[go: up one dir, main page]

KR102332293B1 - Reinforced Membrane with low permeability and the preparation as the same - Google Patents

Reinforced Membrane with low permeability and the preparation as the same Download PDF

Info

Publication number
KR102332293B1
KR102332293B1 KR1020200171744A KR20200171744A KR102332293B1 KR 102332293 B1 KR102332293 B1 KR 102332293B1 KR 1020200171744 A KR1020200171744 A KR 1020200171744A KR 20200171744 A KR20200171744 A KR 20200171744A KR 102332293 B1 KR102332293 B1 KR 102332293B1
Authority
KR
South Korea
Prior art keywords
based polymer
polymer
reinforced composite
composite electrolyte
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020200171744A
Other languages
Korean (ko)
Other versions
KR20200140780A (en
Inventor
정호영
임민화
박미정
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180099507A external-priority patent/KR102193756B1/en
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020200171744A priority Critical patent/KR102332293B1/en
Publication of KR20200140780A publication Critical patent/KR20200140780A/en
Application granted granted Critical
Publication of KR102332293B1 publication Critical patent/KR102332293B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 이차전지용 강화복합전해질막 및 그 제조방법에 관한 것으로, 보다 구체적으로는 수화안정성, 화학적 안정성 및 저투과도를 갖는 강화복합전해질막, 그 제조방법 및 상기 강화복합전해질막을 포함하는 이차전지에 관한 것이다.The present invention relates to a reinforced composite electrolyte membrane for secondary batteries and a method for manufacturing the same, and more particularly, to a reinforced composite electrolyte membrane having hydration stability, chemical stability and low permeability, a manufacturing method therefor, and a secondary battery including the reinforced composite electrolyte membrane it's about

Description

저투과도 강화복합전해질막 및 그 제조방법{Reinforced Membrane with low permeability and the preparation as the same} Reinforced membrane with low permeability and manufacturing method thereof {Reinforced Membrane with low permeability and the preparation as the same}

본 발명은 이차전지용 강화복합전해질막 및 그 제조방법에 관한 것으로, 보다 구체적으로는 수화안정성, 화학적 안정성 및 저투과도를 갖는 강화복합전해질막, 그 제조방법 및 상기 강화복합전해질막을 포함하는 이차전지에 관한 것이다.The present invention relates to a reinforced composite electrolyte membrane for secondary batteries and a method for manufacturing the same, and more particularly, to a reinforced composite electrolyte membrane having hydration stability, chemical stability and low permeability, a manufacturing method therefor, and a secondary battery including the reinforced composite electrolyte membrane it's about

고분자 전해질막이란, 필름 같은 단순한 얇은 막이 아니라 물질을 분리하는 기능을 갖는 고분자막을 의미하며, 구체적으로, 연료 전지, 레독스 플로우 전지, 수처리 장치 등의 양이온 교환이 가능한 고분자가 전해질막으로 사용되고 있다. The polymer electrolyte membrane is not a simple thin membrane such as a film, but a polymer membrane having a function of separating materials. Specifically, a polymer capable of cation exchange such as a fuel cell, a redox flow battery, and a water treatment device is used as the electrolyte membrane.

연료 전지 및 레독스 플로우 전지에 적용되는 전해질막은 양극/음극을 분리할 수 있어야 하며, 수소 이온은 전달하면서, 다른 활성 이온들의 이동을 막는 높은 선택적 이온 투과도가 절대적으로 필요하다. The electrolyte membrane applied to the fuel cell and the redox flow cell must be able to separate the positive electrode and the negative electrode, and it is absolutely necessary to have high selective ion permeability that prevents the movement of other active ions while transferring hydrogen ions.

따라서 현재, 전해질막의 재료로 나피온(Nafion)과 같은 이온성 전도성 고분자(이온 수지)가 사용되나, 나피온 고분자는 고가이며, 낮은 기계적 강도와 높은 투과도로 인해, 장기간 구동하는 전지의 전해질막으로 적용하는데 한계가 존재 한다. Therefore, at present, ionically conductive polymers (ion resins) such as Nafion are used as electrolyte membrane materials, but Nafion polymers are expensive and, due to their low mechanical strength and high permeability, are used as electrolyte membranes for long-term batteries. There are limits to its application.

그 결과, 고분자 전해질 막은 기계적, 화학적 내구성을 개선시키는 방향으로 개발되어 왔는데, 기계적 내구성을 개선하기 위한 방향으로는 나피온 용액(5 중량% 농도)을 e-PTFE에 도입하여 제조한 강화 복합전해질 막(미국특허 제5,547,551호) 및 술폰화된 탄화수소계 고분자 물질에 치수 안정성이 우수한 고분자를 도입한 고분자 블랜드 복합막에 관한 연구(대한민국 특허 제 10-0746339호) 등이 있다. 또한, 고어 앤 어소시에이트(W.L. Gore & Associates)사에서는 고어 셀렉트(Gore Select)라는 상품명으로 상용화된 강화 복합전해질 막 제품을 출시하고 있다.As a result, polymer electrolyte membranes have been developed in the direction of improving mechanical and chemical durability. In order to improve mechanical durability, reinforced composite electrolyte membranes prepared by introducing Nafion solution (5 wt% concentration) into e-PTFE (U.S. Patent No. 5,547,551) and a study on a polymer blend composite membrane in which a polymer having excellent dimensional stability is introduced into a sulfonated hydrocarbon-based polymer material (Korean Patent No. 10-0746339). In addition, W.L. Gore & Associates is launching a commercialized reinforced composite electrolyte membrane product under the trade name of Gore Select.

이와 같이 공지된 강화복합 전해질막은 기계적 강도와 내구성 및 선택적 투과도를 향상시켜 줄 뿐만 아니라, 순수 고분자에 비해 제조 가격이 저렴하다는 장점이 있다. 하지만, 종래의 기술은 나노 사이즈의 기공에 이온성 고분자를 함침시키기 어려우며, 또한 오랜 전지 구동시 다공성 기재로부터 이온성 고분자가 떨어져 나오는 문제가 있다. 뿐만 아니라 다공성 기재 자체에는 이온 전달 능력이 없어 순수한 이온성 고분자에 비해 다공성 기재의 비율만큼 전도도가 감소한다는 단점이 있다. As such, the known reinforced composite electrolyte membrane not only improves mechanical strength, durability, and selective permeability, but also has the advantage of being cheaper to manufacture than pure polymers. However, in the prior art, it is difficult to impregnate the ionic polymer into the nano-sized pores, and there is a problem in that the ionic polymer is separated from the porous substrate when the battery is operated for a long time. In addition, since the porous substrate itself does not have an ion transport ability, there is a disadvantage in that the conductivity decreases as much as the ratio of the porous substrate compared to a pure ionic polymer.

이러한 단점을 보완하고자 강화복합 전해질막에 사용되는 대부분 소수성인 다공성 기재는 폴리비닐알코올(PVA)과 같은 친수성 고분자로 코팅하여 사용된다. 여기서 코팅된 폴리비닐알코올의 하이드록시기(hydroxyl group, -OH)는 소수성 고분자를 친수성으로 개질시켜 다공성 기재의 기공에 이온 전도성 고분자의 함침을 돕는다. 그러나 다공성 소재 자체는 이온 전달 능력이 없으며, 코팅된 폴리비닐알코올의 하이드록시기 역시 높은 pKa(10.67)로 인해 수소 전달에 큰 역할을 하지 못한다. 이런 문제점을 해결하고자 친수성 작용기를 이온성작용기로 치환하여 다공성기재와 이온성 고분자 사이의 친화력을 향상시키고자 하는 기술이 제안되고 있다. To compensate for these disadvantages, most of the hydrophobic porous substrates used in the reinforced composite electrolyte membrane are coated with a hydrophilic polymer such as polyvinyl alcohol (PVA). Here, the hydroxyl group (-OH) of the coated polyvinyl alcohol helps the ion conductive polymer to be impregnated into the pores of the porous substrate by modifying the hydrophobic polymer to be hydrophilic. However, the porous material itself has no ion transport ability, and the hydroxyl group of the coated polyvinyl alcohol also does not play a large role in hydrogen transport due to its high pKa (10.67). In order to solve this problem, a technique for improving affinity between a porous substrate and an ionic polymer by substituting a hydrophilic functional group with an ionic functional group has been proposed.

하지만, 제안된 기술은 제조공정이 복잡할 뿐만 아니라, 함침되는 이온성 고분자로 인해 투과도가 여전히 높은 문제점이 존재한다. However, the proposed technique has a problem in that not only the manufacturing process is complicated, but also the permeability is still high due to the impregnated ionic polymer.

본 발명자들은 연구 노력한 결과 다공성 기재에 함침되는 이온전도성고분자물질의 조성을 변화시켜 내구성이 보다 우수하면서도 낮은 투과도를 갖는 강화복합전해질막을 개발함으로써 본 발명을 완성하였다. As a result of research efforts, the present inventors have completed the present invention by changing the composition of the ion conductive polymer material impregnated in the porous substrate to develop a reinforced composite electrolyte membrane having superior durability and low permeability.

따라서, 본 발명의 목적은 다공성 기재를 통해 견고한 내구성을 확보하는 동시에 수화안정성 및 저투과도를 갖는 강화복합전해질막, 그 제조방법 및 상기 강화복합전해질막을 포함하는 에너지 저장 장치 및 수처리 장치를 제공하는 것이다.Accordingly, it is an object of the present invention to provide a reinforced composite electrolyte membrane having hydration stability and low permeability while ensuring strong durability through a porous substrate, a method for manufacturing the same, and an energy storage device and a water treatment device comprising the reinforced composite electrolyte membrane .

본 발명의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 명시적으로 언급되지 않았더라도 후술되는 발명의 상세한 설명의 기재로부터 통상의 지식을 가진 자가 인식할 수 있는 발명의 목적 역시 당연히 포함될 수 있을 것이다.The object of the present invention is not limited to the object mentioned above, and even if not explicitly mentioned, the object of the invention that can be recognized by those of ordinary skill in the art from the description of the detailed description of the invention to be described later may also be included. .

상술된 본 발명의 목적을 달성하기 위해, 먼저 본 발명은 다공성 고분자지지체; 상기 고분자지지체의 기공을 포함하여 상기 고분자지지체가 외부로 노출된 모든 표면에 형성된 도파민코팅층; 및 상기 도파민코팅층을 덮도록 형성되는 이온전달층;을 포함하는데, In order to achieve the object of the present invention described above, first the present invention provides a porous polymer support; a dopamine coating layer formed on all surfaces of the polymer support exposed to the outside, including the pores of the polymer support; and an ion transport layer formed to cover the dopamine coating layer.

