이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
본 명세서는 상기 화학식 1로 표시되는 화합물을 제공한다.
본 출원의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 화합물은 상기와 같은 코어 구조를 가짐으로써, 삼중항 에너지를 조절할 수 있는 장점이 있고, 장수명 및 고효율의 특성을 나타낼 수 있다.
본 명세서에서 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
상기 "치환"이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 및 치환 또는 비치환된 헤테로고리기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되었거나 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 50인 것이 바람직하다. 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 시클로펜틸메틸, 시클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 시클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 구체적으로 시클로프로필, 시클로부틸, 시클로펜틸, 3-메틸시클로펜틸, 2,3-디메틸시클로펜틸, 시클로헥실, 3-메틸시클로헥실, 4-메틸시클로헥실, 2,3-디메틸시클로헥실, 3,4,5-트리메틸시클로헥실, 4-tert-부틸시클로헥실, 시클로헵틸, 시클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에서 상기 아릴기가 단환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나, 탄소수 6 내지 25인 것이 바람직하다. 구체적으로 단환식 아릴기로는 페닐기, 비페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
상기 아릴기가 다환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나. 탄소수 10 내지 24인 것이 바람직하다. 구체적으로 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 플루오레닐기는 치환될 수 있으며, 인접한 치환기들이 서로 결합하여 고리를 형성할 수 있다.
상기 플루오레닐기가 치환되는 경우,
,
,
및
등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로고리기는 탄소가 아닌 원자, 이종원자를 1 이상 포함하는 것으로서, 구체적으로 상기 이종 원자는 O, N, Se 및 S 등으로 이루어진 군에서 선택되는 원자를 1 이상 포함할 수 있다. 헤테로고리기의 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 트리아졸기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤즈옥사졸기, 벤즈이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 티아졸릴기, 이소옥사졸릴기, 옥사디아졸릴기, 티아디아졸릴기, 벤조티아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 방향족 탄화수소고리는 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, 헤테로고리는 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, 아민기는 -NH2; 알킬아민기; N-알킬아릴아민기; 아릴아민기; N-아릴헤테로아릴아민기; N-알킬헤테로아릴아민기 및 헤테로아릴아민기로 이루어진 군으로부터 선택될 수 있으며, 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 나프틸아민기, 바이페닐아민기, 안트라세닐아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, N-페닐나프틸아민기, 디톨릴아민기, N-페닐톨릴아민기, 트리페닐아민기, N-페닐바이페닐아민기, N-페닐나프틸아민기, N-바이페닐나프틸아민기, N-나프틸플루오레닐아민기, N-페닐페난트레닐아민기, N-바이페닐페난트레닐아민기, N-페닐플루오레닐아민기, N-페닐터페닐아민기, N-페난트레닐플루오레닐아민기, N-바이페닐플루오레닐아민기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, N-알킬아릴아민기는 아민기의 N에 알킬기 및 아릴기가 치환된 아민기를 의미한다.
본 명세서에 있어서, N-아릴헤테로아릴아민기는 아민기의 N에 아릴기 및 헤테로아릴기가 치환된 아민기를 의미한다.
본 명세서에 있어서, N-알킬헤테로아릴아민기는 아민기의 N에 알킬기 및 헤테로아릴기가 치환된 아민기를 의미한다.
본 명세서에 있어서, 알킬아민기; N-알킬아릴아민기; 아릴아민기; N-아릴헤테로아릴아민기; N-알킬헤테로아릴아민기 및 헤테로아릴아민기 중의 알킬기, 아릴기 및 헤테로아릴기는 각각 전술한 알킬기, 아릴기 및 헤테로아릴기의 설명이 적용될 수 있다.
본 명세서에 있어서, "인접한" 기는 해당 치환기가 치환된 원자와 직접 연결된 원자에 치환된 치환기, 해당 치환기와 입체구조적으로 가장 가깝게 위치한 치환기, 또는 해당 치환기가 치환된 원자에 치환된 다른 치환기를 의미할 수 있다. 예컨대, 벤젠고리에서 오쏘(ortho)위치로 치환된 2개의 치환기 및 지방족 고리에서 동일 탄소에 치환된 2개의 치환기는 서로 "인접한" 기로 해석될 수 있다.
본 명세서에 있어서, 인접한 기가 서로 결합하여 고리를 형성하는 것의 의미는 전술한 바와 같이 인접한 기가 서로 결합하여, 치환 또는 비치환된 탄화수소고리 또는 치환 또는 비치환된 헤테로고리를 형성하는 것을 의미하며, 단환 또는 다환을 형성할 수 있으며, 지방족, 방향족 또는 이들의 축합된 형태일 수 있으며 이를 한정하지 않는다.
본 명세서에 있어서, 인접하는 기와 서로 결합하여 고리를 형성한다는 의미는 인접하는 기와 서로 결합하여 치환 또는 비치환된 지방족 탄화수소고리; 치환 또는 비치환된 방향족 탄화수소고리; 치환 또는 비치환된 지방족 헤테로고리; 치환 또는 비치환된 방향족 헤테로고리; 또는 이들이 조합된 형태를 형성하는 것을 의미한다.
본 명세서에 있어서, 지방족 탄화수소고리란 방향족이 아닌 고리로서 탄소와 수소 원자로만 이루어진 고리를 의미한다.
본 명세서에 있어서, 방향족 탄화수소고리의 예로는 페닐기, 나프틸기, 안트라세닐기 등이 있으나 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 지방족 헤테로고리란 헤테로원자 중 1개 이상을 포함하는 지방족고리를 의미한다.
본 명세서에 있어서, 방향족 헤테로고리란 헤테로원자 중 1개 이상을 포함하는 방향족고리를 의미한다.
상기 화학식 1로 표시되는 화합물은 하기 화학식 2 내지 4 중 어느 하나로 선택된다.
[화학식 2]
[화학식 3]
[화학식 4]
상기 화학식 2 내지 4에서, R1 내지 R6 및 a 내지 d는 화학식 1에서 정의된 바와 같다.
본 출원의 일 실시상태에 따르면, R1 내지 R4는 각각 독립적으로, 수소; 또는 중수소이거나, 또는 인접한 기와 서로 결합하여 고리를 형성할 수 있다.
본 출원의 일 실시상태에 따르면, R1 내지 R4는 수소이다.
본 출원의 일 실시상태에 따르면, R2 내지 R4는 인접한 기와 서로 결합하여 치환 또는 비치환된 탄화수소고리를 형성할 수 있다.
본 출원의 일 실시상태에 따르면, R2 및 R4는 인접한 기와 서로 결합하여 치환 또는 비치환된 탄화수소고리를 형성할 수 있다.
본 출원의 일 실시상태에 따르면, R2는 인접한 기와 서로 결합하여 치환 또는 비치환된 탄화수소고리를 형성할 수 있다.
본 출원의 일 실시상태에 따르면, b 내지 d가 각각 독립적으로 2 이상인 경우, 2 이상의 R2 내지 R4는 각각 독립적으로 서로 인접한 기끼리 결합하여 고리를 형성할 수 있다.
본 출원의 일 실시상태에 따르면, b 가 2 이상인 경우, 2 이상의 R2는 서로 인접한 기끼리 결합하여 고리를 형성할 수 있다.
본 출원의 일 실시상태에 따르면, b 가 2 이상인 경우, 2 이상의 R2는 서로 인접한 기끼리 결합하여 치환 또는 비치환된 벤젠고리를 형성할 수 있다.
본 출원의 일 실시상태에 따르면, b 가 2 이상인 경우, 2 이상의 R2는 서로 인접한 기끼리 결합하여 벤젠고리를 형성할 수 있다.
본 출원의 일 실시상태에 따르면, c가 2 이상인 경우, 2 이상의 R3은 서로 인접한 기끼리 결합하여 고리를 형성할 수 있다.
본 출원의 일 실시상태에 따르면, c가 2 이상인 경우, 2 이상의 R3은 서로 인접한 기끼리 결합하여 벤젠고리를 형성할 수 있다.
본 출원의 일 실시상태에 따르면, d가 2 이상인 경우, 2 이상의 R4는 서로 인접한 기끼리 결합하여 고리를 형성할 수 있다.
본 출원의 일 실시상태에 따르면, d가 2 이상인 경우, 2 이상의 R4는 서로 인접한 기끼리 결합하여 벤젠고리를 형성할 수 있다.
상기 화학식 1로 표시되는 화합물은 하기 화학식 2-1 내지 2-8, 3-1 내지 3-8 및 4-1 내지 4-8 중 어느 하나로 선택된다.
