KR102308458B1 - Positive active material surface-modified with metal sulfide and lithium all state solid battery including the same - Google Patents
Positive active material surface-modified with metal sulfide and lithium all state solid battery including the same Download PDFInfo
- Publication number
- KR102308458B1 KR102308458B1 KR1020190121431A KR20190121431A KR102308458B1 KR 102308458 B1 KR102308458 B1 KR 102308458B1 KR 1020190121431 A KR1020190121431 A KR 1020190121431A KR 20190121431 A KR20190121431 A KR 20190121431A KR 102308458 B1 KR102308458 B1 KR 102308458B1
- Authority
- KR
- South Korea
- Prior art keywords
- active material
- metal sulfide
- positive electrode
- electrode active
- sulfide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
본 출원은 단일금속 또는 이중금속 황화물로 표면이 개질된 양극활물질 및 이를 포함한 리튬 전고체 전지에 관한 것이다.The present application relates to a positive electrode active material whose surface is modified with a single metal or a double metal sulfide, and a lithium all-solid-state battery including the same.
Description
본 출원은 단일금속 또는 이중금속 황화물로 표면이 개질된 양극활물질 및 이를 포함한 리튬 전고체 전지에 관한 것이다.The present application relates to a positive electrode active material whose surface is modified with a single metal or a double metal sulfide, and a lithium all-solid-state battery including the same.
리튬 전고체전지는 황화물계 또는 산화물계 고체전해질을 사용하고, 전고체물질을 매개로 리튬 이온을 산화 또는 환원시킴으로써 화학 에너지를 직접적으로 전기 에너지로 상호 변환할 수 있는 전지이다. 특히, 친환경, 안전성 및 고에너지 밀도의 용량 저장 등의 이점으로 인해 현재 상용되고 있는 리튬 이차전지의 한계인 낮은 에너지 밀도와 고비용 문제 및 유독성 문제를 해결할 수 있어 지속 가능한 이차전지로서 수요가 증가하고 있다.A lithium all-solid-state battery is a battery that can directly convert chemical energy into electrical energy by using a sulfide-based or oxide-based solid electrolyte and oxidizing or reducing lithium ions through an all-solid material. In particular, due to advantages such as eco-friendliness, safety, and high energy density capacity storage, the low energy density, high cost, and toxicity problems that are the limitations of currently commercially available lithium secondary batteries can be solved, so the demand as a sustainable secondary battery is increasing. .
그러나 전고체전지는 충방전 반응시 황화물계 또는 산화물계 고체전해질과 양극 사이에서 계면간 부반응으로 인한 비가역성과 계면저항 및 공간-전하층 형성(space-charge layer formation)으로 인한 전극 전하의 불균일 분포, 용량저하 등의 문제가 대두되고 있다. 또한 전고체 물질 자체의 낮은 이온전도성 때문에 차세대전지인 리튬 전고체전지의 상용화를 저해하고 있다.However, in the all-solid-state battery, irreversibility due to interfacial side reactions between the sulfide- or oxide-based solid electrolyte and the positive electrode during the charge/discharge reaction and the non-uniform distribution and capacity of electrode charges due to interfacial resistance and space-charge layer formation There are problems such as degradation. In addition, the low ionic conductivity of the all-solid material itself hinders the commercialization of the lithium all-solid-state battery, which is a next-generation battery.
해당 문제점들을 해결하기 위하여, 리튬금속황화물 등을 매개로 한 양극활물질들이 개발된 바 있다. 그러나, 이러한 양극활물질은 새로운 양극활물질로서 충방전 성능 등이 산화물계 양극활물질에 비해 용량 면에서 크게 증가한 반면, 기존 산화물계 양극활물질 또는 음극활물질에 비해 충방전 과정 진행시 용량유지율이 매우 낮은 단점이 있다. In order to solve the problems, positive electrode active materials using lithium metal sulfide and the like have been developed. However, this positive electrode active material is a new positive electrode active material, and while the charge/discharge performance is significantly increased compared to the oxide-based positive active material in terms of capacity, the capacity maintenance rate during the charging and discharging process is very low compared to the existing oxide-based positive electrode active material or negative electrode active material. have.
또한, 같은 산화물계 양극활물질에 리튬금속 산화물 등을 표면처리하여, 전고체전지에 적용하여 충방전 성능의 개선을 통해 효과를 본 바 있으나 상용화를 이룰 만큼의 단점을 개선하지는 못하였다.In addition, the same oxide-based positive electrode active material was surface-treated with lithium metal oxide and applied to an all-solid-state battery to improve charge/discharge performance, but the disadvantages were not improved enough to achieve commercialization.
본 출원의 일 실시예에 따르면, 양극활물질을 금속황화물로 표면처리하여 리튬 전고체 전지의 가역성 및 충방전 성능을 증가시키고자 한다.According to an embodiment of the present application, it is intended to increase the reversibility and charge/discharge performance of a lithium all-solid-state battery by surface-treating a cathode active material with a metal sulfide.
본 출원의 일 측면은 금속 황화물 나노입자가 표면에 부착된 양극활물질로서, 상기 금속 황화물은 MaSb(단, 0.1≤a≤10 및 0.1≤b≤10)로 표현되는 단일금속 황화물(single-metal sulfide); 또는 M1xM2ySz(단, 0.1≤x≤10, 0.1≤y≤10 및 0.1≤z≤10)로 표현되는 이중금속 황화물(bi-metal sulfide)인 양극활물질이다.One aspect of the present application is a cathode active material having metal sulfide nanoparticles attached to the surface, wherein the metal sulfide is a single metal sulfide represented by M a S b (provided that 0.1≤a≤10 and 0.1≤b≤10). -metal sulfide); or M1 x M2 y S z (provided that 0.1≤x≤10, 0.1≤y≤10, and 0.1≤z≤10), which is a positive electrode active material that is a bi-metal sulfide.
본 출원의 다른 일 측면은 전술한 양극활물질; 황화물계 고체전해질 물질; 및 도전재를 포함하는 복합재이다.Another aspect of the present application is the above-described positive active material; sulfide-based solid electrolyte material; and a composite material including a conductive material.
본 출원의 또 다른 일 측면은 전술한 복합재를 포함하는 복합재층; 전고체 전해질 물질층; 및 상대전극층을 포함하는 리튬 전고체 전지이다.Another aspect of the present application is a composite layer comprising the above-described composite material; an all-solid electrolyte material layer; and a lithium all-solid-state battery including a counter electrode layer.
본 출원의 일 실시예에 따르면, 금속 황화물로 표면 개질된 양극활물질을 제공할 수 있다. According to an embodiment of the present application, it is possible to provide a positive electrode active material surface-modified with a metal sulfide.
본 출원의 일 실시예에 따르면, 마이크로 단위 크기의 금속산화물에 비해 나노 단위 크기의 입자로 표면 처리하여 표면적을 증대시켜서 소량의 금속 황화물로 표면 개질된 양극활물질을 제공할 수 있다.According to an embodiment of the present application, it is possible to provide a positive electrode active material surface-modified with a small amount of metal sulfide by increasing the surface area by surface treatment with nano-sized particles compared to the micro-unit-sized metal oxide.
본 출원의 일 실시예에 따르면, 계면저항이나 황화물계 기반 고체전해질 간 발생하는 부반응의 저항능력이 향상되고 성능저하 문제가 저감되었으며, 표면처리되는 황화물의 잉여의 리튬이온을 잡아두거나 부반응으로부터 손실되는 리튬이온을 억제하는 효과로 인하여 전고체전지의 비가역성을 개선할 수 있다. According to an embodiment of the present application, the interfacial resistance or resistance to side reactions occurring between the sulfide-based solid electrolyte is improved, the performance degradation problem is reduced, and the surplus lithium ions of the sulfide to be surface-treated are captured or lost from side reactions. Due to the effect of inhibiting lithium ions, the irreversibility of the all-solid-state battery can be improved.
도 1은 본 출원의 일실시예에 따른 양극활물질용 표면 개질용 물질을 x-선 회절분석 결과를 도시한 그래프이다.
도 2는 본 출원의 일실시예에 따른 표면개질용 단일금속 황화물 및 이중금속 황화물을 양극활물질에 개질한 물질과 비교예에 대한 x-선 회절분석 결과를 도시한 그래프이다.
도 3은 본 출원의 일실시예에 따른 양극활물질 및 비교예를 전계방사형 주사전자현미경(FE-SEM)을 이용하여 촬영한 이미지이다.
도 4은 본 출원의 일실시예에 따른 양극활물질을 전계방사형 투과전자현미경(FE-TEM)을 이용하여 촬영한 이미지이다.
도 5는 본 출원의 일실시예에 따른 단일금속 황화물인 코발트황화물로 표면을 개질한 양극활물질 및 비교예의 최초 충방전 분석결과를 도시한 그래프이다.
도 6은 본 출원의 일실시예에 따른 이중금속 황화물인 니켈코발트황화물로 표면을 개질한 양극활물질 및 비교예의 최초 충방전 분석결과를 도시한 그래프이다.
도 7은 본 출원의 일실시예에 따른 단일금속 황화물 및 이중금속황화물로 표면을 개질한 양극활물질 및 비교예의 20회간 충방전 용량에 대한 분석결과를 도시한 그래프와 사이클 용량 유지율을 도시한 그래프이다.
도 8은 본 출원의 일실시예에 따른 단일금속 황화물 및 이중금속황화물로 표면을 개질한 양극활물질 및 비교예의 7.5 mA/g 부터 300 mA/g 까지 전류밀도를 달리하여 율특성 용량에 대한 분석결과(C-rate performance)를 도시한 그래프이다.
도 9는 본 출원의 일실시예에 따른 코인셀과 비교예에 대해 충방전 성능 분석 이후 코인셀을 분해하여 양극활물질과 황화물계 고체전해질간 부반응을 분석하기 위해 x-선 광전자 분광법 분석 결과를 도시한 그래프이다
도 10은 본 출원의 일실시예에 따른 코인셀과 비교예에 대충방전 성능 분석 이후 코인셀을 분해하여 양극활물질과 황화물계 고체전해질간 부반응 및 표면을 시각적으로 분석하기 위해 투과전자현미경 및 전자 에너지 손실 분광법의 분석 결과를 나타낸 그래프이다.1 is a graph showing the results of X-ray diffraction analysis of a material for surface modification for a positive electrode active material according to an embodiment of the present application.
