[go: up one dir, main page]

KR102319619B1 - A transgenic tobacco expressing recombination HcRNAV 34 virus like particle protein - Google Patents

A transgenic tobacco expressing recombination HcRNAV 34 virus like particle protein Download PDF

Info

Publication number
KR102319619B1
KR102319619B1 KR1020140114211A KR20140114211A KR102319619B1 KR 102319619 B1 KR102319619 B1 KR 102319619B1 KR 1020140114211 A KR1020140114211 A KR 1020140114211A KR 20140114211 A KR20140114211 A KR 20140114211A KR 102319619 B1 KR102319619 B1 KR 102319619B1
Authority
KR
South Korea
Prior art keywords
algae
vlp
hcrnav34
tobacco
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020140114211A
Other languages
Korean (ko)
Other versions
KR20160026179A (en
Inventor
이현화
김시욱
김미승
김다솜
정민주
Original Assignee
조선대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조선대학교산학협력단 filed Critical 조선대학교산학협력단
Priority to KR1020140114211A priority Critical patent/KR102319619B1/en
Publication of KR20160026179A publication Critical patent/KR20160026179A/en
Application granted granted Critical
Publication of KR102319619B1 publication Critical patent/KR102319619B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8206Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by physical or chemical, i.e. non-biological, means, e.g. electroporation, PEG mediated
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8209Selection, visualisation of transformants, reporter constructs, e.g. antibiotic resistance markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental Sciences (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

형질전환 식물체에서 총 단백질을 추출하여 HcRNAV34의 숙주인 H. circularisqua-ma HU 9433-P와 HA 92-1. 비숙주인 H. circularisquama HY 9423과 HU 9436 및 C. vulgaris에 처리한 결과, 숙주인 HU 9433-P와 HA 92-1에서만 조류의 유동성이 정지되고, 형태의 변화가 일어나며, 세포가 파괴되는 결과를 관찰하였다. 또한 confocal 현미경으로 관찰하였을 때, HcRNAV34 VLP와 함께 형질전환 된 GFP가 조류 내에서 발현되는 것으로 미루어 조류의 형태 변화 및 파괴는 HcRNAV34 VLP가 조류 내로 유입되어 발생하는 것으로 사료되며, HcRNAV34 VLP만으로도 숙주 특이적 살조능이 있는 것을 확인하였다. 따라서, 유해 조류에 특이적으로 감염되는 바이러스를 선별하여 그 일부를 식물체에 형질전환을 통해 대량생산하여 살조능을 확인한다면 이는 새로운 생물학적 적조 방제 방법으로 활용될 수 있을 것으로 기대된다 H. circularisqua-ma HU 9433-P and HA 92-1 as hosts of HcRNAV34 by extraction of total proteins from transgenic plants. As a result of treatment with non-host H. circularisquama HY 9423, HU 9436, and C. vulgaris , only HU 9433-P and HA 92-1 hosts stopped the flow of algae, changed the shape, and destroyed the cells. was observed. In addition, when observed with a confocal microscope, it is believed that GFP transformed with HcRNAV34 VLP is expressed in algae, so the morphological change and destruction of algae is thought to occur when HcRNAV34 VLP is introduced into the alga, and HcRNAV34 VLP alone is host-specific. It was confirmed that there is algae function. Therefore, if a virus that specifically infects harmful algae is selected and a part of it is mass-produced through transformation in plants to confirm its algal ability, it is expected that it can be utilized as a new biological control method for red tide.

Description

재조합 HcRNAV 34 바이러스 유사 입자 단백질을 발현하는 형질전환 담배{A transgenic tobacco expressing recombination HcRNAV 34 virus like particle protein}A transgenic tobacco expressing recombination HcRNAV 34 virus like particle protein

본 발명은 재조합 HcRNAV 34 virus like particle 단백질을 발현하는 형질전환된 담배에 관한 것이다.The present invention relates to a transformed tobacco expressing recombinant HcRNAV 34 virus like particle protein.

적조는 바닷물에 부유 생물이 급증하여 산소가 부족하게 되거나 독성을 발생시키는 현상으로 물의 부영양화, 일사량, 수온 등 해양 환경이 적조 생물의 성장 조건에 맞을 때 대량으로 번식하여 발생한다(류 등, 2004; Kim et al., 2006).Red tide is a phenomenon in which floating organisms in seawater rapidly increase, resulting in a lack of oxygen or toxicity. Kim et al ., 2006).

적조 생물은 호흡과 사체 분해 과정을 통하여 수중의 용존 산소를 소비하여 다른 생물의 생존을 저해하고, 유해 물질 및 독소를 분비하여 어패류를 폐사시키거나 독화시켜 이를 섭취할 경우 마비나 설사성 중독을 일으켜 사람의 건강까지도 위협하고 있어 사회경제적으로 심각한 문제가 되고 있다(Kim, 1997; Imai et al., 2006; 남, 2012).Red tide organisms consume dissolved oxygen in water through respiration and carcass decomposition processes, impair the survival of other organisms, and secrete harmful substances and toxins to kill or poison fish and shellfish, causing paralysis or diarrheal poisoning when ingested. As it threatens even human health, it has become a serious socioeconomic problem (Kim, 1997; Imai et al.) al ., 2006; M, 2012).

적조를 일으키는 주요 해양 생물로는 규조류와 편모조류를 포함하여 전 세계적으로 100여 종이 있고, 우리나라의 경우 약 43 종으로 담수종 4 종, 해산종인 규조류 13 종, 라피도조류 3 종, 편모조류 20 종이 있다. 특히 편모조류 중 Gymnodinium mikimotoi, Cochlodinium polykrikoides, Gyrodinium sp. 등 3 종은 수산 생물을 직접적으로 폐사시킬 수 있다 (박, 1995; Seo et al., 2003; 류 등, 2004).The main marine organisms that cause red algae are about 100 species worldwide, including diatoms and flagellates. In Korea, there are about 43 species, 4 freshwater species, 13 marine diatoms, 3 rapidoalgae, and 20 flagellar algae species. have. Especially among flagellates, Gymnodinium mikimotoi , Cochlodinium polykrikoides , Gyrodinium sp. 3 species can directly kill aquatic organisms (Park, 1995; Seo et al.) al ., 2003; Ryu et al., 2004).

우리나라의 경우 1963년 이후 산업도시 폐수의 과다 유입에 의한 해역의 부영양화 진행으로 적조의 대형화 현상이 보고되고 있으며, 육상의 공업화도시화에 따른 질소와 인의 다량 유입으로 1980 년대부터 점차 증가하기 시작하여 주로 규조류에 의해 발생하였다 (박, 1995). 1990 년대 중반부터는 유독성 Cochlodinium에 의한 단독 적조가 지속되고 있으며, 최근에는 수산 양식이 집중된 연안해역에서 적조의 출현 빈도가 증가하고, 원인종이 다양해지면서 독성이 강해지고 장기화광역화의 특징을 나타낸다 (류 등, 2004; 남, 2012). 지구 온난화로 인해 제주도 근해에는 열대 해역의 지표종인 여러 아열대성 와편모조류가 출현하였으며 최근 103 종까지 증가하여 이들 중 32 종은 국내에 처음 보고되는 미기록 종이다. 특히 저서성 종들의 증가로 맹독성을 가진 2 종도 보고되었으며 (Kim et al., 2008; Kim, 2010; Kim et al., 2011; Chung, 2011) 거문도와 백도에서도 맹독성 와편모조류가 출현했음이 보고되었다 (Baek, 2012a; Baek, 2012b). 맹독성 와편모조류인 Heterocapsa circularisquama (H. circularisquama)는 최근 일본 해역에서 적조를 일으키는 주된 종으로서, 쌍각류조개에 가장 큰 피해를 미친다 (Horiguchi, 1995; Nagai et al., 1996; Matsuyama et al., 1997; Yamaguchi et al., 1997, Matsuyama et al., 1999; Uchida et al., 1999). 어류를 폐사시키는 다른 종과 달리 trypsin에 의해 가수분해 되는 단백질 또는 polypeptide가 이매패류의 심장 또는 아가미를 공격하여 폐사시키며 그 독소가 주로 갑각류인 굴과 조개를 폐사시켜 양식업에 막대한 피해를 주고 있다 (Tarutani et al., 2001; Nagasaki et al., 2003; Oh et al., 2003; Tomaru et al., 2004, Imai et al., 2006; Shiraishi et al., 2007; Tomaru et al., 2007; Shiraishi et al., 2008).In Korea, the enlargement of red tides has been reported due to eutrophication of sea areas due to excessive inflow of industrial city wastewater since 1963. (Park, 1995). Since the mid-1990s, single red tides caused by toxic Cochlodinium have been continuing, and recently, the frequency of red tides has increased in coastal waters where aquaculture is concentrated, and as the causative species diversified, the toxicity is strengthened and it is characterized by long-term localization (Ryu et al., 2004; M, 2012). Due to global warming, several subtropical dinoflagellates, an indicator species of tropical waters, appeared in the waters off Jeju Island, and recently increased to 103 species, of which 32 are unrecorded species reported in Korea for the first time. In particular, due to the increase in benthic species, 2 species with high toxicity were also reported (Kim et al. al ., 2008; Kim, 2010; Kim et al ., 2011; Chung, 2011) reported the appearance of highly toxic dinoflagellates in Geomundo and Baekdo (Baek, 2012a; Baek, 2012b). Heterocapsa , a venomous dinoflagellate circularisquama ( H. circularisquama ) is the main species causing red tides in the waters of Japan recently, causing the greatest damage to bivalves (Horiguchi, 1995; Nagai et al.) al ., 1996; Matsuyama et al. al ., 1997; Yamaguchi et al. al ., 1997, Matsuyama et al. al ., 1999; Uchida et al ., 1999). Unlike other species that kill fish, protein or polypeptide hydrolyzed by trypsin attacks the heart or gills of bivalves and kills them, and the toxin kills oysters and clams, which are mainly crustaceans, causing great damage to aquaculture (Tarutani). et al ., 2001; Nagasaki et al. al ., 2003; Oh et al ., 2003; Tomaru et al ., 2004, Imai et al ., 2006; Shiraishi et al. al ., 2007; Tomaru et al ., 2007; Shiraishi et al. al ., 2008).

적조를 방제하는 방법은 물리화학생물학적 방법이 있으며, 물리적 방법은 초음파를 이용하여 원인 생물의 세포 파괴나 발생 수역에 고압의 오존 (O3)을 투입하여 독성을 중화시키는 방법이 있으나 실용화 단계에는 이르지 못하였다. 화학적 방법은 황산구리 (CuSO4), 이산화염소 (ClO2) 등을 살포해 세포를 파괴하여 유발 조류를 제어하는 방법이 있으나 다른 해양 생물에게도 영향을 미쳐 생물 독성 및 부식의 문제를 일으킬 수 있고, 일시적 효과로 인해 반복 사용이 필요하며, 비교적 많은 양의 투여로 인한 높은 투자비용이 요구된다. 생물학적인 방법은 주로 천적 관계를 이용하는 방법이 있으나, 유해 조류 및 천적으로 사용되는 특정 종의 증식으로 인한 생태계 교란이 야기될 수 있다(Na et al., 1996; Choi et al., 1998; Park et al., 1998; Kim et al., 1999a; Matsuyama, 1999; Jeong et al., 2000; Seo et al., 2003; 류 등, 2004; Kim et al., 2006; 남, 2012). 또한, 국내에서는 황토 살포법을 시행하고 있으나, 과량의 중금속 이온을 포함하고 있어 저질층 축적 및 생물학적 농축에 의해 중독을 유발하고 해수의 산성화, 광합성 생물의 생장 저해 등의 문제점이 나타나고 있다(Choi et al., 1998; 류 등, 2004; Imai et al., 2006; Kim et al., 2006).There are physical, chemical and biological methods to control red tides. Physical methods use ultrasonic waves to destroy cells of causative organisms or neutralize toxicity by injecting high-pressure ozone (O 3 ) into the generated water, but it has not reached the stage of practical use. couldn't The chemical method is to control the induced algae by destroying cells by spraying copper sulfate (CuSO 4 ), chlorine dioxide (ClO 2 ), etc., but it can also affect other marine organisms and cause problems of biotoxicity and corrosion, Due to the effect, repeated use is required, and a high investment cost is required due to the relatively large amount of administration. Biological methods mainly use natural enemy relationships, but ecosystem disturbance may be caused by the proliferation of harmful algae and certain species used as natural enemies (Na et al. al ., 1996; Choi et al ., 1998; Park et al ., 1998; Kim et al ., 1999a; Matsuyama, 1999; Jeong et al ., 2000; Seo et al ., 2003; Ryu et al., 2004; Kim et al ., 2006; M, 2012). In addition, although the loess spraying method is implemented in Korea, it contains an excess of heavy metal ions, which causes poisoning by accumulation and biological concentration of the bottom layer, and has problems such as acidification of seawater and inhibition of the growth of photosynthetic organisms (Choi et al. al ., 1998; Ryu et al., 2004; Imai et al ., 2006; Kim et al ., 2006).

생태계에 영향을 미치지 않으면서 적조의 피해를 최소화하기 위한 제거 방법의 일환으로 살조 세균 Micrococcus sp. LG-1(Park et al., 1998), Altermonas sp. SR-14(Kim et al., 1999a) 등을 이용하거나(Mitsutani et al., 1992; Jeong et al., 2000; Jeoung et al., 2012), 살조 능력을 가진 물질인 α-mannosidase(Lee et al., 2000) 또는 항균성 펩타이드, Mastoparan B(Seo et al., 2003) 등을 이용하는 방제법이 연구되고 있다(Wang et al., 2005; Choi et al., 2009). 또한 해양 미생물 또는 바이러스를 이용한 생물학적 방제에 대한 연구가 진행되고 있다(Park et al., 1998; Kim et al., 1999a; Kim et al., 1999b; Jeong et al., 2000; Imai et al., 2006; Jeoung et al., 2012).As part of a removal method to minimize damage to red algae without affecting the ecosystem, the algal bacterium Micrococcus sp. LG-1 (Park et al.) al ., 1998), Altermonas sp. SR-14 (Kim et al. al ., 1999a) or (Mitsutani et al.) al ., 1992; Jeong et al ., 2000; Jeoung et al ., 2012), α-mannosidase (Lee et al ., 2000), a substance with algicidal ability, or an antibacterial peptide, Mastoparan B (Seo et al.) al ., 2003) and the like are being studied (Wang et al. al ., 2005; Choi et al ., 2009). In addition, studies on biological control using marine microorganisms or viruses are in progress (Park et al ., 1998; Kim et al. al ., 1999a; Kim et al ., 1999b; Jeong et al ., 2000; Imai et al ., 2006; Jeoung et al ., 2012).

우리나라에서 새롭게 출현하고 있는 유독성 와편모조류인 H. circularisquama의 사멸을 위하여 강활(Notopterygii rhizoma)로부터 분리된 falcarindiol(Tamura et al., 2010)의 이용과 특이 감염되는 Heterocapsa circularisquama RNA virus(HcRNAV, Tamura et al., 2004)를 이용한 외국의 연구들이 보고되고 있다.Separated from ganghwal (Notopterygii rhizoma) to the death of the toxic dinoflagellates is H. circularisquama that newly emerged in our country falcarindiol (Tamura et al ., 2010) and the use of Heterocapsa circularisquama RNA virus (HcRNAV, Tamura et al. al ., 2004) have been reported in foreign studies.