[화학식 2-1]
[화학식 2-2]
[화학식 2-3]
[화학식 2-4]
[화학식 2-5]
[화학식 2-6]
[화학식 2-7]
[화학식 2-8]
[화학식 3-1]
[화학식 3-2]
[화학식 3-3]
[화학식 3-4]
[화학식 3-5]
[화학식 3-6]
[화학식 3-7]
[화학식 3-8]
[화학식 4-1]
[화학식 4-2]
[화학식 4-3]
[화학식 4-4]
[화학식 4-5]
[화학식 4-6]
[화학식 4-7]
[화학식 4-8]
상기 화학식 2-1 내지 2-8, 3-1 내지 3-8 및 4-1 내지 4-8에서, R4 내지 R6 및 d는 화학식 1에서 정의된 바와 같고,
R7 및 R8은 각각 독립적으로 수소; 또는 중수소이며,
e1 및 e2는 각각 0 또는 1이고, e1과 e2의 합은 1 내지 2이며,
e는 0 내지 10의 정수이고, f는 0 내지 8의 정수이며,
e가 2 이상인 경우에는 복수의 R7는 서로 같거나 상이하고,
f가 2 이상인 경우에는 복수의 R8은 서로 같거나 상이하다.
본 출원의 일 실시상태에 따르면, R5 및 R6은 각각 독립적으로, 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로고리기이다.
본 출원의 일 실시상태에 따르면, R5 및 R6은 각각 독립적으로, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 30의 헤테로고리기이다.
본 출원의 일 실시상태에 따르면, R5 및 R6은 각각 독립적으로, 치환 또는 비치환된 탄소수 6 내지 15의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 15의 헤테로고리기이다.
본 출원의 일 실시상태에 따르면, R5 및 R6은 각각 독립적으로, 치환 또는 비치환된 페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 비페닐기; 치환 또는 비치환된 페난트렌기; 치환 또는 비치환된 카바졸기; 치환 또는 비치환된 디벤조티오펜기; 또는 치환 또는 비치환된 디벤조퓨란기이다.
본 출원의 일 실시상태에 따르면, R5 및 R6은 각각 독립적으로, 페닐기; 나프틸기; 비페닐기; 페난트렌기; 페닐기로 치환 또는 비치환된 카바졸기; 디벤조티오펜기; 또는 디벤조퓨란기이다.
또한, 본 명세서의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 화합물은 하기 구조식들 중에서 선택되는 어느 하나이다.
또한, 본 명세서는 상기 전술한 화합물을 포함하는 유기 발광 소자를 제공한다.
본 명세서의 일 실시상태에 있어서, 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하고, 상기 유기물층 중 1 층 이상은 상기 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 명세서에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 정공주입층 또는 정공수송층을 포함하고, 상기 정공주입층 또는 정공수송층은 상기 화합물을 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화합물을 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화합물을 호스트로서 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1의 화합물을 제1 호스트로서 포함하고, 하기 화학식 H로 표시되는 제2 호스트를 더 포함한다.
[화학식 H]
상기 화학식 H에서,
A는 치환 또는 비치환된 나프탈렌 고리이고,
Ar1은 치환 또는 비치환된 탄소수 6 내지 60의 아릴기이며,
L1 내지 L3은 각각 독립적으로, 단일결합; 또는 치환 또는 비치환된 탄소수 6 내지 60의 아릴렌기이고,
Ar2 및 Ar3는 각각 독립적으로, 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 탄소수 2 내지 60의 헤테로아릴기이며,
p는 0 내지 9인 정수이다.
본 명세서의 일 실시상태에 있어서, A는 치환 또는 비치환된 나프탈렌 고리이다.
본 명세서의 일 실시상태에 있어서, A는 중수소로 치환 또는 비치환된 나프탈렌 고리이다.
본 명세서의 일 실시상태에 있어서, A는 나프탈렌 고리이다.
본 명세서의 일 실시상태에 있어서, p는 중수소의 치환개수를 의미하며, p가 0인 경우는 모두 수소로 치환되어 있는 상태를 의미한다.
본 명세서의 일 실시상태에 있어서, L1 내지 L3는 각각 독립적으로, 단일결합; 또는 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, L1 내지 L3는 각각 독립적으로, 단일결합; 치환 또는 비치환된 페닐렌기; 또는 치환 또는 비치환된 나프탈렌기이다.
본 명세서의 일 실시상태에 있어서, L1 내지 L3는 각각 독립적으로, 단일결합; 중수소로 치환 또는 비치환된 페닐렌기; 또는 중수소로 치환 또는 비치환된 나프탈렌기이다.
본 명세서의 일 실시상태에 있어서, L1 내지 L3는 각각 독립적으로, 단일결합; 페닐렌기; 또는 나프탈렌기이다.
본 명세서의 일 실시상태에 있어서, Ar1은 치환 또는 비치환된 탄소수 6 내지 30의 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ar1은 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 치환 또는 비치환된 터페닐기; 또는 치환 또는 비치환된 나프틸기이다.
본 명세서의 일 실시상태에 있어서, Ar1은 중수소, 알킬기, 시클로알킬기, 및 아릴기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 페닐기; 중수소, 알킬기, 시클로알킬기, 및 아릴기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 비페닐기; 중수소, 알킬기, 시클로알킬기, 및 아릴기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 터페닐기; 또는 중수소, 알킬기, 시클로알킬기, 및 아릴기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 나프틸기이다.
본 명세서의 일 실시상태에 있어서, Ar1은 중수소, 알킬기, 시클로알킬기, 및 아릴기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 페닐기; 비페닐기; 터페닐기; 또는 나프틸기이다.
본 명세서의 일 실시상태에 있어서, Ar1은 중수소, 터트부틸기, 아다만틸기, 페닐기 및 나프틸기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 페닐기; 비페닐기; 터페닐기; 또는 나프틸기이다.
본 명세서의 일 실시상태에 있어서, Ar2 및 Ar3는 각각 독립적으로, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기; 또는 치환 또는 비치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 탄소수 2 내지 30의 헤테로아릴기이다.
본 명세서의 일 실시상태에 있어서, Ar2 및 Ar3는 각각 독립적으로, 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 치환 또는 비치환된 터페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 플루오레닐기; 치환 또는 비치환된 디벤조퓨라닐기; 또는 치환 또는 비치환된 디벤조티오페닐기이다.
본 명세서의 일 실시상태에 있어서, Ar2 및 Ar3는 각각 독립적으로, 중수소, 알킬기, 시클로알킬기, 및 아릴기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 페닐기; 중수소로 치환 또는 비치환된 비페닐기; 중수소로 치환 또는 비치환된 터페닐기; 중수소로 치환 또는 비치환된 나프틸기; 알킬기로 치환 또는 비치환된 플루오레닐기; 중수소로 치환 또는 비치환된 디벤조퓨라닐기; 또는 중수소로 치환 또는 비치환된 디벤조티오페닐기이다.
본 명세서의 일 실시상태에 있어서, Ar2 및 Ar3는 각각 독립적으로, 중수소, 터트부틸기, 아마만틸기, 및 페닐기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 페닐기; 비페닐기; 터페닐기; 나프틸기; 디메틸플루오레닐기; 디벤조퓨라닐기; 또는 디벤조티오페닐기이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 H로 표시되는 제2 호스트는 하기 구조 중 어느 하나로 표시될 수 있으며, 이에 한정되지 않는다.
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 전자수송층 또는 전자주입층을 포함하고, 상기 전자수송층 또는 전자주입층은 상기 화합물을 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 정공주입층, 정공수송층. 전자수송층, 전자주입층, 전자저지층 및 정공저지층으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함한다.
본 출원의 일 실시상태에 있어서, 상기 유기 발광 소자는 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 발광층; 상기 발광층과 상기 제1 전극 사이, 또는 상기 발광층과 상기 제2 전극 사이에 구비된 2층 이상의 유기물층을 포함하고, 상기 2층 이상의 유기물층 중 적어도 하나는 상기 화합물을 포함한다. 본 출원의 일 실시상태에 있어서, 상기 2층 이상의 유기물층은 전자수송층, 전자주입층, 전자 수송과 전자주입을 동시에 하는 층 및 정공저지층으로 이루어진 군에서 2 이상이 선택될 수 있다.
또 하나의 실시상태에 있어서, 유기 발광 소자는 기판 상에 제1 전극, 1층 이상의 유기물층 및 제2 전극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다.
또 하나의 실시상태에 있어서, 유기 발광 소자는 기판 상에 제2 전극, 1층 이상의 유기물층 및 제1 전극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다.
상기 유기발광소자는 예컨대 하기와 같은 적층 구조를 가질 수 있으나, 이에만 한정되는 것은 아니다.