FIG. 2 is a graph showing the results of X-ray diffraction analysis for a material obtained by modifying a single metal sulfide and a double metal sulfide for surface modification into a positive electrode active material and a comparative example according to an embodiment of the present application.
3 is an image taken using a field emission scanning electron microscope (FE-SEM) of the positive electrode active material and the comparative example according to an embodiment of the present application.
4 is an image taken using a field emission transmission electron microscope (FE-TEM) of the cathode active material according to an embodiment of the present application.
5 is a graph showing the results of the initial charge/discharge analysis of the positive electrode active material in which the surface is modified with cobalt sulfide, which is a single metal sulfide, according to an embodiment of the present application and a comparative example.
6 is a graph showing the initial charge/discharge analysis results of the positive electrode active material and the comparative example in which the surface is modified with nickel cobalt sulfide, which is a double metal sulfide, according to an embodiment of the present application.
7 is a graph showing the analysis results of the 20 times charge/discharge capacity of the positive electrode active material surface-modified with a single metal sulfide and a double metal sulfide according to an embodiment of the present application and a comparative example and a graph showing the cycle capacity retention rate. .
8 is an analysis result of rate characteristic capacity by varying the current density from 7.5 mA/g to 300 mA/g of the positive electrode active material surface-modified with single metal sulfide and double metal sulfide according to an embodiment of the present application and Comparative Example; It is a graph showing (C-rate performance).
9 is an X-ray photoelectron spectroscopy analysis result to analyze the side reaction between the positive electrode active material and the sulfide-based solid electrolyte by disassembling the coin cell after the charge/discharge performance analysis for the coin cell and the comparative example according to an embodiment of the present application. is a graph
10 is a transmission electron microscope and electron energy to visually analyze the side reaction and surface between the positive electrode active material and the sulfide-based solid electrolyte by disassembling the coin cell after rough discharge performance analysis in the coin cell and the comparative example according to an embodiment of the present application; It is a graph showing the analysis result of loss spectroscopy.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 구성요소 등이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 구성요소 등이 존재하지 않거나 부가될 수 없음을 의미하는 것은 아니다.The terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present application, terms such as “comprise” or “have” are intended to designate that the features, components, etc. described in the specification are present, and one or more other features or components may not be present or may be added. Doesn't mean there isn't.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical and scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in a commonly used dictionary should be interpreted as having a meaning consistent with the meaning in the context of the related art, and should not be interpreted in an ideal or excessively formal meaning unless explicitly defined in the present application. does not
본 출원에서 용어 "나노"는 나노 미터(nm) 단위의 크기를 의미할 수 있고, 예를 들어, 1 내지 1,000 nm의 크기를 의미할 수 있으나, 이에 제한되는 것은 아니다. 또한, 본 명세서에서 용어 "나노 입자"는 나노 미터(nm) 단위의 평균 입경을 갖는 입자를 의미할 수 있고, 예를 들어, 1 내지 1,000 nm의 평균입경을 갖는 입자를 의미할 수 있으나, 이에 제한되는 것은 아니다.In the present application, the term “nano” may mean a size of nanometers (nm), for example, may mean a size of 1 to 1,000 nm, but is not limited thereto. In addition, in the present specification, the term "nanoparticle" may mean particles having an average particle diameter of nanometers (nm), for example, may mean particles having an average particle diameter of 1 to 1,000 nm, It is not limited.
본 발명에 따른 리튬 전고체전지는 하기 반응식 1 및 2 에 나타낸 바와 같이, 공기극과 음극에 충분한 양의 전해액을 공급함으로써 충전 시 리튬 전고체전지의 수명을 증가시킬 수 있다.The lithium all-solid-state battery according to the present invention can increase the lifespan of the lithium all-solid-state battery during charging by supplying a sufficient amount of electrolyte to the cathode and the anode, as shown in
[반응식 1][Scheme 1]
LiCoO2 → Li1 - xCoO2 + + xLi+ + 2e- LiCoO 2 → Li 1 - x CoO 2 + + xLi + + 2e -
[반응식 2][Scheme 2]
xLi+ + In + 2e- → LiInxLi + + In + 2e - → LiIn
[반응식 3][Scheme 3]
2LiCoO2 + Li7P2S8I → Li2S + 2CoO2 + Li7P2S7I2LiCoO 2 + Li 7 P 2 S 8 I → Li 2 S + 2CoO 2 + Li 7 P 2 S 7 I
2CoO2 + Li7P2S7I → 2CoO2-S + Li7P2S5I2CoO 2 + Li 7 P 2 S 7 I → 2CoO 2 -S + Li 7 P 2 S 5 I
[반응식 4][Scheme 4]
Li7P2S8I → Li2S + Li5P2S7ILi 7 P 2 S 8 I → Li 2 S + Li 5 P 2 S 7 I
Li5P2S7I → Li2S + Li3P2S6ILi 5 P 2 S 7 I → Li 2 S + Li 3 P 2 S 6 I
Li3P2S6I → Li2S + LiPS2S5I ?Li 3 P 2 S 6 I → Li 2 S + LiPS 2 S 5 I ?
이하, 본 출원의 양극활물질, 복합재 및 리튬 전고체 전지를 보다 상세히 설명한다.Hereinafter, the positive electrode active material, the composite material, and the lithium all-solid-state battery of the present application will be described in more detail.
본 출원의 양극활물질 금속 황화물 나노입자가 표면에 부착(코팅)된 양극활물질로서, 상기 금속 황화물은 MaSb(단, 0.1≤a≤10 및 0.1≤b≤10)로 표현되는 단일금속 황화물(single-metal sulfide); 또는 M1xM2ySz(단, 0.1≤x≤10, 0.1≤y≤10 및 0.1≤z≤10)로 표현되는 이중금속 황화물(bi-metal sulfide)이다.The cathode active material of the present application is a cathode active material in which metal sulfide nanoparticles are attached (coated) to the surface, wherein the metal sulfide is a single metal sulfide represented by M a S b (provided that 0.1≤a≤10 and 0.1≤b≤10). (single-metal sulfide); or a bi-metal sulfide represented by M1 x M2 y S z (provided that 0.1≤x≤10, 0.1≤y≤10, and 0.1≤z≤10).
전술한 바와 같이, 양극활물질을 황화물로 개질하여, 계면저항이나 황화물계 기반 고체전해질 사이에서 발생하는 부반응의 저항능력이 향상되고 성능저하 문제가 저감되었으며, 표면처리되는 황화물의 잉여의 리튬이온을 잡아두거나 부반응으로부터 손실되는 리튬이온을 억제하는 효과로 인하여 전고체전지의 비가역성을 개선할 수 있다.As described above, by modifying the positive electrode active material with sulfide, the interfacial resistance or resistance to side reactions occurring between sulfide-based solid electrolytes is improved, the performance degradation problem is reduced, It is possible to improve the irreversibility of the all-solid-state battery due to the effect of suppressing lithium ions that are lost or lost from side reactions.
여기서, 양극활물질은 리튬화합물일 수 있다. 상기 리튬화합물은 특별히 한정되는 것은 아니지만, LiCoO2, LiFePO4, LiMn2O4, Li[NixCoyAlz]O2 (0.1≤x,y,z≤1) 및 Li[NixCoyMnz]O2 (0.1≤x,y,z≤1)으로 이루어진 그룹으로부터 선택된 하나를 포함할 수 있다.Here, the cathode active material may be a lithium compound. The lithium compound is not particularly limited, but LiCoO 2 , LiFePO 4 , LiMn 2 O 4 , Li[Ni x Co y Al z ]O 2 (0.1≤x,y,z≤1) and Li[Ni x Co y Mn z ]O 2 (0.1≤x,y,z≤1) may include one selected from the group consisting of.
여기서, 금속 황화물은 상기 양극활물질 100 중량부 대비, 0.01 중량부 내지 5.0 중량부로 포함되는 것이 바람직하다.Here, the metal sulfide is preferably included in an amount of 0.01 to 5.0 parts by weight, based on 100 parts by weight of the positive electrode active material.
표면 개질에 이용되는 금속 황화물 함량에 따라 성능개선의 정도가 달라지고, 그 함량이 과량이거나 소량일 경우, 역으로 성능을 저하시킬 수 있다. 본 출원에서는 양극활물질의 100 중량부에 대비하여 0.1 중량부 내지 0.5 중량부의 금속 황화물을 처리함으로써 부반응 방지 계면저항 저감 및 전기화학적 성능 향상을 유도할 수 있다. 상기 양극활물질은 금속 황화물을 금속 황화물의 함량을 상기 범위 내로 제어함으로써 양극활물질의 가연성을 개선시켜 전지의 성능을 현저히 향상시키는 효과가 탁월하다.The degree of performance improvement varies depending on the content of the metal sulfide used for surface modification, and if the content is excessive or small, the performance may be reduced conversely. In the present application, by treating 0.1 parts by weight to 0.5 parts by weight of the metal sulfide relative to 100 parts by weight of the positive electrode active material, it is possible to induce a reduction in side reaction prevention interfacial resistance and an improvement in electrochemical performance. The positive electrode active material is excellent in the effect of significantly improving the performance of the battery by improving the flammability of the positive electrode active material by controlling the metal sulfide content of the metal sulfide within the above range.
본 발명에 따른 금속 황화물의 원료로 사용되는 양극활물질은 용매를 사용한 개질방법과 용매를 사용하지 않고 건식으로 코팅하는 방법을 포함한다. 이와 더불어, 상기 금속 황화물 원료를 사용하여 양극활물질의 표면에 개질하기 위해서는 소결 과정이나 중력가속도를 이용한 음파 에너지 또는 진동에너지가 필요하며, 소결 온도는 100℃ 내지 700℃의 범위에서 원활하게 양극활물질의 표면 개질에 이용될 수 있고 건식 개질에 사용되는 중력가속도는 2G 내지 100G까지 다양하게 허용될 수 있다.The cathode active material used as a raw material for the metal sulfide according to the present invention includes a reforming method using a solvent and a dry coating method without using a solvent. In addition, in order to modify the surface of the cathode active material using the metal sulfide raw material, sound wave energy or vibration energy using a sintering process or gravitational acceleration is required, and the sintering temperature is smoothly in the range of 100°C to 700°C. It can be used for surface modification and the gravitational acceleration used for dry reforming can be variously allowed from 2G to 100G.