HcRNAV34는 적조 유발 조류인 H. circularisquama HU 9433-P, HA 92-1에만 특이적으로 감염되는 새로운 단일가닥 RNA 바이러스이다. 이 바이러스는 20 면체 구조로 직경은 30 nm, 외막과 꼬리 구조가 없고, 4.4 kb 단일가닥 RNA의 단일 분자를 포함하고 있다. Genome은 5' 말단의 cap 구조와 3' 말단의 poly (A) tail이 없는 완전한 단일가닥 RNA로 이루어져 있다. HcRNAV는 종 내 특이 감염성을 갖고, 세포질에서 복제되어 결정체로 배열되며, 핵을 표적으로 삼아 축적되고, 33-48 시간의 잠복기를 거쳐 용균 시 약 7,200-43,000 개가 방출되면서 숙주인 H. circularisquama를 사멸시킨다(Tomaru et al., 2004; Nagasaki et al., 2005; Mizumoto et al., 2007; Tomaru et al., 2007; Nagasaki, 2008; Wu et al., 2012; Nakayama et al., 2013).HcRNAV34 is a novel single-stranded RNA virus that specifically infects red algae-causing algae, H. circularisquama HU 9433-P and HA 92-1. This virus has an icosahedral structure, 30 nm in diameter, has no outer membrane and tail structure, and contains a single molecule of 4.4 kb single-stranded RNA. Genome consists of a complete single-stranded RNA without a cap structure at the 5' end and a poly (A) tail at the 3' end. HcRNAV has specific infectivity within a species, replicates in the cytoplasm and arranges into crystals, accumulates by targeting the nucleus, and after an incubation period of 33-48 hours, about 7,200-43,000 are released during lysis and kills the host, H. circularisquama. Make it (Tomaru et al.) al ., 2004; Nagasaki et al. al ., 2005; Mizumoto et al. al ., 2007; Tomaru et al ., 2007; Nagasaki, 2008; Wu et al ., 2012; Nakayama et al ., 2013).

최근 바이러스의 특이 감염성과 관련된 virus like particle(VLP)은 다양한 분야에서 연구가 되고 있는데, 동물세포, 효모, 식물세포 등을 포함하는 다양한 세포 배양 체계에서 생산될 수 있다(Santi et al., 2006). 동물세포와 미생물에서 만들어진 재조합 단백질을 항원으로 이용하는 경우, Escherichia coli(E. coli)를 비롯한 박테리아에서는 번역 후 변형이 일어나지 않아 native protein을 얻을 수 없고, 동물세포를 이용하는 경우 native protein 보다 더 유사한 항원을 얻을 수 있으나 비용이 많이 드는 단점이 있다. 따라서 최근에는 형질전환이 용이하고, 비용이 저렴하며, 먹을 수 있는 식물체에 바이러스 유전자를 도입하여 항원을 생산하는 방법이 시도되고 있다(Jeon, 1994; Ji, 2008).Recently, virus-like particles (VLPs) related to specific infectivity of viruses are being studied in various fields, and can be produced in various cell culture systems including animal cells, yeast, and plant cells (Santi et al. al ., 2006). When using recombinant proteins made from animal cells and microorganisms as antigens, Escherichia In bacteria including coli ( E. coli ), post-translational modification does not occur, so native protein cannot be obtained. When animal cells are used, antigens more similar to those of native protein can be obtained, but the disadvantage is that the cost is high. Therefore, recently, a method for producing antigens by introducing a viral gene into an edible plant that is easy to transform and is inexpensive has been tried (Jeon, 1994; Ji, 2008).

지난 몇 년간 식용이나 경구 투여를 위한 바이러스 백신 개발을 위해 식물 유전공학을 통한 형질전환 식물체 개발의 필요성이 증가되었다. 식물은 다양한 병원성 바이러스와 박테리아의 항원 단백질을 encoding하는 유전자를 통하여 적합한 항원 단백질을 생산할 수 있도록 발현, 접합, 조립, glycosylation 등을 통해 외래 단백질을 발현시킬 수 있다(Wycoff, 2005). 들판이나 온실에서 상대적으로 저렴하게 생장할 수 있고, 대규모 단백질 생산 확장의 용이함과 인간성 병원체에 의한 오염 위험의 부재 등의 장점으로 인해 외래 단백질의 발현을 위한 체계로써 식물의 이용은 백신 생산을 위한 전통적인 체계에 대한 저렴한 대안으로 제시되고 있다(Walmsley et al., 2000; Ma et al., 2003; Howard, 2005). 식물 기초 백신 생산에 관한 WHO의 승인은 형질전환 식물체의 이용이 인간과 가축 질병을 제어하기 위해 촉망되는 도구로 발달하고 있다는 것을 증명해준다(Lau et al., 2009).In the past few years, the need for the development of transgenic plants through plant genetic engineering has increased for the development of virus vaccines for food or oral administration. Plants can express foreign proteins through expression, conjugation, assembly, glycosylation, etc. so that they can produce appropriate antigenic proteins through genes encoding antigenic proteins of various pathogenic viruses and bacteria (Wycoff, 2005). Due to the advantages of relatively inexpensive growth in fields or greenhouses, the ease of large-scale protein production expansion and the absence of risk of contamination by human pathogens, the use of plants as a system for expression of exogenous proteins is a traditional method for vaccine production. It has been proposed as an inexpensive alternative to the system (Walmsley et al ., 2000; Ma et al ., 2003; Howard, 2005). WHO approval for plant-based vaccine production demonstrates that the use of transgenic plants is developing as a promising tool for controlling human and livestock diseases (Lau et al. al ., 2009).

식물 기초 백신은 고등생물인 식물을 이용하기 때문에 진핵생물에서 일어나는 번역 후 변형이 가능하다는 점에서 미생물 유래 백신 생산보다 유리한 점을 가지고 있으며, 생물 간의 차이에 따른 면역성 저하 문제를 해결할 수 있다(Kong et al., 2001). 식물 기초 백신과 생물 약제는 발효 작용, 정제 과정 또는 저온 저장 및 멸균 수송 등과 연관된 비용이 들지 않는 장점이 있다(Mitchell et al., 1993). 또한 다른 재조합 백신들에 비해 식물 조직 내에서 발현되어 소화 기관의 pH 등의 조건으로인한 항원 단백질의 손상 가능성을 줄일 수 있고, 대량생산이 가능하며 일정한 환경 내에서 생산이 가능하다(Daniell et al., 2001). 전통 농업의 대량생산 체계를 통해 많은 양의 항원을 저렴하게 생산할 수 있고, 별도 비용의 투자 없이도 개발도상국에 적용이 가능하다는 장점이 있다. 현재 토마토, 감자 등 채소들이 백신 생산에 이용되고 있는데, 토마토(Lou et al., 2007; Paz et al., 2009)나 당근(Kim et al., 2011)은 조리 과정 없이 섭취할 수 있다는 점에서 발현시킨 단백질의 손상을 최소화할 수 있고, 감자는 섭취가 용이하기 때문에 많은 연구가 진행되고 있다(Kong et al., 2001; Thanavala et al., 2005). 잎을 섭취하는 양상추나 시금치 등의 식물들도 재조합 백신 개발의 대상으로 연구가 진행되고 있으며, 옥수수 같은 식물 종자를 이용한 형질전환 백신은 가공과 섭취가 편리하며 건조된 종자이기 때문에 환경에 둔감하다는 장점이 있어 연구가 진행되고 있다(Yoshikazu et al., 2008; Matsumoto et al., 2009). 하지만, 형질전환 식물체 안에서 발현되는 낮은 항원 발현양은 면역 유도가 어렵기 때문에 백신의 가치가 저하되고(Modelska et al., 1998), 섭취 요구량이 증가되며, 다른 체계에 비해 개발과 생산기간이 길다는 단점이 있다. 이에 대한 개선으로 식물체 내 단백질의 축적 또는 뿌리, 잎을 통한 분비 유도 체계나 엽록체, 바이러스 형질전환 체계 이용, 세포 및 조직 배양을 통한 대량생산 등의 방법으로 수확량 및 발현양의 증가와 재배 기간 단축을 유도하려는 연구가 진행되고 있다(Fischer et al., 2004; Edward, 2010; Kim, 2012; Lee, 2013).Plant-based vaccines have advantages over microbial vaccine production in that post-translational modifications that occur in eukaryotes are possible because they use plants, which are higher organisms, and can solve the problem of reduced immunity due to differences between organisms (Kong et al. al ., 2001). Plant-based vaccines and biopharmaceuticals have the advantage of no costs associated with fermentation, purification, or cold storage and sterile transport (Mitchell et al. al ., 1993). In addition, compared to other recombinant vaccines, it is expressed in plant tissues, so it is possible to reduce the possibility of damage to antigen proteins due to conditions such as pH of the digestive organs, and mass production is possible and production is possible in a certain environment (Daniell et al. al ., 2001). Through the mass production system of traditional agriculture, a large amount of antigen can be produced inexpensively, and it has the advantage that it can be applied to developing countries without additional cost investment. Currently, vegetables such as tomatoes and potatoes are used for vaccine production, and tomatoes (Lou et al. al ., 2007; Paz et al ., 2009) or carrots (Kim et al.) al ., 2011) can minimize damage to the expressed protein in that it can be consumed without a cooking process, and many studies are being conducted because potatoes are easy to ingest (Kong et al. al ., 2001; Thanvala et al. al ., 2005). Plants such as lettuce and spinach, which consume leaves, are also being studied for the development of recombinant vaccines. For this reason, research is ongoing (Yoshikazu et al ., 2008; Matsumoto et al. al ., 2009). However, the low antigen expression level in the transgenic plant is difficult to induce immunity, so the value of the vaccine is reduced (Modelska et al ., 1998), the intake requirement is increased, and the development and production period is long compared to other systems. There are disadvantages. As an improvement, it is possible to increase the yield and expression amount and shorten the cultivation period by methods such as accumulation of proteins in plants or secretion induction system through roots and leaves, use of chloroplast and virus transformation systems, and mass production through cell and tissue culture. Studies are underway to induce it (Fischer et al. al ., 2004; Edward, 2010; Kim, 2012; Lee, 2013).

담배(Nicotiana tabacum)는 다른 작물 종과 비교하여 높은 생물자원 수확량과 고 수용성 단백질 수준을 갖기 때문에 재조합 백신 생산을 위해 유망한 발현 체계로 활용이 가능하다(G.B. Sunil Kimar et al., 2006; Kumar et al., 2007). 또한 경제적 이점 외에도, 항체, 백신 등을 포함하는 광범위한 치료 단백질을 생산할 수 있는 기능을 갖는다. 이러한 이유로 현재까지, 담배를 이용하여 구제역, 콜레라, severe acute respiratory syndrome(SARS) 바이러스 등에 대한 백신이 개발되고 있지만(Kim, 2012), 적조 조류 방제를 위해 해양 바이러스와 관련된 연구는 아직까지 보고된바 없다.Tobacco ( Nicotiana) tabacum ) can be used as a promising expression system for recombinant vaccine production because it has a high biomass yield and high water-soluble protein level compared to other crop species (GB Sunil Kimar). et al ., 2006; Kumar et al ., 2007). In addition to economic advantages, it also has the ability to produce a wide range of therapeutic proteins, including antibodies, vaccines, and the like. For this reason, so far, vaccines for foot-and-mouth disease, cholera, severe acute respiratory syndrome (SARS) virus, etc. have been developed using tobacco (Kim, 2012), but studies related to marine viruses for the control of red algae have been reported so far. none.

대한민국 공개특허공보 제10-2013-0054478호Republic of Korea Patent Publication No. 10-2013-0054478

이에 본 발명자들은 담배의 형질전환을 통하여, 적조 유발 조류인 H. circularisquama에 특이적으로 감염되어 살조시키는 HcRNAV 34 VLP의 대량 생산을 가능하도록 하였다.Accordingly, the present inventors made it possible to mass-produce HcRNAV 34 VLPs that were specifically infected with H. circularisquama , a red algae-inducing alga, through transformation of tobacco.

따라서 본 발명의 목적은 재조합 HcRNAV 34 VLP(virus like particle) 단백질을 발현하는 형질전환된 담배를 제공하는 것이다.Accordingly, it is an object of the present invention to provide a transformed tobacco expressing recombinant HcRNAV 34 virus like particle (VLP) protein.

상기와 같은 목적을 달성하기 위하여 본 발명은 재조합 HcRNAV 34 VLP(virus like particle) 단백질을 발현하는 형질전환된 담배를 제공한다.In order to achieve the above object, the present invention provides a transformed tobacco expressing recombinant HcRNAV 34 virus like particle (VLP) protein.

본 발명의 형질전환된 담배를 이용하여 재조합 HcRNAV 34 VLP(virus like particle) 단백질을 대량으로 얻어 적조 방제에 유용하게 사용할 수 있다.A large amount of recombinant HcRNAV 34 virus like particle (VLP) protein can be obtained using the transformed tobacco of the present invention, which can be usefully used for controlling red tides.

도 1은 재조합 식물 발현 벡터인 pCAMBIA1304 binary 벡터(A) 및 HcRNAV 34 VLP 유전자로 재조합된 pCAMBIA1304 binary 벡터(B, C)의 모식도를 나타낸 것이다.
도 2는 HcRNAV 34 VLP의 유전자 염기서열을 나타낸 것이다.
도 3은 HcRNAV 34 VLP 유전자로 형질전환된 plasmid DNA를 추출하여 전기영동을 한 결과이다.
도 4는 HcRNAV 34 VLP 유전자로 형질전환된 plasmid DNA를 추출하여 direct PCR(A) 및 restriction endonuclease digestion(B)을 통해 전기영동을 한 결과이다.
도 5는 형질전환된 담배의 생장을 나타낸 사진이다.
도 6은 형질전환된 담배의 유전자 도입 여부를 확인한 결과를 나타낸 것이다.
도 7은 형질전환된 담배의 전사체 발현을 확인하기 위하여 총 RNA를 추출하여 RT-PCR 결과를 나타낸 것이다.
도 8은 형질전환된 담배에 UV 광을 조사한 결과를 나타낸 사진이다.
도 9는 형질전환된 담배의 HcRNAV 34 VLP 발현 여부 확인을 위한 western blot 의 결과를 나타낸 것이다.
도 10은 HcRNAV 34 VLP의 숙주 특이적 살조능을 광학현미경을 이용하여 관찰한 결과를 나타낸 것이다.
도 11은 HcRNAV 34 VLP가 포함된 총 단백질의 살조능(H. circularisquama HU 9433-P)을 관찰한 사진이다.
도 12는 HcRNAV 34 VLP가 포함된 총 단백질의 살조능(H. circularisquama HA 92-1)을 관찰한 사진이다.
도 13은 HcRNAV 34 VLP가 포함된 총 단백질의 살조능(H. circularisquama HY 9423)을 관찰한 사진이다.
도 14는 HcRNAV 34 VLP가 포함된 총 단백질의 살조능(H. circularisquama HU 9436)을 관찰한 사진이다.
도 15는 HcRNAV 34 VLP가 포함된 총 단백질의 살조능(C. vulgaris)을 관찰한 사진이다.
도 16은 HcRNAV 34 VLP가 포함된 총 단백질의 살조능(H. circularisquama HU 9433-P)을 GFP의 녹색형광 발현으로 관찰한 사진이다.
도 17은 H. circularisquama HU 9433-P에 형질전환된 담배로부터 추출된 총단백질을 처리한 후 사멸 정도를 trypan blue 염색법을 이용하여 관찰한 사진이다.
1 shows a schematic diagram of a recombinant plant expression vector, pCAMBIA1304 binary vector (A), and pCAMBIA1304 binary vector (B, C) recombined with HcRNAV 34 VLP gene.
Figure 2 shows the gene base sequence of HcRNAV 34 VLP.
Figure 3 shows the results of electrophoresis by extracting the plasmid DNA transformed with the HcRNAV 34 VLP gene.
Figure 4 is the result of electrophoresis through direct PCR (A) and restriction endonuclease digestion (B) after extracting the plasmid DNA transformed with the HcRNAV 34 VLP gene.
5 is a photograph showing the growth of transformed tobacco.
6 shows the results of confirming whether the transgenic tobacco gene is introduced.
7 shows the results of RT-PCR by extracting total RNA in order to confirm the expression of the transcriptome of the transformed tobacco.
8 is a photograph showing the result of irradiating UV light to the transformed tobacco.
9 shows the results of western blot for confirming the expression of HcRNAV 34 VLP in the transformed tobacco.
10 shows the results of observing the host-specific algicidal activity of HcRNAV 34 VLP using an optical microscope.
11 is a photograph of observing the algicidal activity (H. circularisquama HU 9433-P) of the total protein containing HcRNAV 34 VLP.
12 is a photograph of observing the algicidal activity (H. circularisquama HA 92-1) of total protein containing HcRNAV 34 VLP.
Figure 13 is a photograph of observing the apoptosis (H. circularisquama HY 9423) of the total protein containing HcRNAV 34 VLP.
14 is a photograph of observing the algae activity (H. circularisquama HU 9436) of the total protein containing HcRNAV 34 VLP.
Figure 15 is a photograph of observing the apoptosis (C. vulgaris ) of the total protein containing HcRNAV 34 VLP.
Figure 16 is a photograph of observing the algal ability (H. circularisquama HU 9433-P) of the total protein containing HcRNAV 34 VLP by green fluorescence expression of GFP.
17 is a photograph of the degree of apoptosis observed using trypan blue staining after treatment with total protein extracted from tobacco transformed into H. circularisquama HU 9433-P.

