있어서,
    상기 금속 함유막은 Zr, Hf, Ti을 포함하는 4족 원소 중 하나 이상을 중심원소로 하는 금속 함유막인, 영역 선택적 박막 형성 방법.
  12. 제1항에 있어서,
    상기 금속 함유막은 Nb 및 Ta을 포함하는 5족 원소 중 하나 이상을 중심원소로 하는 금속 함유막인, 영역 선택적 박막 형성 방법.
  13. 제1항에 있어서,
    상기 금속 함유막은 W을 포함하는 6족 원소 중 하나 이상을 중심원소로 하는 금속 함유막인, 영역 선택적 박막 형성 방법.
  14. 제1항에 있어서,
    상기 금속 함유막은 Cu을 포함하는 11족 원소 중 하나 이상을 중심원소로 하는 금속 함유막인, 영역 선택적 박막 형성 방법.
  15. 제1항에 있어서,
    상기 금속 함유막은 Al을 포함하는 13족 원소 중 하나 이상을 중심원소로 하는 금속 함유막인, 영역 선택적 박막 형성 방법.
  16. 제1항에 있어서,
    상기 금속 함유막은 금속 자체인, 영역 선택적 박막 형성 방법.
  17. 제1항에 있어서,
    상기 금속 함유막은 금속 산화물인, 영역 선택적 박막 형성 방법.
  18. 제1항에 있어서,
    상기 금속 함유막은 금속 질화물인, 영역 선택적 박막 형성 방법.
  19. 제1항에 있어서,
    상기 성장영역은 Si, Ge을 포함하는 14족 원소 중 하나 이상을 중심원소로 하는, 영역 선택적 박막 형성 방법.
  20. 제1항에 있어서,
    상기 성장영역은 실리콘 함유막인, 영역 선택적 박막 형성 방법.
  21. 제20항에 있어서,
    상기 실리콘 함유막은 Si, SiO, SiN, SiCN, C-doped SiN, SiON 중 선택된 하나 이상인, 영역 선택적 박막 형성 방법.
  22. 제1항에 있어서,
    상기 성장영역은 게르마늄 함유막인, 영역 선택적 박막 형성 방법.
  23. 제1항에 있어서,
    상기 전구체는 Si, Ge 을 포함하는 14족 원소 중 하나 이상을 중심원소로 하는 유기 화합물인, 영역 선택적 박막 형성 방법.
  24. 제23항에 있어서,
    상기 전구체는 하기 <화학식 9>로 표시되는, 영역 선택적 박막 형성 방법.
    <화학식 9>
    Figure 112021001057145-pat00035

    상기 <화학식 9>에서,
    M은 Si, Ge 을 포함하는 14족 원소 중 하나이며,
    R1 내지 R4는 각각 독립적으로 수소 원자, 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 12의 아릴기, 탄소수 1 내지 10의 알킬아민기, 탄소수 1 내지 10의 다이알킬 아민기, 탄소수 6 내지 12의 아릴아민기, 탄소수 7 내지 13의 아랄킬아민기, 탄소수 3 내지 10의 사이클릭 아민기, 탄소수 3 내지 10의 헤테로사이클릭 아민기, 탄소수 6 내지 12의 헤테로아릴아민기, 탄소수 2 내지 10의 알킬실릴아민기, 아자이드기 또는 할로겐 중에서 선택된다.
  25. 제23항에 있어서,
    상기 전구체는 하기 <화학식 10>로 표시되는, 영역 선택적 박막 형성 방법.
    <화학식 10>
    Figure 112021001057145-pat00036

    상기 <화학식 10>에서,
    M은 Si, Ge 을 포함하는 14족 원소 중 하나이며,
    R1 내지 R6은 각각 독립적으로 수소 원자, 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 12의 아릴기, 탄소수 1 내지 10의 알킬아민기, 탄소수 1 내지 10의 다이알킬 아민기, 탄소수 6 내지 12의 아릴아민기, 탄소수 7 내지 13의 아랄킬아민기, 탄소수 3 내지 10의 사이클릭 아민기, 탄소수 3 내지 10의 헤테로사이클릭 아민기, 탄소수 6 내지 12의 헤테로아릴아민기, 탄소수 2 내지 10의 알킬실릴아민기, 아자이드기 또는 할로겐 중에서 선택된다.
  26. 제23항에 있어서,
    상기 전구체는 하기 <화학식 11>로 표시되는, 영역 선택적 박막 형성 방법.
    <화학식 11>
    Figure 112021001057145-pat00037