전술한 바와 같이, 단일금속 황화물이 사용되거나, 이중금속 황화물이 사용될 수 있다.As described above, a single metal sulfide may be used, or a double metal sulfide may be used.
상기 단일금속 황화물은 Li, Ni, Co, Mn, Cu, Zn, Fe, Cr, V, Ti, Zr, Nb, Mo, Ag, Al, Ga, Ge, Sn, Bi 및 Pb으로 이루어진 그룹으로부터 선택된 1종의 금속을 포함할 수 있다.The single metal sulfide is one selected from the group consisting of Li, Ni, Co, Mn, Cu, Zn, Fe, Cr, V, Ti, Zr, Nb, Mo, Ag, Al, Ga, Ge, Sn, Bi and Pb. species of metals.
특히, 상기 양극활물질은 상기 단일금속 황화물을 사용한 습식 표면 처리 방법(solution coating method)에 의해 표면이 개질될 수 있다. 상세한 표면 개질 방법은 실험예에서 설명한다.In particular, the surface of the positive electrode active material may be modified by a wet surface treatment method using the single metal sulfide (solution coating method). Detailed surface modification methods are described in Experimental Examples.
또한, 상기 이중금속 황화물은 Li, Ni, Co, Mn, Cu, Zn, Fe, Cr, V, Ti, Zr, Nb, Mo, Ag, Al, Ga, Ge, Sn, Bi 및 Pb으로 이루어진 그룹으로부터 선택된 2 종의 금속을 포함할 수 있다. In addition, the double metal sulfide is from the group consisting of Li, Ni, Co, Mn, Cu, Zn, Fe, Cr, V, Ti, Zr, Nb, Mo, Ag, Al, Ga, Ge, Sn, Bi and Pb. It may include two selected metals.
상기 양극활물질은 상기 이중금속 황화물을 사용한 건식 표면 처리 방법(resonant acoustic coating method)에 의해 표면이 개질될 수 있다. 상세한 표면 개질 방법은 실험예에서 설명한다.The surface of the cathode active material may be modified by a resonant acoustic coating method using the double metal sulfide. Detailed surface modification methods are described in Experimental Examples.
상기 건식 표면 처리 방법의 수행시, 건식 믹서의 중력가속도 조건은 0 G 내지 60 G이며, 수행 시간은 60 분 이하일 수 있다.When the dry surface treatment method is performed, the gravitational acceleration condition of the dry mixer is 0 G to 60 G, and the execution time may be 60 minutes or less.
본 출원의 다른 실시예인 복합재(composite)는 전술한 양극활물질; 황화물계 고체전해질 물질; 및 도전재를 포함할 수 있다. Another embodiment of the present application, the composite material (composite) is the above-described positive electrode active material; sulfide-based solid electrolyte material; and a conductive material.
상기 복합재는 전술한 양극활물질; 황화물계 고체전해질 물질; 및 음극활물질을 포함할 수 있다.The composite material may include the positive active material described above; sulfide-based solid electrolyte material; and an anode active material.
상기 복합재는 50 내지 90 중량부의 양극활물질, 10 내지 40 중량부의 황화물계 고체전해질 물질 및 1 내지 10 중량부의 도전재를 포함할 수 있다.The composite material may include 50 to 90 parts by weight of a cathode active material, 10 to 40 parts by weight of a sulfide-based solid electrolyte material, and 1 to 10 parts by weight of a conductive material.
상기 음극활물질은 인조흑연(artificial carbon), 천연흑연(natural carbon) Li4Ti5O12, Sn, Li, 및 Si 또는 Si-C계 합금을 포함할 수 있다.The anode active material may include artificial graphite, natural carbon Li 4 Ti 5 O 12 , Sn, Li, and Si or a Si-C-based alloy.
본 출원의 다른 실시예인 리튬 전고체 전지는 전술한 복합재를 포함하는 복합재층; 전고체 전해질 물질층; 및 상대전극층을 포함한다. 리튬 전고체 전지의 구체적인 구조는 특별히 한정하지 않으며, 전술한 구성요소를 포함하는한, 본 기술분야에서 적용가능한 구조는 어떠한 구조라도 적용가능하다. 더불어, 전술한 구성요소 이외에도 본 기술분야에서 적용가능한 추가적인 구성요소는 어떠한 구성요소라도 본 출원의 리튬 전고체 전지에 적용가능하다.A lithium all-solid-state battery according to another embodiment of the present application includes a composite layer including the composite material described above; an all-solid electrolyte material layer; and a counter electrode layer. The specific structure of the lithium all-solid-state battery is not particularly limited, and any structure applicable in the art is applicable as long as the above-described components are included. In addition, in addition to the above-described components, any additional components applicable in the present technical field are applicable to the lithium all-solid-state battery of the present application.
특히, 상기 전고체 전해질 물질층은 황화물계 고체 전해질 또는 산화물계 고체 전해질을 포함할 수 있다. 본 출원의 양극활물질은 황화물계 고체 전해질 뿐만 아니라 산화물계 고체 전해질에도 유사한 효과를 제공할 수 있다.In particular, the all-solid electrolyte material layer may include a sulfide-based solid electrolyte or an oxide-based solid electrolyte. The positive electrode active material of the present application may provide a similar effect to not only the sulfide-based solid electrolyte but also the oxide-based solid electrolyte.
이하, 실험예를 통하여 본 출원을 보다 상세히 설명한다.Hereinafter, the present application will be described in more detail through experimental examples.
[[ 실험예Experimental example ]]
실시예Example 1 One
하이니켈계 LiNi0 . 6Co0 . 2Mn0 . 2O2 양극활물질을 제조하기 위하여 Commercial grade의 LiNi0 . 6Co0 . 2Mn0 . 2O2 분말(6 micrometer, 2.0 g), 염화코발트 일수화물(CoCl2 .H2O, Aldrich)과 소듐 디에틸디싸이오카바메이트 삼수화물(Sodiom diethyldithiocarbamate, 2NaS2CN(C2H5)2.3H2O, Aldrich)를 사용하였다. High nickel-based LiNi 0 . 6 Co 0 . 2 Mn 0 . 2 O 2 Commercial grade LiNi 0 . 6 Co 0 . 2 Mn 0 . 2 O 2 powder (6 micrometer, 2.0 g), cobalt chloride monohydrate (CoCl 2 . H 2 O, Aldrich) and sodium diethyldithiocarbamate trihydrate (Sodiom diethyldithiocarbamate, 2NaS 2 CN(C 2 H 5 ) .3H 2 was used 2 O, Aldrich).
염화코발트 일수화물(CoCl2 .H2O, Aldrich)과 화학양론적으로 2배 과량의 소듐 디에틸디싸이오카바메이트 삼수화물(Sodiom diethyldithiocarbamate, 2NaS2CN(C2H5)2 .3H2O, Aldrich) 각각을 100 ml 3차 증류수에 10분간 용해시켰다. 상온에서 각각 완벽히 용해되었을 경우에 한해 소듐 디에틸디싸이오카바메이트 삼수화물 수용액을 염화코발트 일수화물 수용액에 천천히 투입하여, 바이스(디에틸디싸이오카바메이토)코발트 (Bis(diethyldithiocarbamato)cobalt(II)) 복합체를 형성시켰다. 이러한 복합체는 침전물로서 걸러진 후, 3차증류수 1L로 세척한 다음, 80도 오븐에 12시간 건조하였다. Cobalt chloride monohydrate (CoCl 2. H 2 O, Aldrich) and a stoichiometric with 2-fold excess of sodium diethyl di-thio-carbamate trihydrate (Sodiom diethyldithiocarbamate, 2NaS 2 CN ( C 2 H 5) 2. 3H 2 O, Aldrich) was dissolved in 100 ml tertiary distilled water for 10 minutes. Only when each is completely dissolved at room temperature, an aqueous solution of sodium diethyldithiocarbamaate trihydrate is slowly added to an aqueous solution of cobalt chloride monohydrate, and Bis(diethyldithiocarbamato)cobalt(Bis(diethyldithiocarbamato)cobalt( II)) complexes were formed. This complex was filtered as a precipitate, washed with 1L of tertiary distilled water, and then dried in an oven at 80°C for 12 hours.