상기 다공성 고분자지지체는 폴리페닐렌설파이드(PPS) 또는 술폰화 폴리페닐렌설파이드(sPPS)로 이루어지고, The porous polymer support is made of polyphenylene sulfide (PPS) or sulfonated polyphenylene sulfide (sPPS),

상기 이온전달층은 실리카계열고분자물질 및 이온전도성물질이 1:3 내지 3:1의 중량비로 포함되며, 상기 실리카계열고분자물질은 D-ASFP (Diol Alkoxysilane-functionalized Polymer), BD-ASFP(bisphenol dimethyl benzanthracene ASFP), BDP-ASFP (Polydimethylsiloxane ASFP) 중 어느 하나이고, The ion transport layer includes a silica-based polymer material and an ion conductive material in a weight ratio of 1:3 to 3:1, and the silica-based polymer material is D-ASFP (Diol Alkoxysilane-functionalized Polymer), BD-ASFP (bisphenol dimethyl benzanthracene ASFP) or BDP-ASFP (Polydimethylsiloxane ASFP),

상기 다공성 고분자지지체가 술폰화 폴리페닐렌설파이드(sPPS)인 경우, 다공성 막상의 폴리페닐렌설파이드(PPS)를 술폰화시켜 얻어진 것이며, 상기 이온전도성물질은 나피온, 3M아이오노머, 술폰화된 플루오르계 고분자, 벤즈이미다졸계 고분자, 폴리이미드계 고분자, 폴리아미드계 고분자, 폴리아릴렌아테르계 고분자, 폴리에테르이미드계 고분자, 폴리페닐렌술파이드계 고분자, 폴리술폰계 고분자, 폴리에테르술폰계 고분자, 폴리에테르케톤계 고분자, 폴리에테르-에테르케톤계 고분자, 폴리포스파젠계 고분자, 폴리스티렌계 고분자, 라디에이션-그라프트된 FEP-g-폴리스티렌(radiation-grafted FEP-g-polystyrene), 라디에이션-그라프트된 PVDF-g-폴리스티렌(radiation-grafted PVDF-g-polystyrene) 및 폴리페닐퀴녹살린계 고분자 중에서 선택되는 1종 이상의 수소 이온 전도성 고분자를 포함한다. When the porous polymer support is sulfonated polyphenylene sulfide (sPPS), it is obtained by sulfonating polyphenylene sulfide (PPS) on a porous membrane, and the ion conductive material is Nafion, 3M ionomer, sulfonated fluorine polymers, benzimidazole polymers, polyimide polymers, polyamide polymers, polyarylene ether polymers, polyetherimide polymers, polyphenylene sulfide polymers, polysulfone polymers, polyethersulfone polymers, Polyether ketone-based polymer, polyether-etherketone-based polymer, polyphosphazene-based polymer, polystyrene-based polymer, radiation-grafted FEP-g-polystyrene, radiation-grafted FEP-g-polystyrene and at least one hydrogen ion conductive polymer selected from radiation-grafted PVDF-g-polystyrene and polyphenylquinoxaline-based polymers.

바람직한 실시예에 있어서, 투과도가 2.00×10-6 ㎠/min이하이다. In a preferred embodiment, the transmittance is less than or equal to 2.00×10 -6 cm 2 /min.

또한, 본 발명은 도파민용액을 준비하는 단계; 상기 도파민용액에 다공성 고분자지지체를 침지시켜 상기 다공성 고분자지지체가 외부로 노출된 모든 표면에 도파민코팅층이 형성된 전구체막을 제조하는 단계; 및 상기 전구체막의 표면에 이온전달층을 형성하는 단계;를 포함하는데, In addition, the present invention comprises the steps of preparing a dopamine solution; preparing a precursor film in which a dopamine coating layer is formed on all surfaces of the porous polymer support exposed to the outside by immersing the porous polymer support in the dopamine solution; and forming an ion transport layer on the surface of the precursor film.

상기 다공성 고분자지지체는 폴리페닐렌설파이드(PPS) 또는 술폰화 폴리페닐렌설파이드(sPPS)로 이루어지고, The porous polymer support is made of polyphenylene sulfide (PPS) or sulfonated polyphenylene sulfide (sPPS),

상기 이온전달층을 형성하는 단계는 실리카계열고분자물질 및 이온전도성물질이 1:3 내지 3:1의 중량비로 포함된 이온전달층형성용 용액을 준비하는 단계; 상기 전구체막 표면에 상기 이온전달층형성용 용액을 코팅하는 단계; 및 상기 이온전달층을 건조하는 단계;를 포함하여 수행되며, The forming of the ion transport layer may include: preparing a solution for forming an ion transport layer in which a silica-based polymer material and an ion conductive material are included in a weight ratio of 1:3 to 3:1; coating the solution for forming the ion transport layer on the surface of the precursor film; and drying the ion transport layer;

상기 실리카계열고분자물질은 D-ASFP (Diol Alkoxysilane-functionalized Polymer), BD-ASFP(bisphenol dimethylbenzanthracene ASFP), BDP-ASFP (Polydimethylsiloxane ASFP) 중 어느 하나이고,The silica-based polymer material is any one of D-ASFP (Diol Alkoxysilane-functionalized Polymer), BD-ASFP (bisphenol dimethylbenzanthracene ASFP), BDP-ASFP (Polydimethylsiloxane ASFP),

상기 다공성 고분자지지체가 술폰화 폴리페닐렌설파이드(sPPS)인 경우, 다공성 막상의 폴리페닐렌설파이드(PPS)를 술폰화시켜 얻어진 것이며, When the porous polymer support is sulfonated polyphenylene sulfide (sPPS), it is obtained by sulfonating polyphenylene sulfide (PPS) on a porous membrane,

상기 이온전도성물질은 나피온, 3M아이오노머, 술폰화된 플루오르계 고분자, 벤즈이미다졸계 고분자, 폴리이미드계 고분자, 폴리아미드계 고분자, 폴리아릴렌아테르계 고분자, 폴리에테르이미드계 고분자, 폴리페닐렌술파이드계 고분자, 폴리술폰계 고분자, 폴리에테르술폰계 고분자, 폴리에테르케톤계 고분자, 폴리에테르-에테르케톤계 고분자, 폴리포스파젠계 고분자, 폴리스티렌계 고분자, 라디에이션-그라프트된 FEP-g-폴리스티렌(radiation-grafted FEP-g-polystyrene), 라디에이션-그라프트된 PVDF-g-폴리스티렌(radiation-grafted PVDF-g-polystyrene) 및 폴리페닐퀴녹살린계 고분자 중에서 선택되는 1종 이상의 수소 이온 전도성 고분자를 포함한다. The ion conductive material is Nafion, 3M ionomer, sulfonated fluorine-based polymer, benzimidazole-based polymer, polyimide-based polymer, polyamide-based polymer, polyarylene ether-based polymer, polyetherimide-based polymer, polyphenyl Rensulfide-based polymer, polysulfone-based polymer, polyethersulfone-based polymer, polyetherketone-based polymer, polyether-etherketone-based polymer, polyphosphazene-based polymer, polystyrene-based polymer, radiation-grafted FEP-g- At least one hydrogen ion conductive polymer selected from polystyrene (radiation-grafted FEP-g-polystyrene), radiation-grafted PVDF-g-polystyrene, and polyphenylquinoxaline-based polymers includes

바람직한 실시예에 있어서, 상기 도파민용액을 준비하는 단계는 증류수에 도파민클로라이드를 넣고 교반하는 단계; 및 상기 교반된 용액에 Tris(hydroxymethyl)aminomethane을 넣은 후 교반하는 단계;를 포함하여 수행된다.In a preferred embodiment, the step of preparing the dopamine solution comprises the steps of adding dopamine chloride to distilled water and stirring; And after adding Tris (hydroxymethyl) aminomethane to the stirred solution, stirring is performed.

바람직한 실시예에 있어서, 상기 전구체막을 제조하는 단계는 상기 도파민용액에 침지된 상기 다공성 고분자지지체를 세척하는 단계; 및 세척된 다공성 고분자지지체를 건조하는 단계;를 더 포함하여 수행된다. In a preferred embodiment, preparing the precursor film includes washing the porous polymer support immersed in the dopamine solution; and drying the washed porous polymer support.

또한, 본 발명은 상술된 어느 하나의 강화복합전해질막 또는 상술된 어느 하나의 제조방법으로 제조된 강화복합전해질막을 포함하는 연료전지를 제공한다.Also, the present invention provides a fuel cell including any one of the reinforced composite electrolyte membranes described above or a reinforced composite electrolyte membrane manufactured by any one of the manufacturing methods described above.

또한, 본 발명은 상술된 어느 하나의 강화복합전해질막 또는 상술된 어느 하나의 제조방법으로 제조된 강화복합전해질막을 포함하는 레독스흐름전지를 제공한다.In addition, the present invention provides a redox flow battery comprising any one of the above-described reinforced composite electrolyte membrane or a reinforced composite electrolyte membrane manufactured by any one of the manufacturing methods described above.

상술된 본 발명에 의하면 다공성 기재를 통해 견고한 내구성을 확보하는 동시에 수화안정성, 화학적 안정성 및 낮은 투과도를 갖는 강화복합전해질막을 제공할 수 있다.According to the present invention described above, it is possible to provide a reinforced composite electrolyte membrane having hydration stability, chemical stability and low permeability while ensuring strong durability through the porous substrate.

또한, 본 발명의 낮은 투과도를 갖는 강화복합전해질막을 포함하는 레독스흐름전지는 이온도전도성은 물론 이온블록킹 능력 또한 향상되므로 전지의 성능이 향상될 수 있다. In addition, since the redox flow battery including the reinforced composite electrolyte membrane having low permeability of the present invention has improved ion conductivity as well as ion blocking ability, the performance of the battery can be improved.

본 발명의 이러한 기술적 효과들은 이상에서 언급한 범위만으로 제한되지 않으며, 명시적으로 언급되지 않았더라도 후술되는 발명의 실시를 위한 구체적 내용의 기재로부터 통상의 지식을 가진 자가 인식할 수 있는 발명의 효과 역시 당연히 포함된다.These technical effects of the present invention are not limited only to the above-mentioned range, and even if not explicitly mentioned, the effect of the invention that can be recognized by a person of ordinary skill in the art from the description of the specific content for the implementation of the invention to be described later is also of course included.

도1는 본 발명에 적용될 수 있는 실리카계열고분자물질인 D-ASFP의 화학구조를 도시한 것이다.
도2는 본 발명에 적용될 수 있는 실리카계열고분자물질인 BD-ASFP의 화학구조를 도시한 것이다.
도3는 본 발명에 적용될 수 있는 실리카계열고분자물질인 BDP-ASFP의 화학구조를 도시한 것이다.
1 shows the chemical structure of D-ASFP, a silica-based polymer material that can be applied to the present invention.
Figure 2 shows the chemical structure of BD-ASFP, a silica-based polymer material that can be applied to the present invention.
3 shows the chemical structure of BDP-ASFP, a silica-based polymer material that can be applied to the present invention.

본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 갖는 통상의 의미와 본 발명의 명세서 전반에 걸쳐 기재된 내용을 토대로 해석되어야 한다. 특히, 정도의 용어 "약", "실질적으로" 등이 사용되는 경우 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되는 것으로 해석될 수 있다. The terms used in the present invention have been selected as currently widely used general terms as possible while considering the functions in the present invention, but these may vary depending on the intention or precedent of a person skilled in the art, the emergence of new technology, and the like. In addition, in a specific case, there is a term arbitrarily selected by the applicant, and in this case, the meaning will be described in detail in the description of the corresponding invention. Therefore, the terms used in the present invention should be interpreted based on the general meaning of the term and the content described throughout the specification of the present invention, rather than the name of a simple term. In particular, when the terms "about", "substantially", etc. of degree are used, they may be construed as being used in a sense at or close to the numerical value when manufacturing and material tolerances inherent in the stated meaning are presented. .