재료준비material preparation

1. 식물재료1. plant material

식물 형질전환을 위해서 담배(Nicotiana tabacum cv. Havana)를 사용하였다. 발아를 위해 종자는 70 % ethanol로 30 초간 표면을 1차적으로 세척한 후, 멸균수로 3 회 세척하여, 4 % NaOCl로 30 분간 2차 소독한 후 다시 멸균수를 이용하여 3 회 세척하여 준비하였다. 멸균 소독한 담배 종자는 MS 배지 (표 1, Murashige & Skoog, 1962)에 파종하여 25±1℃, 16시간의 광조건 및 8시간의 암조건으로 3-4 주간 무균 발아시켰다. 종자 발아 후, 본엽이 6 장 이상 된 건강한 담배의 잎을 실험에 이용하였다.
Tobacco (Nicotiana) for plant transformation tabacum cv. Havana) was used. For germination, the seeds are prepared by first washing the surface with 70% ethanol for 30 seconds, then washing 3 times with sterile water, sterilizing the seeds with 4% NaOCl for 30 minutes, and then washing again with sterile water 3 times. did. The sterilized tobacco seeds were sown in MS medium (Table 1, Murashige & Skoog, 1962) and aseptically germinated for 3-4 weeks at 25±1° C., light conditions for 16 hours, and dark conditions for 8 hours. After seed germination, healthy tobacco leaves with 6 or more true leaves were used for the experiment.

MS 배지MS medium Componentcomponent Amount to add per 1 literAmount to add per 1 liter SucroseSucrose 30 g30 g Mes-monohydrateMes-monohydrate 0.5 g0.5 g VitaminVitamin 4.4 g4.4 g pH 5.7pH 5.7

2. 조류2. Birds

해수종 Heterocapsa circularisquama HU 9433-P, HA 92-1, HY 9423, HU 9436 및 담수종 Chlorella vulgaris는 유해조류 제어융합연구단에서 분양 받아 사용하였다. 12시간의 광조건 및 12시간의 암조건으로 H. circularisquama는 f/2 media (표 2 내지 4, Guillard & Ryther, 1962)를 C. vulgaris는 BBM (Bold's Basal Medium, 표 5 및 6)을 이용하여 증식시켰다.
seawater species Heterocapsa circularisquama HU 9433-P, HA 92-1, HY 9423, HU 9436 and freshwater species Chlorella vulgaris was purchased and used by the Center for Convergence Research on Noxious Algae. Under light conditions of 12 hours and dark conditions of 12 hours, H. circularisquama was f/2 media (Tables 2 to 4, Guillard & Ryther, 1962) and C. vulgaris was BBM (Bold's Basal Medium, Tables 5 and 6). proliferated.

f/2 mediumf/2 medium Componentcomponent Stock solution (200 ml)Stock solution (200 ml) Final concentrationfinal concentration Amount to add per 1 literAmount to add per 1 liter NaNo3 NaNo 3 15 g15 g 0.883 nM0.883 nM 1 ml1 ml NaH2PO4 , 2H2ONaH 2 PO 4 , 2H 2 O 1.13 g1.13 g 0.036 mM0.036 mM 1 ml1 ml Trace Elements SolutionTrace Elements Solution 표 3Table 3 1 ml1 ml Vitamin mix
Solution
Vitamin mix
Solution
표 4Table 4 0.1 ml0.1 ml
Sea watersea water -- -- up to 1 Lup to 1 L pH 8.0pH 8.0

Trace Elements SolutionTrace Elements Solution Componentcomponent Stock solution (200 ml)Stock solution (200 ml) Final concentrationfinal concentration Na2 ,EDTANa 2 , EDTA 0.832 g0.832 g 0.012 mM0.012 mM FeCl3 ,6H2OFeCl 3 , 6H 2 O 0.63 g0.63 g 0.017 mM0.017 mM CuSO4 ,5H2OCuSO 4 , 5H 2 O 0.002 g0.002 g 0.04 uM0.04 uM ZnSO4 ,7H2OZnSO 4 , 7H 2 O 0.004 g0.004 g 0.076 uM0.076 uM CoCl2 ,6H2OCoCl 2 , 6H 2 O 0.002 g0.002 g 0.042 uM0.042 uM MnCl2 ,4H2OMnCl 2 , 4H 2 O 0.036 g0.036 g 0.91 uM0.91 uM Na2MoO4,2H2ONa 2 MoO 4, 2H 2 O 0.0012 g0.0012 g 0.025 uM0.025 uM

Vitamin Mix SolutionVitamin Mix Solution Componentcomponent StockStock solutionsolution (200 (200 mlml )) Cyanocobalamin (Vitamin B12)Cyanocobalamin (Vitamin B12) 0.001 g0.001 g Thiamine HCl (Vitamine B1)Thiamine HCl (Vitamine B1) 0.2 g0.2 g BiotinBiotin 0.001 g0.001 g

Bold's Basal mediumBold's Basal medium Componentcomponent Stock solution (500 ml)Stock solution (500 ml) Amount to add per 1 literAmount to add per 1 liter KH2PO4 KH 2 PO 4 8.75 g8.75 g 10 ml10 ml CaCl2 ,2H2OCaCl 2 , 2H 2 O 1.25 g1.25 g 10 ml10 ml MgSO4 ,7H2OMgSO 4 , 7H 2 O 3.75 g3.75 g 10 ml10 ml NaNO3 NaNO 3 12.5 g12.5 g 10 ml10 ml K2HPO4 K 2 HPO 4 3.75 g3.75 g 10 ml10 ml NaClNaCl 1.25 g1.25 g 10 ml10 ml Na2EDTA,2H2O
KOH
Na 2 EDTA,2H 2 O
KOH
5 g
3.1 g
5 g
3.1 g
1 ml1 ml
FeSO4 ,7H2O
H2SO4 (concentrated)
FeSO 4 , 7H 2 O
H 2 SO 4 (concentrated)
2.49 g
0.5 ml
2.49 g
0.5 ml
1 ml1 ml
Trace Metal SolutionTrace Metal Solution 표 6Table 6 1 ml1 ml H3BO3 H 3 BO 3 5.75 g5.75 g 0.7 ml0.7 ml pH 6.8pH 6.8

Trace Metal SolutionTrace Metal Solution Componentcomponent Stock solution (1 L)Stock solution (1 L) H3BO3 H 3 BO 3 2.86 g2.86 g MnCl2 ,4H2OMnCl 2 , 4H 2 O 1.81 g1.81 g ZnSO4 ,7H2OZnSO 4 , 7H 2 O 0.222 g0.222 g Na2MoO4 ,2H2ONa 2 MoO 4 , 2H 2 O 0.390 g0.390 g CuSO4 ,5H2OCuSO 4 , 5H 2 O 0.079 g0.079 g Co(NO3)2,6H2OCo(NO 3 ) 2, 6H 2 O 0.0494 g0.0494 g

3. 식물 형질전환용 균주와 벡터3. Strain and vector for plant transformation

본 실험에서 사용된 Escherichia coli (E. coli) strain DH5α는 DH5α Chemically Competent E. coli (Enzynomics, Korea)를 구매하여 재조합 plasmid의 형질전환 숙주로 이용하였다. 증식을 위하여 LB 배지 (Bacto-Trypton 10 g/L, Bacto-Yeast Extract 5 g/L, NaCl 10 g/L)를 이용하였다. 식물체에 형질전환하기 위해 사용한 Agrobacterium tumefaciens strain GV3101은 100 ㎎/L의 rifampicin과 50 ㎎/L의 gentamycin이 각각 포함된 YEP 배지 (Bacto-Pepton 10 g/L, Bacto-Yeast Extract 10 g/L, NaCl 5 g/L)에서 28±1℃ , 암상태에서 2-3 일간 배양하여 이용하였다. 재조합 식물 발현 벡터는 pCAMBIA1304 binary 벡터를 이용하였다 (도 1A).
Escherichia used in this experiment coli ( E. coli ) strain DH5α was purchased from DH5α Chemically Competent E. coli (Enzynomics, Korea) and used as a transforming host for recombinant plasmid. For proliferation, LB medium (Bacto-Trypton 10 g/L, Bacto-Yeast Extract 5 g/L, NaCl 10 g/L) was used. Agrobacterium used to transform plants tumefaciens strain GV3101 was 28± It was used after culturing for 2-3 days at 1°C and in the dark. As a recombinant plant expression vector, pCAMBIA1304 binary vector was used (FIG. 1A).

<< 실험예Experimental example 1> 1>

HcRNAV34HcRNAV34 VLPVLP 의 벡터 구축 및 형질전환vector construction and transformation of

<1-1> 식물 형질전환용 벡터 구축<1-1> Construction of vector for plant transformation

본 발명에 사용되는 RNA 바이러스인 HcRNAV34의 VLP 유전자 염기서열은 Genebank (Assession No.; AB218608)를 바탕으로 인공 합성된 유전자 clone(도 2)을 유해조류 제어융합연구단에서 분양받아 사용하였다. HcRNAV34 VLP 유전자 발현을 위한 식물체 형질전환 벡터는 pCAMBIA1304 binary 벡터에 HcRNAV34 VLPHcRNAV34 VLP 유전자에 GFP를 결합시킨 두 가지 형태로 제작하였다. 이 때 사용한 primer는 34-Bgl -F (5'-GAA GAT CTA TGA CCC GCC C-3'), 34-Spe -R (5'-GGA CTA GTA GCA GCC ATC AGA G-3')와 34-BstE -R (5'-GGG TTA CCC AGC AGC CAT CAG-3')을 Bionics(Korea)에서 제작하여 사용하였다. PCR 조건은 95℃ 에서 5 분 동안 변성시킨 후, 95℃ 30 초, 60℃ 45 초, 72℃ 1 분 조건으로 35 주기를 수행하고 72℃ 에서 5 분 동안 반응시켜준 후 종결하였다. HcRNAV34 VLP 유전자의 증폭은 1% agarose gel 전기영동을 수행하여 확인하였다. 그 후 증폭된 HcRNAV34 VLP 유전자와 pCAMBIA1304 binary 벡터를 T4 ligase (Takara, Japan)를 이용하여 4℃ 에서 overnight 동안 ligation 시켰다.
For the VLP gene sequence of HcRNAV34, an RNA virus used in the present invention, an artificially synthesized gene clone (FIG. 2) based on Genebank (Assession No.; AB218608) was purchased from the Center for Harmful Algae Control Convergence and used. HcRNAV34 VLP plant transformation vector for gene expression in HcRNAV34 pCAMBIA1304 binary vector Two types of VLP and HcRNAV34 VLP genes were prepared by binding GFP. The primers used at this time were 34- Bgl -F (5'-GAA GAT CTA TGA CCC GCC C-3'), 34- Spe I -R (5'-GGA CTA GTA GCA GCC ATC AGA G-3') and 34- BstE Ⅱ- R (5'-GGG TTA CCC AGC AGC CAT CAG-3') was manufactured by Bionics (Korea) and used. PCR conditions were denatured at 95° C. for 5 minutes, followed by 35 cycles of 95° C. 30 seconds, 60° C. 45 seconds, and 72° C. 1 minute conditions, followed by reaction at 72° C. for 5 minutes, and then terminated. HcRNAV34 The amplification of the VLP gene was confirmed by performing 1% agarose gel electrophoresis. Then, the amplified HcRNAV34 VLP gene and the pCAMBIA1304 binary vector were ligated overnight at 4°C using T4 ligase (Takara, Japan).

<1-2> <1-2> EscherichiaEscherichia colicoli (E.(E. colicoli ) 형질전환) transformation

그 후, 얼음 위에서 lysate와 DH5α competent cell을 부드럽게 혼합하여 30 분 동안 반응시켰다. 42℃ 에서 30 초 동안 heat-shock을 가한 후 바로 얼음에서 2 분 동안 안정화시켰다. 37℃ 에서 예열된 S.O.C.(Super Optimal broth with Catabolite repression) media를 첨가하고 진탕 배양기를 이용하여 180-200 rpm으로 1 시간 진탕 배양 후 세포 부유액을 도말하여 37℃ 에서 16-18 시간 동안 배양하였다. 형질전환 된 세포주를 선별하기 위해, 배양 후 생성된 colony에서 DNA를 추출하여 direct colony PCR과 restriction endonuclease digestion을 수행하여 유전자 도입 여부를 확인하였다.
After that, the lysate and the DH5α competent cells were gently mixed on ice and reacted for 30 minutes. After heat-shock was applied at 42°C for 30 seconds, it was immediately stabilized on ice for 2 minutes. SOC (Super Optimal broth with Catabolite repression) media preheated at 37° C. was added, and then cultured with shaking at 180-200 rpm for 1 hour using a shaking incubator, and then the cell suspension was smeared and cultured at 37° C. for 16-18 hours. To select the transformed cell line, DNA was extracted from the colony generated after culture, and direct colony PCR and restriction endonuclease digestion were performed to check whether the gene was introduced.

<1-3> <1-3> AgrobacteriumAgrobacterium tumefacienstumefaciens 형질전환 transformation

재조합 된 식물체 발현 벡터는 Freeze-Thaw 방법 (Horsch et al., 1985)을 이용하여 A. tumefaciens GV3101에 도입시켰다. A. tumefaciens GV3101의 배양을 위해 rifampicin (100 ㎎/L), gentamycin (50 ㎎/L)이 포함된 YEP 배지에서 28±1℃, 암조건으로 2-3 일간 진탕 배양하여 O.D.600의 값을 약 0.7로 맞춰 이용하였다. 5000 rpm, 4℃, 5 분의 조건으로 원심분리 하여 상층액을 제거하고 0.15 M NaCl 1 에 녹인 후, 5000 rpm, 4℃, 5 분에서 다시 원심분리 후, 20 mM CaCl2 200 에 녹이고 재조합 된 plasmid DNA 10 ㎕를 첨가하여 얼음 상에서 30 분 동안 반응 시켰다. 반응 후 액체질소에 1 분 동안 두었다가 37℃ water bath에 다시 5 분 동안 둔 후 YEP 배지를 1 ㎖ 첨가하여 28℃ 에서 2-4 시간 동안 진탕 배양시켰다. 3000 rpm에서 2 분 동안 spin down 시켜서 상층액을 제거한 후, YEP 액체배지 100 ㎕ 로 재부유 시켜 rifampicin (100 ㎎/L), gentamycin (50 ㎎/L), kanamycin (50 ㎎/L)이 포함된 YEP 고체배지에 도말하여 2-3 일 동안 28℃ 에서 배양하였다. 형질전환 된 세포주는 direct colony PCR을 통하여 1차 선별하였고, PCR을 통해 선별된 colony의 DNA를 추출하여 sequencing (Solgent, Korea)과 restriction endonuclease digestion을 수행하여 형질전환을 확인하였다.
The recombinant plant expression vector was introduced into A. tumefaciens GV3101 using the Freeze-Thaw method (Horsch et al ., 1985). For the culture of A. tumefaciens GV3101, in YEP medium containing rifampicin (100 mg/L) and gentamycin (50 mg/L) at 28±1°C, dark conditions, shaking for 2-3 days, the value of OD 600 was approximately 0.7 was used. Remove the supernatant by centrifugation at 5000 rpm, 4°C, 5 minutes, dissolved in 0.15 M NaCl 1, centrifuged again at 5000 rpm, 4°C, 5 minutes, dissolved in 20 mM CaCl 2 200 and recombined 10 μl of plasmid DNA was added and reacted on ice for 30 minutes. After the reaction, it was placed in liquid nitrogen for 1 minute and then placed in a 37°C water bath for 5 minutes, then 1 ml of YEP medium was added and incubated with shaking at 28°C for 2-4 hours. After spin down at 3000 rpm for 2 minutes to remove the supernatant, resuspend in 100 μl of YEP liquid medium to contain rifampicin (100 mg/L), gentamycin (50 mg/L), and kanamycin (50 mg/L). It was spread on YEP solid medium and incubated at 28°C for 2-3 days. The transformed cell line was first selected through direct colony PCR, and the DNA of the colony selected through PCR was extracted and transformation was confirmed by sequencing (Solgent, Korea) and restriction endonuclease digestion.

