KR102332285B1 - Manufacturing method of copper busbar with improved heat generation - Google Patents
Manufacturing method of copper busbar with improved heat generation Download PDFInfo
- Publication number
- KR102332285B1 KR102332285B1 KR1020210063683A KR20210063683A KR102332285B1 KR 102332285 B1 KR102332285 B1 KR 102332285B1 KR 1020210063683 A KR1020210063683 A KR 1020210063683A KR 20210063683 A KR20210063683 A KR 20210063683A KR 102332285 B1 KR102332285 B1 KR 102332285B1
- Authority
- KR
- South Korea
- Prior art keywords
- bus bar
- copper bus
- copper
- rolling
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 89
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 89
- 239000010949 copper Substances 0.000 title claims abstract description 89
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 230000020169 heat generation Effects 0.000 title abstract description 10
- 238000005096 rolling process Methods 0.000 claims abstract description 47
- 238000000034 method Methods 0.000 claims abstract description 21
- 238000000137 annealing Methods 0.000 claims description 4
- 238000007670 refining Methods 0.000 claims description 2
- 230000003746 surface roughness Effects 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 15
- 238000005406 washing Methods 0.000 description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 238000005238 degreasing Methods 0.000 description 11
- 238000001035 drying Methods 0.000 description 6
- 239000008213 purified water Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000005868 electrolysis reaction Methods 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 235000011121 sodium hydroxide Nutrition 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 206010000369 Accident Diseases 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000005352 clarification Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/0036—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/02—Single bars, rods, wires, or strips
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
본 발명은 발열성이 개선된 동 버스바의 제조방법에 관한 것으로, 더욱 상세하게는 조질압연의 과정을 거쳐 표면거칠기가 개선되기 때문에 통전 과정에서 접속부의 접촉저항 감소로 인한 발열성이 개선된 동 버스바의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a copper bus bar with improved exothermicity, and more particularly, copper having improved heat generation due to a decrease in contact resistance of a connection part during energization because the surface roughness is improved through the process of temper rolling. It relates to a method for manufacturing a bus bar.
일반적으로 배전반, 분전반 및 제어반 등에는 단자와 단자 사이를 접속하기 위해 동판이나 알루미늄 등의 두꺼운 판재로 이루어진 버스바(Bus bar)를 사용하게 되는데, 상기 버스바는 배전반 등의 설계에 따라 장착 및 다른부재와의 연결을 위하여 커팅 또는 벤딩되거나 복수의 체결공이 펀칭되는 등의 가공 작업을 필요로 하게 된다.In general, a bus bar made of a thick plate such as copper or aluminum is used for a switchboard, a distribution board, and a control panel to connect between terminals. A machining operation such as cutting or bending or punching a plurality of fastening holes is required for connection with the member.
예전에는 전기에너지를 전달하기 위한 매개체로 케이블을 많이 사용해 왔으나, 최근 들어 같은 부피의 도체로 더욱 많은 전기에너지를 전달할 수 있는 장점을 갖는 버스바가 케이블의 대체품으로 많이 사용되고 있다. 이러한 버스바는 전기전도도가 우수하고, 높은 강도와 내구성이 확보되어야 한다.In the past, cables have been used a lot as a medium for transmitting electrical energy, but recently, a bus bar having the advantage of being able to transmit more electrical energy with a conductor of the same volume is widely used as an alternative to the cable. Such a bus bar must have excellent electrical conductivity, and high strength and durability must be secured.
버스바는 대용량의 전기에너지 전송 시스템의 설치가 필요한 공업용에서부터규모가 작은 가정용 등의 분전반이나 배전반에 사용되는데, 이러한 버스바용 소재로는 전기 전도성이 우수한 동(Cu), 알루미늄(Al), 동-알루미늄 클래드재가 주로 사용되고 있는데, 금속의 전기적 물성을 고려했을 때, 동의 사용량이 가장 많다.Busbars are used in distribution boards or switchboards for industrial use that require the installation of a large-capacity electric energy transmission system and for small-scale households. Aluminum clad material is mainly used. Considering the electrical properties of the metal, copper is the most used.
그러나, 동으로 이루어진 종래에 동 버스바는 스위치기어(Switchgear) 등에 적용되었을 때, 전력기기의 도체 접속부의 밀착도 저하로 접촉저항이 상승하여 초래된 발열로 인해 접속부에서의 과도한 발열로 수배전반의 작동정지나 고장을 발생시키게 되고, 심할 경우 화재로 이어지게 되며, 해마다 4 내지 5천건의 화재사고가 발생하고 있어 이에 대한 해결책이 시급한 실정이다.However, when the conventional copper bus bar made of copper is applied to a switchgear, etc., the contact resistance increases due to a decrease in the adhesion of the conductor connection of the power device, and the switchgear operates due to excessive heat at the connection part due to heat generated. It causes a stop or breakdown, and in severe cases, it leads to a fire, and 4 to 5,000 fire accidents occur every year, so a solution is urgently needed.
본 발명의 목적은 조질압연의 과정을 거쳐 표면거칠기가 개선되기 때문에 통전 과정에서 접속부의 접촉저항 감소로 인한 발열성이 개선된 동 버스바의 제조방법을 제공하는 것이다.It is an object of the present invention to provide a method for manufacturing a copper bus bar in which heat generation is improved due to a decrease in contact resistance of a connection part during an energization process because the surface roughness is improved through the process of temper rolling.