건조된 바이스(디에틸디싸이오카바메이토)코발트 복합체는 디클로로메탄(CH2Cl2)에 피코팅물인 LiNi0 . 6Co0 . 2Mn0 . 2O2 분말의 중량 대비 0.025%로 용해하고, Commercial grade의 LiNi0 . 6Co0 . 2Mn0 . 2O2 분말(6 micrometer, 2.0 g)은 다른 비커에 투입된 디클로로메탄에 용해한 후 각각 10분씩 400 rpm 이상으로 교반하였다. 10분 교반 후 바이스(디에틸디싸이오카바메이토)코발트 디클로로메탄 수용액을 LiNi0.6Co0.2Mn0.2O2 분말이 든 디클로로메탄 수용액에 천천히 투입하여, 잔여물이 남을 때까지 50℃ 내지 80℃의 온도로 가열하였다. 용매가 증발되고 남은 잔여물을 진공오븐에서 2시간동안 80℃에서 가열한 후, 질소 flow 분위기의 튜브형 전기로에서 분당 5℃의 승온 속도로 2시간동안 가열하여, 코발트 복합체를 분해시켜 중량대비 0.025% 단일코발트황화물이 표면에 개질된 LiNi0 . 6Co0 . 2Mn0 . 2O2 분말을 생성하였다. 단일코발트황화물의 0.025%의 제이 산화구리 함량을 가지는 해당 실시예 1을 준비하였다. 에탄올을 용매로 하여 질산구리 일수화물을 첨가하였다. 그 후, 혼합물을 가열 교반기 위에서 교반하고, 상기 개질된 양극활물질을 전고체전지에 적용하기 위해 양극활물질 : 황화물계 고체전해질 (Li7P2S8I) : 도전재 Super-P = 70 : 28 : 2 의 중량비율로 막자사발을 이용하여 혼합하였다. 그 이후 유압프레스로 300 bar로 펠렛화한 이후 다시 그 펠렛을 부숴 혼합하고 이 과정을 총 3회 반복하여 전극활물질 조성물을 완성하였다. 전고체 전지를 구성하기 위하여 황화물계 고체전해질 Li7P2S8I 를 16 pi의 원통형 강철 몰드/몰더 (mold /molder) 를 넣어 3분간 300 bar 에 압착시켰다. 음극 내지 집전체로서 인듐 포일(indium foil, Nilaco)을 사용하였고, 양극으로서 양극활물질 : 황화물계 고체전해질 (Li7P2S8I) : 도전재 Super-P = 70 : 28 : 2 의 중량비율의 양극조성물과 인듐포일을 집전체로서 사용하였고 전고체전지용 코인셀을 제조하기 위해 음극쪽에는 0.5 mm의 스페이서(spacer)를 사용하였고, 양극 쪽에는 1.0 mm의 스페이서(spacer)와 스프링을 이용하여 2032 type의 코인셀을 제조하였다.The dried vice (diethyldithiocarbameto) cobalt complex was coated in dichloromethane (CH 2 Cl 2 ) LiNi 0 . 6 Co 0 . 2 Mn 0 . 2 O 2 Dissolve at 0.025% based on the weight of the powder, and commercial grade LiNi 0 . 6 Co 0 . 2 Mn 0 . 2 O 2 powder (6 micrometer, 2.0 g) was dissolved in dichloromethane put in another beaker and stirred at 400 rpm or more for 10 minutes each. After stirring for 10 minutes, an aqueous solution of vice (diethyldithiocarbameto) cobalt dichloromethane was slowly added to an aqueous solution of dichloromethane containing LiNi 0.6 Co 0.2 Mn 0.2 O 2 powder, and 50° C. to 80° C. until a residue remained. was heated to a temperature of After the solvent is evaporated and the remaining residue is heated at 80° C. for 2 hours in a vacuum oven, heated at a temperature increase rate of 5° C. per minute in a tube-type electric furnace in a nitrogen flow atmosphere for 2 hours to decompose the cobalt complex to 0.025% by weight LiNi 0 with monocobalt sulfide modified on the surface . 6 Co 0 . 2 Mn 0 . 2 O 2 powder was produced. Example 1 having a cupric oxide content of 0.025% of monocobalt sulfide was prepared. Copper nitrate monohydrate was added using ethanol as a solvent. After that, the mixture is stirred on a heating stirrer, and in order to apply the modified positive electrode active material to an all-solid-state battery, positive electrode active material: sulfide-based solid electrolyte (Li 7 P 2 S 8 I): conductive material Super-P = 70: 28 : Mix using a mortar at a weight ratio of 2. After that, after pelletizing at 300 bar with a hydraulic press, the pellets were crushed and mixed, and this process was repeated a total of three times to complete the electrode active material composition. To construct an all-solid-state battery, a sulfide-based solid electrolyte Li 7 P 2 S 8 I was placed in a 16 pi cylindrical steel mold/molder and pressed at 300 bar for 3 minutes. An indium foil (Nilaco) was used as a negative electrode or a current collector, and a positive electrode active material: a sulfide-based solid electrolyte (Li 7 P 2 S 8 I): a conductive material Super-P = 70: 28: 2 weight ratio as a positive electrode of the positive electrode composition and indium foil were used as the current collector, and a 0.5 mm spacer was used for the negative electrode side to manufacture a coin cell for an all-solid-state battery, and a 1.0 mm spacer and a spring were used for the positive electrode side. A 2032 type coin cell was manufactured.
실시예Example 2 2
양극활물질의 중량대비 0.05%의 단일코발트황화물을 사용하는 것을 제외하고는 전술한 실시예 1과 동일한 과정을 통하여, 실시예 2를 제작하였다.Example 2 was prepared in the same manner as in Example 1, except that 0.05% of monocobalt sulfide based on the weight of the cathode active material was used.
실시예Example 3. 3.
양극활물질의 중량대비 0.075%의 단일코발트황화물을 사용하는 것을 제외하고는 전술한 실시예 1과 동일한 과정을 통하여, 실시예 3을 제작하였다.Example 3 was prepared in the same manner as in Example 1, except that monocobalt sulfide in an amount of 0.075% based on the weight of the cathode active material was used.
실시예Example 4 4
NiCo2S4 이중금속황화물(니켈코발트황화물)을 이용하여, 표면이 개질된 하이니켈계 LiNi0 . 6Co0 . 2Mn0 . 2O2 양극활물질을 제조하기 위하여 NiCo2S4 이중금속황화물 나노파티클 (NiCo2S4 nanoparticle)을 단독으로 합성하였다. NiCo 2 S 4 Using a double metal sulfide (nickel cobalt sulfide), the surface is modified high nickel-based LiNi 0 . 6 Co 0 . 2 Mn 0 . 2 O 2 To prepare a positive electrode active material, NiCo 2 S 4 double metal sulfide nanoparticles (NiCo 2 S 4 nanoparticles) was synthesized alone.
질산 니켈 6수화물(Ni(NO3)2 .6H2O, Aldrich)과 질산 니켈 6수화물(2Co(NO3)2 .6H2O,Aldrich)을 에탄올아민(ethanolamine, 20ml, Aldrich)에 용해시키고, 싸이오우레아(thiourea, 4CH4N2S, Aldrich)를 3당량 사용하여 3차 증류수에 투입하여 10분간 교반시켜 용해시켰다. 각각 10분간 교반후 싸이오우레아 수용액을 질산니켈-코발트 6수하물의 에탄올아민 수용액에 천천히 투입한 후 다시 10분간 더 교반시켜 침전물을 형성시켰다. Nickel nitrate hexahydrate (Ni (NO 3) 2. 6H 2 O, Aldrich) and nickel nitrate hexahydrate (2Co (NO 3) 2. 6H 2 O, Aldrich) of ethanol amine were dissolved in (ethanolamine, 20ml, Aldrich) , thiourea (thiourea, 4CH 4 N 2 S, Aldrich) was dissolved by stirring for 10 minutes by adding 3 equivalents of distilled water using 3 equivalents. After stirring for 10 minutes each, the thiourea aqueous solution was slowly added to the ethanolamine aqueous solution of nickel nitrate-cobalt hexahydrate, and then stirred for another 10 minutes to form a precipitate.
그리고 그 혼합물을 전부 100 ml 용량의 Teflon-lined autoclave에 옮긴 후 밀폐하여 5 ℃/분의 승온 속도로 200 ℃에서 14 시간 동안 소성시켰다. 이후 자연적으로 냉각시킨 이후 autoclave를 열어 용액을 취한 뒤 원심분리를 이용하여 니켈코발트황화물 나노파티클을 회수하였다. Then, the entire mixture was transferred to a 100 ml Teflon-lined autoclave, sealed and calcined at 200 °C for 14 hours at a temperature increase rate of 5 °C/min. After cooling naturally, the autoclave was opened to take a solution, and nickel cobalt sulfide nanoparticles were recovered by centrifugation.
이후 회수한 니켈코발트 황화물 0.01g (중량대비 0.1%)과 양극활물질인 LiNi0.6Co0.2Mn0.2O2 10g를 부피대비 80%가 충진되는 지르코니아 용기(zirconia container)에 넣어 밀봉하여 Resonant-acoustic mixer (LabRAM II, Resodyn Inc.)를 이용하여 중력가속도 60G에 20분간 Mixing하여 니켈코발트 황화물 나노파티클이 표면에 개질된 LiNi0 . 6Co0 . 2Mn0 . 2O2 를 얻었다. 또한, 이를 이용하여, 실시예 1 과 동일한 방식으로 전고체전지용 코인셀을 제작하였다.After that, 0.01 g of recovered nickel cobalt sulfide (0.1% by weight) and 10 g of LiNi 0.6 Co 0.2 Mn 0.2 O 2 as a positive electrode active material were put in a zirconia container filled with 80% of the volume and sealed in a resonant-acoustic mixer ( Using LabRAM II, Resodyn Inc.), the nickel cobalt sulfide nanoparticles were modified on the surface of LiNi 0 by mixing at 60 G under the acceleration of gravity for 20 minutes. 6 Co 0 . 2 Mn 0 . 2 O 2 got In addition, using this, a coin cell for an all-solid-state battery was manufactured in the same manner as in Example 1.
실시예Example 5 5
양극활물질의 중량대비 0.3%의 니켈코발트황화물을 사용하는 것을 제외하고는 전술한 실시예 4와 동일한 과정을 통하여, 실시예 5를 제작하였다.Example 5 was prepared in the same manner as in Example 4, except that 0.3% of nickel cobalt sulfide based on the weight of the positive electrode active material was used.
실시예Example 6 6
양극활물질의 중량대비 0.5%의 니켈코발트황화물을 사용하는 것을 제외하고는 전술한 실시예 4와 동일한 과정을 통하여, 실시예 6을 제작하였다.Example 6 was prepared in the same manner as in Example 4, except that 0.5% of nickel cobalt sulfide based on the weight of the positive electrode active material was used.
비교예comparative example
표면 개질(코팅)하지 않은 LiNi0 . 6Co0 . 2Mn0 . 2O2 분말을 사용하는 것을 제외하고는 실시예 1과 동일한 과정을 통하여, 비교예를 제작하였다. LiNi 0 without surface modification (coating) . 6 Co 0 . 2 Mn 0 . 2 O 2 Through the same process as in Example 1, except for using the powder, a comparative example was prepared.