<< 실험예Experimental example 2> 2>

LeafLeaf -- diskdisk 법을 이용한 by law AgrobacteriumAgrobacterium 매개 담배 형질전환 mediated tobacco transformation

담배 형질전환을 위해 Agrobacterium을 매개로 한 leaf-disk 형질전환 방법 (Odel et al., 1987)을 이용하여 담배를 형질전환 시켰다. 무균 상태에서 키운 건강한 담배(N. tabacum cv. Havana) 잎의 잎맥을 제거한 후 0.7-1.0 ㎠ 정도의 절편을 만들어 형질전환에 이용하였다. GV3101 세포주를 hygromycin (50 ㎎/L), rifampicin (100 ㎎/L) gentamycin (50 ㎎/L)이 첨가된 배지에서 2-3 일 동안 28℃ 에서 배양하여 O.D.600의 값을 약 0.7로 맞춘 후, 원심분리 하여 MS 액체배지로 1/20로 희석하여 사용하였다. MS 배지에 담배 잎 절편을 30 분 동안 침지시킨 후, 잎 절편을 3MM paper 위에 가볍게 눌러 배지를 제거한 후 공동 배양 배지인 TCM (Transformation Co-Cultivation media, 표 7) 고체배지에 잎 윗면이 배지에 닿도록 치상하여 2-3 일 동안 26±1℃ 의 암상태에서 배양하였다. 2-3 일 후, 잎 절편에 남아있는 Agrobacterium을 제거하기 위해 MS 액체배지에 1 % cefotaxime sodium (100 ㎎/㎖)을 첨가하여 잎 절편을 2-3 회 세척하였다. 세척된 잎 절편은 MS 액체배지에서 다시 한 번 세척한 후, 3MM paper 위에서 가볍게 건조시켜 cefotaxime sodium (250 ㎎/L)이 포함된 신초 유도 배지인 TSIM (Transgenic Shoot Induction media)Ⅰ(표 8) 고체배지에 치상하여 7 일 동안 26±1℃ growth chamber에서 배양시킨 후, cefotaxime sodium (250 ㎎/L)과 hygromycin (50 ㎎/L)이 포함된 TSIMⅡ(표 9) 고체배지에 옮겨 계대배양을 통하여 신초를 유도하였다. 유도된 신초는 뿌리 유도 배지인 TRM (Transgenic Root Induction media, 표 10) 고체배지에 치상하여 뿌리를 유도한 후, 순화시켜서 온실에서 재배하였다.
For tobacco transformation, tobacco was transformed using the leaf-disk transformation method mediated by Agrobacterium (Odel et al ., 1987). After removing the veins of healthy tobacco (N. tabacum cv. Havana) leaves grown under aseptic conditions, sections of about 0.7-1.0 cm2 were made and used for transformation. The GV3101 cell line was cultured in a medium supplemented with hygromycin (50 mg/L), rifampicin (100 mg/L) and gentamycin (50 mg/L) for 2-3 days at 28°C to adjust the value of OD 600 to about 0.7. which was used by centrifugation it was diluted with MS liquid medium to 1/20. After immersing the tobacco leaf slices in MS medium for 30 minutes, gently press the leaf slices on 3MM paper to remove the medium, and then place the top surface of the leaf in TCM (Transformation Co-Cultivation media, Table 7) solid medium, which is a co-culture medium, in contact with the medium. It was cultured in the dark at 26±1°C for 2-3 days. After 2-3 days, 1% cefotaxime sodium (100 mg/ml) was added to MS broth to remove Agrobacterium remaining in the leaf sections, and the leaf sections were washed 2-3 times. The washed leaf sections are washed once again in MS liquid medium, and then lightly dried on 3MM paper, and TSIM (Transgenic Shoot Induction media) I (Table 8) solid, which is a shoot induction medium containing cefotaxime sodium (250 mg/L). After culturing in a growth chamber at 26±1° C. for 7 days on the medium, transferred to TSIMⅡ (Table 9) solid medium containing cefotaxime sodium (250 mg/L) and hygromycin (50 mg/L) and subcultured New shoots were induced. The induced shoots were planted in a TRM (Transgenic Root Induction media, Table 10) solid medium, which is a root induction medium, to induce roots, and then acclimatized and cultivated in a greenhouse.

TCM 배지TCM medium Componentcomponent Stock solutionStock solution Final concentrationfinal concentration Amount to add per 1 literAmount to add per 1 liter MS liqiudMS liqiud -- -- 1 L1 L Phyto agarPhyto agar -- -- 0.8 %0.8% Indole Acetic Acid (IAA)Indole Acetic Acid (IAA) 2 mM2 mM 0.5 uM0.5 uM 250 ul250 ul 6-Benzylaminopurine (BAP)6-Benzylaminopurine (BAP) 4 mM4 mM 2 uM2 uM 500 ul500 ul

TSIMⅠ 배지TSIMⅠ Badge Componentcomponent StockStock solutionsolution FinalFinal concentrationconcentration AmountAmount toto addadd perper 1 One literliter MS liqiudMS liqiud -- -- 1 L1 L Phyto agarPhyto agar -- -- 0.8 %0.8% Indole Acetic Acid (IAA)Indole Acetic Acid (IAA) 2 mM2 mM 0.5 uM0.5 uM 250 ul250 ul 6-Benzylaminopurine (BAP)6-Benzylaminopurine (BAP) 4 mM4 mM 2 uM2 uM 500 ul500 ul Cefatoxime SodiumCefatoxime Sodium 250 mg/ml250 mg/ml 500 mg/L500 mg/L 2 ml2 ml

TSIMⅡ 배지TSIMⅡ Badge Componentcomponent Stock solutionStock solution Final concentrationfinal concentration Amount to add per 1 literAmount to add per 1 liter MS liqiudMS liqiud -- -- 1 L1 L Phyto agarPhyto agar -- -- 0.8 %0.8% Indole Acetic Acid (IAA)Indole Acetic Acid (IAA) 2 mM2 mM 0.5 uM0.5 uM 250 ul250 ul 6-Benzylaminopurine (BAP)6-Benzylaminopurine (BAP) 4 mM4 mM 2 uM2 uM 500 ul500 ul Cefatoxime SodiumCefatoxime Sodium 250 mg/ml250 mg/ml 500 mg/L500 mg/L 2 ml2 ml HygromycinHygromycin 50 mg/ml50 mg/ml 100 mg/L100 mg/L 2 ml2 ml

TRM 배지TRM medium Componentcomponent StockStock solutionsolution FinalFinal concentrationconcentration AmountAmount toto addadd perper 1 One literliter MS liqiudMS liqiud -- -- 1 L1 L Phyto agarPhyto agar -- -- 0.8 %0.8% 1-Naphthalene acetic acid (NAA)1-Naphthalene acetic acid (NAA) 10 mM10 mM 0.5 uM0.5 uM 50 ul50 ul Cefatoxime SodiumCefatoxime Sodium 250 mg/ml250 mg/ml 500 mg/L500 mg/L 2 ml2 ml HygromycinHygromycin 50 mg/ml50 mg/ml 100 mg/L100 mg/L 2 ml2 ml

<< 실험예Experimental example 3> 3>

HcRNAV34HcRNAV34 VLPVLP 유전자 담배 형질전환체 분석 Genetic Tobacco Transformant Analysis

<3-1> 형질전환 식물체 <3-1> Transgenic plants genomicgenomic DNADNA 추출 및 extraction and PCRPCR 분석 analysis

담배로부터 genomic DNA는 잎 조직 50-100 을 1.7 ㎖ EP tube에 넣고 액체질소 상에서 플라스틱 막자를 이용하여 분쇄한 후 추출하였다. DNA 추출 용액 (1 M Tris-HCl, pH 7.5, 5 M NaCl, 0.5 M EDTA, 20 % SDS, 10 % RNase (10 ㎎/㎖, Takara, Japan)) 400 ㎕를 넣고 잘 혼합한 후, 60℃ 에서 10 분간 반응 후, 4℃, 13,000 rpm에서 15 분 동안 원심분리 하여 상층액을 새로운 EP tube로 옮기고, 상층액과 1:1 비율로 Phenol/Chloroform/Isoamylalcohol (25:24:1)을 첨가하고 혼합하여 4℃, 13,000 rpm에서 10 분 동안 원심분리 하였다. 상층액을 새로운 tube로 옮겨 isopropanol과 1:1 비율로 혼합하였다. 얼음에서 30 분 동안 반응시킨 후, 4℃, 13,000 rpm에서 20 분 동안 원심분리 하여 상층액을 제거하고, 미리 냉각시킨 70 % ethanol과 95 % ethanol로 세척하여 남은 수분을 제거한 후, 상온에서 건조시켜 pellet을 형성하였다. 3차 멸균수로 pellet을 녹인 후, 1 % agarose gel 전기영동을 수행하여 확인하였다.Genomic DNA from tobacco was extracted after putting 50-100 leaf tissue in a 1.7 ㎖ EP tube and pulverizing it in liquid nitrogen using a plastic pestle. Add 400 μl of DNA extraction solution (1 M Tris-HCl, pH 7.5, 5 M NaCl, 0.5 M EDTA, 20 % SDS, 10 % RNase (10 mg/ml, Takara, Japan)) and mix well, then at 60°C After 10 minutes of reaction at 4℃, centrifuged at 13,000 rpm for 15 minutes, the supernatant was transferred to a new EP tube, and Phenol/Chloroform/Isoamylalcohol (25:24:1) was added in a 1:1 ratio with the supernatant. The mixture was centrifuged at 4°C and 13,000 rpm for 10 minutes. The supernatant was transferred to a new tube and mixed with isopropanol in a 1:1 ratio. After reaction on ice for 30 minutes, centrifugation was performed at 4°C and 13,000 rpm for 20 minutes to remove the supernatant, washed with pre-cooled 70% ethanol and 95% ethanol to remove remaining moisture, and dried at room temperature. A pellet was formed. After dissolving the pellet with tertiary sterile water, 1% agarose gel electrophoresis was performed to confirm.

Genomic DNA PCR은 형질전환체에서 추출한 genomic DNA를 주형으로 사용하였고, primer는 HcRNAV34 VLP 유전자에 대해 특이적으로 제작된 34-F (5'-ATG ACC CGC CCG CTG-3'), 34-R (5'-GCT CTG ATG GCT GCT TGA-3')과 GUS 유전자에 특이적으로 제작된 GUS-R (5'-CTT GTT TGC CTC CCT GCT-3')을 이용하였다. PCR 조건은 95 에서 5 분 동안 변성시킨 후, 95℃ 30 초, 60℃ 45 초, 72℃ 1 분 조건으로 35 주기를 수행하고, 추가적으로 72℃ 에서 5 분 동안 반응시켜준 후 종결하였다.
For genomic DNA PCR, genomic DNA extracted from transformants was used as a template, and the primer was HcRNAV34. To a specific 34-F (5'-ATG ACC CGC CCG CTG-3 '), 34-R (5'-GCT CTG ATG GCT GCT TGA-3') and GUS gene hereafter for VLP gene specifically to The prepared GUS-R (5'-CTT GTT TGC CTC CCT GCT-3') was used. PCR conditions were denatured at 95°C for 5 minutes, followed by 35 cycles of 95°C 30 seconds, 60°C 45 seconds, and 72°C 1 minute conditions, and additionally reacted at 72°C for 5 minutes and then terminated.

<3-2> 형질전환 식물체 <3-2> Transgenic plants totaltotal RNARNA 추출 및 extraction and ReverseReverse -- TranscriptionTranscription Polymerase polymerase ChainChain Reactionreaction 분석 analysis

Total RNA는 담배 잎 조직 50-100 ㎎을 액체질소를 이용하여 분쇄한 후 1 ㎖ Tri-reagent (Molecular Research Center (MRC) Inc. USA)를 넣고 5 분 동안 실온에서 반응시킨 후 추출하였다. 0.2 ㎖ chloroform을 넣고 15 초 동안 혼합한 후 15 분 동안 실온에서 반응시켰다. 4℃, 13,000 rpm에서 10 분 동안 원심분리 시킨 후 상층액을 새 tube로 옮겨 0.5 ㎖ isopropanol을 더해 10 분 동안 반응시킨 후, 4℃, 13,000 rpm에서 10 분 동안 원심분리 하여 ethanol을 제거하였다. 5 분 동안 공기 중에서 건조 후 1% DEPC (Diethyl Pyrocarbonate)가 처리된 멸균수에 녹인 후 -80℃ deep freezer에 보관하여 사용하였다.Total RNA was extracted after 50-100 mg of tobacco leaf tissue was pulverized using liquid nitrogen, 1 ml of Tri-reagent (Molecular Research Center (MRC) Inc. USA) was added, and reacted at room temperature for 5 minutes. 0.2 ml of chloroform was added, mixed for 15 seconds, and then reacted at room temperature for 15 minutes. After centrifugation at 4°C and 13,000 rpm for 10 minutes, the supernatant was transferred to a new tube, 0.5 ml isopropanol was added, and reacted for 10 minutes, followed by centrifugation at 4°C, 13,000 rpm for 10 minutes to remove ethanol. After drying in air for 5 minutes, it was dissolved in sterile water treated with 1% DEPC (Diethyl Pyrocarbonate) and stored in a deep freezer at -80°C for use.

Reverse transcription-Polymerase Chain Reaction (RT-PCR) 수행 시, total RNA 500 ng을 주형으로 사용하였으며, total RNA로부터의 first strand 합성 (reverse transcription)은 RNA를 동일한 양으로 정량한 후, First strand cDNA synthesis kit (LeGene, USA)를 이용하여 65℃ 에서 5 분, 42℃ 에서 65 분, 95℃ 에서 10 분 조건에서 first strand cDNA로 역전사시켰다. 합성된 단일가닥 cDNA를 주형으로 사용하여 HcRNAV34 VLP 유전자를 증폭시키기 위해 2차 PCR을 수행하였으며, PCR 조건은 95℃ 에서 5 분 동안 변성시킨 후, 95℃ 에서 30 초, 60℃ 에서 45 초, 72℃ 에서 1 분 조건으로 27 주기를 수행하고, 추가적으로 72℃ 에서 5 분 동안 반응시켜준 후 종결하였다. PCR 산물은 1 % agarose gel 상에서 확인하였으며, 이때 사용된 primer는 R34-F (5'-GAC GAA TGG TGG TAA CAC GAA-3')와 R34-R (5'-GGG ACC GTG TAA ACA TTG G-3'), actin-F (5'-CCA AAG GCC AAT AGA GAG AAG-3')와 actin-R (5'-CAG CTT CCA TTC CAA CAA GTG-3')을 이용하였다.
When performing Reverse Transcription-Polymerase Chain Reaction (RT-PCR), 500 ng of total RNA was used as a template. For first strand synthesis from total RNA (reverse transcription), the RNA was quantified in the same amount and then the First strand cDNA synthesis kit was used. (LeGene, USA) was used to reverse transcribe first strand cDNA at 65°C for 5 min, 42°C for 65 min, and 95°C for 10 min. HcRNAV34 using synthesized single-stranded cDNA as a template Secondary PCR was performed to amplify the VLP gene, and PCR conditions were denatured at 95°C for 5 minutes, followed by 27 cycles of 30 seconds at 95°C, 45 seconds at 60°C, and 1 minute at 72°C. , was further reacted at 72 °C for 5 minutes and then terminated. The PCR product was confirmed on 1% agarose gel, and the primers used were R34-F (5'-GAC GAA TGG TGG TAA CAC GAA-3') and R34-R (5'-GGG ACC GTG TAA ACA TTG G-). 3'), actin-F (5'-CCA AAG GCC AAT AGA GAG AAG-3') and actin-R (5'-CAG CTT CCA TTC CAA CAA GTG-3') were used.