본 발명의 목적은 동 버스바를 1.5 내지 7%의 압하율로 조질압연하여 이루어지는 것을 특징으로 하는 발열성이 개선된 동 버스바의 제조방법을 제공함에 의해 달성된다.An object of the present invention is achieved by providing a method for manufacturing a copper bus bar with improved exothermic property, characterized in that the copper bus bar is subjected to temper rolling at a reduction ratio of 1.5 to 7%.
본 발명의 바람직한 특징에 따르면, 상기 조질압연은 1.5 내지 5%의 압하율로 이루어지는 것으로 한다.According to a preferred feature of the present invention, the temper rolling shall consist of a reduction ratio of 1.5 to 5%.
본 발명의 더 바람직한 특징에 따르면, 상기 조질압연은 초기 압연(break down), 중간 압연 및 마무리 압연(refining finish rolling)순으로 진행되는 것으로 한다.According to a more preferred feature of the present invention, the temper rolling is to be performed in the order of initial rolling (break down), intermediate rolling and finishing rolling (refining finish rolling).
본 발명의 더욱 바람직한 특징에 따르면, 상기 초기 압연, 중간 압연 및 마무리 압연 이후에는 500 내지 650℃의 온도로 1 내지 5분 동안 어닐링하는 과정이 진행되는 것으로 한다.According to a more preferred feature of the present invention, after the initial rolling, intermediate rolling and finish rolling, annealing at a temperature of 500 to 650° C. for 1 to 5 minutes is performed.
또한, 본 발명의 목적은 상기의 제조방법으로 제조되며, 산술평균조도(Ra)가 0.1 내지 0.2 마이크로미터이며, 십점 평균 조도(Rz)가 3 내지 4.5 마이크로미터인 것을 특징으로 하는 동 버스바를 제공함에 의해서도 달성될 수 있다.It is also an object of the present invention to provide a copper busbar manufactured by the above manufacturing method, wherein the arithmetic mean roughness (Ra) is 0.1 to 0.2 micrometers, and the ten-point average roughness (Rz) is 3 to 4.5 micrometers. can also be achieved by
본 발명에 따른 발열성이 개선된 동 버스바의 제조방법은 조질압연의 과정을 거쳐 표면거칠기가 개선되기 때문에 통전 과정에서 접속부의 접촉저항 감소로 인한 발열성이 개선된 동 버스바를 제공하는 탁월한 효과를 나타낸다.The method for manufacturing a copper bus bar with improved heat generation according to the present invention has an excellent effect of providing a copper bus bar with improved heat generation due to a reduction in contact resistance of the connection part during energization because the surface roughness is improved through the process of temper rolling. indicates
도 1은 동 버스바의 표면 거칠기로 인해 접속부의 밀착도 저하가 발생하는 모습을 나타낸 모식도이다.
도 2는 동 버스바에 국부적인 용융이 발생하여 전력기기의 사고가 유발된 모습을 촬영하여 나타낸 사진이다.
도 3은 종래에 동 버스바(두께 10mm×너비 80mm)의 두께 편차를 측정하여 나타내는 그래프이다.
도 4는 종래에 버스바의 접속부를 제조한 후에, 광학 현미경을 이용하여 관찰한 결과를 나타낸 사진이다.
도 5는 종래에 동 버스바의 표면조도를 측정하여 나타낸 그래프이다.
도 6은 본 발명의 실시예 1 및 비교예 1을 통해 제조된 동 버스바의 두께 편차를 측정하여 나타낸 그래프이다.
도 7은 본 발명의 실시예 1 및 비교예 1을 통해 제조된 동 버스바의 조도(Ra, Rz)를 측정하여 나타낸 그래프이다.
도 8은 본 발명의 실시예 2 및 비교예 1을 통해 제조된 동 버스바의 단면을 주사전자 현미경(SEM)으로 촬영하여 나타낸 사진이다.
도 9 내지 11은 본 발명의 실시예 1 내지 2 및 비교예 1을 통해 제조된 동 버스바의 통전 중 온도상승 거동을 측정하여 나타낸 그래프이다.
도 12는 본 발명의 실시예 1 내지 2 및 비교예 1을 통해 제조된 동 버스바의 통전 중 접속부의 접촉저항을 측정하는 모습을 촬영하여 나타낸 사진이다.
도 13은 동 버스바의 표면을 황산용액으로 표면처리하는 과정을 나타낸 순서도이다.1 is a schematic diagram showing a state in which a decrease in adhesion of a connection portion occurs due to the roughness of the surface of the bus bar.
FIG. 2 is a photograph showing a state in which local melting occurred in the copper bus bar and an accident of the electric power device was induced.
3 is a graph showing the thickness variation of a copper bus bar (thickness 10mm×width 80mm) measured in the related art.
4 is a photograph showing the result of observation using an optical microscope after the conventional bus bar connection part is manufactured.
5 is a graph showing the conventional measurement of the surface roughness of the bus bar.
6 is a graph showing the thickness deviation of the copper bus bars manufactured according to Example 1 and Comparative Example 1 of the present invention.