실험예Experimental example 1 One
실시예 1 내지 3에서 제작한 단일금속 황화물로 처리된 LiNi0 . 6Co0 . 2Mn0 . 2O2은 400 ℃에서 2시간 동안 고온 소성하였고, 실시예 4 내지 6에서 제작한 이중금속 황화물로 처리된 LiNi0 . 6Co0 . 2Mn0 . 2O2은 고에너지의 중력가속도 60G에서 20분간 개질되어 합성되었으므로, 이 과정에서 LiNi0 . 6Co0 . 2Mn0 . 2O2이 산화 내지 황화되거나 부반응이 발생했는지 확인하기 위하여, 각각에 대해 X선 회절(XRD)을 분석하였다. LiNi 0 , treated with a single metal sulfide prepared in Examples 1 to 3 . 6 Co 0 . 2 Mn 0 . 2 O 2 LiNi 0 , which was calcined at 400 ° C. for 2 hours, and treated with the double metal sulfide prepared in Examples 4 to 6 . 6 Co 0 . 2 Mn 0 . 2 O 2 was synthesized by reforming at a high energy gravitational acceleration of 60 G for 20 minutes, so LiNi 0 . 6 Co 0 . 2 Mn 0 . To determine whether 2 O 2 was oxidized to sulfided or side reactions occurred, X-ray diffraction (XRD) was analyzed for each.
여기서, 상기 X선 회절은 Rigaku 사(일본)의 D/MAX 2500-V/PC (CuKa radiation, 40 kV, 100 mA)를 사용하여 측정하였으며, 1.5406 Å파장을 0.02°/sec의 속도로 주사하여 2θ에서 10-90° 범위로 X선 회절 패턴을 얻었다. Here, the X-ray diffraction was measured using D/MAX 2500-V/PC (CuKa radiation, 40 kV, 100 mA) of Rigaku (Japan), and a 1.5406 Å wavelength was scanned at a rate of 0.02°/sec. X-ray diffraction patterns were obtained in the range of 2θ to 10-90°.
우선적으로 단일금속 황화물 (single-metal sulfide, MaSb(0.1≤a,b≤10)) 또는 이중금속 황화물의 합성 여부를 알기 위해 각각의 물질을 회절분석 하였고 더 나아가 단일금속 황화물 (single-metal sulfide, MaSb(0.1≤a,b≤10)) 또는 이중금속 황화물로 표면개질된 LiNi0 . 6Co0 . 2Mn0 . 2O2 양극활물질의 X선 회절(XRD)을 분석하였고, 그 결과는 도 1과 도 2에 각각 나타내었다.First, to find out whether single-metal sulfide (M a S b (0.1≤a,b≤10)) or double-metal sulfide was synthesized, each material was diffracted and furthermore, single-metal sulfide (single-metal sulfide) LiNi 0 surface-modified with metal sulfide, M a S b (0.1≤a,b≤10)) or double metal sulfide . 6 Co 0 . 2 Mn 0 . 2 O 2 X-ray diffraction (XRD) of the positive electrode active material was analyzed, and the results are shown in FIGS. 1 and 2 , respectively.
도 1 및 도 2에 도시한 바와 같이, x-선 회절 패턴을 통해 단일코발트황화물 및 니켈코발트황화물 단일물질의 합성여부를 확인하였다. 참조문헌과 비교해본 결과 각각의 결정구조가 참조문헌과 일치한 것을 확인하였으며. 또한 비교예 및 실시예 1 내지 실시예 6의 회절 패턴과 관련해 표면개질된 양극활물질이 눈에 띄는 격자의 변화 없이 기존의 구조를 유지함을 확인하였다. 동시에 표면이 개질된 황화물의 패턴은 소량이었기 때문에 양극활물질에 비해 확연히 검출되지 않았다.As shown in FIGS. 1 and 2 , it was confirmed whether single cobalt sulfide and nickel cobalt sulfide were synthesized through an x-ray diffraction pattern. As a result of comparison with the references, it was confirmed that each crystal structure was consistent with the references. In addition, it was confirmed that the surface-modified positive electrode active material with respect to the diffraction patterns of Comparative Examples and Examples 1 to 6 maintains the existing structure without noticeable lattice change. At the same time, the surface-modified sulfide pattern was not detectable compared to the positive electrode active material because it was small.
또한, 각각 단일금속 황화물 (single-metal sulfide, MaSb(0.1≤a,b≤10)) 또는 이중금속 황화물로 표면개질된 LiNi0 . 6Co0 . 2Mn0 . 2O2 양극활물질의 표면분석을 위해, 비교예와 실시예 1 내지 6에서 제조된 양극활물질과 상업적으로 입수된 비교예 LiNi0.6Co0.2Mn0.2O2의 분말을 대상으로 전계방출형 주사전자현미경(FE-SEM, JEOL 사, JSM-7610F)을 이용하여 촬영하여, 이미지를 수득하였고, 실시예 5에 대해 전자현미경 이미지를 토대로 전자-분산분광법(electron dispersive spectroscopy)을 이용하여, 이미지를 수득하였고, 실시예 2와 5에 한하여 전계방사형 투과전자현미경(FE-TEM, JEOL, JEL-2100F)을 이용하여 촬영하여, 이미지를 수득하였고, 각각 도 3 내지 도 4에 나타내었다. In addition, LiNi 0 surface-modified with a single-metal sulfide (single-metal sulfide, M a S b (0.1≤a,b≤10)) or a double-metal sulfide, respectively . 6 Co 0 . 2 Mn 0 . 2 O 2 For the surface analysis of the positive electrode active material, the positive electrode active material prepared in Comparative Examples and Examples 1 to 6 and the commercially obtained Comparative Example LiNi 0.6 Co 0.2 Mn 0.2 O 2 powder of a field emission scanning electron microscope (FE-SEM, JEOL Co., Ltd., JSM-7610F) was taken to obtain an image, based on the electron microscope image for Example 5 - using electron dispersive spectroscopy (electron dispersive spectroscopy), the image was obtained and , Examples 2 and 5 were photographed using a field emission transmission electron microscope (FE-TEM, JEOL, JEL-2100F) to obtain images, and are shown in FIGS. 3 to 4 , respectively.
도 3에 도시한 바와 같이, 실시예 1 내지 3에서 제조된 양극활물질은 각각 약 1 내지 6 ㎛의 평균 입도를 갖는 LiNi0 . 6Co0 . 2Mn0 . 2O2 입자인 것으로 나타났으며, 입자 표면에 코발트황화물이 LiNi0 . 6Co0 . 2Mn0 . 2O2 입자 표면에 개질되고, 특히, 실시예 3부터 과량의 코발트황화물이 LiNi0 . 6Co0 . 2Mn0 . 2O2 표면에 확인되었다. 또한 이중금속 황화물 나노입자로 처리된 LiNi0 . 6Co0 . 2Mn0 . 2O2는 실시예 4 내지 6에서 확인할 수 있으며, 이중금속 황화물이 중량대비 점점 더 다량으로 코팅되는 것을 확인할 수 있었다. 비교예의 경우 LiNi0 . 6Co0 . 2Mn0 . 2O2 분말은 평균 입도가 약 1 내지 6 ㎛의 입자 크기를 갖는 것으로, 실시예들과 동일하지만, 입자 표면이 매끄럽고 깨끗한 것이 확인되었다. 또한, 실시예 5를 통해서, O 원소를 비롯한 3성분계 양극활물질의 주요 원소가 강한 세기로 검출되었고 황화물은 소량 검출됨을 정량적으로 확인할 수 있었다.As shown in FIG. 3 , the cathode active materials prepared in Examples 1 to 3 each had an average particle size of about 1 to 6 μm LiNi 0 . 6 Co 0 . 2 Mn 0 . 2 O 2 was found to be particles, and cobalt sulfide on the surface of the particles was LiNi 0 . 6 Co 0 . 2 Mn 0 . 2 O 2 Modified on the particle surface, in particular, from Example 3 excess cobalt sulfide LiNi 0 . 6 Co 0 . 2 Mn 0 . 2 O 2 was identified on the surface. In addition, LiNi 0 treated with bimetallic sulfide nanoparticles . 6 Co 0 . 2 Mn 0 . 2 O 2 can be confirmed in Examples 4 to 6, it was confirmed that the double metal sulfide is coated in an increasing amount relative to the weight. For the comparative example, LiNi 0 . 6 Co 0 . 2 Mn 0 . The 2 O 2 powder had an average particle size of about 1 to 6 μm, and was the same as in Examples, but it was confirmed that the particle surface was smooth and clean. In addition, through Example 5, it was quantitatively confirmed that the major elements of the three-component positive electrode active material including element O were detected with strong intensity and a small amount of sulfide was detected.
도 4에 도시한 바와 같이, 하기 실험예 2에서 가장 최적조건인 실시예 2와 5에서 FE-TEM 분석을 통해 양극활물질에 개질된 코발트황화물 또는 니켈코발트황화물의 격자길이와 개질된 물질의 두께를 확인하였다.4, the lattice length and thickness of the modified material of the cobalt sulfide or nickel cobalt sulfide modified in the positive electrode active material through FE-TEM analysis in Examples 2 and 5, which are the most optimal conditions in Experimental Example 2 below, were measured. Confirmed.
실험예Experimental example 2. 2.
본 발명에 따른 양극활물질의 가역성 향상 정도를 평가하기 위하여 하기와 같은 실험을 수행하였다.In order to evaluate the degree of improvement in the reversibility of the positive electrode active material according to the present invention, the following experiment was performed.
실시예 1 내지 6 및 비교예에서 제조된 조성물로 작동전극을 각각 제조하였다. 전고체전지 셀의 충방전을 수행하면서 3.68 V 내지 2.38 V에서 7.5 mA/g(이중금속황화물과 단일금속황화물) 또는 15 mA/g의 전류밀도로 galvanostatic charge-discharge를 이용한 전압전위곡선을 측정하였다. 측정된 결과는 도 5 및 도 6에 나타내었다. 또한 20회 간의 셀의 같은 전압범위에서 15 mA/g의 전류밀도로 충방전 성능을 측정함으로써 방전 용량을 20 회까지 기록하였다. 추가적으로 실시예 1 내지 6 및 비교예에 대해 전류밀도를 달리하여 7.5 mA/g 내지 300 mA/g 까지 전류밀도를 상승하여 방전용량의 감소 폭을 측정하였고 그 결과는 도 7에 나타내었다.Working electrodes were prepared from the compositions prepared in Examples 1 to 6 and Comparative Examples, respectively. Voltage potential curves were measured using galvanostatic charge-discharge at a current density of 7.5 mA/g (double metal sulfide and single metal sulfide) or 15 mA/g at 3.68 V to 2.38 V while charging and discharging the all-solid-state battery cell. . The measured results are shown in FIGS. 5 and 6 . In addition, the discharge capacity was recorded up to 20 times by measuring the charge/discharge performance at a current density of 15 mA/g in the same voltage range of the cell for 20 times. Additionally, for Examples 1 to 6 and Comparative Examples, the current density was increased to 7.5 mA/g to 300 mA/g by varying the current density to measure the decrease in the discharge capacity, and the results are shown in FIG. 7 .
