[go: up one dir, main page]

KR102321588B1 - Heat radiant composition comprising boron nitride and led lamp coated therewith - Google Patents

Heat radiant composition comprising boron nitride and led lamp coated therewith Download PDF

Info

Publication number
KR102321588B1
KR102321588B1 KR1020210062343A KR20210062343A KR102321588B1 KR 102321588 B1 KR102321588 B1 KR 102321588B1 KR 1020210062343 A KR1020210062343 A KR 1020210062343A KR 20210062343 A KR20210062343 A KR 20210062343A KR 102321588 B1 KR102321588 B1 KR 102321588B1
Authority
KR
South Korea
Prior art keywords
heat dissipation
filler
resin
boron nitride
bisphenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020210062343A
Other languages
Korean (ko)
Inventor
이옥범
Original Assignee
주식회사 리치룩스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 리치룩스 filed Critical 주식회사 리치룩스
Priority to KR1020210062343A priority Critical patent/KR102321588B1/en
Application granted granted Critical
Publication of KR102321588B1 publication Critical patent/KR102321588B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention relates to a heat dissipation coating composition. The present application according to one aspect provides the heat dissipation coating composition comprising: a base resin; a boron nitride nanoparticle; and a thermally conductive first filler and second filler. In addition, the base resin of the heat dissipation paint composition according to a preferred embodiment comprises ceramic powder which is the same as or different from a component of the first filler, and the boron nitride nanoparticle is doped with a halogen compound so that the heat dissipation coating composition of the present invention is effectively and uniformly mixed with the base resin, the boron nitride nanoparticle, and the filler to form a uniform coating with excellent heat-dissipating properties.

Description

질화붕소를 포함하는 방열 도료 조성물 및 방열 도료 조성물이 코팅된 LED 조명 기구{HEAT RADIANT COMPOSITION COMPRISING BORON NITRIDE AND LED LAMP COATED THEREWITH}A heat dissipation coating composition containing boron nitride and an LED lighting device coated with a heat dissipation coating composition

본 발명은 LED 조명, LED 칩 또는 전자 부품의 표면에 코팅 또는 부착되어 조명이나 전자 부품에서 방출되는 열을 효과적으로 방출할 수 있는 방열 도료 조성물에 관한 것이다. The present invention relates to a heat dissipation coating composition which is coated or attached to the surface of an LED light, an LED chip, or an electronic component to effectively dissipate heat emitted from the light or electronic component.

일반적으로 LED 조명, LED 칩, 디스플레이 전자 제품, 휴대용 개인 단말기 등의 전기, 전자 제품은 자체에서 열이 발생한다. 최근 전기, 전자 제품의 고집적화, 초소형화에 따라 제품에서 더 많은 열이 발생하는데, 이 열은 기판의 열화, 작동의 오류가 생기거나 수명이 단축되는 원인이 된다. 특히, LED 조명, LED 디스플레이 같은 전기, 전자 제품은 조도, 선명도, 색상도 등이 저하되어 제품 기능이 크게 저하될 수 있다. In general, electric and electronic products such as LED lights, LED chips, display electronic products, and portable personal terminals generate heat by themselves. Recently, more heat is generated from the product due to the high integration and miniaturization of electrical and electronic products, and this heat causes substrate deterioration, operation errors, or shortened life. In particular, in electric and electronic products such as LED lighting and LED displays, illuminance, sharpness, color, etc. may be deteriorated, and thus product functions may be greatly deteriorated.

이에, 효과적으로 열을 방출하고, 제어하는 연구가 이루어지고 있다. 하나의 방법으로, 종래, 제품의 발열체와 방열판 사이에 개제하는 방열 시트가 널리 사용되고 있다. 방열 시트는 열을 효율적으로 방열판 쪽으로 전달시킬 뿐 아니라 기계적 충격 흡수 효과까지 있어 효과적인 방법이라고 할 수 있다. Accordingly, research for effectively dissipating and controlling heat is being conducted. As one method, conventionally, a heat dissipation sheet interposed between a heating element and a heat dissipation plate of a product is widely used. The heat dissipation sheet not only transfers heat to the heat sink efficiently, but also has the effect of absorbing mechanical shock, so it can be said to be an effective method.

종래의 방열시트에 관한 기술로는 예를 들어, 적층 구조나 통기/발열 구조를 가지는 방열판을 이용하는 방열 시트에 관한 KR2009-0027206, KR2017-0129702, JP2019-7008727 등이 있다. 또한, 구리, 흑연, 알루미늄 등 분말을 방열판에 함유시킨 KR2003-0032769, JP2001-094620 등이 있다.As a conventional technology related to a heat dissipation sheet, there are, for example, KR2009-0027206, KR2017-0129702, JP2019-7008727, etc. related to a heat dissipation sheet using a heat sink having a laminate structure or a ventilation/heat generating structure. In addition, there are KR2003-0032769, JP2001-094620, and the like in which powders such as copper, graphite, and aluminum are contained in a heat sink.

그러나 이러한 종래의 방열 시트는 제조방법이 까다롭고, 발열체에 단순 적층 사용되어 발열체와의 접촉 면적에 따라 효과적인 열전도 및 분산 기능을 수행하지 못하는 문제점이 있다. 무엇보다 전기, 전자 제품의 소형화에 요구에 부합하지 못한다. 또한, 종래의 방열 시트는 분말을 포함함으로써 도료로서의 접착성, 내구성에 문제가 있다. However, such a conventional heat dissipation sheet has a problem in that it is difficult to manufacture, and since it is used as a simple lamination on a heating element, it cannot effectively conduct heat and dissipate according to the contact area with the heating element. Above all, it does not meet the demand for miniaturization of electric and electronic products. In addition, the conventional heat dissipation sheet has a problem in adhesiveness and durability as a paint because it contains powder.

본 발명은 종래 기술이 가진 문제점을 해결하기 위한 것이다. The present invention is to solve the problems of the prior art.

본 발명은 방열성, 열전도성, 안정성이 높은 방열 도료 조성물을 제공하기 위한 것이다.An object of the present invention is to provide a heat dissipation coating composition having high heat dissipation, thermal conductivity and stability.

또한, 본 발명은 상기 방열 도료 조성물을 이용하여, 방열층을 박막으로 형성하여도 우수한 방열성을 나타내고, 균일하게 코팅되는 도막을 제공하기 위한 것이다. In addition, an object of the present invention is to provide a coating film that exhibits excellent heat dissipation properties even when the heat dissipation layer is formed as a thin film by using the heat dissipation coating composition and is uniformly coated.

상기 목적을 달성하기 위해, 본 발명은 베이스 수지 총량을 기준으로, 40-60wt%의 에폭시 수지와 20-30wt%의 아크릴계 수지를 포함하는 베이스 수지; 할로겐 화합물 도핑된 질화붕소 나노 입자; 및 제1 필러 및/또는 제2 필러를 포함하는 방열 도료 조성물을 제공한다. 제1 필러는 열전도성 필러이고 제2 필러는 제1 필러와 상이하다.In order to achieve the above object, the present invention, based on the total amount of the base resin, a base resin comprising 40-60wt% of an epoxy resin and 20-30wt% of an acrylic resin; halogen compound-doped boron nitride nanoparticles; And it provides a heat dissipation coating composition comprising a first filler and / or a second filler. The first filler is a thermally conductive filler and the second filler is different from the first filler.

상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 베이스 수지가 TiO2, Fe2O3, ZnO, MnO2, ZrO3, Ce2O3, CaCO3, BaCO3, BaTiO3, 및 이들의 조합에서 선택되는 세라믹 분말을 더 포함하는 방열 도료 조성물을 제공한다. As an aspect for achieving the above object, the present invention provides that the base resin is TiO 2 , Fe 2 O 3 , ZnO, MnO 2 , ZrO 3 , Ce 2 O 3 , CaCO 3 , BaCO 3 , BaTiO 3 , and their It provides a heat dissipation coating composition further comprising a ceramic powder selected from the combination.

또 다른 양태로서, 본 발명은 플루오린화 칼슘(CaF2), 플루오린화 마그네슘(MgF2), 플루오린화 바륨(BaF2), 플루오린화 칼슘(CaF2), 플루오린화 스칸듐(ScF2), 플루오린화 이트륨(YF2) 및 이들의 조합에서 선택되는 할로겐 화합물로 도핑되고, 입경이 10-500 nm인 질화붕소 나노 입자를 포함하는 방열 도료 조성물을 제공한다. In still another aspect, the present invention is calcium fluoride (CaF 2), magnesium fluoride (MgF 2), hydrofluoric barium (BaF 2), calcium fluoride (CaF 2), hydrofluoric scandium (ScF 2), hydrofluoric Provided is a heat dissipation coating composition comprising boron nitride nanoparticles doped with a halogen compound selected from yttrium (YF 2 ) and combinations thereof, and having a particle diameter of 10-500 nm.