    상기 <화학식 11>에서,
    M은 Si, Ge 을 포함하는 14족 원소 중 하나이며,
    R1 내지 R5는 각각 독립적으로 수소 원자, 탄소수 1 내지 10의 알킬기 중에서 선택되고, R6 내지 R9는 각각 독립적으로 수소 원자, 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 12의 아릴기, 탄소수 1 내지 10의 알킬아민기, 탄소수 1 내지 10의 다이알킬 아민기, 탄소수 6 내지 12의 아릴아민기, 탄소수 7 내지 13의 아랄킬아민기, 탄소수 3 내지 10의 사이클릭 아민기, 탄소수 3 내지 10의 헤테로사이클릭 아민기, 탄소수 6 내지 12의 헤테로아릴아민기, 탄소수 2 내지 10의 알킬실릴아민기, 아자이드기 또는 할로겐 중에서 선택된다.
  27. 제23항에 있어서,
    상기 전구체는 하기 <화학식 12>로 표시되는, 영역 선택적 박막 형성 방법.
    <화학식 12>
    Figure 112021001057145-pat00038

    상기 <화학식 12>에서,
    M은 Si, Ge 을 포함하는 14족 원소 중 하나이며,
    R1 내지 R10은 각각 독립적으로 수소 원자, 탄소수 1 내지 10의 알킬기 중에서 선택되고, R11 내지 R14는 각각 독립적으로 수소 원자, 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 12의 아릴기, 탄소수 1 내지 10의 알킬아민기, 탄소수 1 내지 10의 다이알킬 아민기, 탄소수 6 내지 12의 아릴아민기, 탄소수 7 내지 13의 아랄킬아민기, 탄소수 3 내지 10의 사이클릭 아민기, 탄소수 3 내지 10의 헤테로사이클릭 아민기, 탄소수 6 내지 12의 헤테로아릴아민기, 탄소수 2 내지 10의 알킬실릴아민기, 아자이드기 또는 할로겐 중에서 선택된다.
  28. 제23항에 있어서,
    상기 전구체는 하기 <화학식 13>로 표시되는, 영역 선택적 박막 형성 방법.
    <화학식 13>
    Figure 112021001057145-pat00039

    상기 <화학식 13>에서,
    M은 Si, Ge 을 포함하는 14족 원소 중 하나이며,
    R1 내지 R6은 각각 독립적으로 수소 원자, 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 12의 아릴기, 탄소수 1 내지 10의 알킬아민기, 탄소수 1 내지 10의 다이알킬 아민기, 탄소수 6 내지 12의 아릴아민기, 탄소수 7 내지 13의 아랄킬아민기, 탄소수 3 내지 10의 사이클릭 아민기, 탄소수 3 내지 10의 헤테로사이클릭 아민기, 탄소수 6 내지 12의 헤테로아릴아민기, 탄소수 2 내지 10의 알킬실릴아민기, 아자이드기 또는 할로겐 중에서 선택된다.
  29. 제1항에 있어서,
    상기 반응 물질은 O3, O2, H2O, H2O2, N2O, NH3 중 하나 이상인, 영역 선택적 박막 형성 방법.
  30. 제1항에 있어서,
    상기 박막은 화학기상 증착법(Metal Organic Chemical Vapor Deposition, MOCVD) 또는 원자층 증착법(Atomic layer Deposition, ALD)에 의해 형성되는, 영역 선택적 박막 형성 방법.
KR1020210000980A 2021-01-05 2021-01-05 핵성장 지연을 이용한 영역 선택적 박막 형성 방법 Active KR102366555B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020210000980A KR102366555B1 (ko) 2021-01-05 2021-01-05 핵성장 지연을 이용한 영역 선택적 박막 형성 방법
JP2023540967A JP7619683B2 (ja) 2021-01-05 2022-01-05 核成長遅延を利用した領域選択的薄膜形成方法
CN202280009152.0A CN116829761A (zh) 2021-01-05 2022-01-05 利用核生长阻滞的区域选择性薄膜形成方法
TW111100461A TWI805171B (zh) 2021-01-05 2022-01-05 選擇性形成薄膜的方法
US18/260,402 US12252781B2 (en) 2021-01-05 2022-01-05 Area-selective method for forming thin film by using nuclear growth retardation
PCT/KR2022/000171 WO2022149854A1 (ko) 2021-01-05 2022-01-05 핵성장 지연을 이용한 영역 선택적 박막 형성 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210000980A KR102366555B1 (ko) 2021-01-05 2021-01-05 핵성장 지연을 이용한 영역 선택적 박막 형성 방법

Publications (1)

Publication Number Publication Date
KR102366555B1 true KR102366555B1 (ko) 2022-02-23