(1) 양극/정공수송층/발광층/음극
(2) 양극/정공주입층/정공수송층/발광층/음극
(3) 양극/정공수송층/발광층/전자수송층/음극
(4) 양극/정공수송층/발광층/전자수송층/전자주입층/음극
(5) 양극/정공주입층/정공수송층/발광층/전자수송층/음극
(6) 양극/정공주입층/정공수송층/발광층/전자수송층/전자주입층/음극
(7) 양극/정공수송층/전자저지층/발광층/전자수송층/음극
(8) 양극/ 정공수송층/전자저지층/발광층/전자수송층/전자주입층/음극
(9) 양극/정공주입층/정공수송층/전자저지층/발광층/전자수송층/음극
(10) 양극/정공주입층/정공수송층/전자저지층/발광층/전자수송층/전자주입 층/음극
(11) 양극/정공수송층/발광층/정공저지층/전자수송층/음극
(12) 양극/정공수송층/발광층/정공저지층/전자수송층/전자주입층/음극
(13) 양극/정공주입층/정공수송층/발광층/정공저지층/전자수송층/음극
(14) 양극/정공주입층/정공수송층/발광층/정공저지층/전자수송층/전자주입 층/음극
(15) 양극/ 정공주입층/정공수송층/전자저지층/발광층/정공저지층/전자수송층/전자주입 층/음극
(16) 양극/ 정공주입층/정공수송층/전자저지층/발광층/정공저지층/전자수송 및 주입층/음극
예컨대, 본 명세서의 일 실시상태에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.
도 1은 기판(1), 제1 전극(2), 발광층(3), 제2 전극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서, 상기 화합물은 상기 발광층(3)에 포함될 수 있다.
도 2는 기판 (1), 제1 전극(2), 정공주입층(5), 정공수송층(6), 전자저지층(7), 발광층(3), 정공저지층(8), 전자 주입 및 수송층(9) 및 제2 전극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서 상기 화합물은 상기 정공주입층(5), 정공수송층(6), 전자저지층(7), 발광층(3), 정공저지층(8), 및 전자 주입 및 수송층(9) 중 1층 이상에 포함될 수 있다. 이와 같은 구조에 있어서, 상기 화합물은 상기 발광층(3)에 포함될 수 있다.
본 명세서의 유기 발광 소자는 유기물층 중 1층 이상이 본 명세서의 화합물, 즉 상기 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다.
상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
본 명세서의 유기 발광 소자는 유기물층 중 1층 이상이 상기 화합물, 즉 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다.
예컨대, 본 명세서의 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시킴으로써 제조할 수 있다. 이 때 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 제1 전극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물층을 형성한 후, 그 위에 제2 전극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 제2 전극 물질부터 유기물층, 제1 전극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다.
또한, 상기 화학식 1의 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 제2 전극 물질로부터 유기물층, 제1 전극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수도 있다 (국제 특허 출원 공개 제 2003/012890호). 다만, 제조 방법이 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이다.
또 하나의 실시상태에 있어서, 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.
상기 제1 전극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 제1 전극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 제2 전극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 제2 전극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공 주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 제1 전극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 제1 전극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로는 제1 전극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공수송층과 발광층 사이에 전자저지층이 구비될 수 있다. 상기 전자저지층은 당 기술분야에 알려져 있는 재료가 사용될 수 있다.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 본원 화학식 1의 화합물을 포함하며, 그외 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등을 더 포함할 수 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란, 디벤조퓨란 유도체, 디벤조티오펜, 디벤조티오펜 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다.
상기 도펀트 재료로는 하기와 같은 화합물 등이 있으나, 이에 한정되지 않는다.
상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 제2 전극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 제2 전극으로부터의 전자주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공 주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 플루오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 함질소 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
상기 정공저지층은 정공의 제2 전극 도달을 저지하는 층으로, 일반적으로 정공주입층과 동일한 조건으로 형성될 수 있다. 구체적으로 옥사디아졸 유도체나 트리아졸 유도체, 페난트롤린 유도체, BCP, 알루미늄 착물 (aluminum complex) 등이 있으나, 이에 한정되지 않는다.
본 명세서에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
이하에서, 실시예를 통하여 본 명세서를 더욱 상세하게 설명한다. 그러나, 이하의 실시예는 본 명세서를 예시하기 위한 것일 뿐, 본 명세서를 한정하기 위한 것은 아니다.
본 명세서에 따른 화합물은 대표적인 반응으로 Buchwald-Hartwig coupling reaction, Heck coupling reaction, Suzuki coupling reaction 등을 이용하여 제조되었다.
[제조예 1] 화학식 a(5H-benzo[b]carbazole)의 제조
1) 화학식 a-1의 제조
나프탈렌-2-아민(naphthalen-2-amine) 300.0 g (1.0 eq), 1-브로모-2-아이도벤젠 (1-bromo-2-iodobenzene) 592.7 g (1.0 eq), NaOtBu 302.0 g (1.5 eq), 팔라듐아세테이트(Pd(OAc)2) 4.70 g (0.01 eq), 4,5-비스(디페닐포스피노)-9,9-디메틸잔텐 (4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene, Xantphos) 12.12 g (0.01 eq) 및 1,4-디옥산 (1,4-dioxane) 5L 에 녹여 환류하여 교반했다. 3 시간 후 반응이 종료되면 감압하여 용매를 제거했다. 이 후 에틸아세테이트(Ethylacetate)에 완전히 녹여서 물로 씻어주고 다시 감압하여 용매를 70% 정도 제거했다. 다시 환류 상태에서 헥산(Hexane)을 넣어주며 결정을 떨어트려 식힌 후 여과했다. 이를 컬럼크로마토그래피하여 화합물 a-1 443.5 g (수율 71 %)를 얻었다. [M+H]=299
2) 화학식 a(5H-benzo[b]carbazole)의 제조
화학식 a-1 443.5 g (1.0 eq), Pd(t-Bu3P)2 8.56 g (0.01 eq) 및 K2CO3 463.2g (2.00 eq) 을 다이에틸아세트아마이드 (Dimethylacetamide, DMAC) 4L에 넣고 환류하여 교반했다. 3시간 후 반응물을 물에 부어서 결정을 떨어트리고 여과했다. 여과한 고체를 1,2-디클로로벤젠 (1,2-dichlorobenzene)에 완전히 녹인 후 물로 씻어주고 생성물이 녹아있는 용액을 감압 농축하여 결정을 떨어트려 식힌 후 여과했다. 이를 컬럼크로마토그래피로 정제하여 화학식 a(5H-benzo[b]carbazole )174.8 g (수율 48 %)을 얻었다. [M+H]=218
여기서, tBu은 터트부틸을 의미한다.