7 is a graph showing the measurement of the roughness (Ra, Rz) of the copper bus bar prepared in Example 1 and Comparative Example 1 of the present invention.
8 is a photograph showing the cross-section of the copper bus bar prepared in Example 2 and Comparative Example 1 of the present invention taken with a scanning electron microscope (SEM).
9 to 11 are graphs showing the temperature rise behavior during energization of the copper busbars prepared in Examples 1 to 2 and Comparative Example 1 of the present invention.
12 is a photograph showing the state of measuring the contact resistance of the connection portion of the copper bus bars manufactured in Examples 1 to 2 and Comparative Example 1 of the present invention while energized.
13 is a flowchart showing a process of surface-treating the surface of the copper busbar with a sulfuric acid solution.
이하에는, 본 발명의 바람직한 실시예와 각 성분의 물성을 상세하게 설명하되, 이는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 용이하게 실시할 수 있을 정도로 상세하게 설명하기 위한 것이지, 이로 인해 본 발명의 기술적인 사상 및 범주가 한정되는 것을 의미하지는 않는다.Hereinafter, a preferred embodiment of the present invention and the physical properties of each component will be described in detail, which is intended to describe in detail enough that a person of ordinary skill in the art to which the present invention pertains can easily carry out the invention, This does not mean that the technical spirit and scope of the present invention is limited.
본 발명에 따른 발열성이 개선된 동 버스바의 제조방법은 동 버스바를 조질압연하여 표면거칠기를 개선시키는 과정으로 이루어지는데, 동 버스바를 1.5 내지 7%의 압하율로 조질압연하여 이루어지며, 더욱 바람직하게는 동 버스바를 1.5 내지 5%의 압하율로 조질압연하여 이루어진다.The method for manufacturing a copper bus bar with improved exothermicity according to the present invention consists of a process of improving the surface roughness by temper rolling the copper bus bar, which is made by temper rolling the copper bus bar at a reduction ratio of 1.5 to 7%, and further Preferably, it is made by temper rolling the copper bus bar at a reduction ratio of 1.5 to 5%.
일반적으로, 동 버스바는 아래 도 1에 나타낸 바와 같이 표면에 거칠기로 인해 접속부의 밀착도 저하가 발생하여 접촉저항이 상승하게 되고, 접촉저항의 상승은 결국 발열을 초래하여 아래 도 2에 나타낸 바와 같이 동 버스바의 국부적인 용융으로 이어져 전력기기의 작동 정지 또는 화재사고를 유발하게 된다.In general, as shown in FIG. 1 below, as shown in FIG. 1 below, as shown in FIG. 2 below, as shown in FIG. Similarly, it leads to local melting of the copper busbar, which causes the operation of power equipment to stop or a fire accident.
상기 접촉저항(Contact R)은 집중저항(Convergence R)과 경계저항(Interface R, 산화막에 의해 저항)의 합으로 나타나며, 아래 식 1에 표현한 바와 같이 열량 증가에 중요한 역할을 한다.The contact resistance (Contact R) is expressed as the sum of the convergence resistance (R) and the boundary resistance (Interface R, resistance by the oxide film), and plays an important role in increasing the amount of heat as expressed in
<식 1><
이에 따라, 동 버스바(두께 10mm×너비 80mm)의 두께 편차를 정밀 조사 및 분석하여 아래 도 3에 나타내었다.(단, 두께 편차는 SiC polish paper #60~#1000 후, 2mm 간격으로 두께 변화의 거동을 측정하는 방법을 이용하였다.)Accordingly, the thickness deviation of the copper bus bar (10mm thickness × 80mm width) was precisely investigated and analyzed and shown in Fig. 3 below. was used to measure the behavior of
또한, 아래 도 4에는 동 버스바의 접속부를 제조한 후에, 광학 현미경을 이용하여 관찰한 결과를 나타내었는데, 12.019 마이크로미터의 간극이 관찰되었다.In addition, in FIG. 4 below, after manufacturing the connection part of the copper bus bar, the result of observation using an optical microscope is shown, and a gap of 12.019 micrometers was observed.
또한, 아래 도 5에는 동 버스바의 표면 조도 및 거동을 조사하여 나타내었다.{단, 동 버스바의 표면 조도 및 거동은 Scan length 15mm(최장)를 이용하여 Left-Middle-Right로 측정하였으며, Scan speed는 0.5mm/s다.}In addition, the surface roughness and behavior of the copper bus bar were investigated and shown in FIG. 5 below. {However, the surface roughness and behavior of the copper bus bar were measured by Left-Middle-Right using a scan length of 15 mm (longest), Scan speed is 0.5mm/s.}
아래 도 3 내지 5에 나타낸 것처럼, 종래에 제조되는 동 버스바는 두께의 편차가 심하고, 접속부의 간극이 존재할 뿐만 아니라, 표면거칠기가 존재하는 것을 알 수 있다.As shown in FIGS. 3 to 5 below, it can be seen that the conventionally manufactured copper bus bar has a wide variation in thickness, a gap between the connection parts, and a surface roughness.
상기의 두께편차, 접속부의 간극 및 표면거칠기는 상기와 같이 동 버스바를 1.5 내지 7%의 압하율로 조질압연하고, 더욱 바람직하게는 1.5 내지 5%의 압하율로 조질압연하여 해소할 수 있다.The thickness deviation, gap and surface roughness of the connection part can be eliminated by temper rolling the copper bus bar at a reduction ratio of 1.5 to 7%, more preferably, temper rolling at a reduction ratio of 1.5 to 5%, as described above.