<3-3> 형질전환 식물체 <3-3> Transgenic plants GFPGFP 발현 분석 Expression analysis

형질전환체의 GFP (Green Fluorescence Protein) 발현은 형광현미경 (OLYMPUS, Japan)을 이용하여 관찰하였다. GFP 유전자가 도입된 식물체에 형광현미경 하에서 UV (360-400 nm)나 청색광 (440-480 nm)을 조사하여 삽입된 GFP 발현에 의한 녹색 형광을 확인하였다.
GFP (Green Fluorescence Protein) expression of transformants was observed using a fluorescence microscope (OLYMPUS, Japan). Green fluorescence caused by the expression of the inserted GFP was confirmed by irradiating the plants into which the GFP gene was introduced by irradiating UV (360-400 nm) or blue light (440-480 nm) under a fluorescence microscope.

<3-4> 형질전환 식물체 단백질 추출 및 <3-4> transgenic plant protein extraction and westernwestern blotblot 분석 analysis

담배 잎으로부터 총 단백질을 추출하기 위하여 액체질소를 이용하여 분쇄한 담배 조직 100mg 에 단백질 추출 용액 (RIPA buffer (Biosolution, Korea); 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 2 mM EDTA, 0.1 % SDS, 1 % Triton X-100, 0.5 % Sodium deoxycholate; Protease inhibitor cocktail (Roche, Switzerland)) 800 ul 를 넣고 30 초 간격으로 vortex와 얼음에 두는 과정을 5 회 반복하고 4℃, 13,000 rpm에서 10 분 동안 원심분리한 뒤 상층액만 회수하여 BCA 단백질 정량 kit (PIERCE, Belgium)를 사용하여 단백질을 100 ug 으로 정량한 후 -20℃에 보관하며 사용하였으며, western blot 분석에 사용하였다. Western blot 분석을 위하여 추출한 총 단백질을 4x protein sample loading buffer (100 % Glycerol 400 ul/ml, 20 % SDS 200 ul/ml, 1 M Tris, pH 6.8, 10 % Bromo Phenol Blue 10 ul/ml, β-mercaptoethanol 100 ul/ml. dH2O 90 ul/ml)와 혼합하여 5 분 동안 끓여 sample을 준비하였다.Protein extraction solution (RIPA buffer (Biosolution, Korea); 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 2 mM EDTA, 0.1 Add 800 ul of % SDS, 1 % Triton X-100, 0.5 % Sodium deoxycholate; Protease inhibitor cocktail (Roche, Switzerland), and repeat the process 5 times with vortex and ice at 30 second intervals and 10 at 4℃, 13,000 rpm. After centrifugation for a minute, only the supernatant was recovered, the protein was quantified at 100 ug using a BCA protein quantification kit (PIERCE, Belgium), and then stored at -20°C and used for western blot analysis. 4x protein sample loading buffer (100 % Glycerol 400 ul/ml, 20 % SDS 200 ul/ml, 1 M Tris, pH 6.8, 10 % Bromo Phenol Blue 10 ul/ml, β- mercaptoethanol 100 ul/ml. dH 2 O 90 ul/ml) and boiled for 5 minutes to prepare a sample.

단백질 sample은 5 % stacking gel과 12 % separating gel의 acrylamide gel을 이용하였으며 gel running buffer (Glycine 14.4 g, Tris base 3 g, 0.1 % SDS (10%))를 이용하여 MINI-PROTEIN Ⅱ (Bio-rad, USA)로 전기영동을 수행하였다. Gel running 시 stacking gel에서는 100 V로, separating gel에서는 120 V의 전류로 protein sample loading buffer가 gel 하부로 배출될 때까지 전기영동을 수행하였다. 전기영동을 수행한 후 Transfer buffer (Tris. base 3.03 g/l, Glycine 14.4 g/l, Methanol 200 ml/l)를 이용하여 Trans-Blot cell (Bio-rad, USA)에서 62 V로 4 시간 동안 0.45 um PVDF membrane (PALL Life Science, USA)에 blotting한 후 membrane을 Ponceau S solution (Sigma, USA)을 이용, 염색하여 transfer의 여부를 확인하였다. 확인이 완료된 membrane은 3차 증류수로 5 분 동안 2 회 세척한 후, TBS-T (TBS; 100 mM Tris-Cl, pH 7.6, 150 mM NaCl; 0.1 % Tween-20 (DaeJung, Korea))로 15 분씩 3 회 세척하였다. 세척이 종료된 membrane은 5 % skim milk solution (skim milk/TBS-T)을 이용하여 1 시간 동안 blocking을 수행한 후, TBS-T를 이용하여 15 분씩 3 회 세척하였다. 1차 항체는 HcRNAV34 VLP에 대해 특이적으로 제작된 HcRNAV34-R2 항체 (abfrontier, Korea)를 1:1,000의 비율로 5 % skim milk solution에 희석하여 4℃ 에서 overnight 동안 반응시킨 후 membrane을 TBS-T로 15 분씩 3 회 세척하였다. 2차 항체는 polyclonal anti-rabbit 항체 (Abcam, USA)를 1:4,000의 비율로 5% skim milk solution 용액에 희석하여 상온에서 1 시간 동안 반응시키고, 반응 종료 후 TBS-T로 15 분 1 회, 5 분씩 3 회 세척하였다. 모든 반응이 종료된 membrane은 Immobilon Western Chemilum ECL kit (Millipore, USA)를 이용하여 Luminescence analyzer (LAS 3000, Fujifilm, Japan)으로 확인하였다.
For protein sample, acrylamide gel of 5 % stacking gel and 12 % separating gel was used, and MINI-PROTEIN Ⅱ (Bio-rad , USA) and electrophoresis was performed. During gel running, electrophoresis was performed with a current of 100 V in the stacking gel and 120 V in the separating gel until the protein sample loading buffer was discharged to the bottom of the gel. After electrophoresis, transfer buffer (Tris. base 3.03 g/l, Glycine 14.4 g/l, Methanol 200 ml/l) was used in Trans-Blot cell (Bio-rad, USA) at 62 V for 4 hours. After blotting on a 0.45 um PVDF membrane (PALL Life Science, USA), the membrane was stained using Ponceau S solution (Sigma, USA) to confirm transfer. After confirming the membrane was washed twice for 5 minutes with tertiary distilled water, 15 with TBS-T (TBS; 100 mM Tris-Cl, pH 7.6, 150 mM NaCl; 0.1 % Tween-20 (DaeJung, Korea)) It was washed 3 times for each minute. After washing, the membrane was blocked for 1 hour using 5% skim milk solution (skim milk/TBS-T), and then washed 3 times for 15 minutes each using TBS-T. As the primary antibody, the HcRNAV34-R2 antibody (abfrontier, Korea) prepared specifically for HcRNAV34 VLP was diluted in 5% skim milk solution at a ratio of 1:1,000 and reacted overnight at 4°C, and then the membrane was applied with TBS-T. was washed 3 times for 15 minutes each. For the secondary antibody, polyclonal anti-rabbit antibody (Abcam, USA) was diluted in 5% skim milk solution at a ratio of 1:4,000 and reacted at room temperature for 1 hour. After completion of the reaction, TBS-T for 15 minutes once, Washed 3 times for 5 minutes each. The membrane after all the reactions were completed was checked with a luminescence analyzer (LAS 3000, Fujifilm, Japan) using an Immobilon Western Chemilum ECL kit (Millipore, USA).

< < 실험예Experimental example 4> 4> HcRNAV34HcRNAV34 VLPVLP 살조능algae function 분석 analysis

<4-1> <4-1> HcRNAV34HcRNAV34 VLPVLP 의 숙주 특이적 host-specific 살조능algae function 관찰 observe

형질전환체에서 추출한 총 단백질의 숙주 특이적 살조능 관찰을 위해 H. circularisquama HU 9433-P와 HA 92-1, HY 9423, HU 9436 및 C. vulgaris를 이용하였다. 형질전환 식물체에서 추출한 HcRNAV34 VLP가 포함된 총 단백질 (2.5 ug/ul)을 조류 배양액 500 ul에 1 ul (2.5 ug/ul)를 처리하였다. 처리 후, 경과시간 별로 광학현미경 (Nikon, Japan)과 Laser scanning confocal microscope (Carl Zeiss, Germany)를 이용하여 숙주 특이적 살조능을 확인하였다.
H. circularisquama HU 9433-P, HA 92-1, HY 9423, HU 9436, and C. vulgaris were used for the observation of host-specific apoptosis of total proteins extracted from transformants. Total protein (2.5 ug/ul) containing HcRNAV34 VLP extracted from transgenic plants was treated with 1 ul (2.5 ug/ul) in 500 ul of algae culture medium. After treatment, host-specific algicidal activity was confirmed using an optical microscope (Nikon, Japan) and a laser scanning confocal microscope (Carl Zeiss, Germany) for each elapsed time.

<4-2> <4-2> TrypanTrypan BlueBlue 염색법을 이용한 using the dye 살조능algae function 검증 Verification

형질전환체에서 추출한 총 단백질을 H. circularisquama HU 9433-P에 처리하여trypan blue 염색법을 통해 관찰하였다. Trypan blue (LPTB; 2.5 mg/ml trypan blue, 25% (w/v) lactic acid, 23% water-saturated phenol, 25% glycerol in H2O)로 염색하여 경과시간에 따른 세포의 염색 정도를 광학현미경 (Nikon, Japan)으로 관찰하였다.
Total proteins extracted from transformants were treated with H. circularisquama HU 9433-P and observed through trypan blue staining. Staining with trypan blue (LPTB; 2.5 mg/ml trypan blue, 25% (w/v) lactic acid, 23% water-saturated phenol, 25% glycerol in H 2 O) and optically measuring the degree of staining of cells according to elapsed time It was observed with a microscope (Nikon, Japan).

< < 실험예Experimental example 5> 5> HcRNAV34HcRNAV34 VLPVLP 식물체 발현 벡터 제작 및 형질전환 Plant expression vector construction and transformation

<5-1> 식물체 발현 벡터 제조 <5-1> Preparation of plant expression vector

식물체에 외부 유전자 도입에 관한 연구는 담배, 당근, 고추를 비롯한 쌍떡잎식물에서 주로 이루어져 왔으며, 식물체 binary 벡터를 이용하여 A. tumafaciens를 매개로 한 형질전환 방법은 1980 년대 이후에 보편화 된 식물 형질전환 방법이다 (Horsch et al., 1985). 본 연구는 A. tumefaciens strain GV3101과 pCAMBIA1304 binary 벡터를 이용하였는데 본 벡터의 T-DNA에는 식물체 게놈에 삽입되어 과발현을 유도하는 Cauliflower Mosaic virus에서 유래한 CaMV 35s promoter를 가지고 있으며, A. tumefaciens의 nopaline 합성효소에서 유래한 Nos Poly-(A)를 지니고 있고, 식물체 내에 삽입되었을 경우 선택적 표지로 hygromycin 유전자가 있다. 또한 벡터 내에 Kanamycin 저항성 유전자가 삽입되어 E. coli에서의 선택적 표지로 이용할 수 있다 (도 1A).A study on the introduction of foreign genes in plants, tobacco, carrots, peppers, including dicotyledon has mainly consisted in using the binary plant transformation vector A. One way tumafaciens-mediated transformation is a common plant in the 1980s conversion method is (Horsch et al.) al ., 1985). In this study, A. tumefaciens Strain GV3101 and pCAMBIA1304 binary vectors were used. The T-DNA of this vector has CaMV 35s promoter derived from Cauliflower Mosaic virus that is inserted into the plant genome to induce overexpression, and Nos Poly derived from nopaline synthetase of A. tumefaciens. -(A), and there is a hygromycin gene as a selective marker when inserted into a plant. In addition, a Kanamycin resistance gene is inserted into the vector and can be used as a selective marker in E. coli ( FIG. 1A ).

본 실험의 재료로 사용된 와편모조류인 H. circularisquama에만 특이적으로 부착되어 감염시키는 단일가닥 RNA 바이러스인 HcRNAV34는 RNA polymerase (ORF-1)와 VLP (ORF-2)로 발현되는 4.4 kb의 게놈을 가지고 있다 (Tomoru et al., 2004; Nagasaki et al., 2005; Mizumoto et al., 2007; Nagasaki, 2008; Wu et al., 2012). 이 중 인공 합성된 VLP 유전자 clone (1080 bp, 도 2)을 유해조류 제어융합연구단에서 분양 받아 식물체 발현 벡터를 제작하였다. HcRNAV34, a single-stranded RNA virus that specifically attaches to and infects dinoflagellates, H. circularisquama , used as the material for this experiment, is a 4.4 kb genome expressed by RNA polymerase (ORF-1) and VLP (ORF-2). has (Tomoru et al. al ., 2004; Nagasaki et al. al ., 2005; Mizumoto et al. al ., 2007; Nagasaki, 2008; Wu et al ., 2012). Among them, an artificially synthesized VLP gene clone (1080 bp, FIG. 2) was sold from the Center for Harmful Algae Control Convergence Research to prepare a plant expression vector.

담배 형질전환을 위한 재조합 벡터는 HcRNAV34 VLP 유전자만의 발현을 위한 벡터와 식물체 내의 HcRNAV34 VLP 유전자 발현을 확인하기 위한 reporter 유전자로 GFP유전자를 포함한 두 가지 벡터를 제작하였다. 첫 번째 재조합 벡터 제작을 위해 BglⅡBstE enzyme site를 이용하여 GFP :: GUS 유전자를 제거한 후, HcRNAV34 VLP 유전자를 삽입하였다 (도 1B). 두 번째 재조합 벡터의 경우 Bgl Spe enzyme site가 부착된 primer로 HcRNAV34 VLP 유전자를 증폭하여 pCAMBIA1304 binary 벡터 내 GFP 유전자 앞의 Bgl Spe 부분에 삽입시켜서 제작하였다 (도 1C). 재조합된 두 벡터를 E. coli에 형질전환 하여 direct colony PCR 을 통하여 형질전환이 확인된 세포주를 선별하였고, 선별된 세포주의 plasmid DNA를 추출하여 BglⅡ/BstE (도 3A) 또는 Bgl /Spe (도 3B)으로 처리하여 예상된 크기 (1080 bp)의 band를 통해 삽입 여부를 확인하였다 (도 3). 이를 각각 pCAM/34 VLP와 pCAM/34 GFP로 명명하였다.Recombinant vector for tobacco transformation is HcRNAV34 Vector for VLP gene expression and HcRNAV34 in plants Two vectors including the GFP gene were constructed as reporter genes to check VLP gene expression. For the first recombinant vector produced using BglⅡ and BstE enzyme site GFP :: GUS After the gene was removed, the HcRNAV34 VLP gene was inserted ( FIG. 1B ). In the case of the second recombinant vector , HcRNAV34 is a primer to which Bgl II and Spe I enzyme sites are attached. GFP in the pCAMBIA1304 binary vector by amplifying the VLP gene It was constructed by inserting it into the Bgl II and Spe I parts in front of the gene (FIG. 1C). The recombinant vector was a two screening the transfected cells are identified through the conversion by direct colony PCR transformed in E. coli, extracted the plasmid DNA of the selected cell lines to BglⅡ / BstE (Figure 3A) or Bgl / Spe (FIG. 3B), it was confirmed whether the insertion through the band of the expected size (1080 bp) (FIG. 3). These were named pCAM/34 VLP and pCAM/34 GFP, respectively.

선별된 E. coli 세포주로부터 두 가지의 재조합 벡터 DNA를 추출하여 Freeze-Thaw 방법을 통해 A. tumefaciens GV3101 균주에 형질전환을 수행하였다. Freeze-Thaw 방법을 통한 Agrobacterium의 형질전환 효율은 대장균에 비하여 효율이 낮으므로 1 ug 이상의 DNA를 사용하여 시행하였으며, 이 방법은 형질전환 과정에서 일어날 수 있는 상동 재조합의 가능성을 줄여주고 실험방법이 비교적 간단하여 Agrobacterium에 외부 유전자를 도입하는 형질전환 방법으로 가장 널리 이용되고 있다 (Birnboim et al., 1979).Selected E. coli Two types of recombinant vector DNA were extracted from the cell line and transformed into A. tumefaciens GV3101 strain using the Freeze-Thaw method. The transformation efficiency of Agrobacterium through the Freeze-Thaw method was lower than that of E. coli, so it was carried out using 1 ug or more of DNA. This method reduces the possibility of homologous recombination that may occur during the transformation process and the experimental method is relatively Because it is simple, it is the most widely used transformation method to introduce foreign genes into Agrobacterium (Birnboim et al. al ., 1979).

