[go: up one dir, main page]

KR102280548B1 - cathode for lithium secondary battery comprising double layer cathode active material - Google Patents

cathode for lithium secondary battery comprising double layer cathode active material Download PDF

Info

Publication number
KR102280548B1
KR102280548B1 KR1020190054201A KR20190054201A KR102280548B1 KR 102280548 B1 KR102280548 B1 KR 102280548B1 KR 1020190054201 A KR1020190054201 A KR 1020190054201A KR 20190054201 A KR20190054201 A KR 20190054201A KR 102280548 B1 KR102280548 B1 KR 102280548B1
Authority
KR
South Korea
Prior art keywords
layer
positive electrode
battery
active material
licoo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020190054201A
Other languages
Korean (ko)
Other versions
KR20200129580A (en
Inventor
문준영
강현철
Original Assignee
인천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인천대학교 산학협력단 filed Critical 인천대학교 산학협력단
Priority to KR1020190054201A priority Critical patent/KR102280548B1/en
Publication of KR20200129580A publication Critical patent/KR20200129580A/en
Application granted granted Critical
Publication of KR102280548B1 publication Critical patent/KR102280548B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 이중층으로 형성된 양극 활물질 및 이를 포함하는 리튬이차전지용 양극 전극에 관한 것으로, Li(NixCoyMnz)O2(0<x<1, 0<y<1, 0<z<1, x+y+z=1)층 및 상기 Li(NixCoyMnz)O2 층 상면에 형성된 LiCoO2 층을 포함함으로써, 고용량이면서 수명이 긴 전극을 제공할 수 있다.The present invention relates to a positive electrode active material formed of a double layer and a positive electrode for a lithium secondary battery comprising the same, Li(Ni x Co y Mn z )O 2 (0<x<1, 0<y<1, 0<z<1 , x+y+z=1) layer and Li(Ni x Co y Mn z )O 2 By including the LiCoO 2 layer formed on the upper surface, an electrode having a high capacity and a long life can be provided.

Description

이중층으로 형성된 양극 활물질을 포함하는 리튬이차전지용 양극 전극{cathode for lithium secondary battery comprising double layer cathode active material}A cathode electrode for a lithium secondary battery comprising a double layer cathode active material

본 발명은 고용량이면서 고수명을 구현할 수 있도록 이중층으로 형성된 양극 활물질 및 이를 포함하는 리튬이차전지용 양극 전극에 관한 것이다.The present invention relates to a positive electrode active material formed in a double layer to realize high capacity and long life, and a positive electrode for a lithium secondary battery including the same.

통신, 컴퓨터 산업의 급속한 발전에 따라, 캠코더, 휴대폰, 노트북 PC 등이 눈부신 발전을 거듭하고 있고, 이들 휴대용 전자통신 기기들을 구동할 수 있는 동력원으로서 리튬이차전지의 수요가 나날이 증가하고 있다. 특히, 친환경 동력원으로서 전기자동차, 무정전 전원장치, 전동공구 및 인공위성 등의 응용과 관련하여 국내는 물론 일본, 유럽 및 미국 등지에서 연구개발이 활발히 진행되고 있다. With the rapid development of communication and computer industries, camcorders, mobile phones, notebook PCs, and the like are undergoing remarkable development, and the demand for lithium secondary batteries as a power source for driving these portable electronic communication devices is increasing day by day. In particular, as an eco-friendly power source, R&D is being actively conducted in Japan, Europe, and the United States as well as in Korea in relation to the application of electric vehicles, uninterruptible power supplies, power tools, and satellites.

더욱이, 최근 리튬이차전지의 상용화가 확대되면서 리튬이차전지의 대용량화 및 안전성 문제가 더욱 대두되고 있는 실정이다. Moreover, as the commercialization of lithium secondary batteries has recently been expanded, the problems of increasing the capacity and safety of lithium secondary batteries are further emerging.