또한 다른 양태로서, 본 발명은 마그네슘알루미늄실리케이트, 알루미늄실리케이트, 이산화티타늄, 알루미나, 이산화규소, 탄산칼슘 및 이들의 조합에서 선택되는 열전도성 제1 필러를 포함하고, 선택적으로 화학식 C16S8 또는 C24S12 표시되는 화합물에서 선택되는 제2 필러를 포함하는 방열 도료 조성물을 제공한다. In yet another aspect, the present invention provides a thermally conductive first filler selected from magnesium aluminum silicate, aluminum silicate, titanium dioxide, alumina, silicon dioxide, calcium carbonate, and combinations thereof, optionally comprising Formula C 16 S 8 or C Provided is a heat dissipation coating composition comprising a second filler selected from the compounds represented by 24 S 12 .

또한 본 발명은 본 발명에 따른 방열 도료 조성물로 코팅된 LED 조명 기구를 제공한다.The present invention also provides an LED lighting device coated with the heat dissipating paint composition according to the present invention.

본 발명의 방열 도료 조성물은 열전도성, 방열성이 우수하여 LED 조명 기구, LED 칩, 디스플레이 전자 제품 등의 전기, 전자 제품의 제조에 이용할 수 있고, 종래의 방열 도료 조성물의 방열 특성을 개선하고, 발열체의 열 축적을 방지하는 효과가 있다. The heat dissipation coating composition of the present invention has excellent thermal conductivity and heat dissipation properties, so it can be used in the manufacture of electric and electronic products such as LED lighting fixtures, LED chips, and display electronic products. It has the effect of preventing heat build-up.

또한, 본 발명의 방열 도료 조성물은 도막 내에 균일한 분산 구조를 형성하여, LED 조명 기구 등에 도막됨으로써 열 방사 효율이 높고, 열을 균일하게 전달할 수 있는 균일한 박막을 형성할 수 있다. In addition, the heat dissipation coating composition of the present invention forms a uniformly dispersed structure in the coating film, and by being coated on an LED lighting device, etc., it is possible to form a uniform thin film that has high heat radiation efficiency and can transmit heat uniformly.

도 1 내지 도 7은 본 발명에 따른 방열 도료 조성물이 도포된 예시적 실시형태의 LED 조명등 기구의 이미지이다.1 to 7 are images of LED lighting fixtures of an exemplary embodiment to which a heat dissipation coating composition according to the present invention is applied.

이하, 본 발명에 따른 방열 도료 조성물 및 이를 이용한 방열 도막의 형성 방법에 대하여 상세히 설명한다. 본 발명에는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으며, 바람직한 실시 양태를 이하에 상세하게 설명한다. 그러나, 이하의 설명은 본 발명을 특정한 형태에 대해 한정하려는 것이 아니다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는, 본 발명이 본 발명의 과제 해결의 원리와 기술적 사상에 포함되는 모든 변경과, 균등물, 대체물을 포함하는 것을 이해할 수 있다. Hereinafter, a heat dissipation coating composition according to the present invention and a method of forming a heat dissipation coating film using the same will be described in detail. Various modifications can be made to the present invention and can have various forms, and preferred embodiments will be described in detail below. However, the following description is not intended to limit the present invention to a specific form. Those of ordinary skill in the art to which the present invention pertains can understand that the present invention includes all modifications, equivalents, and substitutes included in the principles and technical spirit of solving the problems of the present invention.

본 발명은, 베이스 수지; 할로겐 화합물 도핑된 질화붕소 나노 입자; 및 여전도성 제1 필러와 제2 필러의 어느 하나 또는 양자 모두를 포함하는 필러를 포함하는 방열 도료 조성물을 제공한다. 하나의 양태에 있어서 본 발명은, 베이스 수지 60-75wt%, 도핑된 질화붕소 나노 입자 0.1-10wt%, 필러 1-15wt%를 포함할 수 있고, 잔부의 용매, 첨가제를 포함할 수 있다. The present invention, the base resin; halogen compound-doped boron nitride nanoparticles; and a filler including either or both of the still conductive first filler and the second filler. In one embodiment, the present invention may include 60-75 wt% of the base resin, 0.1-10 wt% of doped boron nitride nanoparticles, and 1-15 wt% of a filler, and the remainder of the solvent and additives.

본 발명의 방열 도료 조성물에 있어서, 베이스 수지는 그 총량을 기준으로, 40-60wt%의 에폭시 수지와 20-30wt%의 아크릴계 수지를 포함하며, 선택적으로 멜라민 수지, 폴리우레탄 수지를 더 포함할 수 있다. 하나의 양태에 있어서, 베이스 수지는 40-60wt%의 에폭시 수지와 20-30wt%의 아크릴계 수지, 0.1-3.0wt%의 세라믹 분말을 포함하며, 선택적으로 멜라민 수지, 폴리우레탄 수지를 더 포함할 수 있다. In the heat dissipation paint composition of the present invention, the base resin includes 40-60 wt % of an epoxy resin and 20-30 wt % of an acrylic resin based on the total amount, and may optionally further include a melamine resin and a polyurethane resin. have. In one embodiment, the base resin comprises 40-60 wt% of an epoxy resin, 20-30 wt% of an acrylic resin, and 0.1-3.0 wt% of a ceramic powder, optionally further comprising a melamine resin or a polyurethane resin. have.

에폭시 수지는 수지 자체의 열전도율이 약 0.3 W/mK 이하로 매우 낮기 때문에, 질화붕소 같은 열전도성 재료와 효과적으로 복합되어 방열 효과를 향상시킬 수 있다. 또한, 에폭시 수지는 도막 형성시 필러가 도막 내에 더 균일하게 분산시키기 위해 사용된다. Since the epoxy resin itself has a very low thermal conductivity of about 0.3 W/mK or less, it can be effectively combined with a thermally conductive material such as boron nitride to improve the heat dissipation effect. In addition, the epoxy resin is used to more uniformly disperse the filler in the coating film when forming the coating film.

본 발명에서 에폭시 수지는 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 비스페놀 S형 에폭시 수지, 페놀 노볼락형 에폭시 수지, 크레졸 노볼락형 에폭시 수지, 알킬페놀 노볼락형 에폭시 수지, 비스페놀형 에폭시 수지, 나프탈렌형 에폭시 수지, 디사이클로펜타디엔형 에폭시 수지, 트리글리시딜 이소시아네이트 에폭시 수지, 비환식 에폭시 수지 및 이들을 조합하여 사용할 수 있다. 바람직하게 본 발명에서 에폭시 수지는 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 비스페놀 S형 에폭시 수지를 사용할 수 있다. In the present invention, the epoxy resin is bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, alkylphenol novolak type epoxy resin, bisphenol type epoxy resin , naphthalene-type epoxy resins, dicyclopentadiene-type epoxy resins, triglycidyl isocyanate epoxy resins, acyclic epoxy resins, and combinations thereof. Preferably, as the epoxy resin in the present invention, a bisphenol A-type epoxy resin, a bisphenol F-type epoxy resin, or a bisphenol S-type epoxy resin may be used.

본 발명에 따르면 상기 에폭시 수지에 아크릴계 수지, 선택적으로, 멜라민 수지, 폴리우레탄 수지를 혼합하여 형성된 베이스 수지를 사용할 수 있다. 이와 같이 수지를 혼합하여 사용함으로써, 도막 외관이 우수하고, 내열성, 내후성이 우수한 도막을 제공할 수 있다. According to the present invention, a base resin formed by mixing an acrylic resin, optionally, a melamine resin, and a polyurethane resin with the epoxy resin may be used. By mixing and using the resin in this way, it is possible to provide a coating film having an excellent coating film appearance and excellent heat resistance and weather resistance.

아크릴계 수지는 아크릴레이트 또는 메타크릴레이트에서 선택되는 아크릴계 단량체의 동종 중합체이거나 공중합체일 수 있고, 상기 단량체와 공중합 가능한 단량체의 공중합체 일 수도 있다. 아크릴계 수지는 탄소수 3∼12의 알킬기를 가지는 알킬(메타)아크릴레이트 유래의 구성 단위를 가질 수 있다. The acrylic resin may be a homopolymer or copolymer of an acrylic monomer selected from acrylate or methacrylate, and may be a copolymer of a monomer copolymerizable with the monomer. The acrylic resin may have a structural unit derived from an alkyl (meth)acrylate having an alkyl group having 3 to 12 carbon atoms.