단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present application, terms such as “comprise” or “have” are intended to designate that a feature, number, step, operation, component, part, or combination thereof described in the specification is present, and includes one or more other features or It should be understood that the existence or addition of numbers, steps, operations, components, parts, or combinations thereof does not preclude the possibility of addition.

이하, 첨부한 도면 및 바람직한 실시예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.Hereinafter, the technical configuration of the present invention will be described in detail with reference to the accompanying drawings and preferred embodiments.

그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms.

본 발명의 기술적 특징은 다공성 지지체를 통해 견고한 내구성을 확보하는 동시에 다공성지지체에 도파민코팅층을 형성함으로써 별도의 이온성 작용기 치환 공정 없이도 수화안정성을 향상시킬 수 있을 뿐만 아니라, 다공성 기재에 함침되는 이온전도성고분자물질의 조성을 변화시켜 저투과도를 갖는 강화복합전해질막 및 그 제조방법을 제공하는 것에 있다.The technical feature of the present invention is that it is possible to improve hydration stability without a separate ionic functional group substitution process by forming a dopamine coating layer on the porous support while ensuring strong durability through the porous support, as well as ion conductive polymer impregnated in the porous substrate An object of the present invention is to provide a reinforced composite electrolyte membrane having low permeability by changing the composition of the material and a method for manufacturing the same.

즉, 도파민이 친수성 물질일 뿐만 아니라 강력한 접착특성이 있는 것에 착안하여 본 발명은 다공성 지지체에 친수성을 부여하기 위해 특히 도파민코팅층을 형성하였고 도파민코팅층상에 이온전달층이 형성되는 구조이므로, 특별히 친수성작용기를 이온성 작용기로 치환하는 별도의 공정을 수행하지 않아도 도파민코팅층으로 인해 다공성 지지체와 이온전달층의 계면결착력이 매우 견고하여 후술하는 바와 같이 수화안정성이 뛰어났기 때문이다.That is, focusing on the fact that dopamine is not only a hydrophilic material but also has strong adhesive properties, the present invention formed a dopamine coating layer in particular to impart hydrophilicity to the porous support, and the ion transport layer is formed on the dopamine coating layer. This is because the interfacial bonding force between the porous support and the ion transport layer is very strong due to the dopamine coating layer without performing a separate process of substituting the ionic functional group, and as will be described later, the hydration stability is excellent.

또한, 본 발명은 도파민코팅층 상에 형성되는 이온전달층을 이온전도성고분자만으로 형성하는 것이 아니라, 이온전도성고분자에 실리콘계고분자를 일정비율로 배합하여 형성함으로써 수소이온전도성을 향상시키면서도 다른 활성이온의 투과도를 현저히 낮추어 저투과도 특성을 확보했다. In addition, the present invention does not form the ion transport layer formed on the dopamine coating layer only with the ion conductive polymer, but by mixing the silicon-based polymer with the ion conductive polymer in a certain ratio to form it, thereby improving the hydrogen ion conductivity while improving the permeability of other active ions. Remarkably lowered, low transmittance was secured.

따라서, 본 발명의 강화복합전해질막은 다공성 고분자지지체; 상기 고분자지지체의 기공을 포함하여 상기 고분자지지체가 외부로 노출된 모든 표면에 형성된 도파민코팅층; 및 상기 도파민코팅층을 덮도록 형성되는 이온전달층;을 포함한다. Therefore, the reinforced composite electrolyte membrane of the present invention includes a porous polymer support; a dopamine coating layer formed on all surfaces of the polymer support exposed to the outside, including the pores of the polymer support; and an ion transport layer formed to cover the dopamine coating layer.

여기서, 이온전달층은 실리카계열고분자물질 및 이온전도성물질이 1:3 내지 3:1의 중량비로 포함될 수 있는데, 설정된 범위는 실험적으로 결정된 것으로, 설정된 중량비를 초과하여 실리카계열 고분자가 포함되면 형성된 실리카로 인해 투과도는 낮아지고 수소이온전도성이 떨어지는 문제점이 있으며, 설정된 중량비를 미만으로 실리카 계열 고분자 물질이 도입되면 이온전도도가 개선되면서 이온전도성물질이 포함되면 투과도가 높아지는 특성을 나타내었다.Here, the ion transport layer may contain a silica-based polymer material and an ion conductive material in a weight ratio of 1:3 to 3:1, and the set range is experimentally determined, and the silica-based polymer is formed when the silica-based polymer is included in excess of the set weight ratio. As a result, there is a problem in that the permeability is lowered and the hydrogen ion conductivity is lowered. When the silica-based polymer material is introduced with less than a set weight ratio, the ion conductivity is improved, and when the ion conductive material is included, the permeability is increased.

따라서, 본 발명의 강화복합전해질막은 실리카계열고분자물질 및 이온전도성물질이 수소이온 전도성은 보다 향상시키고, 기타 다른 활성이온은 블록킹하여 투과도가 1.0×10-7 ㎠/min이하로 매우 낮은 특성을 갖는다. Therefore, in the reinforced composite electrolyte membrane of the present invention, the silica-based polymer material and the ion conductive material further improve the hydrogen ion conductivity, and block other active ions, so the transmittance is 1.0 × 10 -7 ㎠/min or less It has a very low characteristic. .

본 발명에서 사용되는 실리카계열고분자물질은 공지된 모든 실리카계열고분자물질이 사용될 수 있지만, 일 구현예로서, 도 1에 도시된 화학구조를 갖는 D-ASFP (Diol Alkoxysilane -functionalized Polymer), 도 2에 도시된 화학구조를 갖는 BD-ASFP(bisphenol dimethyl benzanthracene ASFP), 도 3에 도시된 화학구조를 갖는 BDP-ASFP (Polydimethylsiloxane ASFP) 중 어느 하나일 수 있으며, 중량평균 분자량(Mm)은 50 ~ 5000 g/mol 이다. 실리카계열고분자의 중량평균 분자량이 설정된 범위 미만이거나 초과하면, 유기용매에 용해될 때 시간이 길어지거나 고분자 내에서 가교가 발생하여 많은 어려움이 발생한다.As the silica-based polymer material used in the present invention, all known silica-based polymer materials may be used, but as an embodiment, Diol Alkoxysilane-functionalized Polymer (D-ASFP) having the chemical structure shown in FIG. It may be any one of bisphenol dimethyl benzanthracene ASFP (BD-ASFP) having the chemical structure shown, and polydimethylsiloxane ASFP (BDP-ASFP) having the chemical structure shown in FIG. 3, and the weight average molecular weight (Mm) is 50 ~  5000 g /mol. When the weight average molecular weight of the silica-based polymer is less than or exceeding the set range, a long time when dissolved in an organic solvent or crosslinking occurs in the polymer, causing many difficulties.

이온전도성물질 또한 양이온 전도성 또는 음이온 전도성을 가지고 이온 교환을 할 수 있는 고분자라면 특별히 한정하지 않고 공지된 통상적인 것을 사용할 수 있는데, 일 구현예로서 불소계 고분자, 부분 불소계 고분자 또는 탄화수소계 고분자 일 수 있다. 특히, 나피온, 3M 아이오노머, 술폰화된 플루오르계 고분자, 벤즈이미다졸계 고분자, 폴리이미드계 고분자, 폴리아미드계 고분자, 폴리아릴렌아테르계 고분자, 폴리에테르이미드계 고분자, 폴리페닐렌술파이드계 고분자, 폴리술폰계 고분자, 폴리에테르술폰계 고분자, 폴리에테르케톤계 고분자, 폴리에테르-에테르케톤계 고분자, 폴리포스파젠계 고분자, 폴리스티렌계 고분자, 라디에이션-그라프트된 FEP-g-폴리스티렌(radiation-grafted FEP-g-polystyrene), 라디에이션-그라프트된 PVDF-g-폴리스티렌(radiation-grafted PVDF-g-poly styrene) 및 폴리페닐퀴녹살린계 고분자 중에서 선택되는 1종 이상의 수소 이온 전도성 고분자를 포함할 수 있고, 보다 더 구체적으로는 술폰화된 폴리(퍼플루오로술폰산), 폴리(퍼플루오로카르복실산), 술폰산기를 포함하는 테트라플루오로에틸렌과 플루오로비닐 에테르의 공중합체, 황화 폴리에테르케톤, 아릴 케톤, 폴리(2,2'-m-페닐렌)-5,5'-바이벤즈이미다졸[poly(2,2'-m-phenylene)-5,5'- bibenzimidazole] 및 폴리(2,5-벤즈이미다졸), 술폰화된 폴리술폰, 술폰화된 폴리에테르술폰, 술폰화된 폴리에테르에테르술폰, 술폰화된 폴리아릴렌에테르술폰, 술폰화된 폴리에테르케톤, 술폰화된 폴리에테르에테르케톤, 술폰화된 폴리이미드, 술폰화된 폴리벤즈이미다졸, 술폰화된 폴리페닐렌옥사이드, 술폰화된폴리페닐렌술파이드, 술폰화된 폴리스티렌, 술폰화된 폴리우레탄, 나피온, 폴리트리풀루오로스티렌 술폰산, 폴리스티렌 술폰산 및 분지형 술폰화 폴리술폰케톤 공중합체 중 어느 하나가 사용될 수 있다. The ion conductive material is also not particularly limited as long as it is a polymer capable of ion exchange with cation conductivity or anion conductivity, and a known conventional material may be used. In particular, Nafion, 3M ionomer, sulfonated fluorine-based polymer, benzimidazole-based polymer, polyimide-based polymer, polyamide-based polymer, polyarylene ether-based polymer, polyetherimide-based polymer, polyphenylene sulfide-based polymer Polymer, polysulfone-based polymer, polyethersulfone-based polymer, polyetherketone-based polymer, polyether-etherketone-based polymer, polyphosphazene-based polymer, polystyrene-based polymer, radiation-grafted FEP-g-polystyrene (radiation) -grafted FEP-g-polystyrene), radiation-grafted PVDF-g-polystyrene (radiation-grafted PVDF-g-poly styrene), and polyphenylquinoxaline-based polymer containing at least one hydrogen ion conductive polymer selected from and more specifically, sulfonated poly(perfluorosulfonic acid), poly(perfluorocarboxylic acid), copolymer of tetrafluoroethylene and fluorovinyl ether containing sulfonic acid group, sulfided polyether Ketones, aryl ketones, poly(2,2'-m-phenylene)-5,5'-bibenzimidazole [poly(2,2'-m-phenylene)-5,5'-bibenzimidazole] and poly( 2,5-benzimidazole), sulfonated polysulfone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polyaryleneethersulfone, sulfonated polyetherketone, sulfonated poly Etheretherketone, sulfonated polyimide, sulfonated polybenzimidazole, sulfonated polyphenyleneoxide, sulfonated polyphenylenesulfide, sulfonated polystyrene, sulfonated polyurethane, Nafion, polytri Any one of fluorostyrene sulfonic acid, polystyrene sulfonic acid and branched sulfonated polysulfone ketone copolymer may be used.