이때, 상기 조질압연은 초기 압연, 중간 압연 및 마무리 압연 순으로 진행되는 것이 바람직한데, 상기 초기 압연, 중간 압연 및 마무리 압연 이후에는 500 내지 650℃의 온도로 1 내지 5분 동안 어닐링하는 과정이 진행되는 것이 더욱 바람직하다.At this time, the temper rolling is preferably performed in the order of initial rolling, intermediate rolling and finish rolling. After the initial rolling, intermediate rolling and finish rolling, annealing at a temperature of 500 to 650° C. for 1 to 5 minutes is performed. It is more preferable to be
상기와 같이 초기 압연, 중간 압연 및 마무리 압연 순으로 조질압연을 진행하면서, 초기 압연, 중간 압연 및 마무리 압연 후에 500 내지 650℃의 온도로 1 내지 5분 동안 어닐링하는 과정이 진행되면, 압연으로 인해 재료 내부에 축적되는 응력을 완화시켜, 최적의 전기전도도 특성을 확보할 수 있다.As described above, while the temper rolling is performed in the order of initial rolling, intermediate rolling and finish rolling, the process of annealing at a temperature of 500 to 650 ° C. for 1 to 5 minutes after initial rolling, intermediate rolling and finish rolling is performed. By relieving the stress accumulated inside the material, it is possible to secure optimum electrical conductivity properties.
또한, 상기와 같은 과정으로 진행되는 조질압연이 종료된 동 버스바는 황산용액으로 표면처리하여 다공질 연성화층을 형성함으로 인해 표면저항을 개선하여 발열성을 더욱 낮출 수 있다.In addition, the copper bus bar, which has been subjected to the temper rolling process as described above, is surface-treated with a sulfuric acid solution to form a porous softening layer, thereby improving the surface resistance and further lowering the exothermicity.
이때, 상기 황산 용액으로 동 버스바를 표면처리하는 과정은 표면을 탈지처리 하는 탈지단계(S101), 상기 탈지단계(S101)를 통해 탈지된 동 버스바를 세척하는 세척단계(S103), 상기 세척단계(S103)를 통해 세척된 동 버스바를 황산용액에 침지하고 전압을 인가하는 전기분해처리단계(S105) 및 상기 전기분해처리단계(S105)를 통해 표면처리된 동 버스바를 세척하고 건조하는 세척건조단계(S107)로 이루어진다.At this time, the surface treatment of the copper bus bar with the sulfuric acid solution includes a degreasing step (S101) of degreasing the surface, a washing step (S103) of washing the degreased copper bus bar through the degreasing step (S101), and the washing step ( An electrolytic treatment step (S105) of immersing the copper bus bar washed through S103) in a sulfuric acid solution and applying a voltage, and a washing and drying step of washing and drying the surface-treated copper bus bar through the electrolysis treatment step (S105) ( S107).
상기 탈지단계(S101)는 동 버스바의 표면에 잔존하는 유지 성분을 제거하여 상기 전기분해처리단계의 효율성을 향상시키기 위한 것으로, 동 버스바의 손상을 가하지 않으면서 유지 성분을 제거할 수 있는 성분이면 특별히 한정되지 않고 어떠한 것이든 사용가능하나, 가성소다, 청화소다가 함유된 전해탈지액을 사용하는 것이 바람직하고, 상기와 같은 성분으로 이루어진 전해탈지액에 30 내지 60초 동안 침지하는 과정으로 이루어지는 것이 바람직하다.The degreasing step (S101) is to improve the efficiency of the electrolysis treatment step by removing the oil and fat components remaining on the surface of the copper bus bar, and a component capable of removing the oil and fat component without damaging the copper bus bar. As long as it is not particularly limited, any one can be used, but it is preferable to use an electrolytic degreasing solution containing caustic soda and blue soda, and it consists of a process of immersion in the electrolytic degreasing solution composed of the above components for 30 to 60 seconds. it is preferable
이때, 상가 가성소다는 30g/L, 상기 청화소다는 10g/L의 함량을 나타내는 것이 바람직하다.In this case, it is preferable that the caustic soda is 30 g/L, and the blue soda is 10 g/L.
상기 세척단계(S103)는 상기 탈지단계(S101)를 통해 탈지된 동 버스바의 표면에 잔존하는 탈지액이나 이물질 등을 제거하는 단계로, 상기 탈지단계(S101)를 통해 탈지된 동 버스바를 정제수로 2 내지 3회 세척하여 이루어지는데, 정제수에 침지한 후에 초음파를 조사하여 세척을 진행하는 것이 바람직하다.The washing step (S103) is a step of removing the degreasing solution or foreign substances remaining on the surface of the copper bus bar degreased through the degreasing step (S101). It is made by washing 2-3 times with a furnace, and it is preferable to proceed with washing by irradiating ultrasonic waves after immersion in purified water.