바람직하게 아크릴계 수지는 n-프로필(메타)아크릴레이트, n-부틸(메타)아크릴레이트, n-아밀(메타)아크릴레이트, n-헥실(메타)아크릴레이트, 2-에틸헥실(메타)아크릴레이트, n-옥틸(메타)아크릴레이트, 이소옥틸(메타)아크릴레이트, n-노닐(메타)아크릴레이트, 이소노닐(메타)아크릴레이트, n-데실(메타)아크릴레이트일 수 있다. Preferably, the acrylic resin is n-propyl (meth) acrylate, n-butyl (meth) acrylate, n-amyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate , n-octyl (meth) acrylate, isooctyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, n-decyl (meth) acrylate may be.

멜라민 수지는 이소부틸화 멜라민 수지, 메틸화 멜라민수지, N-부틸화 멜라민 수지, 헥사메톡시메틸 멜라민, 트리메톡시메틸 멜라민 및 이들의 조합에서 선택되는 것을 사용할 수 있다. The melamine resin may be selected from isobutylated melamine resin, methylated melamine resin, N-butylated melamine resin, hexamethoxymethyl melamine, trimethoxymethyl melamine, and combinations thereof.

폴리우레탄 수지는, 비스페놀 A, 비스페놀 AF, 비스페놀 AP, 비스페놀 B, 비스페놀 P, 비스페놀 S 및 비스페놀 Z로 이루어진 군에서 선택되는 폴리올 성분과, 폴리이소시아네이트 성분의 반응에 의해 얻어지는 것을 사용할 수 있다. As the polyurethane resin, one obtained by reaction of a polyol component selected from the group consisting of bisphenol A, bisphenol AF, bisphenol AP, bisphenol B, bisphenol P, bisphenol S and bisphenol Z and a polyisocyanate component can be used.

폴리올 성분은 시판되어 있는 것을 사용할 수 있고, 바람직하게, 비스페놀 A, 비스페놀 AF, 비스페놀 AP, 비스페놀 B, 비스페놀 P, 비스페놀 S, 비스페놀 Z이고, 더 바람직하게 폴리올은 비스페놀 AF, 비스페놀 S이다. 본 발명의 폴리올 성분은 상기 폴리올을 단독 사용할 수 있고, 2 종 이상 병용할 수 있다. A commercially available polyol component can be used, Preferably they are bisphenol A, bisphenol AF, bisphenol AP, bisphenol B, bisphenol P, bisphenol S, and bisphenol Z, More preferably, the polyol is bisphenol AF and bisphenol S. As for the polyol component of this invention, the said polyol can be used independently, and 2 or more types can be used together.

폴리이소시아네이트 성분은 바람직하게, 4,4′디페닐메탄디이소시아네이트, 4,4'-메틸렌디시클로헥실 디이소시아네이트, 1,6-헥사메틸렌디이소시아네이트, 이소포론디이소시아네이트, 4,4′디시이클로헥실메탄디이소시아네이트, 1,3-크실렌디이소시아네이트, 1,4-테트라메틸렌디이소시아네이트, 1,4-시클로헥산디이소시아네이트, 1,5-나프탈렌디이소시아네이트, 4-메톡시-1,3-페닐렌디이소 시아네이트, 4-클로로-1,3페닐렌디이소시아네이트, 2,4-디메틸-1,3-페닐렌디이소시아네이트 등을 사용할 수 있고, 단독 또는 두 가지 이상 혼합하여 사용할 수 있다. 폴리이소시아네이트 성분은, 폴리올 성분의 총 중량에 대하여 1 내지 30 중량부, 바람직하게는 5 내지 25 중량부로 포함될 수 있으나, 이에 제한되지는 않는다. The polyisocyanate component is preferably 4,4'diphenylmethane diisocyanate, 4,4'-methylenedicyclohexyl diisocyanate, 1,6-hexamethylene diisocyanate, isophorone diisocyanate, 4,4' dicyclohexyl Methane diisocyanate, 1,3-xylene diisocyanate, 1,4-tetramethylene diisocyanate, 1,4-cyclohexane diisocyanate, 1,5-naphthalene diisocyanate, 4-methoxy-1,3-phenylenediiso Cyanate, 4-chloro-1,3-phenylene diisocyanate, 2,4-dimethyl-1,3-phenylene diisocyanate, etc. may be used, and may be used alone or in combination of two or more. The polyisocyanate component may be included in an amount of 1 to 30 parts by weight, preferably 5 to 25 parts by weight, based on the total weight of the polyol component, but is not limited thereto.

본 발명에 따르면, 베이스 수지는 세라믹 분말을 더 포함함으로써 질화붕소 나노 입자, 필러와 균일한 혼합물을 형성할 수 있고, 이에 따라, 도막 외관이 우수하고, 내열성, 내후성이 우수한 도막을 제공할 수 있다. 바람직하게 세라믹 분말은 베이스 수지 100 중량부에 대하여 0.1-10 중량부 포함될 수 있다. According to the present invention, the base resin can form a uniform mixture with boron nitride nanoparticles and fillers by further including ceramic powder, thereby providing a coating film having an excellent coating film appearance and excellent heat resistance and weather resistance. . Preferably, the ceramic powder may be included in 0.1-10 parts by weight based on 100 parts by weight of the base resin.

본 발명의 세라믹 분말은 TiO2, Fe2O3, ZnO, MnO2, ZrO3, Ce2O3, CaCO3, BaCO3, BaTiO3에서 선택될 수 있고, 상기 선택된 세라믹 분말을 단독 사용하여도 또는 둘 이상을 조합하여 사용하여도 좋다. 바람직하게 세라믹 분말은, 분말을 기준으로, TiO2, Fe2O3, ZnO, MnO2, ZrO3 및 Ce2O3에서 선택되는 것을 10-90wt% 포함하고, CaCO3, BaCO3 및 BaTiO3에서 선택되는 것을 90-10wt% 포함할 수 있고, 또한 바람직하게 세라믹 분말은 TiO2, CaCO3, 또는 이들의 조합일 수 있다. 세라믹 분말은 증류수, 탈이온수 또는 알코올, 그리고 필요에 따라 폴리아크릴계 분산제를 포함하는 용매에 분산된 슬러리의 형태이다. The ceramic powder of the present invention may be selected from TiO 2 , Fe 2 O 3 , ZnO, MnO 2 , ZrO 3 , Ce 2 O 3 , CaCO 3 , BaCO 3 , and BaTiO 3 , and even using the selected ceramic powder alone Alternatively, two or more may be used in combination. Preferably, the ceramic powder contains 10-90wt%, based on the powder, selected from TiO 2 , Fe 2 O 3 , ZnO, MnO 2 , ZrO 3 and Ce 2 O 3 , CaCO 3 , BaCO 3 and BaTiO 3 It may contain 90-10 wt% of what is selected from, and preferably, the ceramic powder is TiO 2 , CaCO 3 , or a combination thereof. The ceramic powder is in the form of a slurry dispersed in a solvent containing distilled water, deionized water or alcohol, and, if necessary, a polyacrylic dispersant.

슬러리 형태의 세라믹 분말은 바람직하게 습식 분쇄에 의하여 분쇄되어, 바람직하게 평균 입도가 150-250 nm이고, D90/D50이 1.5 이하, 바람직하게는 D90/D50이 1.3 이하의 균일한 입도 분포를 가진다. 습식 분쇄는 비즈밀 타입의 분쇄기를 이용하여 약 1500-200 rpm의 속도로, 10 분- 5 시간 동안 이루어질 수 있다. 통상의 기술자는 분쇄 속도와 시간을 조절하여 세라믹 분말 슬러리의 점도와 세라믹 분말의 평균 입도, 입도 분포 및 BET 표면적을 적절히 조절할 수 있다. The ceramic powder in the form of a slurry is preferably pulverized by wet grinding, preferably having an average particle size of 150-250 nm, a D90/D50 of 1.5 or less, and preferably a D90/D50 of 1.3 or less, having a uniform particle size distribution. Wet grinding may be performed using a bead mill type grinder at a speed of about 1500-200 rpm for 10 minutes to 5 hours. A person skilled in the art can properly control the viscosity of the ceramic powder slurry and the average particle size, particle size distribution, and BET surface area of the ceramic powder by controlling the grinding speed and time.

이와 같이 얻어지는 본 발명의 세라믹 분말은 베이스 수지에 배합됨으로써, 베이스 수지와 질화붕소 나노 분말이 균일하게 혼합될 수 있도록 하여 도막의 열방사율 향상에 기여할 수 있다. 구체적인 작용 기전은 확인되지 않았으나, 베이스 수지에 배합된 세라믹 분말이 수지의 질화붕소 나노 분말에 대한 분산성을 향상시키고, 이에 따라 질화붕소 나노 분말은 베이스 수지에 균일하게 분산될 수 있는 것으로 이해된다. The ceramic powder of the present invention thus obtained is blended with the base resin, so that the base resin and the boron nitride nanopowder can be uniformly mixed, thereby contributing to the improvement of the thermal emissivity of the coating film. Although a specific mechanism of action has not been confirmed, it is understood that the ceramic powder mixed with the base resin improves the dispersibility of the resin in the boron nitride nanopowder, and thus the boron nitride nanopowder can be uniformly dispersed in the base resin.