본 발명에서 사용되는 다공성 고분자지지체는 기계적 내구성이 우수하기만 하면 공지된 모든 소수성 고분자물질로 구성될 수 있는데, 일 구현예로서 에틸렌비닐아세테이트 공중합체(EVA), 폴리프로필렌(PP), 폴리이미드(PI), 폴리아미드(PA), 폴리카보네이트(PC), 폴리아크릴로니트릴(PAN), 폴리테트라플루오르에틸렌(PTFE), 폴리비닐리덴플로라이드(PVDF), 폴리에틸렌테레프탈레이트(PET), 폴리비닐다이플루오르에틸렌(polyvinyldifluoroethylene),폴리비닐클로라이드(polyvinyl chloride), 폴리비닐리덴클로라이드(polyvinylidene chloride), 폴리에테르케톤(polyetherketone), 폴리에테르에테르케톤(PEEK), 폴리에틸렌에테르나이트릴(polyethylene ether nitrile), 폴리페닐렌설파이드(PPS) 및 술폰화 폴리페닐렌설파이드(sPPS) 중 어느 하나의 소재로 이루어진 다공성 고분자지지체가 사용될 수 있다. 특히, 내구성과 경제성을 고려하면 다공성 고분자지지체의 재질은 폴리페닐렌설파이드(PPS) 및 술폰화 폴리페닐렌설파이드(sPPS)이 유리할 수 있다. The porous polymer support used in the present invention may be composed of any known hydrophobic polymer material as long as it has excellent mechanical durability. PI), polyamide (PA), polycarbonate (PC), polyacrylonitrile (PAN), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene terephthalate (PET), polyvinyl die Fluorethylene (polyvinyldifluoroethylene), polyvinyl chloride (polyvinyl chloride), polyvinylidene chloride (polyvinylidene chloride), polyether ketone (polyetherketone), polyether ether ketone (PEEK), polyethylene ether nitrile (polyethylene ether nitrile), polyphenyl A porous polymer support made of any one of lensulfide (PPS) and sulfonated polyphenylene sulfide (sPPS) may be used. In particular, in consideration of durability and economy, the material of the porous polymer support may be advantageously polyphenylene sulfide (PPS) and sulfonated polyphenylene sulfide (sPPS).

특히, 다공성 고분자지지체가 술폰화 폴리페닐렌설파이드(sPPS)인 경우, 다공성 지지체로 사용하기에 적합한 형태로 제조된 막상의 폴리페닐렌설파이드(PPS)를 술폰화시켜 술폰화 폴리페닐렌설파이드 지지체를 얻을 수 있다. In particular, when the porous polymer support is sulfonated polyphenylene sulfide (sPPS), the sulfonated polyphenylene sulfide support is obtained by sulfonating the polyphenylene sulfide (PPS) in a film form suitable for use as a porous support. can be obtained

본 발명에서 다공성 지지체는 막상으로서 섬유(Fiber) 또는 멤브레인(Membrane) 형태일 수 있다. 특히 섬유 형태일 경우에는 다공성 웹(Web)을 형성하는 부직포로서, 장섬유로 구성된 스폰본드(Spunbond) 또는 멜트블로운(Meltblown) 형태를 포함한다. 여기서, 본 발명의 다공성 지지체에 형성된 기공 크기는 특별히 제한되지는 않으나, 100nm 내지 20㎛ 일 수 있는데 다공성지지체에서 기공 크기가 100nm 미만이면 이온전도성 물질이 기공 내를 가득 채워야하지만 기공이 작을수록 완벽하게 채우는 기엔 무리가 있고, 20 ㎛를 초과하는 경우에는 지지체 자체의 기계적 강도를 유지할 수 없을 뿐만 아니라 이온전도성 물질을 코팅했을 때 기존의 강화복합막의 우수한 성질인 기계적 강도가 감소할 수 있다. 또한 기공도는 특별히 제한되지는 않지만, 30 내지 80% 범위일 수 있다. 즉 다공성 지지체의 기공도가 30% 미만인 경우에는 이온전도성 물질을 코팅했을 때 어려움이 있으며 동시에 이온전도성 물질의 양이 적어 이온전도도의 성질이 감소할 수 있고, 80%를 초과하는 경우에는 지지체 자체의 기계적 강도를 유지할 수 없을 뿐만 아니라 이온전도성 물질을 코팅했을 때 기존의 강화복합막의 우수한 성질인 기계적 강도가 감소할 수 있다.In the present invention, the porous support may be in the form of a fiber or a membrane as a membrane. In particular, in the case of a fiber type, it is a nonwoven fabric that forms a porous web, and includes a spunbond or meltblown type composed of long fibers. Here, the pore size formed in the porous support of the present invention is not particularly limited, but may be 100 nm to 20 μm. If the pore size is less than 100 nm in the porous support, the ion conductive material must fill the pores, but the smaller the pores, the more perfectly It is difficult to fill, and when it exceeds 20 μm, the mechanical strength of the support itself cannot be maintained, and when an ion conductive material is coated, the mechanical strength, which is an excellent property of the existing reinforced composite membrane, may decrease. In addition, the porosity is not particularly limited, but may be in the range of 30 to 80%. That is, if the porosity of the porous support is less than 30%, it is difficult to coat the ion conductive material, and at the same time, the ion conductivity property may decrease due to the small amount of the ion conductive material. In addition to being unable to maintain mechanical strength, when an ion conductive material is coated, mechanical strength, which is an excellent property of the existing reinforced composite membrane, may decrease.

다음으로, 본 발명의 강화복합전해질막제조방법은 도파민용액을 준비하는 단계; 상기 도파민용액에 다공성 고분자지지체를 침지시켜 상기 다공성 고분자지지체가 외부로 노출된 모든 표면에 도파민코팅층이 형성된 전구체막을 제조하는 단계; 및 상기 전구체막의 표면에 이온전달층을 형성하는 단계;를 포함한다. Next, the method for manufacturing a reinforced composite electrolyte membrane of the present invention comprises the steps of preparing a dopamine solution; preparing a precursor film in which a dopamine coating layer is formed on all surfaces of the porous polymer support exposed to the outside by immersing the porous polymer support in the dopamine solution; and forming an ion transport layer on the surface of the precursor film.

이 때, 도파민용액을 준비하는 단계는 증류수에 도파민클로라이드를 넣고 교반하는 단계; 및 상기 교반된 용액에 Tris(hydroxymethyl)aminomethane을 넣은 후 교반하는 단계;를 포함하여 수행되는데, 최종적으로 얻어진 도파민 용액은 약염기상태인 pH 8 ~ pH 9.5를 유지하는 것이 효과적일 수 있다. 도파민 용액의 농도 및 함침시간을 조절하여 다공성지지체에 형성되는 도파민코팅층의 두께를 조절할 수 있는데, 도파민코팅층의 두께는 10 nm ~ 1 ㎛ 이하일 수 있으며, 다공성지지체와 이온전달층의 결합력에 어느 정도 영향을 미칠 수 있다. At this time, the step of preparing the dopamine solution includes adding dopamine chloride to distilled water and stirring; And after adding Tris(hydroxymethyl)aminomethane to the stirred solution, stirring is performed; it may be effective to maintain the finally obtained dopamine solution in a weakly basic state of pH 8 to pH 9.5. The thickness of the dopamine coating layer formed on the porous support can be adjusted by controlling the concentration and impregnation time of the dopamine solution, and the thickness of the dopamine coating layer can be 10 nm to 1 μm or less, and has some effect on the binding force between the porous support and the ion transport layer. can affect

전구체막을 제조하는 단계는 도파민용액에 침지된 상기 다공성 고분자지지체를 세척하는 단계; 및 세척된 다공성 고분자지지체를 건조하는 단계;를 더 포함하여 수행될 수 있다. Preparing the precursor film may include washing the porous polymer support immersed in a dopamine solution; and drying the washed porous polymer support.

이온전달층을 형성하는 단계는 실리카계열고분자물질 및 이온전도성물질이 1:3 내지 3:1의 중량비로 포함된 이온전달층형성용 용액을 준비하는 단계; 상기 전구체막 표면에 상기 이온전달층형성용 용액을 코팅하는 단계; 및 상기 이온전달층을 건조하는 단계;를 포함하여 수행되는데, 특히 이온전달층을 코팅하는 단계는 캐스팅으로 형성될 수 있다. The step of forming the ion transport layer comprises the steps of: preparing a solution for forming an ion transport layer containing a silica-based polymer material and an ion conductive material in a weight ratio of 1:3 to 3:1; coating the solution for forming the ion transport layer on the surface of the precursor film; and drying the ion transport layer; particularly, the coating of the ion transport layer may be formed by casting.

이때 캐스팅은 콤마 코터를 이용한 코팅, 스핀 코팅, 딥 코팅, 슬롯 다이 코팅 또는 닥터 블레이드 코팅 등 일반적으로 실시하는 캐스팅법을 모두 포함할 수 있지만, 일 구현예로서 닥터 블레이드를 이용하여 코팅이 수행될 수 있다. 특히, 본 발명은 후술하는 실시예와 같이 닥터 블레이드를 이용하여 전구체막의 양측 표면을 각각 코팅하지 않고 1회에 코팅함으로써 제조절차를 간소화할 수 있는 새로운 코팅방법을 개발하여 적용하였다. 또한, 건조하는 단계는 40~60℃에서 10~14시간 동안 수행한 후 다시 120℃의 온도범위에서 18~24시간동안 수행될 수 있다. At this time, the casting may include all casting methods generally performed such as coating using a comma coater, spin coating, dip coating, slot die coating, or doctor blade coating, but in one embodiment, coating may be performed using a doctor blade. have. In particular, the present invention developed and applied a new coating method that can simplify the manufacturing procedure by coating both surfaces of the precursor film at a time without using a doctor blade as in Examples to be described later. In addition, the drying step may be performed for 10 to 14 hours at 40 to 60 ℃ and then again to be performed at a temperature range of 120 ℃ for 18 to 24 hours.

실시예 1Example 1

1.도파민용액을 준비하는 단계1. Steps to prepare dopamine solution

증류수에 1.5 g/L의 농도로 Dopamine chloride를 넣고 30분간 교반시켰다. 제조된 용액에 3.75mM농도로 Tris(hydroxymethyl)aminomethane을 넣은 후 10분간 교반하여 용해시켜 도파민용액을 준비하였다.Dopamine chloride was added to distilled water at a concentration of 1.5 g/L and stirred for 30 minutes. Tris (hydroxymethyl) aminomethane was added to the prepared solution at a concentration of 3.75 mM, and stirred for 10 minutes to dissolve the solution, thereby preparing a dopamine solution.