한편, 리튬이차전지의 양극 활물질로서 종래에는 리튬코발트산화물(LiCoO2) 이 주로 사용되었지만, 현재는 다른 층상 양극 활물질로서 리튬니켈산화물(Li(Ni-Co-Al)O2), 리튬 복합금속산화물(Li(Ni-Co-Mn)O2) 등도 사용되고 있으며, 그 외에도 저가격 고안정성의 스피넬형 리튬망간산화물(LiMn2O4) 및 올리빈형 인산철 리튬화합물(LiFePO4)도 주목을 받고 있다. On the other hand, lithium cobalt oxide (LiCoO 2 ) has been mainly used as a positive electrode active material for lithium secondary batteries, but lithium nickel oxide (Li(Ni-Co-Al)O 2 ) and lithium composite metal oxide are currently used as other layered positive electrode active materials. (Li(Ni-Co-Mn)O 2 ) and the like are also used, and in addition, low-cost, high-stability spinel-type lithium manganese oxide (LiMn 2 O 4 ) and olivine-type lithium iron phosphate compound (LiFePO 4 ) are also attracting attention.

상기 리튬코발트산화물이나 리튬니켈산화물, 리튬 복합금속산화물 등을 사용한 리튬이차전지는 기본적인 전지 특성은 우수하지만, 안전성, 특히 열안전성, 과충전 특성 등은 충분하지 않으며, 고용량화에 대한 요구를 충족시키고자 양극 활물질의 충진성을 높이게 되면, 안전성이 더욱 저하되는 문제가 있다.The lithium secondary battery using the lithium cobalt oxide, lithium nickel oxide, lithium composite metal oxide, etc. has excellent basic battery characteristics, but safety, particularly thermal stability, overcharging characteristics, etc. are not sufficient. When the fillability of the active material is increased, there is a problem in that safety is further reduced.

그리고 스피넬형 리튬 망간계 전지는 저가격, 고안전성이라는 장점을 갖고 있어서, 최근에는 전기자동차의 동력원으로 사용되는 리튬이차전지용 양극 활물질로서 활발하게 검토되고 있는 상황이지만, 낮은 전기용량으로 인해 고에너지 밀도에 관한 요구를 충족시키지 못하는 문제점이 있다.In addition, spinel-type lithium manganese-based batteries have advantages of low price and high safety, and are currently being actively studied as a cathode active material for lithium secondary batteries used as power sources for electric vehicles. There is a problem in that it does not meet the needs.

또한, 올리빈형 인산철 리튬 화합물은 저가격, 고안전성 특성을 갖지만 전자 전도성이 상당히 낮아 우수한 전지 특성을 기대하기 어려우며, 평균 작동전위가 낮아 고용량화에 대한 요구를 충족하지 못하고 있다.In addition, although the olivine-type lithium iron phosphate compound has low price and high safety characteristics, it is difficult to expect excellent battery characteristics due to its very low electronic conductivity, and the average operating potential is low, which does not satisfy the demand for high capacity.

이에 따라, 상기와 같은 문제점을 해결하기 위해 다양한 연구가 진행되었으나, 현재까지 층상 양극 활물질 외 효과적인 해결책이 제시되지 않고 있는 실정이다.Accordingly, various studies have been conducted to solve the above problems, but an effective solution other than a layered positive electrode active material has not been presented until now.

대한민국 공개특허 제2016-0083638호Republic of Korea Patent Publication No. 2016-0083638 대한민국 등록특허 제1520146호Republic of Korea Patent No. 1520146

본 발명의 목적은 고용량이면서 고수명을 구현할 수 있도록 이중층으로 형성된 양극 활물질을 제공하는데 있다.An object of the present invention is to provide a positive electrode active material formed as a double layer to realize high capacity and long life.

또한, 본 발명의 다른 목적은 상기 양극 활물질을 포함하는 리튬이차전지용 양극 전극을 제공하는데 있다.Another object of the present invention is to provide a positive electrode for a lithium secondary battery including the positive active material.

또한, 본 발명의 또 다른 목적은 상기 양극 전극을 포함하는 리튬이차전지를 제공하는데 있다.In addition, another object of the present invention is to provide a lithium secondary battery including the positive electrode.