도료의 제조 조건에 따라 필요하면 세라믹 분말을 건조하여 사용할 수 있다. 예를 들어 건조 온도는 300 ℃, 바람직하게 200 ℃ 이하일 수 있다. 세라믹 분말의 건조는 스프레이 건조 방식으로 할 수도 있다. If necessary according to the manufacturing conditions of the paint, the ceramic powder can be dried and used. For example, the drying temperature may be 300 °C, preferably 200 °C or less. The ceramic powder may be dried by a spray drying method.

필요한 경우, 본 발명의 베이스 수지에 경화제가 배합될 수 있다. 경화제는 디에틸렌트리아민, 트리에틸렌테트라민, 메타페닐렌디아민, 디아미노디페닐메탄, 디아미노디페닐술폰, 아조메틸페놀, 페놀노볼락수지, 오르토크레졸노볼락 수지, 나프톨노볼락수지, 페놀아랄킬수지, 무수 프탈산, 무수 말레산, 무수 헥사히드로프탈산, 무수 피로멜리트산, 디시안디아미드, 이미다졸 및 이들의 조합에서 선택할 수 있다. 바람직하게 경화제는 베이스 수지 100 중량부에 대하여 0.1-10 중량부 포함될 수 있다. If necessary, a curing agent may be blended with the base resin of the present invention. The curing agent is diethylenetriamine, triethylenetetramine, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, azomethylphenol, phenol novolak resin, orthocresol novolak resin, naphthol novolak resin, phenol It can be selected from aralkyl resin, phthalic anhydride, maleic anhydride, hexahydrophthalic anhydride, pyromellitic anhydride, dicyandiamide, imidazole, and combinations thereof. Preferably, the curing agent may be included in an amount of 0.1-10 parts by weight based on 100 parts by weight of the base resin.

본 발명의 방열 도료 조성물은 질화붕소 나노 입자를 포함한다. 질화붕소는 육방정계 결정 구조를 가지며, 그래핀과 유사하게 층 구조를 가지고 있어서 소위 하얀 그래핀이라고도 불려진다. 질화붕소는 그래핀과 유사하게 물리적 박리, 화학기상증착(CDV), 용매 열합성, 용매 스트리핑 등의 공지의 방법을 이용하여 제조된다. 질화붕소는 기계적 물성이 우수하면서도 절연성을 가지면서 동시에 열전도성도 높다. The heat dissipation coating composition of the present invention contains boron nitride nanoparticles. Boron nitride has a hexagonal crystal structure and has a layer structure similar to graphene, so it is also called so-called white graphene. Similar to graphene, boron nitride is prepared using known methods such as physical exfoliation, chemical vapor deposition (CDV), solvent thermal synthesis, and solvent stripping. Boron nitride has excellent mechanical properties, insulation, and high thermal conductivity.

본 발명의 방열 도료 조성물은 질화붕소 나노 입자를 포함한다. 이에 따라 방열성과 열전도성이 향상될 수 있다. The heat dissipation coating composition of the present invention contains boron nitride nanoparticles. Accordingly, heat dissipation and thermal conductivity may be improved.

바람직하게, 질화붕소 나노 입자는, 질소 원으로서 우레아, 멜라민, 암모니아와 붕소원으로서 삼산화 붕소나 붕산을 원료로 하여 제조된다. 하나의 양태에 있어서, 본 발명의 질화붕소 나노 입자는 붕산과 멜라민을 증류수에 완전히 녹인 후 교반하면서 용매를 증발시키고, 여기에 1~10 mol%의 할로겐 화합물을 첨가하고, 이어서, 건조기에서 건조 후, 필요에 따라 900-1000 ℃에서 열처리하고, 또한 필요에 따라 1000-1500 ℃에서 추가 열처리하여 얻어진다. Preferably, the boron nitride nanoparticles are prepared from urea, melamine, ammonia as a nitrogen source, and boron trioxide or boric acid as a boron source. In one embodiment, the boron nitride nanoparticles of the present invention completely dissolve boric acid and melamine in distilled water and then evaporate the solvent while stirring, add 1 to 10 mol% of a halogen compound thereto, and then dry in a dryer , obtained by heat treatment at 900-1000 °C as needed, and further heat treatment at 1000-1500 °C as needed.

또한 본, 발명에 있어서 질화붕소 나노 입자는 분말의 합성시 첨가제, 바람직하게 할로겐 화합물에 의해 도핑된다. 본 발명의 질화붕소 나노 입자는 할로겐 화합물에 의하여 도핑됨으로써, 균일한 입자 크기 분포를 가질 수 있다. 또한 도핑되는 할로겐 화합물은 질화붕소의 결정성과 안정성에도 기여하여, 본원 발명의 방열 도료 조성물의 도막시 균일한 코팅을 형성할 수 있도록 한다. 바람직하게 할로겐 도핑된 질화붕소 나노 입자는 입경이 10-1000 nm이고, 바람직하게 입경은 10-500 nm이고, 더 바람직하게 입경은 100-300 nm이다. In addition, in the present invention, the boron nitride nanoparticles are doped with an additive, preferably a halogen compound, when synthesizing the powder. The boron nitride nanoparticles of the present invention may have a uniform particle size distribution by doping with a halogen compound. In addition, the doped halogen compound contributes to the crystallinity and stability of boron nitride, so that a uniform coating can be formed when the heat dissipation coating composition of the present invention is coated. Preferably, the halogen-doped boron nitride nanoparticles have a particle diameter of 10-1000 nm, preferably 10-500 nm, and more preferably 100-300 nm.

상기 도핑되는 할로겐 화합물은 플루오린화 칼슘(CaF2), 플루오린화 마그네슘(MgF2), 플루오린화 바륨(BaF2), 플루오린화 칼슘(CaF2), 플루오린화 스칸듐(ScF2), 플루오린화 이트륨(YF2)일 수 있고, 상기 할로겐 화합물을 단일종 사용하여도 좋고 2 종 이상을 조합하여 사용하여도 좋다. 할로겐 화합물은 바람직하게 플루오린화 칼슘일 수 있고, 바람직하게 할로겐 화합물은 플루오린화 마그네슘(MgF2)일 수 있으며, 바람직하게 할로겐 화합물은 플루오린화 이트륨일 수 있다. A halogen compound of the doping is calcium fluoride (CaF 2), magnesium fluoride (MgF 2), hydrofluoric barium (BaF 2), calcium fluoride (CaF 2), hydrofluoric scandium (ScF 2), hydrofluoric yttrium ( YF 2 ), and the halogen compound may be used singly or in combination of two or more. The halogen compound may preferably be calcium fluoride, preferably the halogen compound may be magnesium fluoride (MgF 2 ), and preferably the halogen compound may be yttrium fluoride.

본 발명의 방열 도료 조성물에 있어서, 조성물은 필러를 포함한다. 본 발명의 필러는 방열 조료 조성물을 도막하였을때 코팅 표면의 온도를 낮게하고, 방열성을 증가시키는 효과를 나타낼 수 있다. The heat dissipation coating composition of this invention WHEREIN: The composition contains a filler. The filler of the present invention may exhibit the effect of lowering the temperature of the coating surface and increasing heat dissipation when the heat dissipation composition is coated.

본 발명의 필러는 열전도성의 제1 필러로서 TiO2, Fe2O3, ZnO, MnO2, ZrO3, Ce2O3, CaCO3, BaCO3, BaTiO3, Mg3Al2(SiO3)6, 3Al2O3·2Al2O3, Al2O3, SiO2에서 선택되는 세라믹을 포함하고/포함하거나 마그네슘알루미늄실리케이트, 알루미늄실리케이트, 알루미나, 이산화규소에서 선택된다. 하나의 양태에 있어서, 제1 필러는 베이스 수지에 배합된 세라믹 분말과 동일할 수 있고, 다른 양태에 있어서 제1 필러는 베이스 수지에 배합된 세라믹 분말과 상이할 수 있으며, 또 다른 양태에 있어서 열전도성 제1 필러는 베이스 수지에 배합된 세라믹 분말과 동일한 것과 상이한 것의 조합일 수 있다. 바람직하게 열전도성 제1 필러는 이산화티타늄, 탄산 칼슘, 산화철, 마그네슘알루미늄실리케이트, 알루미늄 실리케이트에서 선택되고, 더 바람직하게 제1 필러는 이산화티타늄, 탄산 칼슘 또는 이들의 조합일 수 있다.The filler of the present invention is a first filler of thermal conductivity TiO 2 , Fe 2 O 3 , ZnO, MnO 2 , ZrO 3 , Ce 2 O 3 , CaCO 3 , BaCO 3 , BaTiO 3 , Mg 3 Al 2 (SiO 3 ) 6 , 3Al 2 O 3 ·2Al 2 O 3 , Al 2 O 3 , SiO 2 and/or is selected from magnesium aluminum silicate, aluminum silicate, alumina, silicon dioxide. In one embodiment, the first filler may be the same as the ceramic powder blended with the base resin, and in another embodiment, the first filler may be different from the ceramic powder blended with the base resin, and in another embodiment, the thermoelectric The conductive first filler may be a combination of the same and different ceramic powders blended in the base resin. Preferably, the thermally conductive first filler is selected from titanium dioxide, calcium carbonate, iron oxide, magnesium aluminum silicate, and aluminum silicate, and more preferably, the first filler may be titanium dioxide, calcium carbonate, or a combination thereof.