2.전구체막을 제조하는 단계2. Preparation of precursor membrane

준비된 도파민 용액에 고분자 지지체로 기공크기 10 ~ 15㎛, 두께 20 ~ 24㎛, 기공도 46 ~ 60%인 막상의 PPS 다공성지지체를 도파민 용액에 12시간 동안 침지시킨 후, 증류수로 세척하고 60℃ 진공오븐에서 건조시켜 PPS소재 다공성지지체 표면에 도파민코팅층이 형성된 전구체막을 제조하였다.In the prepared dopamine solution, a polymeric support was immersed in a membrane-like PPS porous support having a pore size of 10 to 15 μm, a thickness of 20 to 24 μm, and a porosity of 46 to 60% in the dopamine solution for 12 hours, washed with distilled water, and vacuum at 60° C. By drying in an oven, a precursor film in which a dopamine coating layer was formed on the surface of the PPS material porous support was prepared.

3. 이온전달층을 형성하는 단계3. Forming an ion transport layer

①이온전달층형성용 용액을 준비하는 단계① Preparing a solution for ion transport layer formation

Nafion을 DMAc에 넣어 20wt% Nafion 용액을 제조하고, 고분자 2g을 기준으로 실리카계열 고분자인 SP로 D-ASFP (Diol Alkoxysilane-functionalized Polymer) 0.5g과 20wt% Nafon 용액 1.5g을 넣어 양이온전도성을 갖는 이온전달층형성용 용액(NSP)을 제조하였다. Put Nafion in DMAc to prepare a 20wt% Nafion solution, and based on 2g of polymer, 0.5g of D-ASFP (Diol Alkoxysilane-functionalized Polymer) and 1.5g of 20wt% Nafon solution are added as a silica-based polymer, SP, with cation conductivity ions A solution for forming a transport layer (NSP) was prepared.

②이온전달층을 코팅하는 단계② Coating the ion transport layer

전구체막에 이온전달층형성용 용액(NSP)를 닥터블레이드를 이용하여 1회 공정으로 이온전달층의 코팅을 완료하였다. 즉 이온전달층형성용 용액(NSP)이 바닥면에 일정량 있는 상태로 전구체막을 바닥면에 배치한 다음, 배치된 상태에서 상면에 위치한 전구체막 표면에 다시 이온전달층형성용 용액(NSP)을 흘려서 적셔지게 한 후 닥터블레이드를 통과시키게 되면 이온전달층이 전구체막의 양측 표면을 포함하여 모든 표면에 형성될 수 있기 때문이다. The ion transport layer forming solution (NSP) was applied to the precursor film using a doctor blade to complete the coating of the ion transport layer in one process. That is, the precursor film is placed on the bottom surface in a state where the ion transport layer forming solution (NSP) is on the bottom surface in a certain amount, and then the ion transport layer forming solution (NSP) is again flowed on the surface of the precursor film located on the upper surface in the arranged state. This is because ion transport layers can be formed on all surfaces, including both sides of the precursor film, when the doctor blade is passed through after being wetted.

③이온전달층을 건조하는 단계③ Drying the ion transport layer

이온전달층이 형성된 전구체막을 50℃에서 12시간동안 1차 건조하였다. 그 후 50℃부터 2시간마다 20℃씩 승온하여 최종적으로 120℃에서 12시간 2차건조를 수행하여 강화복합전해질막1(NASP250)을 얻었다. 최종 건조되어 얻어진 강화복합전해질막1의 두께는 50±5 ㎛였다. The precursor film on which the ion transport layer was formed was first dried at 50° C. for 12 hours. After that, the temperature was raised from 50°C to 20°C every 2 hours, and finally secondary drying was performed at 120°C for 12 hours to obtain a reinforced composite electrolyte membrane 1 (NASP250). The thickness of the finally dried reinforced composite electrolyte membrane 1 was 50±5 μm.

실시예 2Example 2

막상의 PPS 고분자지지체가 아닌 후술하는 방법으로 막상의 PPS 고분자지지체를 술폰화하여 얻어진 막상의 sPPS 고분자지지체를 사용한 것을 제외하면 실시예1과 동일한 방법을 수행하여 강화복합전해질막1(NSSP250)을 얻었다. Reinforced composite electrolyte membrane 1 (NSSP250) was obtained in the same manner as in Example 1, except that the membrane-type sPPS polymer support obtained by sulfonating the membrane-type PPS polymer support was used instead of the membrane-type PPS polymer support. .

막상의 PPS 고분자지지체를 다음과 같이 술폰화시켜 막상의 sPPS 고분자지지체를 얻었다. 먼저, 클로로메탄(Chloromethane)500ml에 메테인술폰산(MethaneSulfonic Acid)과 클로로설폰산 (Chlorosulfonic acid, CSA)을 각각 36mmol이 포함되도록 첨가한 후 용해시켜 술폰화용액을 준비하였다. 그 후 1000 ml 플라스크에 술폰화용액을 첨가한 후 막상의 PPS 고분자지지체를 침지시켰다. 다음으로 마그네틱바가 막상의 PPS 고분자지지체와 맞닿지 않게 30시간 동안 교반하여 술폰화반응을 수행하여 전해질막전구체를 얻었다. 이후 전해질막전구체를 증류수로 4회 세척을 하였다. 세척된 전해질막전구체를 수산화나트륨(Sodium hydroxid) 1 mol 수용액에 18시간동안 함침 시켰다. 상기 반응이 끝나면, 진공오븐에서 24시간 80 ℃ 온도에서 24시간 동안 진공오븐에서 건조하여 술폰화 폴리페닐렌 설파이드 전해질막(막상의 sPPS 고분자지지체)을 제조하였다.The membrane-type PPS polymer support was sulfonated as follows to obtain a membrane-type sPPS polymer support. First, methanesulfonic acid (MethaneSulfonic Acid) and chlorosulfonic acid (CSA) were added to contain 36 mmol of each in 500 ml of chloromethane, and then dissolved to prepare a sulfonation solution. Thereafter, a sulfonation solution was added to a 1000 ml flask, and the membrane PPS polymer support was immersed. Next, the sulfonation reaction was performed by stirring for 30 hours so that the magnetic bar did not come into contact with the PPS polymer support on the membrane to obtain an electrolyte membrane precursor. Then, the electrolyte membrane precursor was washed 4 times with distilled water. The washed electrolyte membrane precursor was impregnated in 1 mol aqueous solution of sodium hydroxide for 18 hours. After the reaction was completed, the sulfonated polyphenylene sulfide electrolyte membrane (sPPS polymer support on membrane) was prepared by drying in a vacuum oven for 24 hours at 80° C. for 24 hours in a vacuum oven.

비교예 1Comparative Example 1

Nafion을 DMAc에 넣어 20wt% Nafion 용액을 제조하고 실시예1에서 사용된 막상의 PPS 다공성지지체에 닥터블레이드를 이용하여 1회 공정으로 코팅하여 나피온층을 형성하였다. 그 후 50℃에서 12시간동안 1차 건조하였다. 또한 50℃부터 2시간마다 20℃씩 승온하여 최종적으로 120℃에서 12시간 2차건조를 수행하여 비교예 강화복합전해질막1(NA150)을 얻었다. 최종 건조되어 얻어진 비교예 강화복합전해질막1의 두께는 50±5 ㎛였다.Nafion was put in DMAc to prepare a 20wt% Nafion solution, and the membrane PPS porous support used in Example 1 was coated in one process using a doctor blade to form a Nafion layer. After that, it was first dried at 50° C. for 12 hours. In addition, the temperature was raised by 20 °C every 2 hours from 50 °C, and finally secondary drying was performed at 120 °C for 12 hours to obtain Comparative Example reinforced composite electrolyte membrane 1 (NA150). The thickness of Comparative Example reinforced composite electrolyte membrane 1 obtained by final drying was 50±5 μm.

비교예 2Comparative Example 2

막상의 PPS 다공성지지체에 나피온층을 형성하기 전에 실시예1과 동일한 방법으로 도파민층을 형성한 것을 제외하면 비교예1과 동일한 방법을 수행하여 비교예강화복합전해질막2(NA250)를 얻었다.Comparative Example Reinforced Composite Electrolyte Membrane 2 (NA250) was obtained in the same manner as in Comparative Example 1, except that the dopamine layer was formed in the same manner as in Example 1 before forming the Nafion layer on the membrane PPS porous support.

비교예 3Comparative Example 3

실시예 2에서 제조된 막상의 sPPS 다공성지지체를 사용한 것을 제외하면비교예1과 동일한 방법을 수행하여 비교예강화복합전해질막3(NS150)을 얻었다.Comparative Example reinforced composite electrolyte membrane 3 (NS150) was obtained in the same manner as in Comparative Example 1, except that the membrane sPPS porous support prepared in Example 2 was used.

비교예 4Comparative Example 4

실시예 2에서 제조된 막상의 sPPS 다공성지지체를 사용한 것을 제외하면비교예2와 동일한 방법을 수행하여 비교예강화복합전해질막4(NS250)를 얻었다.Comparative Example reinforced composite electrolyte membrane 4 (NS250) was obtained in the same manner as in Comparative Example 2, except that the membranous sPPS porous support prepared in Example 2 was used.

비교예 5Comparative Example 5

막상의 PPS 다공성지지체에 도파민코팅층을 형성하지 않고, 이온전달층을 바로 형성한 것을 제외하면 실시예1과 동일한 방법을 수행하여 비교예강화복합전해질막5(NASP150)를 얻었다.Comparative Example reinforced composite electrolyte membrane 5 (NASP150) was obtained in the same manner as in Example 1, except that an ion transport layer was directly formed without forming a dopamine coating layer on the membrane PPS porous support.

비교예 6Comparative Example 6

막상의 sPPS 다공성지지체에 도파민코팅층을 형성하지 않고, 이온전달층을 바로 형성한 것을 제외하면 실시예2와 동일한 방법을 수행하여 비교예강화복합전해질막6(NSSP150)을 얻었다.Comparative Example Reinforced Composite Electrolyte Membrane 6 (NSSP150) was obtained in the same manner as in Example 2, except that the ion transport layer was directly formed without forming the dopamine coating layer on the sPPS porous support.

실험예 1Experimental Example 1

실시예1 및 2에서 얻어진 강화복합전해질막1 및 2(NASP250, NSSP250)과 비교예 1내지 6에서 얻어진 비교예강화복합전해질막1 내지 6(NA150 NA250, NS150, NS250, NASP150, NSSP250) 및 Nafion 212(N212)에 대해 다음과 같이 수화안정성을 평가하고 그 결과를 표 1에 나타내었다.Reinforced composite electrolyte membranes 1 and 2 (NASP250, NSSP250) obtained in Examples 1 and 2 and Comparative Example reinforced composite electrolyte membranes 1 to 6 (NA150 NA250, NS150, NS250, NASP150, NSSP250) and Nafion obtained in Comparative Examples 1 to 6 For 212 (N212), hydration stability was evaluated as follows, and the results are shown in Table 1.