도 5 및 도 6에 나타낸 바와 같이, 본 발명에 따른 양극활물질 중 일부는 전고체전지에 대한 가역성이 우수한 것을 알 수 있다.As shown in FIGS. 5 and 6 , it can be seen that some of the positive electrode active materials according to the present invention have excellent reversibility for an all-solid-state battery.
구체적으로, 실시예 1 내지 6에서 제조된 양극활물질을 이용하여 제조된 전극을 포함하는 전고체전지셀의 경우, 첫번째 충방전 과정에서의방전 용량은 7.5 mA/g의 전류밀도일 때, 114.6, 118.4, 99.4, 125.97, 128.7, 그리고 98.9 mAh/g이며 15 mA/g의 전류밀도일 때, 94.5, 96.4, 94.4, 115.9, 118.0, 그리고 84.7 mAh/g으로 확인되었다. 또한, 상기 양극활물질들은 단일금속황화물이 개질된 양극활물질인 실시예 1 내지 3 중에서 실시예 2 만이 비교예에 비해 우수한 방전 성능을 나타내었고, 충방전이 20회 진행되는 동안, 방전용량의 감소폭을 보았을 때 실시예 2에서 실시된 사이클 성능이 비교예의 사이클 성능보다 우수하였으나, 실시예 5의 사이클 성능보다 많이 떨어지는 문제를 야기하였다. 또한 단일금속황화물이 코팅된 양극활물질은 지속적인 용량 감소를 나타내었다. 방전용량의 변화 폭을 보았을 때 실시예 2에서 제조된 양극활물질이 10회 충방전이 수행된 이후에도 용량 유지율이 실시예 5에 비해 크게 저하되는 것을 볼 수 있다. 상업적으로 입수한 양극활물질을 포함하는 비교예의 전지셀은 최초 방전용량이 15 mA/g에서 86.0 mAh/g 그리고 7.5 mA/g에서 121.82 mAh/g인 것으로 나타났으며, 충방전이 10회 수행된 이후에는 용량유지율이 현저히 저하되어 충방전 과정이 제대로 이뤄지지 않는 것을 확인할 수 있다. 또한 충방전 10회까지의 방전용량은 119.7 mAh/g로서 초기용량과 큰 차이가 없었고 20회까지 방전용량은 실시예 5에서 가장 높은 용량유지율을 보였고 20회째 방전용량은 71.5 mAh/g이다. 이는 본 발명에 따른 양극활물질에 도입된 금속황화물의 부반응 억제와 계면저항 감소 등의 효과를 발휘해 가역성이 증가한 것을 의미한다. 이러한 결과로부터, 본 발명에 따른 양극활물질은 가역성이 우수하고, 이로 인하여 전지 수명이 향상됨을 알 수 있었다.Specifically, in the case of an all-solid-state battery cell including an electrode manufactured using the positive electrode active material prepared in Examples 1 to 6, the discharge capacity in the first charge/discharge process was 114.6, 118.4, when the current density was 7.5 mA/g. , 99.4, 125.97, 128.7, and 98.9 mAh/g, and at a current density of 15 mA/g, 94.5, 96.4, 94.4, 115.9, 118.0, and 84.7 mAh/g. In addition, among the positive active materials of Examples 1 to 3, wherein the positive electrode active materials are single metal sulfide-modified positive electrode active materials, only Example 2 exhibited superior discharge performance compared to Comparative Examples, and during 20 charge/discharge cycles, a decrease in discharge capacity was observed. When viewed, the cycle performance performed in Example 2 was superior to the cycle performance of the comparative example, but caused a problem that was much lower than the cycle performance of Example 5. In addition, the positive electrode active material coated with single metal sulfide showed a continuous decrease in capacity. When looking at the range of change in the discharge capacity, it can be seen that the capacity retention rate of the positive electrode active material prepared in Example 2 is significantly lowered compared to that of Example 5 even after charging and discharging 10 times. The battery cell of Comparative Example containing a commercially obtained cathode active material had an initial discharge capacity of 86.0 mAh/g at 15 mA/g and 121.82 mAh/g at 7.5 mA/g, and was charged and discharged 10 times. After that, it can be seen that the capacity retention rate is significantly lowered and the charging/discharging process is not performed properly. In addition, the discharge capacity up to 10 times of charging and discharging was 119.7 mAh/g, which was not significantly different from the initial capacity. This means that reversibility is increased by suppressing side reactions of metal sulfides introduced into the positive electrode active material according to the present invention and reducing interfacial resistance. From these results, it can be seen that the positive electrode active material according to the present invention has excellent reversibility, thereby improving battery life.
또한, 충방전 사이클이 5회일 때 이중금속황화물이 코팅된 양극활물질과 관련하여 일정전류에 따른 최초 전극의 용량 극대값이 120 내지 130일 수 있다. 이는 상기 양극활물질 제조시 사용된 순수 LiNi0 . 6Co0 . 2Mn0 . 2O2을 이용하여 측정한 것과 비교하여 성능이 향상된 것을 알 수 있었다.In addition, when the charge/discharge cycle is 5 times, the maximum capacity of the first electrode according to a constant current in relation to the positive electrode active material coated with the double metal sulfide may be 120 to 130. This is pure LiNi 0 used in the preparation of the positive electrode active material . 6 Co 0 . 2 Mn 0 . It was found that the performance was improved compared to that measured using 2 O 2 .
도 7을 참조하면, 단일금속황화물인 코발트 황화물을 코팅한 양극활물질을 적용한 코인셀의 경우, 충방전 횟수가 증가함에 따라 급격히 감소하는 비교예의 전고체전지 셀에 비해 실시예 1 내지 3은 급격하게 용량이 감소하는 문제를 완화하였다고 볼 수 있다. Referring to FIG. 7 , in the case of a coin cell to which a cathode active material coated with cobalt sulfide, which is a single metal sulfide, is applied, as compared to the all-solid-state battery cell of Comparative Example, which rapidly decreases as the number of charge/discharge increases, Examples 1 to 3 are rapidly It can be said that the problem of capacity decrease has been alleviated.
또한, 실시예 2에서는 비교예의 셀보다 큰 최초방전 용량을 시작으로 20회 충방전까지 53.2 mA/g의 방전용량을 가지고 20회 충방전까지 50%의 용량유지율을 보이는 것을 확인할 수 있었다. In addition, in Example 2, it was confirmed that it had a discharge capacity of 53.2 mA/g from the first discharge capacity larger than that of the cell of the comparative example until 20 times of charging and discharging, and exhibiting a capacity retention rate of 50% until 20 times of charging and discharging.
반면, 이중금속황화물을 코팅한 양극활물질에 비해 지속적인 용량저하를 보이며 이는 단일금속 황화물을 양극표면에 개질해도 고질적인 계면저항 감소나 전극에서의 부반응을 억제할 수 없었음을 의미한다. 반면 실시예 5 및 6의 경우 비교예와 실시예 1 내지 3에 비해 용량 유지율 또는 방전용량이 상당히 개선됨을 알 수 있었고 실시예 5 및 6 모두 최초방전용량에 비해 용량이 2번째 방전용량부터 증대되면서 감소하는 포물선 형태를 그리는 것을 확인할 수 있는데, 이것은 이중금속황화물이 계면저항을 감소시키거나 부반응을 억제시키는 것 뿐만 아니라, 리튬 이온이 한정된 코인셀 내에서 남아있는 리튬을 저장하거나 잡아둘 수 있는 능력을 가짐을 추측할 수 있었다. 실시예 5는 심지어 14 사이클까지 고용량의 감소 없이 진행되다가 급격히 감소함을 확인하였다. 이는 추후 개선할 수 있는 여지를 제공함은 물론이거니와, 그럼에도 불구하고 비교예나 실시예 2에 비해 20사이클에서 훌륭한 용량유지율을 보였다.On the other hand, compared to the positive electrode active material coated with double metal sulfide, it shows a continuous decrease in capacity, which means that even if single metal sulfide is modified on the surface of the positive electrode, chronic interfacial resistance reduction or side reactions at the electrode cannot be suppressed. On the other hand, in the case of Examples 5 and 6, it was found that the capacity retention rate or discharge capacity was significantly improved compared to Comparative Examples and Examples 1 to 3, and in Examples 5 and 6, the capacity increased from the second discharge capacity compared to the initial discharge capacity. It can be seen that it draws a decreasing parabolic shape, which indicates that the bimetal sulfide not only reduces the interfacial resistance or suppresses side reactions, but also the ability of lithium ions to store or hold the remaining lithium in a confined coin cell. could have guessed. It was confirmed that Example 5 proceeded without a decrease in the high dose even up to 14 cycles, and then rapidly decreased. This, of course, provides room for improvement in the future, and, nevertheless, showed an excellent capacity retention rate in 20 cycles compared to Comparative Example or Example 2.
실험예Experimental example 3 3
지속적인 용량저하를 보이는 비교예와 실시예 1 내지 3을, 실시예 4 내지 6을 토대로 율특성 분석을 실시하였고 그 결과를 도 8에 나타내었다. Rate characteristics were analyzed based on Comparative Examples and Examples 1 to 3 and Examples 4 to 6 showing a continuous decrease in capacity, and the results are shown in FIG. 8 .