[제조예 2] 화학식 b(7H-dibenzo[b,g]carbazole)의 제조
1-브로모-2-아이도벤젠 대신 1-브로모-2-아이도나프탈렌(1-bromo-2-iodonaphthalene)을 사용하여 화학식 a의 제조 방법과 같은 방법으로 화학식 b(7H-dibenzo[b,g]carbazole)를 합성했다. [M+H]+=268
[제조예 3] 화학식 c(6H-dibenzo[b,h]carbazole) 의 제조
1-브로모-2-아이도벤젠 대신 2,3-디브로모나프탈렌(2,3-dibromonaphthalene)을 사용하여 화학식 a의 제조 방법과 같은 방법으로 화학식 c(6H-dibenzo[b,h]carbazole)를 합성했다. [M+H]+=268
[제조예 4] 화학식 d(13H-dibenzo[a,h]carbazole)의 제조
1-브로모-2-아이도벤젠 대신 2-브로모-1-아이도나프탈렌(2-bromo-1-iodonaphthalene)을 사용하여 화학식 a의 제조 방법과 같은 방법으로 화학식 d(13H-dibenzo[a,h]carbazole)를 합성했다. [M+H]+=268
[제조예 5] 화학식 e의 제조
1) 화학식 e-3의 제조
1-bromo-4-chloro-2-iodobenzene 200.0 g (1.0 eq), (2-(methylthio)phenyl)boronic acid 105.9 g (1.0 eq), K2CO3 173.9 g (2.0 eq) 및 Pd(PPh3)4 (Tetrakis(triphenylphosphine)palladium(0)) 14.55 g (0.02 eq)를 테트라하이드로퓨란(THF) 3L에 녹여 환류하여 교반했다. 2 시간 후 반응이 종료되면 감압하여 용매를 제거했다. 이 후 Ethylacetate에 완전히 녹여서 물로 씻어주고 다시 감압하여 용매를 80% 정도 제거했다. 다시 환류 상태에서 Hexane을 넣어주며 결정을 떨어트려 식힌 후 여과했다. 이를 컬럼크로마토그래피하여 화합물 e-3 138.36 g (수율 70 %)를 얻었다. [M+H]+=312
2) 화학식 e-2의 제조
화학식 e-3 138.36 g (1.0 eq) 및 H2O2 22.5g (2.00 eq)을 아세트산(AcOH) 1L에 넣고 환류하여 교반했다. 1시간 후 반응물을 물에 부어서 결정을 떨어트리고 여과했다. 여과한 고체를 Ethylacetate에 완전히 녹여서 물로 씻어주고 다시 감압하여 용매를 80% 정도 제거했다. 다시 환류 상태에서 Hexane을 넣어주며 결정을 떨어트려 식힌 후 여과했다. 이를 컬럼크로마토그래피하여 화합물 e-2 91.61 g (수율 63 %)를 얻었다. [M+H]+=328
3) 화학식 e-1의 제조
화학식 e-2 91.61 g (1.0 eq)에 H2SO4 500ml 넣고 환류하여 녹이면서 교반했다. 2 시간 후 반응이 종료되면 반응물을 물에 부어서 결정을 떨어 트리고 여과 했다. 여과한 고체를 CHCl3에 완전히 녹인 후 물로 씻어주고 생성물이 녹아있는 용액을 감압 농축하여 용매를 80% 정도 제거했다. 이를 다시 환류 상태에서 Hexane을 넣어주며 결정을 떨어트리고 식힌 후 여과 해서 화학식 e-1 50.45 g (수율 61 %)을 얻었다. [M+H]+=296
3) 화학식 e의 제조
화학식 e-1 50.45 g (1.0 eq), 비스(피나콜라토)디보론 (Bis(pinacolato)diboron) 55.96 g (1.3 eq), Pd(dppf)Cl2 ((1,1'-Bis(diphenylphosphino)ferrocene)palladium dichloride) 2.48g (0.02 eq) 및 KOAc (potassium acetate) 18.98 g (2.00 eq)을 dioxnae 800 mL에 넣고 환류하여 교반했다. 3 시간 후 반응이 종료되면 감압하여 용매를 제거했다. 여과한 고체를 CHCl3에 완전히 녹인 후 물로 씻어주고 생성물이 녹아있는 용액을 감압 농축하여 용매를 90% 정도 제거했다. 이를 다시 환류 상태에서 에탄올을 넣어주며 결정을 떨어트리고 식힌 후 여과 해서 화학식 e 49.66 g (수율 84 %)을 얻었다. [M+H]+=345
[제조예 6] 화학식 f의 제조
1-bromo-4-chloro-2-iodobenzene 대신 2-bromo-4-chloro-1-iodobenzene을 사용하여 화학식 e의 제조 방법과 같은 방법으로 화학식 f를 합성했다. [M+H]+=345
[제조예 7] 화학식 g의 제조
1-bromo-4-chloro-2-iodobenzene 대신 2-bromo-1-chloro-3-iodobenzene을 사용하여 화학식 e의 제조 방법과 같은 방법으로 화학식 g를 합성했다. [M+H]+=345
[제조예 8] 화학식 h의 제조
(2-(methylthio)phenyl)boronic acid 대신 (3-(methylthio)naphthalen-2-yl)boronic acid 을 사용하여 화학식 e의 제조 방법과 같은 방법으로 화학식 h를 합성했다. [M+H]+=394
[제조예 9] 화학식 i의 제조
(2-(methylthio)phenyl)boronic acid 대신 (3-(methylthio)naphthalen-2-yl)boronic acid 을 사용하여 화학식 f의 제조 방법과 같은 방법으로 화학식 i를 합성했다. [M+H]+=394
[제조예 10] 화학식 j의 제조
(2-(methylthio)phenyl)boronic acid 대신 (3-(methylthio)naphthalen-2-yl)boronic acid 을 사용하여 화학식 g의 제조 방법과 같은 방법으로 화학식 j를 합성했다. [M+H]+=394
[제조예 11] 화학식 k의 제조
(2-(methylthio)phenyl)boronic acid 대신 (1-(methylthio)naphthalen-2-yl)boronic acid 을 사용하여 화학식 e의 제조 방법과 같은 방법으로 화학식 k를 합성했다. [M+H]+=394
[제조예 12] 화학식 l제조
(2-(methylthio)phenyl)boronic acid d대신 (1-(methylthio)naphthalen-2-yl)boronic acid 을 사용하여 화학식 f의 제조 방법과 같은 방법으로 화학식 l를 합성했다. [M+H]+=394
[제조예 13] 화학식 m의 제조
(2-(methylthio)phenyl)boronic acid 대신 (1-(methylthio)naphthalen-2-yl)boronic acid 을 사용하여 화학식 g의 제조 방법과 같은 방법으로 화학식 m을 합성했다. [M+H]+=394
[제조예 14] 화학식 n의제조
1-bromo-4-chloro-2-iodobenzene 대신 2-bromo-1-chloro-3-iodonaphthalene을 사용하여 화학식 e의 제조 방법과 같은 방법으로 화학식 n을 합성했다. [M+H]+=394
[제조예 15] 화학식 o의 제조
1-bromo-4-chloro-2-iodobenzene 대신 1-bromo-4-chloro-2-iodonaphthalene을 사용하여 화학식 e의 제조 방법과 같은 방법으로 화학식 o를 합성했다. [M+H]+=394
상기 제조예 1 내지 15에서 합성한 중간체를 활용하여 트리아진(Triazine)이 포함된 중간체를 Suzuki coupling reaction을 통해 진행하고 아래의 합성예들의 화합물을 합성했다.
합성예 1
질소 분위기에서 중간체1 (10 g, 18.5mmol), 화학식a (4.4g, 20.4 mmol) 및 나트륨 터셔리-부톡사이드(NaOtBu, sodium tert-butoxide) (3.6 g, 37 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 비스(트리 터셔리-부틸포스핀)팔라듐(0) (Pd(t-Bu3P)2, bis(tri-tert-butylphosphine)palladium(0)) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1(7.3g)을 얻었다. (수율 55%, MS: [M+H]+= 721)
합성예 2
질소 분위기에서 중간체2 (10 g, 17.4mmol), 화학식a (4.2g, 19.1 mmol) 및 sodium tert-butoxide (3.3 g, 34.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2 (7.5g)를 얻었다. (수율 57%, MS: [M+H]+= 757)
합성예 3
질소 분위기에서 중간체3 (10 g, 16.5mmol), 화학식a (3.9g, 18.2 mmol), sodium tert-butoxide (3.2 g, 33.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 3(8.7g)을 얻었다. (수율 67%, MS: [M+H]+= 787)
합성예 4
질소 분위기에서 중간체4 (10 g, 22.2mmol), 화학식a (5.3g, 24.4 mmol) 및 sodium tert-butoxide (4.3 g, 44.4 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 4(7.8g)를 얻었다. (수율 56%, MS: [M+H]+= 631)
합성예 5
질소 분위기에서 중간체 5 (10 g, 14.2mmol), 화학식 a (3.4g, 15.6 mmol) 및 sodium tert-butoxide (2.7 g, 28.4 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 5 (7.3g)를 얻었다. (수율 58%, MS: [M+H]+= 886)
합성예 6
질소 분위기에서 중간체6 (10 g, 16.6mmol), 화학식a (4g, 18.3 mmol) 및 sodium tert-butoxide (3.2 g, 33.3 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 6(8.5g)을 얻었다. (수율 65%, MS: [M+H]+= 783)
합성예 7