Family

ID=80495423

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210000980A Active KR102366555B1 (ko) 2021-01-05 2021-01-05 핵성장 지연을 이용한 영역 선택적 박막 형성 방법

Country Status (6)

Country Link
US (1) US12252781B2 (ko)
JP (1) JP7619683B2 (ko)
KR (1) KR102366555B1 (ko)
CN (1) CN116829761A (ko)
TW (1) TWI805171B (ko)
WO (1) WO2022149854A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167483A1 (ko) * 2022-03-04 2023-09-07 솔브레인 주식회사 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2024090846A1 (ko) * 2022-10-26 2024-05-02 솔브레인 주식회사 진공 기반 박막 개질제, 이를 포함한 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2024144069A1 (ko) * 2022-12-28 2024-07-04 에스케이트리켐 주식회사 박막 성장 억제용 화합물 및 이를 이용한 박막 형성 방법.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070015958A1 (en) 2002-11-15 2007-01-18 Lilip Lau Cardiac harness delivery device and method of use
KR20150108779A (ko) * 2014-03-18 2015-09-30 주식회사 유진테크 머티리얼즈 유기 게르마늄 아민 화합물 및 이를 이용한 박막 증착 방법
KR102095710B1 (ko) * 2019-11-05 2020-04-01 주식회사 유진테크 머티리얼즈 표면 보호 물질을 이용한 박막 형성 방법

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152250A (ja) * 1991-11-26 1993-06-18 Sony Corp メタルプラグの形成方法
US6482733B2 (en) 2000-05-15 2002-11-19 Asm Microchemistry Oy Protective layers prior to alternating layer deposition
US6759325B2 (en) * 2000-05-15 2004-07-06 Asm Microchemistry Oy Sealing porous structures
KR101730203B1 (ko) * 2009-10-23 2017-04-25 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 상호 접속부를 위한 자기―정렬 배리어 및 캡핑 층
US20110120544A1 (en) * 2009-11-20 2011-05-26 Levy David H Deposition inhibitor composition and method of use
US8293658B2 (en) * 2010-02-17 2012-10-23 Asm America, Inc. Reactive site deactivation against vapor deposition
WO2012002995A2 (en) * 2010-07-02 2012-01-05 Matheson Tri-Gas, Inc. Thin films and methods of making them using cyclohexasilane
US8993072B2 (en) * 2011-09-27 2015-03-31 Air Products And Chemicals, Inc. Halogenated organoaminosilane precursors and methods for depositing films comprising same
US9460912B2 (en) * 2012-04-12 2016-10-04 Air Products And Chemicals, Inc. High temperature atomic layer deposition of silicon oxide thin films
US20140251418A1 (en) * 2013-03-07 2014-09-11 Tsmc Solar Ltd. Transparent conductive oxide layer with high-transmittance structures and methods of making the same
TWI661072B (zh) * 2014-02-04 2019-06-01 荷蘭商Asm Ip控股公司 金屬、金屬氧化物與介電質的選擇性沈積
US10103057B2 (en) * 2014-11-11 2018-10-16 The Board Of Trustees Of The University Of Illinois Use of an inhibitor molecule in chemical vapor deposition to afford deposition of copper on a metal substrate with no deposition on adjacent SIO2 substrate
US10170320B2 (en) * 2015-05-18 2019-01-01 Lam Research Corporation Feature fill with multi-stage nucleation inhibition
JP6573575B2 (ja) * 2016-05-02 2019-09-11 東京エレクトロン株式会社 凹部の埋め込み方法
US9803277B1 (en) * 2016-06-08 2017-10-31 Asm Ip Holding B.V. Reaction chamber passivation and selective deposition of metallic films
US10043656B1 (en) * 2017-03-10 2018-08-07 Lam Research Corporation Selective growth of silicon oxide or silicon nitride on silicon surfaces in the presence of silicon oxide
TWI722301B (zh) * 2017-07-18 2021-03-21 美商應用材料股份有限公司 在金屬材料表面上沉積阻擋層的方法
WO2019190912A1 (en) * 2018-03-30 2019-10-03 Lam Research Corporation Topographically-selective and area-selective ald using fluorocarbon blocking layers
JP7101551B2 (ja) * 2018-07-02 2022-07-15 東京エレクトロン株式会社 選択的に対象膜を形成する方法およびシステム
JP7257883B2 (ja) * 2018-07-25 2023-04-14 東京エレクトロン株式会社 プラズマ処理方法およびプラズマ処理装置
KR102431745B1 (ko) * 2018-08-27 2022-08-10 버슘머트리얼즈 유에스, 엘엘씨 실리콘 함유 표면 상의 선택적 증착
TWI845607B (zh) * 2019-02-20 2024-06-21 荷蘭商Asm Ip私人控股有限公司 用來填充形成於基材表面內之凹部的循環沉積方法及設備
KR102141547B1 (ko) * 2019-09-25 2020-09-14 솔브레인 주식회사 박막 제조 방법
KR102406174B1 (ko) * 2020-09-08 2022-06-08 주식회사 이지티엠 선택성 부여제를 이용한 영역 선택적 박막 형성 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070015958A1 (en) 2002-11-15 2007-01-18 Lilip Lau Cardiac harness delivery device and method of use
KR20150108779A (ko) * 2014-03-18 2015-09-30 주식회사 유진테크 머티리얼즈 유기 게르마늄 아민 화합물 및 이를 이용한 박막 증착 방법
KR102095710B1 (ko) * 2019-11-05 2020-04-01 주식회사 유진테크 머티리얼즈 표면 보호 물질을 이용한 박막 형성 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167483A1 (ko) * 2022-03-04 2023-09-07 솔브레인 주식회사 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2024090846A1 (ko) * 2022-10-26 2024-05-02 솔브레인 주식회사 진공 기반 박막 개질제, 이를 포함한 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2024144069A1 (ko) * 2022-12-28 2024-07-04 에스케이트리켐 주식회사 박막 성장 억제용 화합물 및 이를 이용한 박막 형성 방법.