상기 전기분해처리단계(S105)는 상기 세척단계(S103)를 통해 세척된 동 버스바를 황산용액에 침지하고 전압을 인가하는 단계로, 상기 세척단계(S103)를 통해 세척된 동 버스바를 질량농도가 8 내지 10%이며, 35 내지 45℃인 황산용액에 30 내지 120초 동안 침지한 상태에서 20 내지 35V의 전압을 인가하는 과정으로 이루어지는데, 상기의 과정으로 이루어지는 전기분해처리단계(S105)를 거치면 동 버스바의 표면에 5 내지 20 마이크로미터 두께의 다공질 연성화층이 형성된다.The electrolysis treatment step (S105) is a step of immersing the copper bus bar washed through the washing step (S103) in a sulfuric acid solution and applying a voltage, and the mass concentration of the copper bus bar washed through the washing step (S103) is It consists of a process of applying a voltage of 20 to 35 V in a state of being immersed in a sulfuric acid solution of 8 to 10% and 35 to 45° C. for 30 to 120 seconds. A porous softening layer having a thickness of 5 to 20 micrometers is formed on the surface of the copper busbar.
상기의 전기분해처리단계(S105)를 통해 동 버스바의 표면에 다공질의 연성화층 5 내지 20 마이크로미터의 두께로 형성되면, 접속부 형성 시, 동 버스바 표면의 다공질 연성화층이 서로 쿠션 역할을 하여 밀착도가 획기적으로 개선되기 때문에 발열성이 더욱 낮아진 동 버스바가 제공될 수 있다.When the porous softening layer is formed with a thickness of 5 to 20 micrometers on the surface of the copper bus bar through the electrolytic treatment step (S105), the porous softening layer on the surface of the copper bus bar serves as a cushion when forming the connection part. Since the adhesion is remarkably improved, it is possible to provide a copper busbar with lower exothermicity.
이때, 상기 다공질의 연성화층의 두께가 5 마이크로미터 미만이면 쿠션역할이 미미하여, 접촉저항 개선효과가 미미하며, 상기 다공질의 연성화층의 두께가 20 마이크로미터를 초과하게 되면 접촉저항 개선효과는 크게 향상되지 않으면서 취급시 다공질 연성화층이 박리될 수 있어, 바람직하지 못하다.At this time, when the thickness of the porous softening layer is less than 5 micrometers, the cushioning role is insignificant, and the contact resistance improvement effect is insignificant. When the thickness of the porous softening layer exceeds 20 micrometers, the contact resistance improvement effect is greatly improved The porous softening layer may be peeled off during handling, which is not preferable.
상기 세척건조단계(S107)는 상기 전기분해처리단계(S105)를 통해 표면처리된 동 버스바를 세척하고 건조하는 단계로, 상기 전기분해처리단계(S107)를 통해 표면처리된 동 버스바의 표면에 잔존하는 황산용액을 정제수로 2 내지 3회 세척한 후에, 열풍건조기를 이용하여 건조하는 과정으로 이루어진다.The washing and drying step (S107) is a step of washing and drying the surface-treated copper bus bar through the electrolysis treatment step (S105). The remaining sulfuric acid solution is washed 2-3 times with purified water, and then dried using a hot air dryer.
이하에서는, 본 발명에 따른 발열성이 개선된 동 버스바의 제조방법 및 그 제조방법을 통해 제조된 동 버스바의 물성을 실시예들 들어 설명하기로 한다.Hereinafter, a method for manufacturing a copper bus bar having improved heat generation according to the present invention and physical properties of a copper bus bar manufactured through the manufacturing method will be described with reference to examples.
<실시예 1><Example 1>
두께가 10mm이며 폭이 80mm이고, 길이가 1000mm인 동 버스바를 3%의 압하율로 조질압연하여 발열성이 개선된 동 버스바를 제조하였다.A copper bus bar having a thickness of 10 mm, a width of 80 mm, and a length of 1000 mm was temper-rolled at a reduction ratio of 3% to prepare a copper bus bar with improved exothermicity.
<실시예 2><Example 2>
두께가 10mm이며 폭이 80mm이고, 길이가 1000mm인 동 버스바를 탈지액(가성소다 30g/L, 상기 청화소다 10g/L 함유)에 45초 침지하여 유지성분을 제거하고, 유지성분이 제거된 동 버스바를 정제수로 세척하고, 세척된 동 버스바를 질량농도가 9%인 40℃의 황산용액에 75초 동안 침지한 상태에서 30V의 전압을 인가하여 다공질의 연성화층을 형성하고, 다공질의 연성화층이 형성된 동 버스바를 정제수로 세척하고 열풍건조기로 건조하여 발열성이 개선된 동 버스바를 제조하였다.A copper bus bar with a thickness of 10 mm, a width of 80 mm, and a length of 1000 mm is immersed in a degreasing solution (caustic soda 30 g/L, containing 10 g/L of the clarification soda) for 45 seconds to remove the oil and fat components, and the copper The bus bar was washed with purified water, and the washed copper bus bar was immersed in a sulfuric acid solution at 40° C. with a mass concentration of 9% for 75 seconds, and a voltage of 30 V was applied to form a porous softened layer, and the porous softened layer was formed. The formed copper bus bar was washed with purified water and dried with a hot air dryer to prepare a copper bus bar with improved exothermicity.