질소 분위기에서 중간체7 (10 g, 16.6mmol), 화학식a (4g, 18.3 mmol) 및 sodium tert-butoxide (3.2 g, 33.3 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 7 (8.1g)을 얻었다. (수율 62%, MS: [M+H]+= 783)
합성예 8
질소 분위기에서 중간체8 (10 g, 17mmol), 화학식a (4.1g, 18.7 mmol) 및 sodium tert-butoxide (3.3 g, 34 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 8 (7.7g)을 얻었다. (수율 59%, MS: [M+H]+= 771)
합성예 9
질소 분위기에서 중간체9 (10 g, 18.6mmol), 화학식a (4.4g, 20.4 mmol) 및 sodium tert-butoxide (3.6 g, 37.2 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 9 (7.5g)을 얻었다. (수율 56%, MS: [M+H]+= 720)
합성예 10
질소 분위기에서 중간체 10 (10 g, 14.5mmol), 화학식a (3.5g, 15.9 mmol) 및 sodium tert-butoxide (2.8 g, 29 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 10 (8.3g)을 얻었다. (수율 66%, MS: [M+H]+= 872)
합성예 11
질소 분위기에서 중간체11 (10 g, 17.4mmol), 화학식a (4.2g, 19.1 mmol) 및 sodium tert-butoxide (3.3 g, 34.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 11 (8.7g)을 얻었다. (수율 66%, MS: [M+H]+= 757)
합성예 12
질소 분위기에서 중간체12 (10 g, 15.4mmol), 화학식a (3.7g, 16.9 mmol) 및 sodium tert-butoxide (3 g, 30.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 12 (6.9g)을 얻었다. (수율 54%, MS: [M+H]+= 831)
합성예 13
질소 분위기에서 중간체13 (10 g, 19mmol), 화학식a (4.6g, 20.9 mmol) 및 sodium tert-butoxide (3.7 g, 38.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 13 (7g)을 얻었다. (수율 52%, MS: [M+H]+= 707)
합성예 14
질소 분위기에서 중간체14 (10 g, 16.3mmol), 화학식a (3.9g, 17.9 mmol) 및 sodium tert-butoxide (3.1 g, 32.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 14 (7g)을 얻었다. (수율 54%, MS: [M+H]+= 797)
합성예 15
질소 분위기에서 중간체15 (10 g, 16.5mmol), 화학식a (3.9g, 18.2 mmol) 및 sodium tert-butoxide (3.2 g, 33.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 15 (8.4g)을 얻었다. (수율 65%, MS: [M+H]+= 787)
합성예 16
질소 분위기에서 중간체16 (10 g, 15.4mmol), 화학식b (4.5g, 16.9 mmol) 및 sodium tert-butoxide (3 g, 30.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 16 (9.1g)을 얻었다. (수율 67%, MS: [M+H]+= 881)
합성예 17
질소 분위기에서 중간체17 (10 g, 15.4mmol), 화학식c (4.5g, 16.9 mmol) 및 sodium tert-butoxide (3 g, 30.7 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 17 (8.5g)을 얻었다. (수율 63%, MS: [M+H]+= 883)
합성예 18
질소 분위기에서 중간체18 (10 g, 16.7mmol), 화학식a (4g, 18.4 mmol) 및 sodium tert-butoxide (3.2 g, 33.4 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 18 (8.1g)을 얻었다. (수율 62%, MS: [M+H]+= 781)
합성예 19
질소 분위기에서 중간체19 (10 g, 18.2mmol), 화학식a (4.4g, 20 mmol) 및 sodium tert-butoxide (3.5 g, 36.4 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 19 (8.2g)을 얻었다. (수율 62%, MS: [M+H]+= 731)
합성예 20
질소 분위기에서 중간체20 (10 g, 17mmol), 화학식c (5g, 18.7 mmol) 및 sodium tert-butoxide (3.3 g, 34 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 20 (9.6g)을 얻었다. (수율 69%, MS: [M+H]+= 821)
합성예 21
질소 분위기에서 중간체21 (10 g, 15.6mmol), 화학식d (4.6g, 17.2 mmol) 및 sodium tert-butoxide (3 g, 31.3 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물21 (9.4g)을 얻었다. (수율 69%, MS: [M+H]+= 871)
합성예 22
질소 분위기에서 중간체22 (10 g, 15.8mmol), 화학식c (4.7g, 17.4 mmol) 및 sodium tert-butoxide (3 g, 31.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 22 (7.7g)을 얻었다. (수율 56%, MS: [M+H]+= 863)
합성예 23
질소 분위기에서 중간체23 (10 g, 14.7mmol), 화학식b (4.3g, 16.2 mmol) 및 sodium tert-butoxide (2.8 g, 29.4 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물23 (6.8g)을 얻었다. (수율 51%, MS: [M+H]+= 913)
합성예 24
질소 분위기에서 중간체24 (10 g, 14.7mmol), 화학식a (4.3g, 16.2 mmol) 및 sodium tert-butoxide (2.8 g, 29.4 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물24 (6.8g)을 얻었다. (수율 51%, MS: [M+H]+= 913)
합성예 25
질소 분위기에서 중간체25 (10 g, 14.4mmol), 화학식b (4.2g, 15.8 mmol) 및 sodium tert-butoxide (2.8 g, 28.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물25 (7.9g)을 얻었다. (수율 59%, MS: [M+H]+= 927)
합성예 26
질소 분위기에서 중간체26 (10 g, 13mmol), 화학식d (3.8g, 14.3 mmol) 및 sodium tert-butoxide (2.5 g, 26 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물26 (7.7g)을 얻었다. (수율 59%, MS: [M+H]+= 1002)
합성예 27
질소 분위기에서 중간체27 (10 g, 16.3mmol), 화학식d (4.8g, 17.9 mmol) 및 sodium tert-butoxide (3.1 g, 32.6 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물27 (9.5g)을 얻었다. (수율 69%, MS: [M+H]+= 846)
합성예 28
질소 분위기에서 중간체28 (10 g, 14mmol), 화학식b (4.1g, 15.4 mmol) 및 sodium tert-butoxide (2.7 g, 28 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물28 (8.6g)을 얻었다. (수율 65%, MS: [M+H]+= 946)
합성예 29
질소 분위기에서 중간체29 (10 g, 15.4mmol), 화학식a (3.7g, 16.9 mmol) 및 sodium tert-butoxide (3 g, 30.7 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물29 (6.5g)을 얻었다. (수율 51%, MS: [M+H]+= 833)
합성예 30
질소 분위기에서 중간체30 (10 g, 22.3mmol), 화학식c (6.5g, 24.5 mmol) 및 sodium tert-butoxide (4.3 g, 44.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물30 (8g)을 얻었다. (수율 53%, MS: [M+H]+= 681)
합성예 31
질소 분위기에서 중간체31 (10 g, 18.2mmol), 화학식b (5.4g, 20 mmol) 및 sodium tert-butoxide (3.5 g, 36.4 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 31 (9g)을 얻었다. (수율 63%, MS: [M+H]+= 781)
합성예 32
질소 분위기에서 중간체32 (10 g, 14.4mmol), 화학식a (3.4g, 15.8 mmol) 및 sodium tert-butoxide (2.8 g, 28.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 32 (6.9g)을 얻었다. (수율 55%, MS: [M+H]+= 876)