열전도성 제1 필러를 베이스 수지에 배합된 세라믹 분말과 동종의 것을 사용함으로써, 베이스 수지, 질화붕소 나노 입자, 필러가 균일하게 배합될 수 있으며, 방열 도료 조성물을 도막하였을때 균일한 박막을 형성할 수 있고, 이에 따라 박막의 방사율을 향상시킬 수 있다. By using the same type of ceramic powder as the thermally conductive first filler mixed with the base resin, the base resin, boron nitride nanoparticles, and the filler can be uniformly blended, and a uniform thin film can be formed when the heat dissipation coating composition is coated. and, accordingly, the emissivity of the thin film may be improved.

열전도성 제1 필러는 상술한 세라믹 분말과 동일한 방법 또는 공지의 방법에 의하여 제조될 수 있다. 하나의 양태로서, TiO2, Fe2O3, ZnO, MnO2, ZrO3, Ce2O3, CaCO3, BaCO3, BaTiO3, Mg3Al2(SiO3)6(마그네슘알루미늄실리케이트), 3Al2O3·2Al2O3(알루미늄실리케이트), Al2O3(알루미나), SiO2, 또는 이들의 조합을 선택하여 탈이온수 또는 알코올에 완전히 용해시켜 슬러리를 얻고, 이를 습식 분쇄하여 얻을 수 있다. 필요에 따라, 건조, 가열 단계를 적용할 수 있다. The thermally conductive first filler may be manufactured by the same method as the above-described ceramic powder or a known method. In one embodiment, TiO 2 , Fe 2 O 3 , ZnO, MnO 2 , ZrO 3 , Ce 2 O 3 , CaCO 3 , BaCO 3 , BaTiO 3 , Mg 3 Al 2 (SiO 3 ) 6 (magnesium aluminum silicate), 3Al 2 O 3 ·2Al 2 O 3 (aluminum silicate), Al 2 O 3 (alumina), SiO 2 , or a combination thereof is selected and completely dissolved in deionized water or alcohol to obtain a slurry, which can be obtained by wet grinding have. If necessary, drying and heating steps may be applied.

또한, 본 발명의 필러는 서플라워(sulflower) 제2 필러를 더 포함할 수 있다. 서플라워는 과황산화된 서큘렌(circulene)으로, 화학식 C16S8 또는 C24S12 표시된다. 서플라워 제2 필러는 평면 구조를 가지며, 도막 내의 질화붕소 나노 입자가 형성하는 층상 구조와 효과적으로 균일하게 배합되어, 방열 도료 조성물을 코팅하였을때 균일한 박막을 형성하고, 박막의 방사율을 향상시킨다. In addition, the filler of the present invention may further include a sulflower second filler. Suffolk is persulfated circulene, and is represented by the formula C 16 S 8 or C 24 S 12 . The second filler filler has a planar structure, is effectively and uniformly blended with the layered structure formed by the boron nitride nanoparticles in the coating film, and forms a uniform thin film when coated with the heat dissipation coating composition, and improves the emissivity of the thin film.

본 발명은 열전도성 제1 필러와 이와 상이한 제2 필러를 병용함으로써, 베이스 수지, 질화붕소 나노 입자, 필러가 균일하게 배합될 수 있으면서, 동시에 방열 도료 조성물의 안정성이 증가될 수 있다. 이에 따라, 방열 도료 조성물은 도막 내에 균일하게 분산되어 균일한 박막을 형성할 수 있다. In the present invention, by using the thermally conductive first filler and the second filler different therefrom, the base resin, the boron nitride nanoparticles, and the filler can be uniformly mixed, and at the same time, the stability of the heat dissipating paint composition can be increased. Accordingly, the heat dissipation coating composition can be uniformly dispersed in the coating film to form a uniform thin film.

또한, 본 발명의 방열 도료 조성물은 전도성 물질을 더 포함할 수 있으며, 상기 전도성 물질은 그래핀, 탄소나노튜브, 금, 은, 인듐틴옥사이드, 안티모니틴옥사이드 및 희토류 금속으로 이루어진 군으로부터 선택된 하나 이상일 수 있다. In addition, the heat dissipation coating composition of the present invention may further include a conductive material, wherein the conductive material is one selected from the group consisting of graphene, carbon nanotubes, gold, silver, indium tin oxide, antimonitin oxide, and rare earth metals. may be more than

본 발명은 상기 방열 도료 조성물이 도포되어 박막이 형성된 LED 조명 기구를 제공한다. 본 발명의 방열 도료 조성물에 의하여 도막 두께가 0.01 내지 2.0 mm인 코팅을 제공할 수 있다. 본 발명에 따라 얻어지는 도막은 1000 내지 1700 ℃의 온도에서 방사율(ε)이 0.93 내지 0.97을 나타낸다. 본 발명의 방열 도료 조성물은 LED 조명 기구 등에 도막됨으로써 균일한 박막을 형성하여 열 방사 효율이 높다. The present invention provides an LED lighting device in which the heat dissipation coating composition is applied to form a thin film. A coating having a coating film thickness of 0.01 to 2.0 mm can be provided by the heat dissipation coating composition of the present invention. The coating film obtained according to the present invention exhibits an emissivity (ε) of 0.93 to 0.97 at a temperature of 1000 to 1700 °C. The heat dissipation coating composition of the present invention forms a uniform thin film by being coated on an LED lighting device, etc., and thus has high heat radiation efficiency.

이하, 본 발명을 실시예에 의해 더 자세히 설명한다. Hereinafter, the present invention will be described in more detail by way of Examples.

제조예 1: 수지의 제조Preparation Example 1: Preparation of resin

n-옥틸(메타)아크릴레이트 23g, Epoxy resin(YD-013K, 국도화학(주)), 비스페놀-A형 수지) 57g을 혼합하여 베이스 수지 1을 얻었다. Base resin 1 was obtained by mixing 23 g of n-octyl (meth) acrylate, 57 g of epoxy resin (YD-013K, Kukdo Chemical Co., Ltd.), and 57 g of bisphenol-A type resin.

제조예 2: 수지의 제조Preparation Example 2: Preparation of resin

n-옥틸(메타)아크릴레이트 21g, Epoxy resin(YD-013K, 국도화학(주)), 비스페놀-A형 수지) 64g을 혼합하고, 멜라민 수지 (사이텍: CYMEL-325) 10g을 점진적으로 추가하여 혼합하여 베이스 수지 2를 얻었다.Mix n-octyl (meth)acrylate 21g, epoxy resin (YD-013K, Kukdo Chemical Co., Ltd.), bisphenol-A type resin) 64g, and gradually add 10g of melamine resin (Cytec: CYMEL-325) By mixing, the base resin 2 was obtained.

제조예 3: 수지의 제조Preparation Example 3: Preparation of resin

Fe2O3 65wt%, ZnO 10wt%, TiO2 15wt%, CaCO3 10wt%를 혼합하여 세라믹 분말을 만들고, 증류수와 폴리아크릴계 분산제의 혼합용액에 분산시켜 얻어진 슬러시를 직경 0.3mm의 Zr 비드를 가지는 Beads mill을 이용하여 1900rpm의 속도로 습식분쇄하였다. 상기 제조된 베이스 수지 1과 베이스 수지 2 100 중량부에 대해 각각 5 중량부의 분쇄된 슬러리를 고속 혼합하여, 베이스 수지 3베이스 수지 4를 얻었다. Fe 2 O 3 65wt%, ZnO 10wt%, TiO 2 15wt%, CaCO 3 10wt% is mixed to make ceramic powder, and the slush obtained by dispersing it in a mixed solution of distilled water and polyacrylic dispersant has Zr beads with a diameter of 0.3mm. Wet grinding was carried out at a speed of 1900 rpm using a Beads mill. 5 parts by weight of the pulverized slurry was mixed at high speed with respect to 100 parts by weight of the prepared base resin 1 and base resin 2, respectively, to obtain a base resin 3 and a base resin 4 .