형질전환 된 세포주를 선별하기 위해 항생제 rifampicin (100 mg/L), gentamycin (50 mg/L), hygromycin (50 mg/L)에 저항성을 갖는 colony를 채취하였으며 direct colony PCR (도 4A)과 restriction endonuclease digestion (도 4B)를 통해 최종적으로 세포주를 선별하여 담배 형질전환에 사용하였다.
To select the transformed cell line, colonies resistant to antibiotics rifampicin (100 mg/L), gentamycin (50 mg/L), and hygromycin (50 mg/L) were collected, followed by direct colony PCR (Fig. 4A) and restriction endonuclease. A cell line was finally selected through digestion (FIG. 4B) and used for tobacco transformation.

<5-2> 식물체 형질전환<5-2> Plant transformation

A. tumefaciens를 이용한 식물체 형질전환법은 외떡잎식물과 쌍떡잎식물 모두 식물체에 외래 유전자를 삽입하는 가장 광범위하게 사용되는 방법이다. 바이러스 저항성 및 제초제에 대한 내성 식물체 개발, 웅성불임, 저온 스트레스 내성 등 다양한 식물의 형태, 생리, 유전적인 연구에 활용되고 있으며, 최근에는 토마토 및 당근 등에서 식용 및 활용 가능한 백신까지 생산하는 등 실생활에 유용한 식물체를 개발하는데 활용되고 있다. Plant transformation using A. tumefaciens is the most widely used method for inserting foreign genes into plants in both monocotyledons and dicotyledons. It is being used in various plant morphology, physiology, and genetic studies such as virus resistance and herbicide-resistant plant development, male infertility, and low-temperature stress resistance. It is used to develop plants.

본 연구에서는 생물학적 적조 방제법의 일환으로 H. circularisquama에 특이적으로 감염되어 살조시키는 HcRNAV34 바이러스의 VLP 유전자를 도입하기 위해 제작한 벡터가 포함된 A. tumefaciens GV3101을 이용하여 leaf disk 방법을 통해 담배 잎을 형질전환 시켰다. Leaf disk 방법을 이용하여 형질전환 시킨 담배 잎 절편을 TCM 고체배지와 TSIMⅡ 고체배지에 치상, 배양한 결과, 배양 일주일 후부터 일부의 잎들은 갈변되기 시작하였으나 배양 2주 후부터 담배 잎 절편으로부터 절단면이 부풀어 오르면서 부정아가 형성되기 시작하였다. 부정아 형성 후 신초가 분화되기 시작하였으며, 절편체로부터 신초 형성율은 300 개 중 270 개 이상, 약 90 % 이상임이 확인되었다. 그 후 형성되는 신초들 중에 가장 건강하게 자라는 것들을 선별하여 3-4 주 후에 발근을 유도하는 TRM 고체배지에 치상하여 뿌리를 유도하여 소식물체로 재분화 시킨 후, 온실로 옮겨 성체로 생장시켰다 (도 5). 성체로 생장하는 동안, 형질전환 담배와 비 형질전환 담배의 표현형을 관찰한 결과 외형과 생장률은 특별한 차이점을 보이지 않고 유사하게 생장하는 것을 확인하였다.
In this study, the tobacco leaves through a leaf disk method using an A. tumefaciens GV3101 containing the produced vectors to introduce genes HcRNAV34 VLP-specific viruses that infect the enemy with the H. circularisquama saljo as part of a biological tide bangjebeop transformed. As a result of planting and culturing tobacco leaf slices transformed using the leaf disk method on TCM solid medium and TSIMⅡ solid medium, some leaves started to turn brown after one week of culture. and infertility began to form. Shoots began to differentiate after the formation of embryos, and it was confirmed from explants that the rate of shoot formation was 270 or more out of 300, or about 90% or more. After that, among the formed shoots, the healthiest ones were selected, and after 3-4 weeks, the roots were induced and redifferentiated into plantlets by placing them on a TRM solid medium to induce rooting, and then transferred to a greenhouse and grown into adults (Fig. 5). ). As a result of observing the phenotypes of transgenic tobacco and non-transgenic tobacco during adult growth, it was confirmed that they grew similarly without showing any particular difference in appearance and growth rate.

<< 실험예Experimental example 6> 담배 형질전환 식물체 분석 및 계통 선발 6> Tobacco transgenic plant analysis and line selection

형질전환 후 형성된 신초를 hygromycin 항생제 배지에서 1차적으로 선별한 후, 소식물체로 재생된 형질전환체에서 HcRNAV34 VLP 유전자 발현을 다음과 같은 실험으로 확인하였다.
After the shoots formed after transformation were primarily selected in hygromycin antibiotic medium, HcRNAV34 VLP gene expression was confirmed in the transformant regenerated into the plant by the following experiment.

<6-1> 형질전환 식물체 <6-1> transgenic plants genomicgenomic DNADNA PCRPCR 분석 analysis

형질전환 식물체들의 유전자 도입 여부를 확인하기 위해 수행한 genomic DNA PCR에서 pCAM/34 VLP가 도입된 형질전환체는 HcRNAV34 VLP 유전자에 대해 특이적으로 제작된 34-F와 34-R primer를 사용하였으며, pCAM/34 GFP가 도입된 형질전환체는 HcRNAV34 VLP 유전자에 대해 특이적으로 제작된 34-F와 GUS 유전자에 대해 특이적으로 제작된 GUS-R primer를 이용하였다. 각 유전자가 도입된 형질전환 식물체에서는 약 1.1 kb (도 6A)와 3.6 kb (도 6B)의 band를 확인할 수 있었다.In the genomic DNA PCR performed to confirm the gene introduction of the transgenic plants, the transformants introduced with pCAM/34 VLP used 34-F and 34-R primers specifically designed for the HcRNAV34 VLP gene. For transformants into which pCAM/34 GFP was introduced, 34-F specifically for the HcRNAV34 VLP gene and GUS-R primer specifically for the GUS gene were used. In the transgenic plants into which each gene was introduced, bands of about 1.1 kb (FIG. 6A) and 3.6 kb (FIG. 6B) were confirmed.

이와 같은 결과로 미루어, band가 나타난 식물체는 담배의 게놈 내에 HcRNAV34 VLP 유전자가 삽입된 것으로 사료된다. 형질전환 된 잎의 genomic DNA를 이용한 PCR을 수행할 때 신초를 유기하는 과정의 배지로부터 Agrobacterium이 담배 잎에 기생하여 PCR 실험을 수행하는 과정에서 탐지되는 경우도 있으므로 주의를 기울여야 한다. 본 실험에서 negative control로 사용된 비 형질전환 식물체에서는 band가 합성되지 않은 결과로 미루어 형질전환체로 사료되는 신초에서만 HcRNAV34 VLP 유전자의 도입을 확인할 수 있었다. Hygromycin 항생제 포함 배지에서 1차적으로 선별된 형질전환체 중 약 80 %의 식물체에서 HcRNAV34 VLP 유전자의 도입을 확인할 수 있었고 또한 Varsani et al (2003)의 연구결과에서도 pART27 binary 벡터와 Human papillomavirus(HPV) type 16 외피 단백질 유전자를 재조합하여 N. tabacum cv. Xanthi에 삽입한 결과, 본 연구에서와 유사하게 80 % 정도의 형질전환체에서 유전자의 도입이 확인되었다.
Based on these results, it is considered that the HcRNAV34 VLP gene was inserted into the genome of tobacco in the plant in which the band appeared. When performing PCR using the genomic DNA of the transformed leaf, Agrobacterium parasitizes on tobacco leaves from the medium in the process of inducing shoots, and in some cases, it is detected during the PCR experiment. In the non-transgenic plant used as a negative control in this experiment, the introduction of the HcRNAV34 VLP gene could be confirmed only in shoots considered to be transformants due to the result that the band was not synthesized. The introduction of the HcRNAV34 VLP gene was confirmed in about 80% of the transformants primarily selected in the medium containing hygromycin antibiotics . Also, in the study result of Varsani et al (2003), the pART27 binary vector and Human papillomavirus (HPV) type 16 By recombination of the envelope protein gene, N. tabacum cv. As a result of insertion into Xanthi, the introduction of the gene was confirmed in about 80% of transformants similar to the one in this study.

<6-2> 형질전환 식물체 <6-2> transgenic plants RTRT -- PCRPCR 분석 analysis

앞서 수행한 genomic DNA PCR 분석을 토대로 HcRNAV34 VLP 유전자 도입이 확인된 담배 형질전환 식물체들의 전사체 발현을 확인하기 위하여 총 RNA를 추출하여 RT-PCR을 수행하였다. 비 형질전환 식물체 잎을 대조군으로 선정하였고, HcRNAV34 VLP 유전자에 대해 특이적으로 제작된 primer인 R34-F와 R34-R을 이용하여 수행하였다. Control로 사용된 actin의 발현 양상은 모두 비슷하게 나왔으나, 특이적인 HcRNAV34 VLP 유전자 primer를 사용한 결과는 비 형질전환 식물체로부터는 발현이 나타나지 않았으며, 형질전환 식물체라 예상된 담배에서만 약 522 bp의 위치에서 band를 통해 전사체의 발현을 확인할 수 있었다 (도 7). 실험 중 예상된 위치가 아닌 다른 위치에서 나타나는 band가 발견되기도 하였으며 동일한 위치에서도 발현양이 다른 경우도 있었다. 이는 선별된 신초의 장기간의 계대배양에 의해 삽입된 유전자의 변형이 일어났을 것으로 사료된다. 또한, positive control로 사용한 actin (480 bp)이 유사한 발현율을 나타내는 것을 통해 동일한 유전자가 삽입된 형질전환체이지만 개체에 따라 다른 발현율을 보이는 것을 확인하였다. Genomic DNA PCR을 통해 선별한 216 개의 형질전환체 중 100 개 (약 50 %)에서 정확한 크기의 band가 나타나는 형질전환체들을 선별하여, 계속적인 실험을 진행하였다.
Based on the genomic DNA PCR analysis performed previously, RT-PCR was performed by extracting total RNA to confirm the transcript expression of the tobacco transgenic plants in which the introduction of the HcRNAV34 VLP gene was confirmed. Non-transgenic plant leaves were selected as a control group, and primers R34-F and R34-R specifically prepared for the HcRNAV34 VLP gene were used. The expression patterns of actin used as controls were all similar, but as a result of using the specific HcRNAV34 VLP gene primer, expression did not appear from non-transgenic plants, and only at about 522 bp in tobacco, which was expected to be a transgenic plant. The expression of the transcript was confirmed through the band (FIG. 7). During the experiment, bands appearing at positions other than the expected positions were sometimes found, and there were cases where the expression level was different even at the same position. This is thought to have occurred due to the modification of the inserted gene by long-term subculture of the selected shoots. In addition, it was confirmed that actin (480 bp) used as a positive control showed a similar expression rate, showing that the same gene was inserted into the transformant but showed a different expression rate depending on the individual. Among the 216 transformants selected through genomic DNA PCR, transformants showing the correct size band in 100 (about 50%) were selected, and the experiment was continued.

<6-3> 형질전환 식물체 <6-3> transgenic plants GFPGFP 발현 분석 Expression analysis

pCAM/34 GFP 벡터가 형질전환 된 담배 식물체 중에서 genomic DNA와 mRNA 발현 분석이 끝난 형질전환체를 선별하여 GFP 발현을 통해 HcRNAV34 VLP의 발현을 형광현미경 (OLYMPUS, Japan)으로 관찰하였다. 형질전환 식물체와 비 형질전환 식물체의 잎 절편에서 형성된 신초를 채취하여 UV 광을 조사한 결과, 형질전환 식물체는 GFP의 발현에 의해 밝은 녹색의 형광을 발현하는 반면 (도 8B), 형질전환이 되지 않은 식물체는 다소 낮은 빛을 발현하는 것이 관찰되었다 (도 8A). 이는 식물체가 기본적으로 보유하는 자가형광 (Auto-fluorescence) 단백질이나 2차 대사산물로 사료된다. 형질전환체의 잎맥, 줄기 등에서 GFP 발현을 확인할 수 있었는데, 잎의 경우 엽육조직 전체에서 발현되고 있음을 확인하였고, 특히 GFP가 도입된 형질전환 담배의 신초에서는 UV 광 조사 전후로 반응의 차이를 나타내었다.
Among the tobacco plants transformed with the pCAM/34 GFP vector, transformants that had been analyzed for genomic DNA and mRNA expression were selected, and the expression of HcRNAV34 VLP through GFP expression was observed with a fluorescence microscope (OLYMPUS, Japan). As a result of collecting shoots formed from leaf sections of transgenic and non-transgenic plants and irradiating with UV light, transgenic plants expressed bright green fluorescence by the expression of GFP (FIG. 8B), whereas non-transformed plants were not transformed. It was observed that the plants expressed rather low light ( FIG. 8A ). It is considered to be an auto-fluorescence protein or secondary metabolite that the plant basically possesses. GFP expression was confirmed in the leaf veins and stems of the transformant, and in the case of the leaf, it was confirmed that it was expressed in the whole mesophyll tissue. .

<6-4> 형질전환 식물체 <6-4> transgenic plants westernwestern blotblot 분석 analysis

형질전환 식물체에서 HcRNAV34 VLP의 발현 여부를 확인하기 위하여 선별된 형질전환체들을 대상으로 HcRNAV34-R2 항체를 이용하여 western blot 분석을 수행하였다. HcRNAV34 VLP 유전자는 총 360 개의 아미노산을 가지고 있으며 단백질 분자량은 약 38 kDa이다. 형질전환체의 예상 크기인 38 KDa에서 보다 약간 위쪽인 약 40 KDa에서 HcRNAV34 VLP의 band가 발현되는 것을 확인하였다 (도 9). 이는 외래 유전자가 도입된 식물체에서 번역 후 변형작용에 의해 식물체 내에서 발현되는 단백질의 크기를 변형시키는 요인에 의한 것으로 사료된다 (Gomord et al., 2004). 따라서, HcRNAV34 VLP를 식물체 내에 발현시켰을 때 약간 증가된 단백질 발현은 유전자 발현 시 번역 과정 후 변형 과정에서 약간의 단백질의 크기가 증가되는 것으로 사료된다. 형질전환 식물체의 단백질 발현 정도에 대한 정확한 비교 분석을 위해 비 형질전환 식물체와 RT-PCR의 결과에 따라 선별된 다소 발현양이 높은 4, 5, 7, 8 번의 형질전환 개체만을 가지고 실험하였지만 각 개체에 따라 발현양에 차이가 나므로 추후 더 자세한 양적 검증이 필요할 것이라 사료된다.
Western blot analysis was performed using the HcRNAV34-R2 antibody on the selected transformants to confirm the expression of HcRNAV34 VLP in the transgenic plants. HcRNAV34 The VLP gene has a total of 360 amino acids and the protein molecular weight is about 38 kDa. It was confirmed that the band of HcRNAV34 VLP was expressed at about 40 KDa, slightly higher than the expected size of the transformant, 38 KDa (FIG. 9). This is thought to be due to a factor that changes the size of a protein expressed in a plant by post-translational modification in a plant into which a foreign gene is introduced (Gomord et al ., 2004). Therefore, it is considered that the slightly increased protein expression when HcRNAV34 VLP is expressed in plants increases the size of the protein slightly during the modification process after the translation process during gene expression. For accurate comparative analysis of the protein expression level of transgenic plants, only 4, 5, 7, and 8 transgenic individuals with slightly high expression levels selected according to the results of RT-PCR and non-transgenic plants were tested. Since there is a difference in the expression amount depending on the

<< 실험예Experimental example 7> 7> HcRNAV34HcRNAV34 VLPVLP of 살조능algae function 검증 Verification

<7-1> <7-1> HcRNAV34HcRNAV34 VLPVLP 의 숙주 특이적 host-specific 살조능algae function 검증 Verification

선발된 형질전환체로부터 총 단백질을 추출하여 HcRNAV34 VLP의 효능을 확인하고자 적조를 유발하는 해수종 와편모조류인 HcRNAV34 바이러스의 숙주 H. circularisquama HU 9433-P, HA 92-1과 비숙주 H. circularisquama HY 9423, HU 9436 및 담수종 C. vulgaris에 처리하였다. HcRNAV34는 H. circularisquama HU 9433-P와 HA 92-1 계통에만 특이적으로 감염된다는 연구 보고 (Nagasaki et al., 2005)를 통해 숙주와 비숙주 군을 선정하였다.To confirm the efficacy of HcRNAV34 VLP by extracting total protein from the selected transformants, the host H. circularisquama HU 9433-P, HA 92-1 and the non-host H. circularisquama of HcRNAV34 virus, a marine species dinoflagellate that induces red tides HY 9423, HU 9436 and freshwater species C. vulgaris were treated. Host and non-host groups were selected through a study report (Nagasaki et al ., 2005) that HcRNAV34 specifically infects only H. circularisquama HU 9433-P and HA 92-1 strains.