합성예 33
질소 분위기에서 중간체33 (10 g, 15.6mmol), 화학식b (4.6g, 17.2 mmol) 및 sodium tert-butoxide (3 g, 31.3 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물33 (9.4g)을 얻었다. (수율 69%, MS: [M+H]+= 871)
합성예 34
질소 분위기에서 중간체34 (10 g, 16.5mmol), 화학식b (4.9g, 18.2 mmol) 및 sodium tert-butoxide (3.2 g, 33.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 34 (7g)을 얻었다. (수율 51%, MS: [M+H]+= 837)
합성예 35
질소 분위기에서 중간체35 (10 g, 17mmol), 화학식c (5g, 18.7 mmol) 및 sodium tert-butoxide (3.3 g, 34 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 35 (7.2g)을 얻었다. (수율 52%, MS: [M+H]+= 821)
합성예 36
질소 분위기에서 중간체36 (10 g, 14.7mmol), 화학식c (4.3g, 16.2 mmol) 및 sodium tert-butoxide (2.8 g, 29.4 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 36 (8.6g)을 얻었다. (수율 64%, MS: [M+H]+= 913)
합성예 37
질소 분위기에서 중간체37 (10 g, 15.7mmol), 화학식d (4.6g, 17.2 mmol) 및 sodium tert-butoxide (3 g, 31.3 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 37 (7.5g)을 얻었다. (수율 55%, MS: [M+H]+= 870)
합성예 38
질소 분위기에서 중간체38 (10 g, 15.8mmol), 화학식d (4.7g, 17.4 mmol) 및 sodium tert-butoxide (3 g, 31.7 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물38 (7.8g)을 얻었다. (수율 57%, MS: [M+H]+= 863)
합성예 39
질소 분위기에서 중간체39 (10 g, 15.1mmol), 화학식d (4.4g, 16.6 mmol) 및 sodium tert-butoxide (2.9 g, 30.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 39 (7.5g)을 얻었다. (수율 56%, MS: [M+H]+= 896)
합성예 40
질소 분위기에서 중간체40 (10 g, 16mmol), 화학식c (4.7g, 17.6 mmol) 및 sodium tert-butoxide (3.1 g, 32 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 40 (9.2g)을 얻었다. (수율 67%, MS: [M+H]+= 857)
합성예 41
질소 분위기에서 중간체41 (10 g, 15.4mmol), 화학식a (3.7g, 16.9 mmol) 및 sodium tert-butoxide (3 g, 30.7 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물41 (6.8g)을 얻었다. (수율 53%, MS: [M+H]+= 833)
합성예 42
질소 분위기에서 중간체42 (10 g, 18.2mmol), 화학식a (4.4g, 20 mmol) 및 sodium tert-butoxide (3.5 g, 36.4 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 42 (8.9g)을 얻었다. (수율 67%, MS: [M+H]+= 731)
합성예 43
질소 분위기에서 중간체43 (10 g, 16mmol), 화학식b (4.7g, 17.6 mmol) 및 sodium tert-butoxide (3.1 g, 32 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 43 (7.9g)을 얻었다. (수율 58%, MS: [M+H]+= 857)
합성예 44
질소 분위기에서 중간체44 (10 g, 16mmol), 화학식b (4.7g, 17.6 mmol) 및 sodium tert-butoxide (3.1 g, 32 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물44 (9.3g)을 얻었다. (수율 68%, MS: [M+H]+= 857)
합성예 45
질소 분위기에서 중간체45 (10 g, 16mmol), 화학식b (4.7g, 17.6 mmol) 및 sodium tert-butoxide (3.1 g, 32 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물45 (9.3g)을 얻었다. (수율 68%, MS: [M+H]+= 857)
합성예 46
질소 분위기에서 중간체46 (10 g, 18.2mmol), 화학식a (4.4g, 20 mmol) 및 sodium tert-butoxide (3.5 g, 36.4 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물46 (8g)을 얻었다. (수율 60%, MS: [M+H]+= 731)
합성예 47
질소 분위기에서 중간체47 (10 g, 15.6mmol), 화학식b (4.6g, 17.2 mmol) 및 sodium tert-butoxide (3 g, 31.3 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물47 (7.9g)을 얻었다. (수율 58%, MS: [M+H]+= 871)
합성예 48
질소 분위기에서 중간체48 (10 g, 15.6mmol), 화학식c(4.6g, 17.2 mmol) 및 sodium tert-butoxide (3 g, 31.3 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물48 (9.4g)을 얻었다. (수율 69%, MS: [M+H]+= 871)
합성예 49
질소 분위기에서 중간체49 (10 g, 16.5mmol), 화학식d (4.9g, 18.2 mmol) 및 sodium tert-butoxide (3.2 g, 33.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물49 8.2g을 얻었다. (수율 59%, MS: [M+H]+= 837)
합성예 50
질소 분위기에서 중간체50 (10 g, 17mmol), 화학식d (5g, 18.7 mmol) 및 sodium tert-butoxide (3.3 g, 34 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물50 (8.6g)을 얻었다. (수율 62%, MS: [M+H]+= 821)
합성예 51
질소 분위기에서 중간체51 (10 g, 14.4mmol), 화학식c (4.2g, 15.8 mmol) 및 sodium tert-butoxide (2.8 g, 28.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물51 (7.1g)을 얻었다. (수율 53%, MS: [M+H]+= 927)
합성예 52
질소 분위기에서 중간체52 (10 g, 15.3mmol), 화학식b (4.5g, 16.8 mmol) 및 sodium tert-butoxide (2.9 g, 30.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물52 (8g)을 얻었다. (수율 59%, MS: [M+H]+= 887)
합성예 53
질소 분위기에서 중간체53 (10 g, 15.1mmol), 화학식c (4.4g, 16.6 mmol) 및 sodium tert-butoxide (2.9 g, 30.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물53 (8.6g)을 얻었다. (수율 64%, MS: [M+H]+= 896)
합성예 54
질소 분위기에서 중간체54 (10 g, 14mmol), 화학식d (4.1g, 15.4 mmol) 및 sodium tert-butoxide (2.7 g, 28 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물54 (7.7g)을 얻었다. (수율 58%, MS: [M+H]+= 946)
비교예 1
ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척했다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용했다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행했다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 정공주입층으로 하기 HI-1 화합물을 1150Å의 두께로 형성하되 하기 A-1 화합물을 1.5% 농도로 p-도핑(p-doping)했다. 상기 정공주입층 위에 하기 HT-1 화합물을 진공 증착하여 막 두께 800Å 의 정공수송층을 형성했다. 이어서, 상기 정공수송층 위에 막 두께 150Å으로 하기 EB-1 화합물을 진공 증착하여 전자저지층을 형성했다. 이어서, 상기 EB-1 증착막 위에 하기 RH-1 화합물과 하기 Dp-7 화합물을 98:2의 중량비로 진공 증착하여 400Å 두께의 적색 발광층을 형성했다. 상기 발광층 위에 막 두께 30Å으로 하기 HB-1 화합물을 진공 증착하여 정공저지층을 형성했다. 이어서, 상기 정공저지층 위에 하기 ET-1 화합물과 하기 LiQ 화합물을 2:1의 중량비로 진공 증착하여 300Å의 두께로 전자 주입 및 수송층을 형성했다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å 두께로 리튬플로라이드(LiF)와 1,000Å 두께로 알루미늄을 증착하여 음극을 형성했다.