제조예 4: 질화붕소 입자의 제조Preparation Example 4: Preparation of boron nitride particles

붕산 (Sigma-Aldrich, ≥98.5%) 0.7 mol, 멜라민 (Sigma-Aldrich, 99%) 0.1 mol을 1200ml의 증류수에 완전히 녹인 후, 99.9% 플루오르화칼슘을 10 mol%첨가하고, 증류수를 증발시켰다. 이후 90 ℃ 건조기에서 24시간 완전 건조하고, 900 ℃ 에서 10분, 1000 ℃에서 1시간 열처리를 실시하여, 질화붕소-플루오르화칼슘 어덕트 1(플루오르화칼슘 도핑된 질화붕소 나노 입자)을 얻었다.After 0.7 mol of boric acid (Sigma-Aldrich, ≥98.5%) and 0.1 mol of melamine (Sigma-Aldrich, 99%) were completely dissolved in 1200 ml of distilled water, 10 mol% of 99.9% calcium fluoride was added, and the distilled water was evaporated. Then, it was completely dried in a dryer at 90 ° C., and heat-treated at 900 ° C. for 10 minutes and 1000 ° C. for 1 hour to obtain boron nitride-calcium fluoride adduct 1 (calcium fluoride-doped boron nitride nanoparticles).

제조예 5: 질화붕소 입자의 제조Preparation Example 5: Preparation of boron nitride particles

제조예 4에서 플루오르화칼슘대신 99.9% 플루오르화이트륨을 동량 첨가하여 어덕트 2(플루오르화이트륨 도핑된 질화붕소 나노 입자)를 얻었다.In Preparation Example 4, 99.9% yttrium fluoride was added in the same amount instead of calcium fluoride to obtain Adduct 2 (yttrium fluoride-doped boron nitride nanoparticles).

제조예 6: 질화붕소 입자의 제조(비교예)Preparation Example 6: Preparation of boron nitride particles (Comparative Example)

붕산 (Sigma-Aldrich, ≥98.5%) 0.7 mol, 멜라민 (Sigma-Aldrich, 99%) 0.1 mol을 1200ml의 증류수에 완전히 배합한 후, 증류수를 증발시키고, 90 ℃ 건조기에서 24시간 건조, 900 ℃ 에서 20분, 1000 ℃에서 1시간 열처리를 실시하여, 질화붕소 어덕트 3을 얻었다.After completely mixing 0.7 mol of boric acid (Sigma-Aldrich, ≥98.5%) and 0.1 mol of melamine (Sigma-Aldrich, 99%) in 1200 ml of distilled water, the distilled water was evaporated, dried at 90° C. for 24 hours, dried at 900° C. It heat-treated at 1000 degreeC for 20 minutes and 1 hour, and boron nitride adduct 3 was obtained.

제조예 7: 필러의 제조Preparation Example 7: Preparation of filler

하기 표에 나타난 조성의 필러를 제조하였다. Fillers of the compositions shown in the table below were prepared.

Figure 112021055756500-pat00001
Figure 112021055756500-pat00001

제조예 1-7에 따라 얻은 재료를 배합하여 하기 실시예와 같이 방열 도료 조성물을 제조하였다. By blending the materials obtained according to Preparation Examples 1-7, a heat dissipation coating composition was prepared as in the following Examples.

<실시예 Ⅰ><Example I>

베이스 수지에 시너를 첨가하여 교반하면서, 200 rpm에서부터 교반 속도를 증가시키며 어덕트, 필러를 첨가하여 고속 분산기에서 30분간 분산하여 방열 도료 조성물을 제조하였다. 조성물의 조성은 아래 표 2와 같다. 하기 표에서 잔부는 DIW이다.A heat dissipation coating composition was prepared by adding a thinner to the base resin and stirring, increasing the stirring speed from 200 rpm, adding an adduct and a filler, and dispersing in a high-speed disperser for 30 minutes. The composition of the composition is shown in Table 2 below. The balance in the table below is DIW.

Figure 112021055756500-pat00002
Figure 112021055756500-pat00002

제조예 8: 수지의 제조Preparation Example 8: Preparation of resin

TiO2 90wt%, CaCO3 5wt%, MnO2 5wt%를 혼합하여 탈이온수에 분산시켜 얻어진 슬러시를 습식 분쇄하여(0.3mm의 Zr 비드 Beads mill, 1950rpm), n-옥틸(메타)아크릴레이트 5g 및 Epoxy resin(YD-013K, 국도화학(주)), 비스페놀-A형 수지) 60g의 혼합물에 고속 혼합하여 베이스 수지 5를 얻었다. TiO 2 90wt%, CaCO 3 5wt%, MnO 2 5wt% mixed and dispersed in deionized water to wet pulverize the obtained slush (0.3mm Zr bead Beads mill, 1950rpm), n-octyl (meth)acrylate 5g and Base resin 5 was obtained by mixing at high speed with a mixture of 60 g of epoxy resin (YD-013K, Kukdo Chemical Co., Ltd.) and bisphenol-A type resin.

제조예 9: 수지의 제조Preparation Example 9: Preparation of resin

CaCO3 55wt%, TiO2 35wt%, ZnO 10wt%를 혼합하여 탈이온수에 분산시켜 얻어진 슬러시를 습식 분쇄하여(0.3mm의 Zr 비드 Beads mill, 1950rpm), n-옥틸(메타)아크릴레이트 5g 및 Epoxy resin(YD-013K, 국도화학(주)), 비스페놀-A형 수지) 60g의 혼합물에 고속 혼합하여 베이스 수지 6을 얻었다. CaCO 3 55wt%, TiO 2 35wt%, ZnO 10wt% was mixed and dispersed in deionized water. The obtained slush was wet pulverized (0.3mm Zr Bead Beads mill, 1950rpm), n-octyl (meth)acrylate 5g and Epoxy Resin (YD-013K, Kukdo Chemical Co., Ltd.), bisphenol-A type resin) was mixed at high speed with a mixture of 60 g to obtain base resin 6.

제조예 10: 수지의 제조Preparation 10: Preparation of resin

n-옥틸(메타)아크릴레이트 5g 및 Epoxy resin(YD-013K, 국도화학(주)), 비스페놀-A형 수지) 60g의 혼합을 고속 혼합하여 베이스 수지 7을 얻었다.5 g of n-octyl (meth) acrylate and 60 g of epoxy resin (YD-013K, Kukdo Chemical Co., Ltd.), bisphenol-A type resin) were mixed at high speed to obtain a base resin 7 .

제조예 11: 필러의 제조Preparation Example 11: Preparation of filler

하기 표 3에 나타난 조성의 필러를 제조하였다. A filler having the composition shown in Table 3 was prepared.

Figure 112021055756500-pat00003
Figure 112021055756500-pat00003

<실시예 Ⅱ><Example II>

베이스 수지에 시너를 첨가하여 교반하면서, 200 rpm에서부터 교반 속도를 증가시키며 어덕트, 필러를 첨가하여 고속 분산기에서 30분간 분산하여 방열 도료 조성물을 제조하였다. 조성물의 조성은 아래 표 4와 같다. 하기 표에서 잔부는 알콜이다.A heat dissipation coating composition was prepared by adding a thinner to the base resin and stirring, increasing the stirring speed from 200 rpm, adding an adduct and a filler, and dispersing in a high-speed disperser for 30 minutes. The composition of the composition is shown in Table 4 below. The balance in the table below is alcohol.

Figure 112021055756500-pat00004
Figure 112021055756500-pat00004

<실험예 1><Experimental Example 1>

실시예 1 내지 5, 비교예 1 내지 3의 방열 도료 조성물의 방열 특성을 확인하기 위해, 방사율, 열전도도를 평가하였다. In order to confirm the heat dissipation characteristics of the heat dissipation coating compositions of Examples 1 to 5 and Comparative Examples 1 to 3, emissivity and thermal conductivity were evaluated.

알루미늄 합금 6061 (50 mm × 150 mm × 2 mm) 기판의 한쪽 면에 방열 도료 조성물을 도포하여 두께 0.02 mm의 두께로 코팅한 후 150 ℃에서 30분간 열 건조 시켰다. 코팅의 외관을 육안으로 보아 균열, 얼룩 여부를 매우 양호(◎), 양호(○), 불량(△), 매우 불량(×)으로 평가했다. A heat dissipation coating composition was applied to one side of an aluminum alloy 6061 (50 mm × 150 mm × 2 mm) substrate, coated to a thickness of 0.02 mm, and then dried at 150° C. for 30 minutes. Visually, the appearance of the coating was evaluated for cracks and stains as very good (◎), good (○), poor (Δ), and very poor (×).