또한, 본 발명의 또 다른 목적은 상기 양극 전극을 포함하는 리튬캐패시터를 제공하는데 있다.In addition, another object of the present invention is to provide a lithium capacitor including the positive electrode.

또한, 본 발명의 또 다른 목적은 상기 양극 전극을 포함하는 장치를 제공하는데 있다.Another object of the present invention is to provide a device including the anode electrode.

상기한 목적을 달성하기 위한 본 발명의 이중층 양극 활물질은 Li(NixCoyMnz)O2 (0<x<1, 0<y<1, 0<z<1, x+y+z=1) 층 및 상기 Li(NixCoyMnz)O2 층 상면에 형성된 LiCoO2 층을 포함할 수 있다.The double-layer cathode active material of the present invention for achieving the above object is Li(Ni x Co y Mn z )O 2 (0<x<1, 0<y<1, 0<z<1, x+y+z= 1) layer and a LiCoO 2 layer formed on the Li(Ni x Co y Mn z )O 2 layer.

상기 Li(NixCoyMnz)O2 층의 두께는 20 내지 40 ㎛이며, 상기 LiCoO2 층의 두께는 30 내지 50 ㎛일 수 있으며, 상기 LiCoO2 층의 두께는 Li(NixCoyMnz)O2 층의 두께보다 5 내지 10 ㎛ 더 두꺼울 수 있다.The Li (Ni x Co y Mn z) O thickness of the second layer is 20 to 40 ㎛, the LiCoO may be a thickness of the second layer is 30 to 50 ㎛, the thickness of the LiCoO 2 layer is Li (Ni x Co y It may be 5-10 μm thicker than the thickness of the Mn z )O 2 layer.

상기 Li(NixCoyMnz)O2과 LiCoO2은 60:40 내지 80:20의 중량비로 사용될 수 있다.The Li(Ni x Co y Mn z )O 2 and LiCoO 2 may be used in a weight ratio of 60:40 to 80:20.

상기 Li(NixCoyMnz)O2에서 x는 0.6-0.8의 소수이며, y는 0.1-0.3의 소수이고, z는 0.1-0.3의 소수일 수 있다.In the Li(Ni x Co y Mn z )O 2 , x may be a prime number of 0.6-0.8, y may be a prime number of 0.1-0.3, and z may be a prime number of 0.1-0.3.

또한, 상기한 다른 목적을 달성하기 위한 본 발명의 리튬이차전지용 양극 전극은 집전체(current collector), 상기 집전체의 상면에 형성된 Li(NixCoyMnz)O2 (0<x<1, 0<y<1, 0<z<1, x+y+z=1) 층 및 상기 Li(NixCoyMnz)O2 층 상면에 형성된 LiCoO2 층을 포함할 수 있다.In addition, the positive electrode for a lithium secondary battery of the present invention for achieving the above other object is a current collector (current collector), Li (Ni x Co y Mn z ) O 2 (0<x<1 formed on the upper surface of the current collector) , 0<y<1, 0<z<1, x+y+z=1) layer, and a LiCoO 2 layer formed on an upper surface of the Li(Ni x Co y Mn z )O 2 layer.

상기 Li(NixCoyMnz)O2 층의 두께는 20 내지 40 ㎛이며, 상기 LiCoO2 층의 두께는 30 내지 50 ㎛일 수 있다.The Li(Ni x Co y Mn z )O 2 layer may have a thickness of 20 to 40 μm, and the LiCoO 2 layer may have a thickness of 30 to 50 μm.

상기 LiCoO2 층의 두께는 Li(NixCoyMnz)O2 층의 두께보다 5 내지 10 ㎛ 더 두꺼울 수 있다.The thickness of the LiCoO 2 layer may be 5 to 10 μm thicker than the thickness of the Li(Ni x Co y Mn z )O 2 layer.

상기 Li(NixCoyMnz)O2과 LiCoO2은 60:40 내지 80:20의 중량비로 사용될 수 있다.The Li(Ni x Co y Mn z )O 2 and LiCoO 2 may be used in a weight ratio of 60:40 to 80:20.