상기의 과정에서 유기물의 증착속도는 0.4~0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2×10-7 ~ 5×10-6 torr를 유지하여, 유기 발광 소자를 제작했다.
실시예 1 내지 실시예 54
비교예 1의 유기 발광 소자에서 RH-1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조했다.
비교예 2 내지 비교예 25
비교예 1의 유기 발광 소자에서 RH-1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조했다.
상기 실시예 1 내지 실시예 54 및 비교예 1 내지 비교예 25에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율, 수명을 측정(6000 nit 기준)하고 그 결과를 하기 표 1에 나타냈다. 수명 T95는 휘도가 초기 휘도(6000 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다.
구분 |
물질 |
구동전압(V) |
효율(cd/A) |
수명 T95(hr) |
발광색 |
비교예 1 |
RH-1 |
4.34 |
38.3 |
193 |
적색 |
실시예 1 |
화합물 1 |
3.70 |
44.5 |
241 |
적색 |
실시예 2 |
화합물 2 |
3.73 |
43.7 |
250 |
적색 |
실시예 3 |
화합물 3 |
3.79 |
44.8 |
247 |
적색 |
실시예 4 |
화합물 4 |
3.72 |
44.1 |
258 |
적색 |
실시예 5 |
화합물 5 |
3.84 |
44.5 |
306 |
적색 |
실시예 6 |
화합물 6 |
3.87 |
45.3 |
301 |
적색 |
실시예 7 |
화합물 7 |
3.82 |
44.9 |
298 |
적색 |
실시예 8 |
화합물 8 |
3.81 |
45.5 |
307 |
적색 |
실시예 9 |
화합물 9 |
3.80 |
46.3 |
293 |
적색 |
실시예 10 |
화합물 10 |
3.85 |
46.1 |
292 |
적색 |
실시예 11 |
화합물 11 |
3.63 |
47.8 |
287 |
적색 |
실시예 12 |
화합물 12 |
3.61 |
47.3 |
299 |
적색 |
실시예 13 |
화합물 13 |
3.64 |
47.9 |
285 |
적색 |
실시예 14 |
화합물 14 |
3.69 |
45.1 |
267 |
적색 |
실시예 15 |
화합물 15 |
3.61 |
45.0 |
264 |
적색 |
실시예 16 |
화합물 16 |
3.53 |
45.2 |
257 |
적색 |
실시예 17 |
화합물 17 |
3.56 |
46.2 |
311 |
적색 |
실시예 18 |
화합물 18 |
3.52 |
46.7 |
309 |
적색 |
실시예 19 |
화합물 19 |
3.58 |
46.5 |
325 |
적색 |
실시예 20 |
화합물 20 |
3.57 |
46.3 |
305 |
적색 |
실시예 21 |
화합물 21 |
3.61 |
45.7 |
318 |
적색 |
실시예 22 |
화합물 22 |
3.50 |
47.1 |
321 |
적색 |
실시예 23 |
화합물 23 |
3.64 |
45.2 |
317 |
적색 |
실시예 24 |
화합물 24 |
3.53 |
46.7 |
314 |
적색 |
실시예 25 |
화합물 25 |
3.52 |
46.3 |
306 |
적색 |
실시예 26 |
화합물 26 |
3.48 |
46.9 |
313 |
적색 |
실시예 27 |
화합물 27 |
3.55 |
46.0 |
324 |
적색 |
실시예 28 |
화합물 28 |
3.52 |
47.8 |
308 |
적색 |
실시예 29 |
화합물 29 |
3.63 |
48.1 |
329 |
적색 |
실시예 30 |
화합물 30 |
3.60 |
50.2 |
341 |
적색 |
실시예 31 |
화합물 31 |
3.62 |
48.7 |
350 |
적색 |
실시예 32 |
화합물 32 |
3.58 |
49.3 |
349 |
적색 |
실시예 33 |
화합물 33 |
3.67 |
48.6 |
337 |
적색 |
실시예 34 |
화합물 34 |
3.57 |
48.2 |
353 |
적색 |
실시예 35 |
화합물 35 |
3.69 |
48.5 |
345 |
적색 |
실시예 36 |
화합물 36 |
3.64 |
48.7 |
343 |
적색 |
실시예 37 |
화합물 37 |
3.71 |
49.2 |
340 |
적색 |
실시예 38 |
화합물 38 |
3.57 |
48.3 |
349 |
적색 |
실시예 39 |
화합물 39 |
3.62 |
48.0 |
351 |
적색 |
실시예 40 |
화합물 40 |
3.47 |
49.5 |
325 |
적색 |
실시예 41 |
화합물 41 |
3.42 |
50.1 |
337 |
적색 |
실시예 42 |
화합물 42 |
3.43 |
49.5 |
322 |
적색 |
실시예 43 |
화합물 43 |
3.47 |
49.7 |
319 |
적색 |
실시예 44 |
화합물 44 |
3.45 |
49.8 |
307 |
적색 |
실시예 45 |
화합물 45 |
3.43 |
49.6 |
309 |
적색 |
실시예 46 |
화합물 46 |
3.42 |
49.0 |
311 |
적색 |
실시예 47 |
화합물 47 |
3.43 |
50.3 |
304 |
적색 |
실시예 48 |
화합물 48 |
3.41 |
48.3 |
317 |
적색 |
실시예 49 |
화합물 49 |
3.45 |
48.7 |
306 |
적색 |
실시예 50 |
화합물 50 |
3.49 |
49.0 |
328 |
적색 |
실시예 51 |
화합물 51 |
3.39 |
49.3 |
299 |
적색 |
실시예 52 |
화합물 52 |
3.42 |
48.6 |
305 |
적색 |
실시예 53 |
화합물 53 |
3.50 |
50.4 |
315 |
적색 |
실시예 54 |
화합물 54 |
3.54 |
49.5 |
309 |
적색 |
비교예 2 |
C-1 |
4.13 |
37.2 |
131 |
적색 |
비교예 3 |
C-2 |
4.81 |
34.1 |
140 |
적색 |
비교예 4 |
C-3 |
4.30 |
35.1 |
167 |
적색 |
비교예 5 |
C-4 |
4.68 |
33.0 |
79 |
적색 |
비교예 6 |
C-5 |
4.41 |
32.4 |
97 |
적색 |
비교예 7 |
C-6 |
4.77 |
29.7 |
61 |
적색 |
비교예 8 |
C-7 |
4.21 |
34.0 |
103 |
적색 |
비교예 9 |
C-8 |
4.19 |
35.7 |
114 |
적색 |
비교예 10 |
C-9 |
4.71 |
31.3 |
73 |
적색 |
비교예 11 |
C-10 |
4.19 |
35.7 |
114 |
적색 |
비교예 12 |
C-11 |
4.71 |
31.3 |
73 |
적색 |
비교예 13 |
C-12 |
4.71 |
31.3 |
73 |
적색 |
비교예 14 |
C-13 |
4.46 |
34.3 |
108 |
적색 |
비교예 15 |
C-14 |
4.21 |
35.5 |
112 |
적색 |
비교예 16 |
C-15 |
3.95 |
36.1 |
93 |
적색 |
비교예 17 |
C-16 |
4.51 |
32.5 |
91 |
적색 |
비교예 18 |
C-17 |
4.33 |
36.8 |
107 |
적색 |
비교예 19 |
C-18 |
4.01 |
34.7 |
123 |
적색 |
비교예 20 |
C-19 |
3.91 |
36.5 |
152 |
적색 |
비교예 21 |
C-20 |
3.85 |
39.1 |
107 |
적색 |
비교예 22 |
C-21 |
4.03 |
37.5 |
152 |
적색 |
비교예 23 |
C-22 |
5.41 |
10.3 |
31 |
적색 |
비교예 24 |
C-23 |
5.51 |
8.7 |
23 |
적색 |
비교예 25 |
C-24 |
4.52 |
35.4 |
61 |
적색 |
실시예 1 내지 실시예 54 및 비교예 1 내지 25에 의해 제작된 유기 발광 소자에 전류를 인가하였을 때, 상기 표 1의 결과를 얻었다. 상기 비교예 1의 적색 유기 발광 소자는 종래 널리 사용되고 있는 물질을 사용하였으며, 전자저지층으로 화합물 [EB-1], 적색 발광층으로 RH-1/Dp-7을 사용하는 구조이다. 비교예 2 내지 25은 RH-1 대신 C-1 내지 C-24를 사용하여 유기 발광 소자를 제조했다.
상기 표 1의 결과를 보면 본 발명의 화합물이 적색 발광층의 호스트로 사용했을 때 비교예 물질에 비해서 구동전압이 크게는 30% 가까이 낮아졌으며, 효율 측면에서는 25% 이상 상승한 것으로 보아 호스트에서 적색 도판트로의 에너지 전달이 잘 이뤄진다는 것을 알 수 있었다. 또한, 높은 효율을 유지하면서도 수명 특성을 2배 이상 크게 개선시킬 수 있는 것을 알 수 있었다. 이것은 결국 비교예 화합물들보다 본 발명의 화합물들이 전자와 정공에 대한 안정도가 높기 때문이라 판단할 수 있다.
실시예 55 내지 실시예 154
비교예 1의 유기 발광 소자에서 RH-1 대신 하기 표 2에 기재된 제1 호스트와 제2 호스트를 1:1 중량비율로 진공 공증착을 진행했으며 이것을 제외하고는 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조했다.
구분 |
제1호스트 |
제2호스트 |
구동전압(V) |
효율(cd/A) |
수명 T95(hr) |
발광색 |
실시예 55 |
화합물2 |
Z-1 |
3.65 |
45.2 |
402 |
적색 |
실시예 56 |
화합물2 |
Z-4 |
3.68 |
44.9 |
411 |
적색 |
실시예 57 |
화합물2 |
Z-10 |
3.69 |
46.0 |
408 |
적색 |
실시예 58 |
화합물2 |
Z-13 |
3.68 |
44.2 |
423 |
적색 |
실시예 59 |
화합물2 |
Z-21 |
3.65 |
43.9 |
417 |
적색 |
실시예 60 |
화합물2 |
Z-25 |
3.67 |
44.1 |