강화복합전해질막에 포함된 고분자지지체와 이온전달층의 전해질물질 간의 안정성을 평가하고자 고온의 물에 장시간동안 침지하여 안정성 평가 실험을 진행하였다. 강화복합전해질막의 건조무게를 측정한 후 압력용기에 체결하고 200℃ 오븐에서 가열 후 3일후 강화복합전해질막의 무게 감소를 측정하고 다음 식을 통해 감소율을 측정하였다. In order to evaluate the stability between the polymer support included in the reinforced composite electrolyte membrane and the electrolyte material of the ion transport layer, a stability evaluation experiment was conducted by immersing it in high temperature water for a long time. After measuring the dry weight of the reinforced composite electrolyte membrane, it was fastened to a pressure vessel, heated in an oven at 200° C., and after 3 days, the weight loss of the reinforced composite electrolyte membrane was measured, and the reduction rate was measured through the following equation.

Figure 112020133773741-pat00001
Figure 112020133773741-pat00001

여기에서

Figure 112020133773741-pat00002
은 반응 강화복합전해질막 무게를,
Figure 112020133773741-pat00003
는 반응 전 강화복합전해질막의 무게를 의미한다.From here
Figure 112020133773741-pat00002
is the weight of the reaction-enhanced composite electrolyte membrane,
Figure 112020133773741-pat00003
is the weight of the reinforced composite electrolyte membrane before the reaction.

구분division BeforeBefore AfterAfter 무게변화율
(%)
weight change rate
(%)
pH 변화율
(%)
pH change rate
(%)
무게
(mg)
weight
(mg)
pHpH 무게
(mg)
weight
(mg)
pHpH
N212N212 0.0520.052 7.147.14 XX 3.783.78 XX 47.0647.06 NA150NA150 0.0230.023 7.317.31 0.0090.009 2.442.44 60.8760.87 66.6266.62 NA250NA250 0.0260.026 7.677.67 0.0240.024 5.445.44 7.697.69 29.0729.07 NS150NS150 0.0230.023 7.017.01 0.0070.007 2.342.34 69.5669.56 66.6266.62 NS250NS250 0.0270.027 6.976.97 0.0250.025 4.744.74 7.417.41 31.9931.99 NASP150NASP150 0.0310.031 7.567.56 0.0130.013 2.102.10 58.0658.06 72.2272.22 NASP250NASP250 0.0350.035 7.437.43 0.0340.034 6.666.66 2.862.86 10.3610.36 NSSP150NSSP150 0.0330.033 7.117.11 0.0100.010 3.333.33 69.7069.70 53.1653.16 NSSP250NSSP250 0.0450.045 7.317.31 0.0410.041 5.885.88 8.898.89 19.5619.56

표 1로부터, Nafion 212, 강화복합전해질막1 및 2, 비교예강화복합전해질막 1 내지 6의 무게변화와 pH변화와 무게변화를 확인할 수 있다. Nafion 212은 200℃에서 24시간 반응 결과, 용해되버린 상태로 발견되었고 47%의 pH 변화를 보여주었다. 또한, 고분자 지지체에 도파민 코팅이 되어 있지 않은 상태의 NA150, NS150, NASP150, NSSP150에서는 고온에서 고분자 아이오노머인 나피온이 녹아 나와 무게 변화율이 크게 일어나며, 용해되어 나온 나피온에 의해 pH 변화가 낮아졌음을 확인할 수 있었다. 반면에, 고분자 지지체에 도파민이 코팅된 NA250, NS250, NASP250, NSSP250는 모두 지지체와 나피온 및 NSP 간의 접착력을 향상시켜 고온에 의한 물리적 탈리(delamination)가 적어 무게변화율이 작아짐을 확인할 수 있었다. From Table 1, the weight change, pH change, and weight change of Nafion 212, reinforced composite electrolyte membranes 1 and 2, and comparative example reinforced composite electrolyte membranes 1 to 6 can be confirmed. Nafion 212 was found to be dissolved as a result of reaction at 200 °C for 24 hours and showed a change in pH of 47%. In addition, in NA150, NS150, NASP150, and NSSP150 without dopamine coating on the polymer support, Nafion, a polymer ionomer, melted at high temperature, resulting in a large weight change rate, and the pH change was lowered by the dissolved Nafion. was able to confirm On the other hand, NA250, NS250, NASP250, and NSSP250 coated with dopamine on a polymer support all improved the adhesion between the support and Nafion and NSP, so that physical delamination due to high temperature was small, so it was confirmed that the weight change rate was small.

특히, 본 발명에 따른 강화복합전해질막인 NASP250, NSSP250는 이온전달층이 나피온만으로 형성된 비교예강화복합전해질인 NA250, NS250에 비해 무게변화율이 더 작았는데, 이것은 본 발명과 같이 이온전달층을 이온성고분자만으로 구성하는 것보다 이온성고분자에 실리카계고분자물질을 더 포함시켜 구성하게 되면 이온성고분자를 실리카계고분자물질간 친화력이 커서 이온성고분자의 접착력을 더 강화시켜 수화안정성을 보다 향상시키는 것을 보여준다. In particular, NASP250 and NSSP250, which are reinforced composite electrolyte membranes according to the present invention, have a smaller weight change rate than NA250 and NS250, which are comparative example reinforced composite electrolytes in which the ion transport layer is formed only with Nafion, which is the ion transport layer as in the present invention. When the ionic polymer contains more silica-based polymer materials rather than the ionic polymer alone, the ionic polymer has a high affinity between silica-based polymer materials, which further strengthens the adhesion of the ionic polymer to further improve hydration stability. show that

실험예 2Experimental Example 2

실시예1 및 2에서 얻어진 강화복합전해질막1 및 2(NASP250, NSSP250)과 비교예 1내지 6에서 얻어진 비교예강화복합전해질막1 내지 6(NA150 NA250, NS150, NS250, NASP150, NSSP250) 및 Nafion 212(N212)에 대해 다음과 같이 화학적안정성을 평가하고 그 결과를 표 2에 나타내었다.Reinforced composite electrolyte membranes 1 and 2 (NASP250, NSSP250) obtained in Examples 1 and 2 and Comparative Example reinforced composite electrolyte membranes 1 to 6 (NA150 NA250, NS150, NS250, NASP150, NSSP250) and Nafion obtained in Comparative Examples 1 to 6 For 212 (N212), the chemical stability was evaluated as follows, and the results are shown in Table 2.

강화복합전해질막의 V(V)에 대한 안정성을 판단하고자 가속 실험을 다음과 같이 진행하였다. 0.1 M V(V)을 3 M H2SO4에 용해시켜 용액을 제조한다. 상기 용액 15 ml에 막을 침지하여 48시간 후의 용액을 샘플링하여 V(Ⅴ)가 V(Ⅳ)로 환원된 양을 UV-VIS Spectrophotometer로 측정하였으며, 측정시 이용된 파장은 765.5 nm이다. 따라서 막이 바나듐 황산용액에서 용해되는 과정은 용액의 산화/환원 상태에 따라 다르게 나타나며 이러한 농도 비교 실험을 통해 시간 경과에 따른 막의 안정성을 확인할 수 있다. In order to determine the stability of the reinforced composite electrolyte membrane with respect to V(V), an accelerated experiment was performed as follows. Prepare a solution by dissolving 0.1 M V(V) in 3 M H2SO4. The membrane was immersed in 15 ml of the solution, the solution was sampled 48 hours later, and the amount of V(V) reduced to V(IV) was measured with a UV-VIS Spectrophotometer, and the wavelength used for the measurement was 765.5 nm. Therefore, the process of dissolving the membrane in the vanadium sulfuric acid solution varies depending on the oxidation/reduction state of the solution, and the stability of the membrane over time can be confirmed through this concentration comparison experiment.

구분division N212N212 NA
150
NA
150
NA
250
NA
250
NS
150
NS
150
NS
250
NS
250
NASP
150
NASP
150
NASP250NASP250 NSSP150NSSP150 NSSP250NSSP250
농도
(mmol/L)
density
(mmol/L)
0.2320.232 0.1330.133 0.0380.038 0.1710.171 0.0870.087 0.120.12 0.0630.063 0.0910.091 0.0330.033

표 2는 각각의 강화복합전해질막을 0.1M V(V)/3.0M H2SO4 용액에 함침시켜, 48시간동안 가속화 실험을 진행하여 얻어진 V(V)에 대한 화학적 안정성 실험결과이다. 표2로부터 Nafion 212보다 강화복합전해질막들의 V(V)에 대해 화학적으로 안정함을 확인할 수 있다. 또한, 강화복합전해질막들 중에서도 고분자 지지체에 도파민이 코팅된 NA250, NS250, NASP250, NSSP250 강화복합전해질막이 도파민이 코팅되지 않은 NA150, NS150, NASP150, NSSP150 강화복합전해질막들 보다 높은 안정성을 보여주고 있다. 이는 도파민이 갖고 있는 -OH 그룹들이 V(V)이온의 환원을 막아 내구성을 향상시키는 역할을 한다.Table 2 shows the chemical stability test results for V(V) obtained by impregnating each reinforced composite electrolyte membrane in 0.1M V(V)/3.0M H2SO4 solution, and performing accelerated experiments for 48 hours. From Table 2, it can be confirmed that the reinforced composite electrolyte membranes are chemically more stable with respect to V(V) than Nafion 212. In addition, among the reinforced composite electrolyte membranes, the NA250, NS250, NASP250, and NSSP250 reinforced composite electrolyte membranes coated with dopamine on a polymer support show higher stability than the NA150, NS150, NASP150, and NSSP150 reinforced composite electrolyte membranes that are not coated with dopamine. . This serves to improve durability by preventing the -OH groups of dopamine from reducing V(V) ions.

또한, 이온전달층이 이온성고분자와 실리카 계열의 고분자가 포함된 강화복합전해질막인 NASP150, NASP250, NSSP150, NSSP250은 다른 강화복합전해질막에 비해 우수한 내구성을 보여주고 있으며 이는 이온전달층을 구성하는 NSP 내부에 수소결합이 형성되고 이 수소결합은 V5+이온에 대한 산화를 막아주는 역할을 하는 것으로 보인다. 더불어 지지체에 도파민이 코팅되어 있는 NASP250, NSSP250은 가장 우수한 내구성을 보여주는데, 도파민과 NSP에 의해 내구성이 향상된 것으로 판단된다.In addition, NASP150, NASP250, NSSP150, and NSSP250, which are reinforced composite electrolyte membranes in which the ion transport layer contains ionic polymers and silica-based polymers, show superior durability compared to other reinforced composite electrolyte membranes, which are the components of the ion transport layer. A hydrogen bond is formed inside the NSP, and this hydrogen bond appears to play a role in preventing oxidation of V 5+ ions. In addition, NASP250 and NSSP250, which are coated with dopamine on the support, show the best durability, and it is judged that the durability is improved by dopamine and NSP.