도 8에 도시한 바와 같이, 각각의 전고체전지 셀은 0.05C (7.5mA/g) 부터 0.1, 0.2, 0.5, 1 내지 2C(300 mA/g)의 전류밀도로 3 사이클씩 진행하였고, 실제적으로 실시예 6만이 이러한 율특성 분석 이후에 다시 0.05C-rate의 전류밀도 충방전시 최초 방전용량과 유사한 수치를 나타냄을 확인할 수 있었다.As shown in FIG. 8, each of the all-solid-state battery cells proceeded for 3 cycles at a current density of 0.05C (7.5mA/g) to 0.1, 0.2, 0.5, and 1 to 2C (300 mA/g), and practically As a result, it was confirmed that only Example 6 exhibited similar values to the initial discharge capacity during charging and discharging at a current density of 0.05 C-rate again after such rate characteristic analysis.
실험예Experimental example 4 4
비교예와 더불어 최적조건인 실시예 2와 5을 대상으로 20회 충방전 성능 분석 이후, 코인셀 내부를 열어 x-선 광전자 분광법(XPS) 및 투과전자현미경(TEM) 내지 전자 에너지 손실 분광법(EELS)를 실시하여 각 전지셀의 방전으로부터 발생한 부반응 정도를 확인하였다. After 20 charging/discharging performance analysis for Examples 2 and 5, which are optimal conditions along with Comparative Examples, the inside of the coin cell was opened to perform x-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) to electron energy loss spectroscopy (EELS) ) to confirm the degree of side reaction generated from the discharge of each battery cell.
그 결과를 도 9와 도 10에 나타내었다. 도 9에서 비교예의 경우 황화물계 고체전해질의 S 2p 3/2 내지 1/2 peak의 면적이 감소하고 양극활물질과 고체전해질의 부반응으로서 발생하는 -O-S- peak의 면적이 크게 증가함을 알 수 있었다. 반면 단일금속황화물이 코팅된 실시예 2는 -O-S- peak의 면적이 비교예에 비해 완화된 수준을 가지는 것으로 보아 부반응이 다소 억제된 것을 확인할 수 있었고, 이중금속황화물이 개질된 실시예 6의 경우 부반응인 -O-S- peak의 면적이 크게 감소함을 확인할 수 있었다. The results are shown in FIGS. 9 and 10 . In FIG. 9 , in the case of Comparative Example, it was found that the area of
전술한 실험예에 대한 결과를 토대로 비교예와 실시예 5만을 투과전자현미경(TEM) 내지 전자 에너지 손실 분광법(EELS)를 실시하여 양극활물질과 고체전해질의 계면 간 부반응 여부를 시각적으로 분석하고 cross-sectional line mapping을 EELS를 통해 분석하여 계면에서 발생한 부반응이 비교예에 비해 어떻게 완화되었는지 분석하였다. 그 결과를 도 10에 도시하였다.Transmission electron microscopy (TEM) to electron energy loss spectroscopy (EELS) were performed only for Comparative Example and Example 5 based on the results of the above-described experimental examples to visually analyze whether a side reaction between the interface between the positive electrode active material and the solid electrolyte was cross- Sectional line mapping was analyzed through EELS to analyze how the side reactions occurring at the interface were alleviated compared to the comparative example. The results are shown in FIG. 10 .
도 10에 도시한 바와 같이, 실제 계면에서 이중금속 황화물의 표면개질로 인해 부반응이 크게 감소함을 알 수 있었고 전고체물질에서 리튬이 다량 검출됨을 확인함으로써 전고체물질의 분해가 거의 일어나지 않고 원형을 유지함을 확인하였다.As shown in FIG. 10, it was found that the side reaction was greatly reduced due to the surface modification of the double metal sulfide at the actual interface, and by confirming that a large amount of lithium was detected in the all-solid material, almost no decomposition of the all-solid material occurred and the original shape was obtained. was confirmed to be maintained.
구체적으로, 실제 계면에서 이중금속 황화물의 표면개질로 인해 부반응이 크게 감소함을 알 수 있었고, 전고체물질에서 리튬이 다량 검출됨을 확인함으로써 전고체물질의 분해가 거의 일어나지 않고 원형을 유지함을 확인하였다. 또한 황과 인이 계면을 중심으로 양극활물질 내부로 침투하여 부반응을 일으켰는지를 line mapping을 통해 확인할 수 있었다. 비교예에서는 보이지 않아야 할 황과 인이 내부에서 계속 검출이 됨을 알 수 있어 직접적인 접촉으로 인한 양극활물질의 불화를 초래하였다. 반면, 이중금속 황화물로 개질된 실시예 5의 경우 양극활물질의 line mapping 시 리튬은 양쪽에서 크게 검출되었고, 또한 니켈 코발트 황화물의 코팅층에서부터 황이 크게 검출되기 시작하고 인도 약하게 검출되기 시작하였다. 그리고 양극활물질 층에서는 황과 인이 거의 검출되지 않았음을 확인할 수 있었다. 또한 양극활물질과 고체전해질 간 계면의 높이를 살펴보면 비교예의 계면은 상당히 깊숙한 골을 형성하는 반면 실시예 6의 계면은 니켈코발트 황화물에 의해 계면이 보호받고 있었으며 그 골도 거의 보이지 않음을 확인할 수 있다. 이로써 금속황화물에 의해 코팅된 양극활물질의 전기화학적인 성능이 더 뛰어남을 확인할 수 있었다.Specifically, it was found that the side reaction was greatly reduced due to the surface modification of the double metal sulfide at the actual interface, and by confirming that a large amount of lithium was detected in the all-solid material, it was confirmed that the decomposition of the all-solid material hardly occurred and the original shape was maintained. . In addition, it was confirmed through line mapping whether sulfur and phosphorus penetrated into the cathode active material around the interface and caused a side reaction. In the comparative example, it can be seen that sulfur and phosphorus, which should not be seen, are continuously detected from the inside, resulting in fluorescence of the positive electrode active material due to direct contact. On the other hand, in the case of Example 5 modified with a double metal sulfide, lithium was largely detected from both sides during line mapping of the positive electrode active material, and sulfur started to be detected from the coating layer of nickel cobalt sulfide, and also started to be weakly detected. And it was confirmed that sulfur and phosphorus were hardly detected in the positive electrode active material layer. Also, looking at the height of the interface between the positive electrode active material and the solid electrolyte, it can be seen that the interface of Comparative Example forms a fairly deep corrugation, whereas the interface of Example 6 was protected by nickel cobalt sulfide, and the corrugation was hardly visible. Accordingly, it was confirmed that the electrochemical performance of the cathode active material coated with the metal sulfide was superior.
상기에서는 본 출원의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 출원을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to the preferred embodiments of the present application, those skilled in the art will make various modifications and changes to the present application within the scope without departing from the spirit and scope of the present invention as set forth in the claims below. You will understand that you can.
Claims (14)
상기 금속 황화물은 상기 양극활물질 100 중량부 대비, 0.01 중량부 내지 0.5 중량부로 포함되며,
상기 금속 황화물이
MaSb(단, 0.1≤a≤10 및 0.1≤b≤10)로 표현되는 단일금속 황화물(single-metal sulfide)인 경우 상기 단일금속 황화물이 Ni, Co, Mn, Cu, Zn, Fe, Cr, V, Zr, Nb, Ag, Al, Ga, Ge, Sn, Bi 및 Pb으로 이루어진 그룹으로부터 선택된 1종의 금속을 포함하고, 상기 양극활물질은 상기 단일금속 황화물을 사용한 습식 표면 처리 방법(solution coating method)에 의해 표면이 개질된 양극활물질이며,
상기 양극활물질은 단일금속 황화물을 용매 디클로로메탄(CH2Cl2)에 용해한 용액과 양극활물질을 용매 디클로로메탄(CH2Cl2)에 용해한 용액을 혼합 후 50℃ 내지 80℃의 온도로 가열한 후 용매가 증발되고 남은 잔여물을 진공오븐에서 2시간동안 80℃에서 가열한 후, 질소 flow 분위기의 튜브형 전기로에서 분당 5℃의 승온 속도로 2시간동안 가열하여, 단일금속 황화물을 분해시켜 단일금속 황화물이 표면에 개질된 양극활물질.As a positive electrode active material having metal sulfide nanoparticles attached to the surface,
The metal sulfide is included in an amount of 0.01 parts by weight to 0.5 parts by weight, based on 100 parts by weight of the positive electrode active material,
The metal sulfide
In the case of a single-metal sulfide represented by M a S b (provided that 0.1≤a≤10 and 0.1≤b≤10), the single-metal sulfide is Ni, Co, Mn, Cu, Zn, Fe, Cr, V, Zr, Nb, Ag, Al, Ga, Ge, Sn, Bi, and containing one kind of metal selected from the group consisting of Pb, the positive electrode active material is a wet surface treatment method (solution) using the single metal sulfide It is a positive electrode active material whose surface is modified by coating method),
The cathode active material is a solution in which a single metal sulfide is dissolved in a solvent dichloromethane (CH 2 Cl 2 ) and a solution in which a cathode active material is dissolved in a solvent dichloromethane (CH 2 Cl 2 ) After heating to a temperature of 50° C. to 80° C. After evaporation of the solvent, the remaining residue is heated in a vacuum oven at 80° C. for 2 hours, and then heated for 2 hours at a temperature increase rate of 5° C. per minute in a tube-type electric furnace in a nitrogen flow atmosphere to decompose single metal sulfides to decompose single metal sulfides. A positive electrode active material modified on this surface.
상기 양극활물질은 리튬화합물인 양극활물질.The method of claim 1,
The positive electrode active material is a lithium compound.
상기 리튬화합물은 LiCoO2, LiFePO4, LiMn2O4, Li[NixCoyAlz]O2 (0.1≤x,y,z≤1) 및 Li[NixCoyMnz]O2 (0.1≤x,y,z≤1)으로 이루어진 그룹으로부터 선택된 하나를 포함하는 양극활물질. 3. The method of claim 2,
The lithium compound is LiCoO 2 , LiFePO 4 , LiMn 2 O 4 , Li[Ni x Co y Al z ]O 2 (0.1≤x,y,z≤1) and Li[Ni x Co y Mn z ]O 2 ( A cathode active material comprising one selected from the group consisting of 0.1≤x, y, z≤1).