<실시예 3><Example 3>
상기 실시예 1을 통해 제조된 동 버스바를 탈지액(가성소다 30g/L, 상기 청화소다 10g/L 함유)에 45초 침지하여 유지성분을 제거하고, 유지성분이 제거된 동 버스바를 정제수로 세척하고, 세척된 동 버스바를 질량농도가 9%인 40℃의 황산용액에 75초 동안 침지한 상태에서 30V의 전압을 인가하여 다공질의 연성화층을 형성하고, 다공질의 연성화층이 형성된 동 버스바를 정제수로 세척하고 열풍건조기로 건조하여 발열성이 개선된 동 버스바를 제조하였다.The copper bus bar prepared in Example 1 was immersed in a degreasing solution (containing caustic soda 30 g/L, the clarification soda 10 g/L) for 45 seconds to remove the oil and fat component, and the copper bus bar from which the oil component was removed was washed with purified water. After immersing the washed copper busbar in a sulfuric acid solution at 40°C having a mass concentration of 9% for 75 seconds, a voltage of 30V was applied to form a porous softened layer, and the copper busbar on which the porous softened layer was formed was washed with purified water. A copper bus bar with improved exothermicity was manufactured by washing with a hot air dryer and drying with a hot air dryer.
<비교예 1><Comparative Example 1>
두께가 10mm이며 폭이 80mm이고, 길이가 1000mm인인 동 버스바.A copper busbar having a thickness of 10 mm, a width of 80 mm, and a length of 1000 mm.
상기 실시예 1 및 비교예 1을 통해 제조된 동 버스바의 두께 편차를 측정하여 아래 도 6에 나타내었다.The thickness variation of the copper bus bars manufactured in Example 1 and Comparative Example 1 was measured and shown in FIG. 6 below.
아래 도 6에 나타낸 것처럼, 본 발명의 실시예 1은 3%의 압하율로 조질압연되어 동 버스바의 중앙부분과 모서리 부분의 두께 편차가 감소한 것을 알 수 있다.As shown in FIG. 6 below, it can be seen that in Example 1 of the present invention, the thickness variation between the central portion and the corner portion of the copper bus bar was reduced by temper rolling at a reduction ratio of 3%.
또한, 상기 실시예 1 및 비교예 1을 통해 제조된 동 버스바의 조도(Ra, Rz)를 측정하여 아래 도 7에 나타내었다.In addition, the roughness (Ra, Rz) of the copper bus bar prepared in Example 1 and Comparative Example 1 was measured and shown in FIG. 7 below.
아래 도 7에 나타낸 것처럼, 본 발명의 실시예 1을 통해 제조된 동 버스바는 조도가 감소한 것을 알 수 있다.As shown in FIG. 7 below, it can be seen that the copper bus bar manufactured in Example 1 of the present invention has reduced illuminance.
또한, 상기 실시예 2 및 비교예 1을 통해 제조된 동 버스바의 단면을 주사전자 현미경(SEM)으로 촬영하여 아래 도 8에 나타내었다. 아래 도 8에 나타낸 것처럼, 본 발명의 실시예 2를 통해 제조된 동 버스바는 표면에 약 10마이크로미터 두께의 다공질 연성화층이 형성된 것을 알 수 있다.In addition, the cross-sections of the copper bus bars prepared in Example 2 and Comparative Example 1 were photographed with a scanning electron microscope (SEM), and are shown in FIG. 8 below. As shown in FIG. 8 below, it can be seen that the copper bus bar manufactured in Example 2 of the present invention has a porous softening layer with a thickness of about 10 micrometers formed on the surface.
또한, 상기 실시예 1 내지 2 및 비교예 1을 통해 제조된 동 버스바의 경도를 측정하여 아래 표 1에 나타내었다.In addition, the hardness of the copper bus bars prepared in Examples 1 to 2 and Comparative Example 1 was measured and shown in Table 1 below.
{단, 경도는 마이크로비커스경도기로 측정하였으며, 제조된 동 버스바의 좌측, 중앙 및 우측의 3곳을 측정하되, 총 7회를 측정하고 평균값으로 나타내었다.}{However, the hardness was measured with a micro Vickers hardness tester, and three places on the left, center and right side of the prepared copper bus bar were measured, and a total of 7 measurements were performed and the average value was expressed.}
<표 1><Table 1>
상기 표 1에 나타낸 것처럼, 본 발명의 실시예 1 내지 2를 통해 제조된 동 버스바는 비교예 1의 동 버스바에 비해 경도가 낮은 것을 알 수 있으며, 특히 실시예 2와 같이 다공질 연성화층이 형성된 동 버스바는 경도가 월등하게 낮아지는 것을 알 수 있다.As shown in Table 1, it can be seen that the copper busbars prepared in Examples 1 and 2 of the present invention have lower hardness than the copper busbars of Comparative Example 1, and in particular, as in Example 2, a porous softening layer is formed. It can be seen that the hardness of the copper bus bar is significantly lowered.
상기 실시예 1 내지 2 및 비교예 1을 통해 제도된 동 버스바의 통전 중 온도상승 거동을 측정하여 아래 도 9 내지 11 및 표 2에 나타내었다.The temperature rise behavior of the copper busbars prepared in Examples 1 and 2 and Comparative Example 1 during energization was measured and shown in FIGS. 9 to 11 and Table 2 below.