22 ℃ 및 상대 습도 40%에서, 방열 도료가 코팅된 기판의 전면에 LED 모듈(반도체 서울, 모델명: AW322 2)을 장착하여 220V 및 60Hz의 전원을 인가한 후, 코팅의 표면의 중심부 온도(T1)과 T1 측정 지점의 바로 위 15 mm 지점에서의 온도 (T2)를 측정하였다. 또한, Laser Flash method(LFA 447, Netzch)를 이용하여 시료의 열전도도(W/mK)를 측정하고, ISO 9050 (FT-IR spectrometer, M4000, Midac)에 따라 열방사율을 평가하여, 아래 표 5에 나타냈다. At 22 ℃ and 40% relative humidity, an LED module (Semiconductor Seoul, model name: AW322 2) was mounted on the front side of the substrate coated with heat dissipation paint, power of 220V and 60Hz was applied, and then the temperature of the center of the surface of the coating (T1) ) and the temperature (T2) at a point 15 mm just above the T1 measurement point. In addition, the thermal conductivity (W/mK) of the sample was measured using the Laser Flash method (LFA 447, Netzch), and the thermal emissivity was evaluated according to ISO 9050 (FT-IR spectrometer, M4000, Midac), and Table 5 below shown in

Figure 112021055756500-pat00005
Figure 112021055756500-pat00005

표 5에 나타난 바와 같이, 본 발명의 코팅을 가지는 기판은 표면 온도보다 주변의 온도가 급격히 낮아지는 것을 확인할 수 있다. As shown in Table 5, it can be seen that the substrate having the coating of the present invention has a rapidly lowered ambient temperature than the surface temperature.

또한, 본 발명의 방열 조료 조성물은 균일한 도막을 형성할 수 있고, 특히, 베이스 수지 3, 4와 필러 2, 4를 포함하는 코팅은 외관이 균일하여 매우 우수했으며, 열전도도, 열방사율 또한 개선된 코팅을 제공하는 것으로 나타났다. In addition, the heat dissipation composition of the present invention can form a uniform coating film, and in particular, the coating containing the base resins 3 and 4 and the fillers 2 and 4 was very excellent because the appearance was uniform, and the thermal conductivity and heat emissivity were also improved It has been shown to provide a coated coating.

특히 실시예 1, 3과 비교예 1, 2를 비교함으로써, 본 발명에 따라 할로겐 도핑된 질화붕소 나노 입자에 의하여 방열성이 우수하고, 열전도도와 열방사율이 개선된 것을 확인할 수 있다. 또한, 실시예 2와 비교예 3을 비교함으로써, 본 발명에 따라 세라믹 분말을 포함하는 베이스 수지는 열전도도와 열방사율을 향상시키는 것이 확인된다. 한편, 실시예 3로부터 본 발명에 따라 2 종의 필러를 병용함으로써 방열 도막으로서 우수한 물성을 가지는 것을 확인할 수 있다. In particular, by comparing Examples 1 and 3 with Comparative Examples 1 and 2, it can be confirmed that the halogen-doped boron nitride nanoparticles according to the present invention have excellent heat dissipation and improved thermal conductivity and thermal emissivity. In addition, by comparing Example 2 and Comparative Example 3, it is confirmed that the base resin including the ceramic powder according to the present invention improves thermal conductivity and thermal emissivity. On the other hand, it can be confirmed from Example 3 that the use of two types of fillers in combination according to the present invention has excellent physical properties as a heat dissipation coating film.

<실험예 2><Experimental Example 2>

실시예 3, 4, 5에서 제조된 방열 도료 조성물과 비교예 2, 3의 도료 조성물을 각각 LED 방열체의 히트 싱크에 코팅하고, LED 방열체의 전원을 켰다. 그 후 시간 경과에 따라 열방사율 측정기로 열방사율을 측정하고, 그 결과를 아래 표 6에 정리했다. The heat dissipation coating compositions prepared in Examples 3, 4, and 5 and the coating compositions of Comparative Examples 2 and 3 were respectively coated on the heat sink of the LED heat sink, and the LED heat sink was turned on. Thereafter, the thermal emissivity was measured with a thermal emissivity meter over time, and the results are summarized in Table 6 below.

Figure 112021055756500-pat00006
Figure 112021055756500-pat00006

본 발명의 방열 도료 조성물은 LED 조명 기구에 적용시 열전도성, 방열성이 우수하여, 발열체의 열 축적을 방지하는 효과가 있고, 균일한 막을 형성하여 열 방사 효율이 높다. The heat dissipation coating composition of the present invention has excellent thermal conductivity and heat dissipation properties when applied to LED lighting equipment, has an effect of preventing heat accumulation in the heating element, and forms a uniform film, resulting in high heat radiation efficiency.

<실험예 3><Experimental Example 3>

실시예 6 내지 9, 비교예 4 내지 10의 방열 도료 조성물의 방열 특성을 확인하기 위해, T2 측정 위치를 두 배 증가시킨 것 외에 실험예 1과 동일한 방법으로 방사율, 열전도도를 평가하여, 결과를 아래 표 7에 정리했다. In order to confirm the heat dissipation characteristics of the heat dissipation coating compositions of Examples 6 to 9 and Comparative Examples 4 to 10, the emissivity and thermal conductivity were evaluated in the same manner as in Experimental Example 1 except that the T2 measurement position was doubled, and the results were obtained. It is summarized in Table 7 below.

Figure 112021055756500-pat00007
Figure 112021055756500-pat00007

Figure 112021055756500-pat00008
Figure 112021055756500-pat00008

표 7에 나타난 바와 같이, 본 발명의 코팅을 가지는 기판은 표면 온도보다 주변의 온도가 급격히 낮아며, 도막이 균일하고 외관이 우수한 것이 확인되었다. 실시예와 비교예를 대조함으로써, 본원 발명의 개선된 특징이 확인된다.As shown in Table 7, it was confirmed that the substrate having the coating of the present invention has a rapidly lower ambient temperature than the surface temperature, and has a uniform coating film and excellent appearance. By contrasting the examples with the comparative examples, improved features of the present invention are identified.

Claims (10)