또한, 상기한 또 다른 목적을 달성하기 위한 본 발명의 리튬이차전지는 상기 양극 전극을 포함할 수 있다.In addition, the lithium secondary battery of the present invention for achieving the above another object may include the positive electrode.

또한, 상기한 또 다른 목적을 달성하기 위한 본 발명의 리튬캐패시터는 상기 양극 전극을 포함할 수 있다. In addition, the lithium capacitor of the present invention for achieving the above another object may include the positive electrode.

또한, 상기한 또 다른 목적을 달성하기 위한 본 발명의 장치는 상기 양극 전극을 포함하며, 상기 장치는 통신장비, 에너지저장시스템(Energy Storage System, ESS) 및 운송수단으로 이루어진 군에서 선택된 것을 들 수 있다.In addition, the device of the present invention for achieving the above another object includes the positive electrode, the device may be selected from the group consisting of communication equipment, energy storage system (Energy Storage System, ESS) and transportation means. there is.

본 발명의 이중층 양극 활물질을 포함하는 양극 전극은 고용량이면서 긴 시간동안 안정하게 사용할 수 있다. The positive electrode including the double-layer positive active material of the present invention can be used stably for a long time while having a high capacity.

특히, 본 발명의 양극 활물질은 고전압 영역에서의 안정성, 전극용량 및 사이클 수명 등의 전기화학적 특성을 향상시킬 수 있다.In particular, the positive active material of the present invention can improve electrochemical properties such as stability in a high voltage region, electrode capacity and cycle life.