{단, 통전 중 온도 상승 거동은 동 버스바의 표면 6곳을 대상으로 측정하였으며, 시험전류 1400A(정격전류)의 조건이고, DC Power Supply(max. 3000A)로 시험하였으며, Agilent 34970A를 이용하여 측정하였다.}{However, the behavior of temperature rise during energization was measured on six surfaces of the copper bus bar, under the condition of a test current of 1400A (rated current), and tested with a DC Power Supply (max. 3000A), using an Agilent 34970A. measured.}
<표 2><Table 2>
상기 표 2 및 아래 도 9 내지 11에 나타낸 것처럼, 본 발명의 실시예 1 내지 2를 통해 제조된 동 버스바는 비교예 1의 동 버스바에 비해 통전 중 온도가 월등하게 감소하는 것을 알 수 있다.As shown in Table 2 and FIGS. 9 to 11 below, it can be seen that the copper busbars manufactured through Examples 1 and 2 of the present invention have a significantly reduced temperature during energization compared to the copper busbars of Comparative Example 1.
또한, 상기 실시예 1 내지 2 및 비교예 1을 통해 제도된 동 버스바의 통전 중 접속부의 접촉저항을 측정하여 아래 표 3에 나타내었다.In addition, the contact resistance of the connecting portion of the copper bus bar prepared in Examples 1 to 2 and Comparative Example 1 during energization was measured and shown in Table 3 below.
{단, 통전 중 접속부의 접촉저항은 10A 시험전류에서 아래 도 12에 나타낸 바와 같이 동 버스바를 연결하고, 전압측정기를 이용하여 측정하였다.}{However, the contact resistance of the connection part during energization was measured using a voltage measuring device by connecting the copper bus bar as shown in FIG. 12 below at a test current of 10A.}
<표 3><Table 3>
상기 표 3에 나타낸 것처럼, 본 발명의 실시예 1 내지 2를 통해 제조된 동 버스바는 비교예 1의 동 버스바에 비해 통전 중 접속부의 접촉저항이 월등하게 감소되는 것을 알 수 있다.As shown in Table 3, it can be seen that the copper bus bars manufactured in Examples 1 and 2 of the present invention significantly reduced the contact resistance of the connection part during energization compared to the copper bus bar of Comparative Example 1.
따라서, 본 발명에 따른 발열성이 개선된 동 버스바의 제조방법은 조질압연의 과정을 거쳐 표면거칠기가 개선되기 때문에 통전 과정에서 접속부의 접촉저항 감소로 인한 발열성이 개선된 동 버스바를 제공한다.Accordingly, the method for manufacturing a copper bus bar with improved heat generation according to the present invention provides a copper bus bar with improved heat generation due to a reduction in contact resistance of a connection portion during energization because the surface roughness is improved through the temper rolling process. .
S101 ; 탈지단계
S103 ; 세척단계
S105 ; 전기분해처리단계
S107 ; 세척건조단계S101; degreasing step
S103; washing step
S105 ; Electrolysis treatment step
S107; washing and drying step
Claims (5)
상기 조질압연은 초기 압연(break down), 중간 압연 및 마무리 압연(refining finish rolling)순으로 진행되고,
상기 초기 압연, 중간 압연 및 마무리 압연 이후에는 500 내지 650℃의 온도로 1 내지 5분 동안 어닐링하는 과정이 진행되는 것을 특징으로 하는 발열성이 개선된 동 버스바의 제조방법.
It is made by temper rolling the copper bus bar at a reduction ratio of 1.5 to 7%,
The temper rolling is performed in the order of initial rolling (break down), intermediate rolling and finishing rolling (refining finish rolling),
After the initial rolling, intermediate rolling and finish rolling, annealing at a temperature of 500 to 650° C. for 1 to 5 minutes is performed.
상기 조질압연은 1.5 내지 5%의 압하율로 이루어지는 것을 특징으로 하는 발열성이 개선된 동 버스바의 제조방법.