408 |
적색 |
실시예 61 |
화합물2 |
Z-31 |
3.70 |
45.3 |
421 |
적색 |
실시예 62 |
화합물2 |
Z-33 |
3.68 |
44.0 |
417 |
적색 |
실시예 63 |
화합물7 |
Z-1 |
3.79 |
45.5 |
465 |
적색 |
실시예 64 |
화합물7 |
Z-4 |
3.78 |
45.8 |
469 |
적색 |
실시예 65 |
화합물7 |
Z-10 |
3.82 |
46.9 |
458 |
적색 |
실시예 66 |
화합물7 |
Z-13 |
3.78 |
44.5 |
461 |
적색 |
실시예 67 |
화합물7 |
Z-21 |
3.83 |
45.7 |
454 |
적색 |
실시예 68 |
화합물7 |
Z-25 |
3.80 |
45.9 |
451 |
적색 |
실시예 69 |
화합물7 |
Z-31 |
3.82 |
45.2 |
467 |
적색 |
실시예 70 |
화합물7 |
Z-33 |
3.77 |
44.8 |
462 |
적색 |
실시예 71 |
화합물13 |
Z-1 |
3.58 |
47.6 |
453 |
적색 |
실시예 72 |
화합물13 |
Z-4 |
3.57 |
47.9 |
451 |
적색 |
실시예 73 |
화합물13 |
Z-10 |
3.59 |
48.1 |
449 |
적색 |
실시예 74 |
화합물13 |
Z-13 |
3.55 |
47.8 |
467 |
적색 |
실시예 75 |
화합물13 |
Z-21 |
3.61 |
47.5 |
452 |
적색 |
실시예 76 |
화합물13 |
Z-25 |
3.59 |
48.9 |
461 |
적색 |
실시예 77 |
화합물13 |
Z-31 |
3.62 |
47.9 |
468 |
적색 |
실시예 78 |
화합물13 |
Z-33 |
3.58 |
48.0 |
455 |
적색 |
실시예 79 |
화합물17 |
Z-2 |
3.69 |
46.2 |
427 |
적색 |
실시예 80 |
화합물17 |
Z-7 |
3.68 |
45.9 |
3.97 |
적색 |
실시예 81 |
화합물17 |
Z-11 |
3.70 |
45.9 |
419 |
적색 |
실시예 82 |
화합물17 |
Z-15 |
3.68 |
45.7 |
410 |
적색 |
실시예 83 |
화합물17 |
Z-18 |
3.67 |
46.5 |
391 |
적색 |
실시예 84 |
화합물17 |
Z-19 |
3.71 |
45.8 |
415 |
적색 |
실시예 85 |
화합물17 |
Z-22 |
3.69 |
45.7 |
493 |
적색 |
실시예 86 |
화합물17 |
Z-23 |
3.70 |
45.9 |
395 |
적색 |
실시예 87 |
화합물17 |
Z-27 |
3.72 |
46.7 |
411 |
적색 |
실시예 88 |
화합물17 |
Z-34 |
3.68 |
45.8 |
498 |
적색 |
실시예 89 |
화합물21 |
Z-2 |
3.49 |
45.9 |
461 |
적색 |
실시예 90 |
화합물21 |
Z-7 |
3.48 |
44.3 |
472 |
적색 |
실시예 91 |
화합물21 |
Z-11 |
3.49 |
44.8 |
462 |
적색 |
실시예 92 |
화합물21 |
Z-15 |
3.51 |
44.5 |
454 |
적색 |
실시예 93 |
화합물21 |
Z-18 |
3.45 |
45.3 |
458 |
적색 |
실시예 94 |
화합물21 |
Z-19 |
3.48 |
44.7 |
449 |
적색 |
실시예 95 |
화합물21 |
Z-22 |
3.52 |
45.9 |
486 |
적색 |
실시예 96 |
화합물21 |
Z-23 |
3.50 |
46.4 |
467 |
적색 |
실시예 97 |
화합물21 |
Z-27 |
3.47 |
44.5 |
466 |
적색 |
실시예 98 |
화합물21 |
Z-34 |
3.49 |
46.0 |
458 |
적색 |
실시예 99 |
화합물30 |
Z-2 |
3.49 |
50.0 |
462 |
적색 |
실시예 100 |
화합물30 |
Z-7 |
3.47 |
49.3 |
481 |
적색 |
실시예 101 |
화합물30 |
Z-11 |
3.52 |
49.4 |
473 |
적색 |
실시예 102 |
화합물30 |
Z-15 |
3.49 |
49.9 |
462 |
적색 |
실시예 103 |
화합물30 |
Z-18 |
3.47 |
50.5 |
468 |
적색 |
실시예 104 |
화합물30 |
Z-19 |
3.46 |
49.7 |
477 |
적색 |
실시예 105 |
화합물30 |
Z-22 |
3.50 |
49.5 |
486 |
적색 |
실시예 106 |
화합물30 |
Z-23 |
3.48 |
50.3 |
471 |
적색 |
실시예 107 |
화합물30 |
Z-27 |
3.51 |
49.7 |
469 |
적색 |
실시예 108 |
화합물30 |
Z-34 |
3.53 |
50.5 |
473 |
적색 |
실시예 109 |
화합물35 |
Z-2 |
3.48 |
50.5 |
461 |
적색 |
실시예 110 |
화합물35 |
Z-7 |
3.45 |
51.6 |
457 |
적색 |
실시예 111 |
화합물35 |
Z-11 |
3.40 |
51.7 |
449 |
적색 |
실시예 112 |
화합물35 |
Z-15 |
3.49 |
51.1 |
468 |
적색 |
실시예 113 |
화합물35 |
Z-18 |
3.51 |
50.7 |
471 |
적색 |
실시예 114 |
화합물35 |
Z-19 |
3.43 |
51.4 |
466 |
적색 |
실시예 115 |
화합물35 |
Z-22 |
3.47 |
50.6 |
481 |
적색 |
실시예 116 |
화합물35 |
Z-23 |
3.44 |
50.9 |
458 |
적색 |
실시예 117 |
화합물35 |
Z-27 |
3.49 |
52.1 |
467 |
적색 |
실시예 118 |
화합물35 |
Z-34 |
3.50 |
51.4 |
463 |
적색 |
실시예 119 |
화합물 42 |
Z-3 |
3.61 |
51.3 |
461 |
적색 |
실시예 120 |
화합물 42 |
Z-8 |
3.63 |
50.8 |
475 |
적색 |
실시예 121 |
화합물 42 |
Z-12 |
3.61 |
52.7 |
454 |
적색 |
실시예 122 |
화합물 42 |
Z-16 |
3.60 |
51.5 |
460 |
적색 |
실시예 123 |
화합물 42 |
Z-20 |
3.67 |
51.8 |
447 |
적색 |
실시예 124 |
화합물 42 |
Z-29 |
3.64 |
51.6 |
476 |
적색 |
실시예 125 |
화합물 42 |
Z-30 |
3.61 |
52.0 |
440 |
적색 |
실시예 126 |
화합물 42 |
Z-32 |
3.65 |
50.6 |
479 |
적색 |
실시예 127 |
화합물47 |
Z-3 |
3.62 |
51.0 |
481 |
적색 |
실시예 128 |
화합물47 |
Z-8 |
3.69 |
52.7 |
498 |
적색 |
실시예 129 |
화합물47 |
Z-12 |
3.58 |
51.2 |
470 |
적색 |
실시예 130 |
화합물47 |
Z-16 |
3.54 |
51.4 |
467 |
적색 |
실시예 131 |
화합물47 |
Z-20 |
3.59 |
51.9 |
465 |
적색 |
실시예 132 |
화합물47 |
Z-29 |
3.58 |
52.3 |
443 |
적색 |
실시예 133 |
화합물47 |
Z-30 |
3.60 |
50.9 |
465 |
적색 |
실시예 134 |
화합물47 |
Z-32 |
3.58 |
53.3 |
473 |
적색 |
실시예 135 |
화합물51 |
Z-5 |
3.49 |
49.6 |
431 |
적색 |
실시예 136 |
화합물51 |
Z-6 |
3.48 |
49.7 |
438 |
적색 |
실시예 137 |
화합물51 |
Z-9 |
3.49 |
50.1 |
405 |
적색 |
실시예 138 |
화합물51 |
Z-14 |
3.46 |
49.5 |
418 |
적색 |
실시예 139 |
화합물51 |
Z-17 |
3.51 |
51.6 |
438 |
적색 |
실시예 140 |
화합물51 |
Z-24 |
3.49 |
50.3 |
429 |
적색 |
실시예 141 |
화합물51 |
Z-26 |
3.47 |
49.2 |
437 |
적색 |
실시예 142 |
화합물51 |
Z-28 |
3.52 |
48.8 |
458 |
적색 |
실시예 143 |
화합물51 |
Z-35 |
3.50 |
51.9 |
451 |
적색 |
실시예 144 |
화합물51 |
Z-36 |
3.48 |
48.7 |
455 |
적색 |
실시예 145 |
화합물53 |
Z-5 |
3.49 |
50.5 |
399 |
적색 |
실시예 146 |
화합물53 |
Z-6 |
3.51 |
51.3 |
401 |
적색 |
실시예 147 |
화합물53 |
Z-9 |
3.49 |
50.8 |
388 |
적색 |
실시예 148 |
화합물53 |
Z-14 |
3.53 |
49.7 |
379 |
적색 |
실시예 149 |
화합물53 |
Z-17 |
3.55 |
52.0 |
412 |
적색 |
실시예 150 |
화합물53 |
Z-24 |
3.59 |
51.3 |
388 |
적색 |
실시예 151 |
화합물53 |
Z-26 |
3.49 |
50.8 |
403 |
적색 |
실시예 152 |
화합물53 |
Z-28 |
3.53 |
51.7 |
389 |
적색 |
실시예 153 |
화합물53 |
Z-35 |
3.50 |
52.3 |
393 |
적색 |
실시예 154 |
화합물53 |
Z-36 |
3.56 |
50.3 |
387 |
적색 |
표 2의 결과는 두가지 종류의 호스트를 공증착 한 결과를 나타냈는데 제1 호스트와 제2 호스트를 1:1 중량비율로 사용했을 때 제1 호스트만 사용한 결과 보다 더 우수한 결과를 나타냈다. 제2 호스트를 사용함에 따라 정공의 양이 많아지면서 적색 발광층내에 전자와 정공이 더 안정적인 균형을 유지하게 되고 효율과 수명이 많이 상승 하는 것을 확인할 수 있었다. 결론적으로 본 발명의 화합물을 적색 발광층의 호스트로 사용하였을 때 유기 발광 소자의 구동전압, 발광 효율 및 수명 특성을 개선할 수 있다는 것을 확인할 수 있다.