상기 금속 황화물은 상기 양극활물질 100 중량부 대비, 0.01 중량부 내지 0.5 중량부로 포함되며,
상기 금속 황화물이
M1xM2ySz(단, 0.1≤x≤10, 0.1≤y≤10 및 0.1≤z≤10)로 표현되는 이중금속 황화물(bi-metal sulfide)인 경우 상기 이중금속 황화물은 Ni, Co, Mn, Cu, Zn, Fe, Cr, V, Zr, Nb, Ag, Al, Ga, Ge, Sn, Bi 및 Pb으로 이루어진 그룹으로부터 선택된 2 종의 금속을 포함하고, 상기 양극활물질은 상기 이중금속 황화물을 사용한 건식 표면 처리 방법(resonant acoustic coating method)에 의해 표면이 개질된 양극활물질이며,
상기 건식 표면 처리 방법의 수행시, 건식 믹서의 중력가속도 조건은 0 G 내지 60 G이며, 수행 시간은 60 분 이하인 양극활물질.As a positive electrode active material having metal sulfide nanoparticles attached to the surface,
The metal sulfide is included in an amount of 0.01 parts by weight to 0.5 parts by weight, based on 100 parts by weight of the positive electrode active material,
The metal sulfide
In the case of a bi-metal sulfide expressed by M1xM2ySz (provided that 0.1≤x≤10, 0.1≤y≤10, and 0.1≤z≤10), the bi-metal sulfide is Ni, Co, Mn, Cu, Zn , Fe, Cr, V, Zr, Nb, Ag, Al, Ga, Ge, Sn, Bi and containing two kinds of metals selected from the group consisting of Pb, the positive electrode active material is a dry surface treatment using the double metal sulfide It is a positive electrode active material whose surface is modified by a resonant acoustic coating method,
When the dry surface treatment method is performed, the gravitational acceleration condition of the dry mixer is 0 G to 60 G, and the execution time is 60 minutes or less.
황화물계 고체전해질 물질; 및
음극활물질을 포함하는 복합재.The cathode active material of claim 1 or 9;
sulfide-based solid electrolyte material; and
A composite material including an anode active material.
상기 복합재는 도전재를 더 포함하며, 상기 복합재는 50 내지 90 중량부의 양극활물질, 10 내지 40 중량부의 황화물계 고체전해질 물질 및 1 내지 10 중량부의 도전재로 포함하는 복합재.11. The method of claim 10,
The composite material further includes a conductive material, wherein the composite material comprises 50 to 90 parts by weight of a cathode active material, 10 to 40 parts by weight of a sulfide-based solid electrolyte material, and 1 to 10 parts by weight of a conductive material.
상기 음극활물질은 인조흑연(artificial carbon), 천연흑연(natural carbon), Li4Ti5O12, Sn, Li, 및 Si 또는 Si-C 합금계 물질을 포함하는 복합재.11. The method of claim 10,
The negative active material is artificial graphite (artificial carbon), natural graphite (natural carbon), Li 4 Ti 5 O 12 , Sn, Li, and a composite material comprising a Si or Si-C alloy-based material.
상기 전고체 전해질 물질층은 황화물계 고체 전해질 또는 산화물계 고체 전해질을 포함하는 리튬 전고체 전지.14. The method of claim 13,
The all-solid-state electrolyte material layer includes a sulfide-based solid electrolyte or an oxide-based solid electrolyte.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190121431A KR102308458B1 (en) | 2019-10-01 | 2019-10-01 | Positive active material surface-modified with metal sulfide and lithium all state solid battery including the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190121431A KR102308458B1 (en) | 2019-10-01 | 2019-10-01 | Positive active material surface-modified with metal sulfide and lithium all state solid battery including the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210039518A KR20210039518A (en) | 2021-04-12 |
KR102308458B1 true KR102308458B1 (en) | 2021-10-06 |
Family
ID=75439958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190121431A Active KR102308458B1 (en) | 2019-10-01 | 2019-10-01 | Positive active material surface-modified with metal sulfide and lithium all state solid battery including the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102308458B1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110808407B (en) * | 2019-11-01 | 2020-11-20 | 宁德新能源科技有限公司 | A Phosphorus-Free Sulfide Solid State Electrolyte |
KR102317602B1 (en) | 2021-04-22 | 2021-10-25 | 에스케이이노베이션 주식회사 | Cathode active material for lithium secondary battery and lithium secondary battery including the same |
CN115440971B (en) * | 2021-06-04 | 2024-06-04 | 河北大学 | A lithium ion battery positive electrode material and doping method thereof |
KR20230044792A (en) * | 2021-09-27 | 2023-04-04 | 주식회사 엘지에너지솔루션 | Positive electrode active material for sulfide all-solid-state battery |
KR102767835B1 (en) * | 2021-10-20 | 2025-02-12 | 에스케이온 주식회사 | Cathode active material for lithium secondary battery and lithium secondary battery including the same |
CN118431476A (en) * | 2024-05-30 | 2024-08-02 | 钛科(大连)新能源有限公司 | Method for adding and modifying lithium ion battery oxide positive electrode material and application of composite material thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2717364B1 (en) * | 2011-05-23 | 2023-05-03 | Toyota Jidosha Kabushiki Kaisha | Use of a positive electrode material for a sulfide-based solid electrolyte battery and sulfide-based solid electrolyte battery with such positive electrode material |
JP2016100101A (en) * | 2014-11-19 | 2016-05-30 | 三星エスディアイ株式会社Samsung SDI Co.,Ltd. | Lithium ion secondary battery coated particles, positive electrode active material layer for lithium ion secondary battery, and lithium ion secondary battery |
-
2019
- 2019-10-01 KR KR1020190121431A patent/KR102308458B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
KR20210039518A (en) | 2021-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102308458B1 (en) | Positive active material surface-modified with metal sulfide and lithium all state solid battery including the same | |
EP4024514A1 (en) | Solid-state battery, preparation method therefor and application thereof | |
Ortiz et al. | A novel architectured negative electrode based on titania nanotube and iron oxide nanowire composites for Li-ion microbatteries | |
KR100796687B1 (en) | Active material for lithium secondary battery, preparation method thereof and lithium secondary battery comprising same | |
Huang et al. | A comprehensive study on electrochemical performance of Mn-surface-modified LiNi0. 8Co0. 15Al0. 05O2 synthesized by an in situ oxidizing-coating method | |
JP7010099B2 (en) | Negative electrode active material, negative electrode and non-aqueous electrolyte power storage element | |
Reddy et al. | Effect of preparation temperature and cycling voltage range on molten salt method prepared SnO2 | |
US12170364B2 (en) | Layered electrode materials and methods for rechargeable zinc batteries | |
Wang et al. | Effect of heat-treatment on Li2ZrO3-coated LiNi1/3Co1/3Mn1/3O2 and its high voltage electrochemical performance | |
Li et al. | An electro-deoxidation approach to co-converting antimony oxide/graphene oxide to antimony/graphene composite for sodium-ion battery anode | |
CN102630355A (en) | High capacity anode materials for lithium ion batteries | |
Kaliyappan et al. | An ion conductive polyimide encapsulation: new insight and significant performance enhancement of sodium based P2 layered cathodes | |
Li et al. | Electrochemical properties and lithium-ion storage mechanism of LiCuVO 4 as an intercalation anode material for lithium-ion batteries | |
Wang et al. | Enhancing lithium storage performances of the Li4Ti5O12 anode by introducing the CuV2O6 phase | |
Wang et al. | Self-templating thermolysis synthesis of Cu2–x S@ M (M= C, TiO2, MoS2) hollow spheres and their application in rechargeable lithium batteries | |
KR20160021013A (en) | Lithium secondary battery and preparation method thereof | |
Courtel et al. | In situ polyol-assisted synthesis of nano-SnO2/carbon composite materials as anodes for lithium-ion batteries | |
Wei et al. | Synthesis of a high-capacity α-Fe2O3@ C conversion anode and a high-voltage LiNi0. 5Mn1. 5O4 spinel cathode and their combination in a Li-ion battery | |
He et al. | Modification of LiNi0. 5Co0. 2Mn0. 3O2 with a NaAlO2 coating produces a cathode with increased long-term cycling performance at a high voltage cutoff | |
Cherian et al. | Facile synthesis and Li-storage performance of SnO nanoparticles and microcrystals | |
Ying et al. | Dual Immobilization of SnO x Nanoparticles by N-Doped Carbon and TiO2 for High-Performance Lithium-Ion Battery Anodes | |
US20150171426A1 (en) | POROUS AMORPHOUS GeOx AND ITS APPLICATION AS AN ANODE MATERIAL IN LI-ION BATTERIES | |
Zhang et al. | Synthesis and performance of fluorine substituted Li1. 05 (Ni0. 5Mn0. 5) 0.95 O2− xFx cathode materials modified by surface coating with FePO4 | |
Ho et al. | Silver boosts ultra-long cycle life for metal sulfide lithium-ion battery anodes: Taking AgSbS2 nanowires as an example | |
Wu et al. | Improving electrochemical performance of LiNi0. 9Co0. 05Mn0. 05O2 cathode material by coating with nano-LiNbO3 layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20191001 |
|
PA0201 | Request for examination | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20210216 Patent event code: PE09021S01D |
|
AMND | Amendment | ||
PG1501 | Laying open of application | ||
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20210812 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20210216 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |
|
X091 | Application refused [patent] | ||
AMND | Amendment | ||
PX0901 | Re-examination |
Patent event code: PX09011S01I Patent event date: 20210812 Comment text: Decision to Refuse Application Patent event code: PX09012R01I Patent event date: 20210409 Comment text: Amendment to Specification, etc. |
|
PX0701 | Decision of registration after re-examination |
Patent event date: 20210927 Comment text: Decision to Grant Registration Patent event code: PX07013S01D Patent event date: 20210909 Comment text: Amendment to Specification, etc. Patent event code: PX07012R01I Patent event date: 20210812 Comment text: Decision to Refuse Application Patent event code: PX07011S01I Patent event date: 20210409 Comment text: Amendment to Specification, etc. Patent event code: PX07012R01I |
|
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20210928 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20210929 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20240910 Start annual number: 4 End annual number: 4 |