무처리군, 형질전환 담배 식물체에서 추출한 총 단백질을 처리한 군, 단백질 추출 용액인 RIPA buffer (50 %)를 처리한 군과 비 형질전환 담배 식물체의 추출한 총 단백질을 처리한 군의 총 4 가지 군을 선정하여 HcRNAV34 VLP가 포함된 총 단백질의 숙주 특이적 살조능을 관찰하였다. 단백질 추출 용액으로 사용한 RIPA buffer에는 SDS 등이 포함되어 있어 조류에 영향을 미칠 것으로 예상되어 RIPA buffer만을 처리한 대조군을 포함하였고, 사전 실험을 통해 RIPA buffer가 조류를 파괴시키지 않는 농도를 검정하여 50 %로 이용하였다. 조류 배양액 500 ul (4×105 cell/ml)에 추출한 단백질을 1 ul (2.5 ug/ul)를 처리하여 1 시간 동안 15 분 간격으로 조류의 형태 변화와 유동성 및 세포 파괴 정도를 광학현미경을 이용하여 관찰하였다.A total of 4 groups: untreated group, treated with total protein extracted from transgenic tobacco plants, treated with RIPA buffer (50%), a protein extraction solution, and treated with total protein extracted from non-transgenic tobacco plants was selected to observe the host-specific killing ability of the total protein including HcRNAV34 VLP. The RIPA buffer used as the protein extraction solution contains SDS, etc., which is expected to affect algae, so a control group treated with only RIPA buffer was included. was used as 1 ul (2.5 ug/ul) of the protein extracted into 500 ul (4×10 5 cell/ml) of the algae culture medium was treated and the shape change, fluidity, and cell destruction degree of the algae were observed using an optical microscope at 15-minute intervals for 1 hour. and observed.

먼저 시간대 별로 조류의 형태 변화와 유동성을 관찰한 결과 숙주 조류인 HU 9433-P의 경우 RIPA buffer를 처리한 군과 비 형질전환 담배 식물체의 총 단백질을 처리한 군에서는 반응 15 분 후부터 조류의 오목 들어간 가운데 부분이 약간씩 부풀어 오르는 형태 변화를 가져왔다 (도 11G, L). RIPA buffer를 처리한 군의 조류에서는 약 15-20 % 정도이며 비 형질전환 담배 식물체의 총 단백질을 처리한 군의 조류에서는 약 20 % 의 형태 변화를 보였으며, 처리 30 분 후에 관찰한 결과 형태 변화를 일으켰던 조류들이 다시 본래의 형태로 회복되기 시작하였고 (도 11H, M), 처리 후 45 분 후에 관찰한 결과 형태가 변화된 조류들이 거의 관찰되지 않아 90 % 이상의 회복율을 관찰하였다 (도 11I, N). 조류의 유동성 관찰 결과, 단백질 처리 후 15 분에 RIPA buffer를 처리한 군과 비 형질전환 담배 식물체의 총 단백질을 처리한 군의 조류에서 모두 60-70 % 정도 유동성이 감소하였으며 (도 11G, L), 처리 후 45 분 후에 관찰한 결과 형태 변화와 유사하게 95 % 정도의 유동성이 회복되었다 (도 11I, N). 이러한 결과로 SDS 등이 포함된 RIPA buffer와 니코틴 같은 다양한 2차 대사물질을 포함하는 비 형질전환 담배 식물체의 총 단백질은 일시적으로 유동성의 감소와 형태 변화를 가져오지만, 처리 후 30 분 이후부터 95 %정도의 회복율을 보임으로써 숙주 조류의 파괴에 미치는 영향은 거의 없다고 사료된다. First, as a result of observing the morphological change and fluidity of algae by time period, in the case of the host alga, HU 9433-P, in the group treated with RIPA buffer and the group treated with total protein from non-transgenic tobacco plants, the algae were dented from 15 minutes after the reaction. This resulted in a shape change in which the middle part slightly swelled (Fig. 11G, L). In the algae of the group treated with RIPA buffer, it was about 15-20%, and in the algae of the group treated with the total protein of non-transgenic tobacco plants, the shape change was about 20%. The algae that caused the algae started to recover to their original form again (Fig. 11H, M), and as a result of observation 45 minutes after treatment, almost no algae with a changed form were observed, so a recovery rate of 90% or more was observed (Fig. 11I, N) . As a result of observing the fluidity of algae, the fluidity decreased by about 60-70% in both the RIPA buffer-treated group and the group treated with the total protein of non-transgenic tobacco plants 15 minutes after protein treatment (FIGS. 11G, L) As a result of observation 45 minutes after treatment, fluidity of about 95% was recovered similar to the shape change (Fig. 11I, N). As a result, the total protein of non-transgenic tobacco plants, including RIPA buffer containing SDS and various secondary metabolites such as nicotine, temporarily reduced fluidity and changed shape, but 95% after 30 minutes after treatment. It is considered that there is little effect on the destruction of host algae by showing a recovery rate of a certain degree.

형질전환 담배 식물체에서 추출한 총 단백질을 처리한 실험군은 반응 15 분 후에 관찰한 결과 80 % 이상의 조류에서 형태 변화를 보였으며, 유동성은 0 %였다 (도 11Q). 반응 30 분 후에 관찰한 결과 모든 조류에서 형태 변화를 관찰하였으며 약 15 % 이상의 조류에서 세포막이 파괴되어 세포액이 용출되어지는 것을 관찰하였다 (도 11R). 반응 45 분 후에 관찰한 결과 조류의 약 50 % 정도가 파괴되었으며 (도 11S), 반응 후 60 분 후에 관찰한 결과 80-90 % 정도의 조류가 파괴됨 (도 11T)을 관찰하였다. As a result of observation 15 minutes after the reaction, the experimental group treated with the total protein extracted from the transgenic tobacco plants showed a change in shape in more than 80% of algae, and the fluidity was 0% (FIG. 11Q). As a result of observation 30 minutes after the reaction, morphological changes were observed in all algae, and in about 15% or more of the algae, the cell membrane was destroyed and the cell fluid was eluted (FIG. 11R). As a result of observation 45 minutes after the reaction, about 50% of the algae were destroyed (FIG. 11S), and as a result of observation 60 minutes after the reaction, it was observed that about 80-90% of the algae were destroyed (FIG. 11T).

광학현미경을 이용하여 관찰한 위의 결과를 그래프로 도식화하여 도 10에 나타내었다. 형질전환 된 담배에서 추출한 총 단백질의 농도 (10 ug/ul)를 높여 처리하였을 경우 반응 30 분 후에 70 % 이상의 조류가 파괴되었고, 이러한 결과는 단백질 농도에 의존하여 조류의 살조능이 증가됨을 의미한다. 또한 H. circularisquama HA 92-1에서도 HU 9433-P와 유사한 양상을 나타내었다 (도 12).The above results observed using an optical microscope are schematically illustrated in FIG. 10 . When the total protein concentration (10 ug/ul) extracted from the transformed tobacco was increased, more than 70% of the algae were destroyed 30 minutes after the reaction. In addition, H. circularisquama HA 92-1 showed a similar pattern to HU 9433-P (Fig. 12).

비숙주 조류인 H. circularisquama HY 9423에 RIPA buffer를 처리한 군과 비 형질전환 담배 식물체 단백질을 처리한 군에서는 반응 후 15 분에 관찰한 결과 약 20 %의 조류에서 형태 변화와 유동성이 감소되는 등 숙주 조류와 비슷한 양상을 나타내었으며 (도 13G, L), 반응 45 분 후에 관찰한 결과 90 % 이상의 조류에서 형태 변화와 유동성이 회복됨을 관찰하였다 (도 13I, N). 형질전환 담배 식물체 단백질을 처리한 군에서는 반응 15 분 후에 관찰한 결과 약 20 % 의 형태변화와 50 % 정도의 유동성이 감소되었으나 (도 13Q), 반응 30 분에 관찰한 결과 형태 변화된 조류 중 약 50 % 조류의 형태가 회복되었으며, 유동성도 50 % 정도 회복되었다 (도 13R). 반응 45 분부터 관찰한 결과 숙주 조류인 H. circularisquama HU 9433-P나 HA 92-1과는 달리 90 %이상의 조류에서 형태와 유동성이 회복됨 (도 13S)을 관찰하였다. 이를 통해, 반응시간이 지날수록 형태가 회복됨에 따라 유동성도 증가됨을 알 수 있었다. 다른 비숙주 조류로 이용하였던 H. circularisquama HU 9436 (도 14) 또한 HY 9423과 유사한 양상을 나타내었다.In the non-host alga, H. circularisquama HY 9423, in the group treated with RIPA buffer and in the group treated with non-transgenic tobacco plant protein, the shape change and fluidity were reduced in about 20% of the algae, as observed 15 minutes after the reaction. It exhibited a pattern similar to that of the host alga (FIGS. 13G, L), and as a result of observation 45 minutes after the reaction, it was observed that the shape change and fluidity were recovered in 90% or more of the algae (FIGS. 13I, N). In the group treated with the transgenic tobacco plant protein, as a result of observation 15 minutes after the reaction, about 20% of morphological change and about 50% of fluidity were reduced (FIG. 13Q), but as a result of observation at 30 minutes of the reaction, about 50 of the morphologically changed algae The morphology of % algae was restored, and the fluidity was also restored to about 50% (Fig. 13R). As a result of observation from 45 minutes of reaction, it was observed that the shape and fluidity were recovered in more than 90% of the algae, unlike the host algae, H. circularisquama HU 9433-P or HA 92-1 (FIG. 13S). Through this, it was found that the fluidity also increased as the shape was recovered as the reaction time passed. H. circularisquama HU 9436 (FIG. 14), which was used as another non-host alga, also showed a similar pattern to HY 9423.

C. vulgaris는 담수에 존재하는 직경 2-10 um의 구형 단세포 미세조류로 녹조류의 일종이다. 본 실험에서는 담배 형질전환체에서 추출한 HcRNAV34 VLP가 H. circularisquama 외의 담수종에 대해 미치는 영향을 확인하기 위해 비숙주로 이용하였다. 위와 동일한 방법으로 실험을 진행한 결과, 모든 군에서 형태 변화나 파괴된 세포가 발견되지 않았다 (도 15). 이러한 결과는 HcRNAV34 VLP는 H. circularisquama 외에 다른 종에는 영향을 미치지 않는 것으로 사료되며, 형질전환 된 담배에서 추출한 총 단백질이 숙주 조류인 H. circularisquama HU 9433-P, HA 92-1에만 특이적으로 감염되어 살조시키고, 비숙주 조류인 H. circularisquama HY 9423, HU 9436 및 C. vulgaris에는 감염을 일으키지 않는 것을 확인하였다. C. vulgaris is a spherical single-celled microalga with a diameter of 2-10 um that exists in freshwater and is a kind of green algae. In this experiment, HcRNAV34 VLP extracted from tobacco transformants was used as a non-host to check the effect on freshwater species other than H. circularisquama. As a result of performing the experiment in the same manner as above, no morphological change or destroyed cells were found in all groups (FIG. 15). These results suggest that the HcRNAV34 VLP does not affect species other than H. circularisquama , and the total protein extracted from the transformed tobacco specifically infects the host algae, H. circularisquama HU 9433-P and HA 92-1. It was confirmed that non-host algae H. circularisquama HY 9423, HU 9436 and C. vulgaris did not cause infection.

또한, 담배 형질전환체에 HcRNAV34 VLP 유전자와 함께 도입된 GFP의 녹색 형광 발현을 confocal 현미경을 이용하여 HcRNAV34 VLP의 살조능을 확인하고자 하였다 (Fig. 16). HcRNAV34 VLP::GFP 유전자가 형질전환 된 담배 식물체로부터 총 단백질을 분리하여 숙주 조류인 H. circularisquama HU 9433-P에 1 ul (2.5 ug/ul) 처리하여 15 분 후에 관찰한 결과 조류 내로 단백질이 유입되었고 (도 16A), 유입되어진 세포들은 대부분 부풀어 오르는 등의 형태 변화를 나타내었다 (도 16B). 처리 후 30 분 후부터 조류의 세포 파괴가 관찰되었으며 파괴된 조류의 세포 안에서 강한 GFP의 형광 발현이 관찰되었다(도 16C). Tartani et al (2001), Tomaru et al (2004) 및 Mizumoto et al (2007)의 연구에서 HcRNAV34는 H. circularisquama의 세포질 내에서 결정체로 배열되어 작용하는 것으로 보고되었으며, 본 논문의 결과를 통해서도 확인된 것처럼 형질전환 식물체에서 발현된 HcRNAV34 VLP도 조류 내로 유입되어 세포 파괴에 영향을 미치는 것으로 사료된다.
In addition, HcRNAV34 in tobacco transformants The green fluorescence expression of GFP introduced together with the VLP gene was used to confirm the apoptosis of HcRNAV34 VLP using a confocal microscope (Fig. 16). Total protein was isolated from tobacco plants transformed with the HcRNAV34 VLP::GFP gene, treated with 1 ul (2.5 ug/ul) of H. circularisquama HU 9433-P, a host alga, and observed after 15 minutes. As a result, the protein was introduced into the algae. and (FIG. 16A), most of the introduced cells exhibited morphological changes such as swelling (FIG. 16B). Cell destruction of algae was observed 30 minutes after treatment, and strong GFP fluorescence expression was observed in the cells of the destroyed algae (FIG. 16C). Tartani et al (2001), Tomaru et al. al (2004) and Mizumoto et al. al (2007) reported that HcRNAV34 acts as a crystal in the cytoplasm of H. circularisquama , and as confirmed through the results of this paper, HcRNAV34 VLP expressed in transgenic plants also flows into algae and destroys cells. is believed to have an effect on

<7-2> <7-2> TrypanTrypan BlueBlue 염색법을 이용한 using the dye 살조능algae function 검증 Verification

선발된 형질전환체로부터 총 단백질을 추출하여 숙주 조류인 H. circularisquama HU 9433-P에 처리 후 사멸 정도를 trypan blue 염색법을 이용하여 관찰하였다. Trypan blue는 세포막 손상이나 세포 사멸의 조직 화학적 지표제로 사용하는 시약으로써, trypan blue 입자는 세포막을 확산의 방법으로 통과하여 세포 내부로 유입되는데, 생세포는 ATP 에너지를 이용한 외포작용을 통해 trypan blue 입자를 다시 세포 외부로 배제하게 되나, 에너지를 발생할 수 없는 사세포는 외포작용을 할 수 없어 진한 푸른색으로 염색이 된다. 총 단백질 처리 15 분 후 관찰 시, 형태가 변화되면서 손상을 입어 염색된 조류가 관찰되었는데 (도 17B), 이는 총 단백질을 처리하여 광학현미경으로 관찰하였을 때는 형태의 변화만 확인되었으나 형태가 변화함으로써 조류의 내부는 손상을 입어 ATP 에너지를 발생시키지 못하여 염색되는 것으로 사료된다. 처리 30 분 후에는 세포막이 파괴되어 내부가 염색되는 것이 관찰되었으며 (도 17C), 45 분 후 파괴된 세포 주변에서는 융출 작용에 의해 방출된 trypan blue 입자와 세포 내재물질들이 관찰되었다 (도 17D).
Total proteins were extracted from the selected transformants , treated with H. circularisquama HU 9433-P, a host alga, and the degree of apoptosis was observed using trypan blue staining. Trypan blue is a reagent used as a histochemical indicator of cell membrane damage or apoptosis. Trypan blue particles pass through the cell membrane by diffusion and enter the cell. They are excluded from the cell again, but dead cells that cannot generate energy cannot perform exocytosis and are stained dark blue. When observed 15 minutes after the total protein treatment, damaged algae were observed with a change in shape (FIG. 17B), which was observed with an optical microscope after treatment with total protein. It is thought that the inside of the lining is damaged and dyed because it cannot generate ATP energy. After 30 minutes of treatment, it was observed that the cell membrane was destroyed and the inside was stained (FIG. 17C), and trypan blue particles and cell intrinsic materials released by the elution action were observed around the destroyed cells after 45 minutes (FIG. 17D).