Also Published As

Publication number Publication date
TWI805171B (zh) 2023-06-11
JP2024503820A (ja) 2024-01-29
US20240068091A1 (en) 2024-02-29
TW202231901A (zh) 2022-08-16
CN116829761A (zh) 2023-09-29
US12252781B2 (en) 2025-03-18
JP7619683B2 (ja) 2025-01-22
WO2022149854A1 (ko) 2022-07-14

Similar Documents

Publication Publication Date Title
KR102366555B1 (ko) 핵성장 지연을 이용한 영역 선택적 박막 형성 방법
KR102095710B1 (ko) 표면 보호 물질을 이용한 박막 형성 방법
US9837281B2 (en) Cyclic doped aluminum nitride deposition
CN111254416A (zh) 用于形成紫外辐射响应性含金属氧化物的膜的方法
KR100434186B1 (ko) 트리스디메틸아미노실란을 이용한 원자층 적층으로실리콘을 함유하는 박막을 형성하는 방법
KR102802722B1 (ko) 저해제 분자를 사용한 고종횡비 구조체의 증착 방법
KR102333599B1 (ko) 표면 보호 물질을 이용한 박막 형성 방법
KR20080050510A (ko) 배치 ald 반응기에 대한 처리 공정
JP2011511160A (ja) β−ジケチミナト配位子含有新金属前駆体
JP6302081B2 (ja) ゲルマニウムまたは酸化ゲルマニウムの原子層堆積
KR102224067B1 (ko) 표면 보호 물질을 이용한 박막 형성 방법
CN117642523A (zh) 稳定的双(烷基-芳烃)过渡金属络合物及使用其的膜沉积方法
JP2018503247A (ja) ジルコニウム含有膜を蒸着するためのジルコニウム含有膜形成組成物
JP7670330B2 (ja) 表面保護物質を用いた薄膜形成方法
JP2016500762A (ja) シリコン含有薄膜の製造方法
EP2499274A2 (en) Methods of making and deposition methods using hafnium- or zirconium-containing compounds
TW202030195A (zh) 化合物、氣相沉積前驅物及製備薄膜的方法
KR102406174B1 (ko) 선택성 부여제를 이용한 영역 선택적 박막 형성 방법
KR102504146B1 (ko) 선택성 부여제를 이용한 영역 선택적 박막 형성 방법
JP7357794B2 (ja) 高品質Si含有膜を形成するための超低温ALD
WO2022146668A1 (en) Group iv element containing precursors and deposition of group iv element containing films
KR102614175B1 (ko) 선택성 부여제를 이용한 영역 선택적 박막 형성 방법
KR20210087808A (ko) 표면 보호 물질을 이용한 물질막 형성 방법
WO2025151572A1 (en) Group 2 metal containing film forming compositions and vapor deposition of the films using the same
KR20230158397A (ko) 박막 형성 방법 및 이를 포함하는 메모리 소자의 제조방법

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20210105

PA0201 Request for examination
PA0302 Request for accelerated examination

Patent event date: 20210910

Patent event code: PA03022R01D

Comment text: Request for Accelerated Examination

Patent event date: 20210105

Patent event code: PA03021R01I

Comment text: Patent Application

PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20211022

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20220217

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20220218

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20220218

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20250310

Start annual number: 4

End annual number: 4