실험예 3Experimental Example 3

실시예1 및 2에서 얻어진 강화복합전해질막1 및 2(NASP250, NSSP250)과 비교예 1내지 6에서 얻어진 비교예강화복합전해질막1 내지 6(NA150 NA250, NS150, NS250, NASP150, NSSP250) 및 Nafion 212(N212)에 대해 다음과 같이 투과도를 측정하고 그 결과를 표 3에 나타내었다.Reinforced composite electrolyte membranes 1 and 2 (NASP250, NSSP250) obtained in Examples 1 and 2 and Comparative Example reinforced composite electrolyte membranes 1 to 6 (NA150 NA250, NS150, NS250, NASP150, NSSP250) and Nafion obtained in Comparative Examples 1 to 6 For 212 (N212), transmittance was measured as follows, and the results are shown in Table 3.

강화복합전해질막의 투과도 측정을 위해 Nafion 212와 제조된 강화복합전해질막들을 VRFB용 단위셀에 조립하였다. 이때의 장비 구성은 셀 테스트와 동일하며, 탱크에 각기 다른 솔루션(MgSO4 용액 및 VOSO4 용액)을 넣어 준비하였다. 전자적 평형을 맞추기 위하여 한쪽 탱크에는 1.5M의 MgSO4가 3M H2SO4에 녹아 있는 용액을 넣었으며, 다른 한 쪽에는 1.5M의 VOSO4가 3M H2SO4에 녹아 있는 용액을 넣고 실험을 진행하였다. 1, 2, 4, 8, 12, 24시간 간격으로 MgSO4 용액이 들어있는 탱크의 용액을 샘플링 하였다. UV를 이용하여 투과된 V(Ⅳ)양을 측정하였으며, 측정시 이용된 파장은 765.5nm 이다. 투과도 (D)는 다음 식으로 계산하였다. To measure the permeability of the reinforced composite electrolyte membrane, Nafion 212 and the manufactured reinforced composite electrolyte membrane were assembled in a unit cell for VRFB. The equipment configuration at this time is the same as the cell test, and different solutions (MgSO4 solution and VOSO4 solution) were put into the tank and prepared. In order to achieve electronic equilibrium, a solution in which 1.5M MgSO4 was dissolved in 3M H2SO4 was put in one tank, and a solution in which 1.5M VOSO4 was dissolved in 3M H2SO4 was put in the other tank, and the experiment was conducted. The solution in the tank containing the MgSO4 solution was sampled at intervals of 1, 2, 4, 8, 12, and 24 hours. The amount of transmitted V(IV) was measured using UV, and the wavelength used for the measurement was 765.5 nm. The transmittance (D) was calculated by the following formula.

Figure 112020133773741-pat00004
Figure 112020133773741-pat00004

여기서

Figure 112020133773741-pat00005
는 MgSO4 용액의 부피,
Figure 112020133773741-pat00006
는 MgSO4의 투과된 V(Ⅳ)이온의 농도이며,
Figure 112020133773741-pat00007
는 시간,
Figure 112020133773741-pat00008
는 반응 면적,
Figure 112020133773741-pat00009
은 막 두께,
Figure 112020133773741-pat00010
는 VOSO4의 초기 농도이다.here
Figure 112020133773741-pat00005
is the volume of the MgSO4 solution,
Figure 112020133773741-pat00006
is the concentration of permeated V(IV) ions of MgSO4,
Figure 112020133773741-pat00007
is the time,
Figure 112020133773741-pat00008
is the reaction area,
Figure 112020133773741-pat00009
silver film thickness,
Figure 112020133773741-pat00010
is the initial concentration of VOSO4.

구분division N212N212 NA
150
NA
150
NA
250
NA
250
NS
150
NS
150
NS
250
NS
250
NASP
150
NASP
150
NASP
250
NASP
250
NSSP
150
NSSP
150
NSSP
250
NSSP
250
투과도
(㎠/min)
permeability
(cm2/min)
2.47×10-7 2.47×10 -7 1.7×10-7 1.7×10 -7 8.43×10-8 8.43×10 -8 3.33×10-7 3.33×10 -7 2.44×10-8 2.44×10 -8 1.45×10-8 1.45×10 -8 1.01×10-8 1.01×10 -8 2.11×10-8 2.11×10 -8 0.9×10-8 0.9×10 -8

표 3은 Nafion 212, 강화복합전해질막들의 V(IV) 이온의 Permeability를 보여준다. Nafion 212의 경우 Permeability가 2.47×10-7 cm2/min으로 측정되었고 강화복합전해질막들은 Nafion 212 보다 낮은 투과도를 보여준다. 강화복합전해질막 중에서도 도파민이 코팅되어 있는 NA250, NS250, NASP250, NSSP250 강화복합전해질막이 낮은 투과도를 보여주고 있다. 이는, 다공성한 지지체에도 불구하고 도파민에 의해 Nafion ionomer와 지지체의 계면 접착성이 향상되어 Nafion ionomer에도 불구하고 V(IV)에 대한 투과가 억제되어 낮은 투과도를 보여주는 것으로 보인다.Table 3 shows the permeability of V(IV) ions of Nafion 212, reinforced composite electrolyte membranes. In the case of Nafion 212, the permeability was measured to be 2.47×10-7 cm2/min, and the reinforced composite electrolyte membranes showed lower permeability than Nafion 212. Among the reinforced composite electrolyte membranes, dopamine-coated NA250, NS250, NASP250, and NSSP250 reinforced composite electrolyte membranes show low permeability. It seems that, despite the porous support, the interfacial adhesion between the Nafion ionomer and the support was improved by dopamine, and the permeation of V(IV) was suppressed despite the Nafion ionomer, showing low permeability.

또한, 실리카 계열의 고분자가 첨가된 NASP150, NASP250, NSSP150, NSSP250 강화복합전해질막은 다른 강화복합전해질막 보다 낮은 투과도를 보여준다. 이는 실리카에 의해 V이온의 선택적인 투과가 발생하는 것으로 확인된다. 이를 보아 본 발명의 강화복합전해질막에서 이온전달층을 구성하는 NSP는 투과도를 억제할 수 있는 최적의 물질로 판단된다.In addition, the NASP150, NASP250, NSSP150, and NSSP250 reinforced composite electrolyte membranes containing silica-based polymers show lower permeability than other reinforced composite electrolyte membranes. It is confirmed that the selective permeation of V ions occurs by silica. In view of this, NSP constituting the ion transport layer in the reinforced composite electrolyte membrane of the present invention is judged to be an optimal material capable of suppressing permeability.

본 발명은 이상에서 살펴본 바와 같이 바람직한 실시 예를 들어 도시하고 설명하였으나, 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.Although the present invention has been illustrated and described with reference to preferred embodiments as described above, it is not limited to the above-described embodiments, and those of ordinary skill in the art to which the present invention pertains within the scope not departing from the spirit of the present invention Various changes and modifications will be possible.

Claims (7)