우리나라 연안에 발생하는 유해성 적조의 피해를 최소화하기 위해 적조 생물 제거 방법으로 현재 사용되어지고 있는 물리화학적 및 생물학적 방법은 다른 해양 생물에 영향을 끼쳐 많은 문제점을 나타내고 있으며, 이러한 문제를 해결하기 위하여 최근 해양 미생물 또는 바이러스를 이용한 생물학적 방제에 대한 연구가 활발하게 진행되고 있다. Physicochemical and biological methods currently used as methods for removing harmful red tides that occur in the coast of Korea have many problems by affecting other marine organisms. In order to solve these problems, Research on biological control using microorganisms or viruses is being actively conducted.

HcRNAV34는 적조 유발 와편모조류인 H. circularisquama에 선택적으로 감염되어 파괴하므로, 담배 내에서 HcRNAV34의 VLP 발현 유도를 확인하고 대량생산 체계를 수립하여 숙주에 선택적으로 작용한다면 이러한 방법은 유해 조류 제어를 위한 생태계 교란 없는 생물학적 제어 방법이 될 것이다. Since HcRNAV34 selectively infects and destroys H. circularisquama , a red algae-induced dinoflagellate, if we confirm the induction of HcRNAV34 expression in tobacco and establish a mass production system to selectively act on the host, this method is a method for controlling harmful algae. It will be a biological control method without disturbing the ecosystem.

HcRNAV34 VLP 유전자를 식물 형질전환용 binary 벡터인 pCAMBIA1304를 이용하여, pCAM/34 VLP와 pCAM/34 GFP 두 가지 벡터를 재조합하였다. 재조합한 pCAM/34 VLP와 pCAM/34 GFP 벡터가 삽입된 A. tumefaciens GV3101 세포주를 이용하여 leaf-disk 방법으로 담배 (N. tabacum cv. Havana) 잎을 형질전환 시킨 후, hygromycin 항생제 저항성을 통하여 형질전환체를 선별하였다. 선별 결과, 형질전환 담배와 비 형질전환 담배의 표현형 및 생장률은 특별한 차이점이 나타나지 않았다. The HcRNAV34 VLP gene was recombined with two vectors, pCAM/34 VLP and pCAM/34 GFP, using pCAMBIA1304, a binary vector for plant transformation. Tobacco (N. tabacum cv. Havana) leaves were transformed by the leaf-disk method using the A. tumefaciens GV3101 cell line into which the recombinant pCAM/34 VLP and pCAM/34 GFP vectors were inserted, and then transformed through hygromycin antibiotic resistance. Transformants were selected. As a result of the selection, there was no particular difference in the phenotype and growth rate of transgenic tobacco and non-transgenic tobacco.

항생제 배지에서 선발된 형질전환체는 genomic DNA PCR 방법으로 HcRNAV34 VLP 유전자가 담배의 게놈에 삽입됨을 확인하였고, RT-PCR 분석으로 mRNA의 HcRNAV34 VLP 유전자가 발현됨을 확인하였으며, HcRNAV34 VLP 유전자와 함께 형질전환 된 GFP의 발현을 통하여 형질전환의 여부를 확인하였다. 최종적으로 선별된 형질전환 담배 식물체들에서 단백질을 추출해 HcRNAV34-R2 항체를 이용하여 western blot 분석을 수행 후, HcRNAV34 VLP (360 amino acids)는 예상 크기인 약 38 KDa에서 발현되는 것을 확인함으로써 HcRNAV34 VLP가 식물체 내에서 안정적으로 발현되는 것을 확인할 수 있었다.
The transformants selected on the antibiotic medium was confirmed that the HcRNAV34 VLP gene in genomic DNA PCR method was confirmed that insertion into the genome of tobacco, HcRNAV34 expression VLP gene of the mRNA by RT-PCR analysis, transformed with HcRNAV34 VLP gene Transformation was confirmed through the expression of GFP. Finally, proteins were extracted from the selected transgenic tobacco plants and western blot analysis was performed using the HcRNAV34-R2 antibody. HcRNAV34 VLPs (360 amino acids) were confirmed to be expressed at the expected size of about 38 KDa. It was confirmed that it was stably expressed in plants.

형질전환 식물체에서 총 단백질을 추출하여 HcRNAV34의 숙주인 H. circularisquama HU 9433-P와 HA 92-1. 비숙주인 H. circularisquama HY 9423과 HU 9436 및 C. vulgaris에 처리한 결과, 숙주인 HU 9433-P와 HA 92-1에서만 조류의 유동성이 정지되고, 형태의 변화가 일어나며, 세포가 파괴되는 결과를 관찰하였다. 또한 confocal 현미경으로 관찰하였을 때, HcRNAV34 VLP와 함께 형질전환 된 GFP가 조류 내에서 발현되는 것으로 미루어 조류의 형태 변화 및 파괴는 HcRNAV34 VLP가 조류 내로 유입되어 발생하는 것으로 사료되며, HcRNAV34 VLP만으로도 숙주 특이적 살조능이 있는 것을 확인하였다. H. circularisquama HU 9433-P and HA 92-1 as hosts of HcRNAV34 by extraction of total proteins from transgenic plants. As a result of treatment with non-host H. circularisquama HY 9423, HU 9436, and C. vulgaris , only HU 9433-P and HA 92-1 hosts stopped the flow of algae, changed the shape, and destroyed the cells. was observed. In addition, when observed with a confocal microscope, it is believed that GFP transformed with HcRNAV34 VLP is expressed in algae, so the morphological change and destruction of algae is thought to occur when HcRNAV34 VLP is introduced into the alga, and HcRNAV34 VLP alone is host-specific. It was confirmed that there is algae function.

따라서, 유해 조류에 특이적으로 감염되는 바이러스를 선별하여 그 일부를 식물체에 형질전환을 통해 대량생산하여 살조능을 확인한다면 이는 새로운 생물학적 적조 방제 방법으로 활용될 수 있을 것으로 기대된다. Therefore, if a virus that specifically infects harmful algae is selected and a part of it is mass-produced through transformation in a plant to confirm its algal ability, it is expected that it can be utilized as a new biological control method for red tide.

<110> Industry-Academic Cooperation Foundation, Chosun University <120> A transgenic tobacco expressing recombination HcRNAV 34 virus like particle protein <130> PN1408-262 <160> 1 <170> KoPatentIn 3.0 <210> 1 <211> 1080 <212> DNA <213> Artificial Sequence <220> <223> HcRNAV 34 VLP <400> 1 atgacccgcc cgctggcact gacgaatggt ggtaacacga atggtggtaa taacggtggt 60 agccgccgcc gcccgccgcg ccaacgtcgt cagggccgtc gccgtaatcg ccgtcgcggc 120 ggtggcggtg gcggtccgcg caacaatgcc gcaatggttc tggcccaagg tgcaggtagt 180 gtgccgggca tgccgtttgg ttcctggccg agtcgttcca ccatgcgcgc atgggatgct 240 ttccatccgg aacatctgcc gctgccgcgt agtgtgggtc cgtattgcgt ggttcgcacc 300 agctctctga ttacgagttc cgacaaagtg atgctgtttg cgccgatggt tggcagtgcc 360 ggttgctggc tgaccgcatg tgctatgggc tcccgtacgg aaggcggtgc gatcaacggt 420 ctggataaca ccaatgttta cacggtcccg tttccgggca ttgccaccac gggttcatcg 480 atcaccgtcg tgccggcagc tctgagcgtt caggtcatga acccgaatcc gctgatgagc 540 accacgggca ttttcggcgg taccgtgtct catacgcaac tgaacctggc gggtcgtacc 600 gaaacgtgga atgattttag catggaagtg atctctttca tgcgtccgcg cctgatgtca 660 gcaggcaaac tggctctgcg cggcgttcag ggtgactcgt atccgctgaa tatgtcagca 720 ctgtcgaact tcaattgtct gtcagatgtt gctgaaggta aactgtcgtg gaccgacagc 780 tctggtcact atccggcggg tctggccccg ctggtgtttg ttaacgaagc aaaacagacc 840 atgaattacc tggtctcagt ggaatggcgt gttcgcttcg atattggcaa tccggccgtc 900 gccgcacaac gtcatcacgg tatcaccccg gaatggaaat gggatgacat gattaaaacg 960 gcgatcgccc gtggccacgg tattatggac atcgcggaac gcgttgcaaa tgctggctct 1020 tttgttgcga atgccgctat tgctgctcgt cgtgcgatgc cggctctgat ggctgcttga 1080 1080 <110> Industry-Academic Cooperation Foundation, Chosun University <120> A transgenic tobacco expressing recombination HcRNAV 34 virus like particle protein <130> PN1408-262 <160> 1 <170> KoPatentIn 3.0 <210> 1 <211> 1080 <212> DNA <213> Artificial Sequence <220> <223> HcRNAV 34 VLP <400> 1 atgacccgcc cgctggcact gacgaatggt ggtaacacga atggtggtaa taacggtggt 60 agccgccgcc gcccgccgcg ccaacgtcgt cagggccgtc gccgtaatcg ccgtcgcggc 120 ggtggcggtg gcggtccgcg caacaatgcc gcaatggttc tggcccaagg tgcaggtagt 180 gtgccgggca tgccgtttgg ttcctggccg agtcgttcca ccatgcgcgc atgggatgct 240 ttccatccgg aacatctgcc gctgccgcgt agtgtgggtc cgtattgcgt ggttcgcacc 300 agctctctga ttacgagttc cgacaaagtg atgctgtttg cgccgatggt tggcagtgcc 360 ggttgctggc tgaccgcatg tgctatgggc tcccgtacgg aaggcggtgc gatcaacggt 420 ctggataaca ccaatgttta cacggtcccg tttccgggca ttgccaccac gggttcatcg 480 atcaccgtcg tgccggcagc tctgagcgtt caggtcatga acccgaatcc gctgatgagc 540 accacgggca ttttcggcgg taccgtgtct catacgcaac tgaacctggc gggtcgtacc 600 gaaacgtgga atgattttag catggaagtg atctctttca tgcgtccgcg cctgatgtca 660 gcaggcaaac tggctctgcg cggcgttcag ggtgactcgt atccgctgaa tatgtcagca 720 ctgtcgaact tcaattgtct gtcagatgtt gctgaaggta aactgtcgtg gaccgacagc 780 tctggtcact atccggcggg tctggccccg ctggtgtttg ttaacgaagc aaaacagacc 840 atgaattacc tggtctcagt ggaatggcgt gttcgcttcg atattggcaa tccggccgtc 900 gccgcacaac gtcatcacgg tatcaccccg gaatggaaat gggatgacat gattaaaacg 960 gcgatcgccc gtggccacgg tattatggac atcgcggaac gcgttgcaaa tgctggctct 1020 tttgttgcga atgccgctat tgctgctcgt cgtgcgatgc cggctctgat ggctgcttga 1080 1080

Claims (1)

서열번호 1 의 염기서열로 표시되는 HcRNAV 34 VLP(virus like particle) 유전자가 도입된 형질전환된 담배에서 생산된 총 단백질(total protein)을 포함하는, 적조 방제용 조성물에서,
상기 총 단백질은 적조 유발 조류인 H. circularisquama HU 9433-P 및 H. circularisquama HA 92-1에 살조능을 가지는 것을 특징으로 하는, 적조 방제용 조성물.
In a composition for controlling red tides, comprising the total protein (total protein) produced in the transformed tobacco into which the HcRNAV 34 virus like particle (VLP) gene represented by the nucleotide sequence of SEQ ID NO: 1 is introduced,
The total protein is a red algae control composition, characterized in that it has algae activity in H. circularisquama HU 9433-P and H. circularisquama HA 92-1, which are red algae-induced algae.
KR1020140114211A 2014-08-29 2014-08-29 A transgenic tobacco expressing recombination HcRNAV 34 virus like particle protein Active KR102319619B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140114211A KR102319619B1 (en) 2014-08-29 2014-08-29 A transgenic tobacco expressing recombination HcRNAV 34 virus like particle protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140114211A KR102319619B1 (en) 2014-08-29 2014-08-29 A transgenic tobacco expressing recombination HcRNAV 34 virus like particle protein

Publications (2)

Publication Number Publication Date
KR20160026179A KR20160026179A (en) 2016-03-09
KR102319619B1 true KR102319619B1 (en) 2021-10-29

Family

ID=55536625

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140114211A Active KR102319619B1 (en) 2014-08-29 2014-08-29 A transgenic tobacco expressing recombination HcRNAV 34 virus like particle protein

Country Status (1)

Country Link
KR (1) KR102319619B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013032033A2 (en) * 2011-06-13 2017-05-30 Medicago Inc particle production simulating rabies virus in plants
KR101350170B1 (en) 2011-11-11 2014-01-14 한국생명공학연구원 Method for preparing transgenic plant with increased anthocyanin content and the plant thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Appl Environ Microbiol . 2005 Dec;71(12):8888-94.

Also Published As

Publication number Publication date
KR20160026179A (en) 2016-03-09

Similar Documents

Publication Publication Date Title
JP2812685B2 (en) Stilbene synthase gene
CN104877993B (en) Two kinds of plant eIF4A genes and its application for the water-fast cercosporiosis of rice poisonous plant body of prepare transgenosis
ES2711307T3 (en) Transformation of juvenile and mature citrus
EP3167051B1 (en) Phytophthora resistant plants belonging to the solanaceae family
JP6375380B2 (en) Phytophthora resistant plant belonging to the solanaceous family
JPH07509138A (en) Improved method for AGROBACTERIUM-mediated transformation of cultured soybean cells
CN103966235B (en) Eggplant anthocyanidin synthesis related gene SmMYB1 and recombinant expression vector thereof and cultivating the application in purple solanum lycopersicum
JP3174048B2 (en) Transgenic plants belonging to Cucumis Melo species
CN105755020A (en) Radix notoginseng mitogen-activated protein kinase kinase gene PnMAPKK1 and application thereof
Baranski et al. Genetic engineering of carrot
FR2961375A1 (en) OVERPRODUCTION OF JASMONIC ACID IN TRANSGENIC PLANTS
CN104450743A (en) Application of eggplant anthocyanidin synthesis associated gene SmMYB1 in cultivation of solanum aethiopicum group gilo variety
CN111118034B (en) An apple disease resistance related gene MdHAL3 and its application
Lipsky et al. Genetic transformation of Ornithogalum via particle bombardment and generation of Pectobacterium carotovorum-resistant plants
KR20110051539A (en) Transformants of Red Pepper with Improved Resistance to Peyer&#39;s Drugs and Manufacturing Method Thereof
US20210032648A1 (en) Method for improving sensitivity of plant to gibberellin inhibitor and use thereof
CN104726489B (en) The method that agriculture bacillus mediated live body rataria conversion obtains transgene cotton
Das et al. Agrobacterium-mediated genetic transformation of lentil (Lens culinaris Medik.) with chitinase gene followed by in vitro flower and pod formation
CN115786358B (en) Drought-resistant related protein IbbHLH118,118, and coding gene and application thereof
KR102319619B1 (en) A transgenic tobacco expressing recombination HcRNAV 34 virus like particle protein
US7026529B2 (en) Methods for Agrobacterium-mediated transformation of dandelion
CN103233040A (en) Method for cultivating antiviral momordica grosvenori
Das et al. Genetic transformation of a local tomato (Solanum lycopersicum L.) variety of Bangladesh
CN105420272A (en) Method for culturing selectable-marker-free herbicide-resistant transgenic plant and carrier special for method
CN105505947A (en) Application of purple cabbage anthocyanin biosynthesis regulatory gene BrTT8 to photoinduction type purple tomatoes cultivation and method

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20140829

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20190710

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20140829

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20210223

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20210928

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20211026

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20211026

End annual number: 3

Start annual number: 1

PG1601 Publication of registration