베이스 수지 총량을 기준으로, 40-60wt%의 에폭시 수지와 20-30wt%의 아크릴계 수지를 포함하는 베이스 수지;
할로겐 화합물 도핑된 질화붕소 나노 입자; 및
필러를 포함하는 방열 도료 조성물로서,
상기 필러는 열전도성 제1 필러 및 상기 제1 필러와 상이한 제2 필러 중의 어느 하나 또는 양자 모두를 포함하고,
상기 할로겐 화합물 도핑된 질화붕소 나노 입자는 플루오린화 칼슘(CaF2), 플루오린화 마그네슘(MgF2), 플루오린화 바륨(BaF2), 플루오린화 스칸듐(ScF2), 플루오린화 이트륨(YF2) 및 이들의 조합에서 선택되는 할로겐 화합물로 도핑된 방열 도료 조성물.
Based on the total amount of the base resin, a base resin comprising 40-60 wt% of an epoxy resin and 20-30 wt% of an acrylic resin;
halogen compound-doped boron nitride nanoparticles; and
A heat dissipation coating composition comprising a filler, comprising:
the filler comprises either or both of a first thermally conductive filler and a second filler different from the first filler;
The halogen compound-doped boron nitride nanoparticles calcium fluoride (CaF 2), magnesium fluoride (MgF 2), hydrofluoric barium (BaF 2), hydrofluoric scandium (ScF 2), hydrofluoric yttrium (YF 2) and A heat dissipation coating composition doped with a halogen compound selected from a combination thereof.
제1항에 있어서, 상기 베이스 수지는 멜라민 수지, 폴리우레탄 수지를 더 포함하고,
멜라민 수지는 이소부틸화 멜라민 수지, 메틸화 멜라민수지, N-부틸화 멜라민 수지, 헥사메톡시메틸 멜라민, 트리메톡시메틸 멜라민 및 이들의 조합에서 선택되고,
폴리우레탄 수지는, 비스페놀 A, 비스페놀 AF, 비스페놀 AP, 비스페놀 B, 비스페놀 P, 비스페놀 S 및 비스페놀 Z로 이루어진 군에서 선택되는 폴리올 성분과, 폴리이소시아네이트 성분의 반응에 의해 얻어지는 것인 방열 도료 조성물.
According to claim 1, wherein the base resin further comprises a melamine resin, a polyurethane resin,
The melamine resin is selected from isobutylated melamine resin, methylated melamine resin, N-butylated melamine resin, hexamethoxymethyl melamine, trimethoxymethyl melamine, and combinations thereof;
The polyurethane resin is obtained by reaction of a polyol component selected from the group consisting of bisphenol A, bisphenol AF, bisphenol AP, bisphenol B, bisphenol P, bisphenol S and bisphenol Z, and a polyisocyanate component.
제1항에 있어서, 상기 베이스 수지는 TiO2, Fe2O3, ZnO, MnO2, ZrO3, Ce2O3, CaCO3, BaCO3, BaTiO3, 및 이들의 조합에서 선택되는 세라믹 분말을 더 포함하는 방열 도료 조성물.According to claim 1, wherein the base resin is TiO 2 , Fe 2 O 3 , ZnO, MnO 2 , ZrO 3 , Ce 2 O 3 , CaCO 3 , BaCO 3 , BaTiO 3 , and a ceramic powder selected from combinations thereof, Further comprising a heat dissipation paint composition. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 할로겐 화합물 도핑된 질화붕소 나노 입자의 입경이 10~500 nm인 방열 도료 조성물.The heat dissipation coating composition according to any one of claims 1 to 3, wherein the halogen compound-doped boron nitride nanoparticles have a particle diameter of 10 to 500 nm. 삭제delete 제1항에 있어서, 상기 할로겐 화합물 도핑된 질화붕소 나노 입자는 플루오린화 이트륨으로 도핑된 방열 도료 조성물.The heat dissipation coating composition of claim 1, wherein the halogen compound-doped boron nitride nanoparticles are doped with yttrium fluoride. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 열전도성 제1 필러는 마그네슘알루미늄실리케이트, 알루미늄실리케이트, 이산화티타늄, 알루미나, 이산화규소, 탄산칼슘 및 이들의 조합에서 선택되는 방열 도료 조성물.The heat dissipation coating composition according to any one of claims 1 to 3, wherein the thermally conductive first filler is selected from magnesium aluminum silicate, aluminum silicate, titanium dioxide, alumina, silicon dioxide, calcium carbonate, and combinations thereof. 제7항에 있어서, 상기 열전도성 제1 필러는 TiO2, CaCO3 및 이들의 조합에서 선택되는 것인 방열 도료 조성물.The heat dissipation coating composition according to claim 7, wherein the thermally conductive first filler is selected from TiO 2 , CaCO 3 and a combination thereof. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 제2 필러는 화학식 C16S8 또는 C24S12 표시되는 서플라워(sulflower)에서 선택되는 방열 도료 조성물.The heat dissipation paint composition according to any one of claims 1 to 3, wherein the second filler is selected from sulflower represented by Chemical Formula C 16 S 8 or C 24 S 12. 제1항 내지 제3항 중 어느 한 항에 따른 방열 도료 조성물이 코팅된 LED 조명 기구.
[Claim 4] The LED lighting equipment coated with the heat dissipation paint composition according to any one of claims 1 to 3.
KR1020210062343A 2021-05-14 2021-05-14 Heat radiant composition comprising boron nitride and led lamp coated therewith Active KR102321588B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210062343A KR102321588B1 (en) 2021-05-14 2021-05-14 Heat radiant composition comprising boron nitride and led lamp coated therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210062343A KR102321588B1 (en) 2021-05-14 2021-05-14 Heat radiant composition comprising boron nitride and led lamp coated therewith

Publications (1)

Publication Number Publication Date
KR102321588B1 true KR102321588B1 (en) 2021-11-04

Family

ID=78521576

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210062343A Active KR102321588B1 (en) 2021-05-14 2021-05-14 Heat radiant composition comprising boron nitride and led lamp coated therewith

Country Status (1)

Country Link
KR (1) KR102321588B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116285771A (en) * 2022-12-22 2023-06-23 隆基绿能科技股份有限公司 Thermally conductive filler and preparation method thereof, encapsulant and preparation method thereof, junction box, photovoltaic module
CN118638379A (en) * 2024-08-19 2024-09-13 上海硼矩新材料科技有限公司 A method for preparing a thermal interface material based on multi-component composite high thermal conductivity filler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462797A (en) * 1990-09-05 1995-10-31 Minneapolis Mining And Manufacturing Company Energy curable pressure-sensitive adhesive compositions
KR20140131575A (en) * 2012-03-02 2014-11-13 아라까와 가가꾸 고교 가부시끼가이샤 Heat dissipating coating composition and heat dissipating coating film
KR20170002465A (en) * 2014-04-30 2017-01-06 로저스코포레이션 Thermally conductive composites and methods of manufacture thereof, and articles containing the composites
KR101822587B1 (en) * 2017-11-16 2018-03-08 레이져라이팅(주) Painting Composition having heat dissipation and LED Lamp Device having excellent heat-radiant property by employing the same
KR102047891B1 (en) * 2019-03-26 2019-11-22 동의대학교 산학협력단 Manufacturing Method of Powder Coating Materials and LED Lighting Application of Thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462797A (en) * 1990-09-05 1995-10-31 Minneapolis Mining And Manufacturing Company Energy curable pressure-sensitive adhesive compositions
KR20140131575A (en) * 2012-03-02 2014-11-13 아라까와 가가꾸 고교 가부시끼가이샤 Heat dissipating coating composition and heat dissipating coating film
KR20170002465A (en) * 2014-04-30 2017-01-06 로저스코포레이션 Thermally conductive composites and methods of manufacture thereof, and articles containing the composites
KR101822587B1 (en) * 2017-11-16 2018-03-08 레이져라이팅(주) Painting Composition having heat dissipation and LED Lamp Device having excellent heat-radiant property by employing the same
KR102047891B1 (en) * 2019-03-26 2019-11-22 동의대학교 산학협력단 Manufacturing Method of Powder Coating Materials and LED Lighting Application of Thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116285771A (en) * 2022-12-22 2023-06-23 隆基绿能科技股份有限公司 Thermally conductive filler and preparation method thereof, encapsulant and preparation method thereof, junction box, photovoltaic module
CN118638379A (en) * 2024-08-19 2024-09-13 上海硼矩新材料科技有限公司 A method for preparing a thermal interface material based on multi-component composite high thermal conductivity filler

Similar Documents

Publication Publication Date Title
TWI616398B (en) Composition containing boron nitride and three-dimensional integrated circuit having layers composed of the composition
KR102321588B1 (en) Heat radiant composition comprising boron nitride and led lamp coated therewith
KR20160078340A (en) Resin composition, heat-dissipating material, and heat-dissipating member
JP6331575B2 (en) Composition for interlayer filler of stacked semiconductor device, stacked semiconductor device, and manufacturing method of stacked semiconductor device
TWI690484B (en) Manufacturing method of glass-coated aluminum nitride particles and manufacturing method of exothermic resin composition containing glass-coated aluminum nitride particles
JP2015195287A (en) Heat dissipation sheet, coating liquid for heat dissipation sheet, and power device
US20190355885A1 (en) Resin composition for circuit board, and metal-base circuit board in which same is used
JP6394115B2 (en) Resin composition, heat dissipation sheet made of resin composition, and power device device including heat dissipation sheet
WO2022059661A1 (en) Magnesium oxide powder, filler composition, resin composition and heat dissipating component
JP2024123080A (en) Boron nitride agglomerated powder, heat dissipation sheet and semiconductor device
JP2015195292A (en) Heat dissipation sheet, manufacturing method of heat dissipation sheet, slurry for heat dissipation sheet and power device
CN106133900B (en) Thermally conductive sheet and semiconductor device
JP2014189701A (en) High thermal conductive resin cured product, high thermal conductive semi-cured resin film and high thermal conductive resin composition
KR20210038733A (en) Surface modification method of the inorganic filler, and low viscosity heat dissipating resin composition comprising thereof
KR101333260B1 (en) Resin compositon for highly thermal conductive insulating materail and insulating fime
KR102052386B1 (en) composition of Heat-radiating paint
JP7476482B2 (en) Thermally conductive sheet
KR20210089741A (en) Composition, Thermal Conductive Sheet, and Thermal Conductive Layer Attachment Device
TW201927922A (en) Glass-coated aluminum nitride particles, method for producing same, and heat dissipating resin composition containing same
JP2006245523A (en) Heat dissipating sheet
JP2015193704A (en) High thermal conductive ceramic powder-containing resin composition and cured product thereof
CN108070853B (en) Ceramic slurry, preparation method and composite ceramic heat dissipation substrate
JP2007284528A (en) Silica-coated metal oxide-based phosphor fine particle and method for producing the same
WO2022059660A1 (en) Magnesium oxide powder, filler composition, resin composition, and heat-dissipating member
WO2022059659A1 (en) Magnesium oxide powder, filler composition, resin composition, and heat dissipating component

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20210514

PA0201 Request for examination
PA0302 Request for accelerated examination

Patent event date: 20210521

Patent event code: PA03022R01D

Comment text: Request for Accelerated Examination

Patent event date: 20210514

Patent event code: PA03021R01I

Comment text: Patent Application

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20211007

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20211029

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20211029

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20240716

Start annual number: 4

End annual number: 4