다공성 고분자지지체; 상기 고분자지지체의 기공을 포함하여 상기 고분자지지체가 외부로 노출된 모든 표면에 형성된 도파민코팅층; 및 상기 도파민코팅층을 덮도록 형성되는 이온전달층;을 포함하는데,
상기 다공성 고분자지지체는 폴리페닐렌설파이드(PPS) 또는 술폰화 폴리페닐렌설파이드(sPPS)로 이루어지고,
상기 이온전달층은 실리카계열고분자물질 및 이온전도성물질이 1:3 내지 3:1의 중량비로 포함되며,
상기 실리카계열고분자물질은 D-ASFP (Diol Alkoxysilane-functionalized Polymer), BD-ASFP(bisphenol dimethylbenzanthracene ASFP), BDP-ASFP (Polydimethylsiloxane ASFP) 중 어느 하나이고,
상기 다공성 고분자지지체가 술폰화 폴리페닐렌설파이드(sPPS)인 경우, 다공성 막상의 폴리페닐렌설파이드(PPS)를 술폰화시켜 얻어진 것이며,
상기 이온전도성물질은 나피온, 3M아이오노머, 술폰화된 플루오르계 고분자, 벤즈이미다졸계 고분자, 폴리이미드계 고분자, 폴리아미드계 고분자, 폴리아릴렌아테르계 고분자, 폴리에테르이미드계 고분자, 폴리페닐렌술파이드계 고분자, 폴리술폰계 고분자, 폴리에테르술폰계 고분자, 폴리에테르케톤계 고분자, 폴리에테르-에테르케톤계 고분자, 폴리포스파젠계 고분자, 폴리스티렌계 고분자, 라디에이션-그라프트된 FEP-g-폴리스티렌(radiation-grafted FEP-g-polystyrene), 라디에이션-그라프트된 PVDF-g-폴리스티렌(radiation-grafted PVDF-g-polystyrene) 및 폴리페닐퀴녹살린계 고분자 중에서 선택되는 1종 이상의 수소 이온 전도성 고분자를 포함하고,
투과도가 2.00×10-6 ㎠/min이하인 것을 특징으로 하는 강화복합전해질막.
porous polymer support; a dopamine coating layer formed on all surfaces of the polymer support exposed to the outside, including the pores of the polymer support; and an ion transport layer formed to cover the dopamine coating layer.
The porous polymer support is made of polyphenylene sulfide (PPS) or sulfonated polyphenylene sulfide (sPPS),
The ion transport layer contains a silica-based polymer material and an ion conductive material in a weight ratio of 1:3 to 3:1,
The silica-based polymer material is any one of D-ASFP (Diol Alkoxysilane-functionalized Polymer), BD-ASFP (bisphenol dimethylbenzanthracene ASFP), BDP-ASFP (Polydimethylsiloxane ASFP),
When the porous polymer support is sulfonated polyphenylene sulfide (sPPS), it is obtained by sulfonating polyphenylene sulfide (PPS) on a porous membrane,
The ion conductive material is Nafion, 3M ionomer, sulfonated fluorine-based polymer, benzimidazole-based polymer, polyimide-based polymer, polyamide-based polymer, polyarylene ether-based polymer, polyetherimide-based polymer, polyphenyl Rensulfide-based polymer, polysulfone-based polymer, polyethersulfone-based polymer, polyetherketone-based polymer, polyether-etherketone-based polymer, polyphosphazene-based polymer, polystyrene-based polymer, radiation-grafted FEP-g- One or more hydrogen ion conductive polymers selected from polystyrene (radiation-grafted FEP-g-polystyrene), radiation-grafted PVDF-g-polystyrene, and polyphenylquinoxaline-based polymers including,
Reinforced composite electrolyte membrane, characterized in that the transmittance is 2.00×10 -6 ㎠/min or less.
삭제delete 도파민용액을 준비하는 단계; 상기 도파민용액에 다공성 고분자지지체를 침지시켜 상기 다공성 고분자지지체가 외부로 노출된 모든 표면에 도파민코팅층이 형성된 전구체막을 제조하는 단계; 및 상기 전구체막의 표면에 이온전달층을 형성하는 단계;를 포함하는데,
상기 다공성 고분자지지체는 폴리페닐렌설파이드(PPS) 또는 술폰화 폴리페닐렌설파이드(sPPS)로 이루어지고,
상기 이온전달층을 형성하는 단계는 실리카계열고분자물질 및 이온전도성물질이 1:3 내지 3:1의 중량비로 포함된 이온전달층형성용 용액을 준비하는 단계; 상기 전구체막 표면에 상기 이온전달층형성용 용액을 코팅하는 단계; 및 상기 이온전달층을 건조하는 단계;를 포함하여 수행되며,
상기 실리카계열고분자물질은 D-ASFP (Diol Alkoxysilane-functionalized Polymer), BD-ASFP(bisphenol dimethylbenzanthracene ASFP), BDP-ASFP (Polydimethylsiloxane ASFP) 중 어느 하나이고,
상기 다공성 고분자지지체가 술폰화 폴리페닐렌설파이드(sPPS)인 경우, 다공성 막상의 폴리페닐렌설파이드(PPS)를 술폰화시켜 얻어진 것이며,
상기 이온전도성물질은 나피온, 3M아이오노머, 술폰화된 플루오르계 고분자, 벤즈이미다졸계 고분자, 폴리이미드계 고분자, 폴리아미드계 고분자, 폴리아릴렌아테르계 고분자, 폴리에테르이미드계 고분자, 폴리페닐렌술파이드계 고분자, 폴리술폰계 고분자, 폴리에테르술폰계 고분자, 폴리에테르케톤계 고분자, 폴리에테르-에테르케톤계 고분자, 폴리포스파젠계 고분자, 폴리스티렌계 고분자, 라디에이션-그라프트된 FEP-g-폴리스티렌(radiation-grafted FEP-g-polystyrene), 라디에이션-그라프트된 PVDF-g-폴리스티렌(radiation-grafted PVDF-g-polystyrene) 및 폴리페닐퀴녹살린계 고분자 중에서 선택되는 1종 이상의 수소 이온 전도성 고분자를 포함하고,
강화복합전해질막의 투과도가 2.00×10-6 ㎠/min이하인 것 특징으로 하는 강화복합전해질막제조방법.
preparing a dopamine solution; preparing a precursor film in which a dopamine coating layer is formed on all surfaces of the porous polymer support exposed to the outside by immersing the porous polymer support in the dopamine solution; and forming an ion transport layer on the surface of the precursor film.
The porous polymer support is made of polyphenylene sulfide (PPS) or sulfonated polyphenylene sulfide (sPPS),
The step of forming the ion transport layer comprises the steps of: preparing a solution for forming an ion transport layer containing a silica-based polymer material and an ion conductive material in a weight ratio of 1:3 to 3:1; coating the solution for forming the ion transport layer on the surface of the precursor film; and drying the ion transport layer;
The silica-based polymer material is any one of D-ASFP (Diol Alkoxysilane-functionalized Polymer), BD-ASFP (bisphenol dimethylbenzanthracene ASFP), BDP-ASFP (Polydimethylsiloxane ASFP),
When the porous polymer support is sulfonated polyphenylene sulfide (sPPS), it is obtained by sulfonating polyphenylene sulfide (PPS) on a porous membrane,
The ion conductive material is Nafion, 3M ionomer, sulfonated fluorine-based polymer, benzimidazole-based polymer, polyimide-based polymer, polyamide-based polymer, polyarylene ether-based polymer, polyetherimide-based polymer, polyphenyl Rensulfide-based polymer, polysulfone-based polymer, polyethersulfone-based polymer, polyetherketone-based polymer, polyether-etherketone-based polymer, polyphosphazene-based polymer, polystyrene-based polymer, radiation-grafted FEP-g- One or more hydrogen ion conductive polymers selected from polystyrene (radiation-grafted FEP-g-polystyrene), radiation-grafted PVDF-g-polystyrene, and polyphenylquinoxaline-based polymers including,
A method for manufacturing a reinforced composite electrolyte membrane, characterized in that the permeability of the reinforced composite electrolyte membrane is 2.00×10 -6 ㎠/min or less.
제 3 항에 있어서,
상기 도파민용액을 준비하는 단계는 증류수에 도파민클로라이드를 넣고 교반하는 단계; 및 상기 교반된 용액에 Tris(hydroxymethyl)aminomethane을 넣은 후 교반하는 단계;를 포함하여 수행되는 것을 특징으로 하는 강화복합전해질막제조방법.
4. The method of claim 3,
The step of preparing the dopamine solution includes adding dopamine chloride to distilled water and stirring; And Tris (hydroxymethyl) aminomethane is added to the stirred solution and then stirred.
제 3 항에 있어서,
상기 전구체막을 제조하는 단계는 상기 도파민용액에 침지된 상기 다공성 고분자지지체를 세척하는 단계; 및 세척된 다공성 고분자지지체를 건조하는 단계;를 더 포함하여 수행되는 것을 특징으로 하는 강화복합전해질막 제조방법.
4. The method of claim 3,
Preparing the precursor film may include washing the porous polymer support immersed in the dopamine solution; and drying the washed porous polymer support.
제 1 항의 강화복합전해질막 또는 제 3 항 내지 제 5 항 중 어느 한 항의 제조방법으로 제조된 강화복합전해질막을 포함하는 연료전지.
A fuel cell comprising the reinforced composite electrolyte membrane of claim 1 or the reinforced composite electrolyte membrane manufactured by the manufacturing method of any one of claims 3 to 5.
제 1 항의 강화복합전해질막 또는 제 3 항 내지 제 5 항 중 어느 한 항의 제조방법으로 제조된 강화복합전해질막을 포함하는 레독스흐름전지.A redox flow battery comprising the reinforced composite electrolyte membrane of claim 1 or the reinforced composite electrolyte membrane manufactured by the manufacturing method of any one of claims 3 to 5.
KR1020200171744A 2018-08-24 2020-12-09 Reinforced Membrane with low permeability and the preparation as the same Active KR102332293B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200171744A KR102332293B1 (en) 2018-08-24 2020-12-09 Reinforced Membrane with low permeability and the preparation as the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180099507A KR102193756B1 (en) 2018-08-24 2018-08-24 Reinforced Membrane with low permeability and the preparation as the same
KR1020200171744A KR102332293B1 (en) 2018-08-24 2020-12-09 Reinforced Membrane with low permeability and the preparation as the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020180099507A Division KR102193756B1 (en) 2018-08-24 2018-08-24 Reinforced Membrane with low permeability and the preparation as the same

Publications (2)

Publication Number Publication Date
KR20200140780A KR20200140780A (en) 2020-12-16
KR102332293B1 true KR102332293B1 (en) 2021-12-01

Family

ID=78899860

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200171744A Active KR102332293B1 (en) 2018-08-24 2020-12-09 Reinforced Membrane with low permeability and the preparation as the same

Country Status (1)

Country Link
KR (1) KR102332293B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115275291B (en) * 2022-07-13 2024-08-13 东风汽车集团股份有限公司 Method for producing PTFE membrane, proton exchange membrane, and fuel cell
KR102762700B1 (en) * 2022-12-02 2025-02-04 성균관대학교산학협력단 Separator for lithium-sulfur secondary battery, manufacturing method thereof, and secondary battery comprising same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101403734B1 (en) * 2013-06-03 2014-06-03 한국과학기술원 Method for improving long-term performance of polymer electrolyte membrane fuel cell, porous matrix thereof and proton conducting membrane comprising said porous matrix

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1641063B1 (en) * 2003-06-25 2018-06-20 Toray Industries, Inc. Polymer electrolyte, polymer electrolyte membrane therefrom, membrane electrode assembly and polymer electrolyte fuel cell
KR100903612B1 (en) * 2005-09-26 2009-06-18 삼성에스디아이 주식회사 Membrane-electrode assembly for fuel cell and fuel cell system comprising same
KR101193164B1 (en) * 2006-02-21 2012-10-19 삼성에스디아이 주식회사 Organic polymer siloxane compounds containing sulfonic acid group and fuel cell comprising the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101403734B1 (en) * 2013-06-03 2014-06-03 한국과학기술원 Method for improving long-term performance of polymer electrolyte membrane fuel cell, porous matrix thereof and proton conducting membrane comprising said porous matrix

Also Published As

Publication number Publication date
KR20200140780A (en) 2020-12-16

Similar Documents

Publication Publication Date Title
KR101494289B1 (en) Polymer electrolyte composite, method for producing the same and energy storage comprising the polymer electrolyte composite
JP6338297B2 (en) Method for producing reinforced composite membrane
KR102140121B1 (en) Reinforced-Composite Electrolyte Membrane Comprising Porous Polymer Substrate And Manufacturing Method Thereof
KR100343209B1 (en) Reinforced compositie ion conducting polymer membrane and fuel cell adopting the same
KR20180104708A (en) Ceramic selective film
KR100833056B1 (en) Reinforced-composite electrolyte membrane for fuel cell
KR102238221B1 (en) Modified polytetrafluoroethylene, method for preparing the same, ion exchange membranes using the same and method for preparing ion exchange membranes using the same
KR102332293B1 (en) Reinforced Membrane with low permeability and the preparation as the same
KR20160064429A (en) Composite membranes for redox flow battery electrolyte and their fabrication method
Asghar et al. A review of advancements in commercial and non-commercial Nafion-based proton exchange membranes for direct methanol fuel cells
JP2021531161A (en) Integrated composite membrane with continuous ionomer phase
KR20120128905A (en) Multi layer reinfored electrolyte membrane for solid polymer fuel cell, manufacturing method thereof, membrane-electrode assembly having the same and fuel cell having them
JP4827781B2 (en) Polymer electrolyte membrane
KR101109143B1 (en) Manufacturing method of crosslinked polymer electrolyte composite membrane by anhydrous electrolyte and polymer electrolyte fuel cell system using same
KR102105662B1 (en) Sulfonated polyphenylene sulfide electrolyte membrane and process for producing the same
KR102265816B1 (en) A method for producing an organic-inorganic composite electrolyte membrane and an application product including the membrane
KR102367411B1 (en) Reinforced composite electrolyte membrane and method of manufacturing same
KR102193756B1 (en) Reinforced Membrane with low permeability and the preparation as the same
KR20190085288A (en) Method for manufacturing reinforced seperarion membrane and reinforced seperarion membrane, redox flow battery prepared by thereof
KR20140118914A (en) Polymer electrolyte membrane, method for manufacturing the same and membrane-electrode assembly comprising the same
JP4771702B2 (en) Polymer solid electrolyte membrane with reinforcing material
KR20230113708A (en) Preparation method of hydrocarbon ionomer/PTFE composite membrane for fuel cell anc water electrlyzers
Niccolai et al. A Critical Update on the Design of Dense Ion‐Conducting Membranes for Redox Flow Batteries
KR102397633B1 (en) Polymer electrolyte membrane with cosolvent, the method for producing the same and the energy saving device comprising the same.
KR102363625B1 (en) The organic-inorganic composite electrolyte membrane and an application product including the membrane

Legal Events

Date Code Title Description
A107 Divisional application of patent
PA0107 Divisional application

Comment text: Divisional Application of Patent

Patent event date: 20201209

Patent event code: PA01071R01D

Filing date: 20180824

Application number text: 1020180099507

PG1501 Laying open of application
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20210813

Comment text: Request for Examination of Application

Patent event code: PA02011R04I

Patent event date: 20201209

Comment text: Divisional Application of Patent

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20210825

Patent event code: PE09021S01D

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20211029

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20211119

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20211124

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20211125

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20241015

Start annual number: 4

End annual number: 4