The method according to claim 1,
The method of manufacturing a copper bus bar with improved exothermicity, characterized in that the temper rolling is performed at a reduction ratio of 1.5 to 5%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210063683A KR102332285B1 (en) | 2021-05-17 | 2021-05-17 | Manufacturing method of copper busbar with improved heat generation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210063683A KR102332285B1 (en) | 2021-05-17 | 2021-05-17 | Manufacturing method of copper busbar with improved heat generation |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102332285B1 true KR102332285B1 (en) | 2021-12-01 |
Family
ID=78900077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210063683A Active KR102332285B1 (en) | 2021-05-17 | 2021-05-17 | Manufacturing method of copper busbar with improved heat generation |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102332285B1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100629445B1 (en) | 2004-11-16 | 2006-09-28 | 한국과학기술연구원 | Method of manufacturing titanium clad copper busbar |
KR20070041621A (en) * | 2004-09-10 | 2007-04-18 | 가부시키가이샤 고베 세이코쇼 | Conductive material for connecting parts and manufacturing method thereof |
JP2010061842A (en) * | 2008-09-01 | 2010-03-18 | Nisshin Steel Co Ltd | Material for electrical contact component and component |
JP2014210950A (en) * | 2013-04-18 | 2014-11-13 | 株式会社Shカッパープロダクツ | Rolled copper foil with copper plated layer |
JP2015036452A (en) * | 2013-08-14 | 2015-02-23 | 古河電気工業株式会社 | Copper alloy sheet material and connector using the same, and production method of copper alloy sheet material |
JP5840310B1 (en) * | 2014-07-09 | 2016-01-06 | 古河電気工業株式会社 | Copper alloy sheet, connector, and method for producing copper alloy sheet |
JP6696770B2 (en) * | 2013-12-27 | 2020-05-20 | 古河電気工業株式会社 | Copper alloy plate and connector |
KR20210023051A (en) | 2019-08-21 | 2021-03-04 | 현대일렉트릭앤에너지시스템(주) | Bus bar structure of distribution panel |
KR102258702B1 (en) * | 2020-09-07 | 2021-06-01 | 주식회사 근우 | Bus bar with flat and ductile grain surface structure for improving electrical conductivity |
-
2021
- 2021-05-17 KR KR1020210063683A patent/KR102332285B1/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070041621A (en) * | 2004-09-10 | 2007-04-18 | 가부시키가이샤 고베 세이코쇼 | Conductive material for connecting parts and manufacturing method thereof |
KR100629445B1 (en) | 2004-11-16 | 2006-09-28 | 한국과학기술연구원 | Method of manufacturing titanium clad copper busbar |
JP2010061842A (en) * | 2008-09-01 | 2010-03-18 | Nisshin Steel Co Ltd | Material for electrical contact component and component |
JP2014210950A (en) * | 2013-04-18 | 2014-11-13 | 株式会社Shカッパープロダクツ | Rolled copper foil with copper plated layer |
JP2015036452A (en) * | 2013-08-14 | 2015-02-23 | 古河電気工業株式会社 | Copper alloy sheet material and connector using the same, and production method of copper alloy sheet material |
JP6696770B2 (en) * | 2013-12-27 | 2020-05-20 | 古河電気工業株式会社 | Copper alloy plate and connector |
JP5840310B1 (en) * | 2014-07-09 | 2016-01-06 | 古河電気工業株式会社 | Copper alloy sheet, connector, and method for producing copper alloy sheet |
WO2016006053A1 (en) * | 2014-07-09 | 2016-01-14 | 古河電気工業株式会社 | Copper alloy sheet material, connector, and method for producing copper alloy sheet material |
KR20210023051A (en) | 2019-08-21 | 2021-03-04 | 현대일렉트릭앤에너지시스템(주) | Bus bar structure of distribution panel |
KR102258702B1 (en) * | 2020-09-07 | 2021-06-01 | 주식회사 근우 | Bus bar with flat and ductile grain surface structure for improving electrical conductivity |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI330202B (en) | Copper alloy sheet material for electric and electronic parts | |
US20110186192A1 (en) | Copper alloy material for electric/electronic parts and method of producing the same | |
US11078587B2 (en) | Tin-plated product and method for producing same | |
JP6286821B2 (en) | Flexible device substrate and manufacturing method thereof | |
KR20150125981A (en) | coated overhead conductors and methods | |
KR102385211B1 (en) | Copper alloy plate and manufacturing method thereof | |
WO2015133499A1 (en) | Sn-PLATED ARTICLE AND METHOD FOR MANUFACTURING SAME | |
JP5464869B2 (en) | Sn-coated copper or copper alloy and method for producing the same | |
KR102332285B1 (en) | Manufacturing method of copper busbar with improved heat generation | |
FR2996951A1 (en) | ELECTRICITY TRANSPORT WIRE IN ALUMINUM ALLOY | |
CN101978081A (en) | Copper alloy material for electric/electronic parts | |
KR102332286B1 (en) | Manufacturing method of copper busbar with improved heat generation | |
TW202301916A (en) | Metal plate, laminate, and insulated circuit board | |
CN107390058B (en) | Test method for evaluating live service performance of contact material of isolating switch | |
JP2971366B2 (en) | Nickel-plated steel sheet subjected to adhesion prevention treatment during annealing and its manufacturing method | |
CN102066621A (en) | Plated member and method of forming plating layer | |
JPS62116745A (en) | Phosphor bronze having superior migration resistance | |
JP4523878B2 (en) | Method and apparatus for producing surface-treated steel sheet with excellent appearance | |
JP4143123B2 (en) | Processing of processed aluminum products | |
JPH0711078B2 (en) | Method for manufacturing base material for printed circuit board | |
KR20130118064A (en) | Fatigue testing method of aluminum alloys tartaric sulfuric acid anodized | |
KR20180000953A (en) | Connecting structure for overhead transmission line and a method of manufacturing the same, including the anodized suface | |
TW448247B (en) | Surface treated steel sheet | |
JPS6035477A (en) | Improved aluminum bus bar | |
CN117684230A (en) | 12-meter corrosion-resistant busbar oxidation process for aluminum alloy for high-speed rail |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20210517 |
|
PA0201 | Request for examination | ||
PA0302 | Request for accelerated examination |
Patent event date: 20210525 Patent event code: PA03022R01D Comment text: Request for Accelerated Examination Patent event date: 20210517 Patent event code: PA03021R01I Comment text: Patent Application |
|
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20210726 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20211110 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20211124 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20211125 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20241024 Start annual number: 4 End annual number: 4 |