도 1은 통상의 양극 전극의 구조를 나타낸 구조도이다.
도 2는 본 발명의 이중층 양극 활물질을 적용한 양극 전극의 구조를 나타낸 구조도이다.
도 3a는 본 발명의 실시예 및 비교예에 따라 제조된 양극 전극의 단면을 SEM으로 촬영한 사진이며, 도 3b는 실시예 및 비교예에 따라 제조된 양극 전극의 단면을 EDS mapping을 통하여 전극의 구조를 측정한 사진이다.
도 4a는 본 발명의 실시예 및 비교예에 따라 제조된 양극 전극을 적용한 전지의 1C 충방전 후 방전용량을 측정한 그래프이며, 도 4b는 실시예 및 비교예에 따라 제조된 양극 전극을 적용한 전지의 2C 충방전 후 방전용량을 측정한 그래프이다.
도 5a는 본 발명의 실시예 1에 따라 제조된 양극 전극을 적용한 전지의 1C에서 140 사이클 후 전극의 단면(전해질측)을 SEM으로 촬영한 사진이며, 도 5b는 비교예 1에 따라 제조된 양극 전극을 적용한 전지의 1C에서 140 사이클 후 전극의 단면(집전체측)을 SEM으로 촬영한 사진이고, 도 5c는 비교예 2에 따라 제조된 양극 전극을 적용한 전지의 1C에서 140 사이클 후 전극의 단면(전해질측)을 SEM으로 촬영한 사진이며, 도 5d는 비교예 2에 따라 제조된 양극 전극을 적용한 전지의 1C에서 140 사이클 후 전극의 단면(집전체측)을 SEM으로 촬영한 사진이다.
도 6a는 본 발명의 실시예 1에 따라 제조된 양극 전극을 적용한 전지의 2C에서 90 사이클 후 전극의 단면(전해질측)을 SEM으로 촬영한 사진이며, 도 6b는 비교예 1에 따라 제조된 양극 전극을 적용한 전지의 2C에서 90 사이클 후 전극의 단면(집전체측)을 SEM으로 촬영한 사진이고, 도 6c는 비교예 2에 따라 제조된 양극 전극을 적용한 전지의 2C에서 90 사이클 후 전극의 단면(전해질측)을 SEM으로 촬영한 사진이며, 도 6d는 비교예 2에 따라 제조된 양극 전극을 적용한 전지의 2C에서 90 사이클 후 전극의 단면(집전체측)을 SEM으로 촬영한 사진이다.
도 7은 본 발명의 실시예 및 비교예에 따라 제조된 양극 전극을 적용한 전지의 전류에 따른 충방전 후 방전용량을 측정한 그래프이다.
도 8a는 본 발명의 실시예 1에 따라 제조된 양극 전극을 적용한 전지의 전류 별 전압 및 방전용량을 측정한 그래프이며, 도 8b는 비교예 1에 따라 제조된 양극 전극을 적용한 전지의 전류 별 전압 및 방전용량을 측정한 그래프이고, 도 8c는 비교예 2에 따라 제조된 양극 전극을 적용한 전지의 전류 별 전압 및 방전용량을 측정한 그래프이며, 도 8d는 비교예 3에 따라 제조된 양극 전극을 적용한 전지의 전류 별 전압 및 방전용량을 측정한 그래프이다.
1 is a structural diagram showing the structure of a typical anode electrode.
2 is a structural diagram showing the structure of a positive electrode to which the double-layer positive active material of the present invention is applied.
Figure 3a is a photograph taken by SEM of the cross section of the anode electrode prepared according to the Example and Comparative Example of the present invention, Figure 3b is the cross section of the cathode electrode prepared according to the Example and Comparative Example through EDS mapping of the electrode This is a picture of the structure.
Figure 4a is a graph measuring the discharge capacity after 1C charging and discharging of the battery to which the positive electrode prepared according to the Examples and Comparative Examples of the present invention is applied, and Figure 4B is the battery to which the positive electrode prepared according to the Examples and Comparative Examples is applied. It is a graph measuring the discharge capacity after charging and discharging at 2C.
5A is a picture taken by SEM of the cross-section (electrolyte side) of the electrode after 140 cycles at 1C of a battery to which the positive electrode prepared according to Example 1 of the present invention is applied, and FIG. 5B is a positive electrode manufactured according to Comparative Example 1 The cross-section of the electrode (current collector side) after 140 cycles at 1C of the battery to which the electrode is applied is a photograph taken by SEM, and FIG. 5C is the cross-section of the electrode after 140 cycles at 1C of the battery to which the positive electrode prepared according to Comparative Example 2 is applied. (electrolyte side) is a photograph taken by SEM, and FIG. 5d is a photograph taken by SEM of the cross-section (collector side) of the electrode after 140 cycles at 1C of the battery to which the positive electrode prepared according to Comparative Example 2 is applied.
6A is a photograph taken by SEM of the cross-section (electrolyte side) of the electrode after 90 cycles at 2C of a battery to which the positive electrode prepared according to Example 1 of the present invention is applied, and FIG. 6B is a positive electrode manufactured according to Comparative Example 1. The cross-section of the electrode (the current collector side) after 90 cycles at 2C of the battery to which the electrode is applied is a photograph taken by SEM, and FIG. 6c is the cross-section of the electrode after 90 cycles at 2C of the battery to which the positive electrode prepared according to Comparative Example 2 is applied. (electrolyte side) is a photograph taken by SEM, and FIG. 6d is a photograph taken by SEM of the cross-section (collector side) of the electrode after 90 cycles at 2C of the battery to which the positive electrode prepared according to Comparative Example 2 is applied.
7 is a graph of measuring the discharge capacity after charging and discharging according to the current of the battery to which the positive electrode manufactured according to the Examples and Comparative Examples of the present invention is applied.
8A is a graph measuring the voltage and discharge capacity for each current of the battery to which the positive electrode prepared according to Example 1 of the present invention is applied, and FIG. 8B is the voltage for each current of the battery to which the positive electrode prepared according to Comparative Example 1 is applied. and a graph measuring the discharge capacity, FIG. 8c is a graph measuring the voltage and discharge capacity for each current of the battery to which the positive electrode prepared according to Comparative Example 2 is applied, and FIG. 8D is the positive electrode prepared according to Comparative Example 3 It is a graph measuring the voltage and discharge capacity for each current of the applied battery.

본 발명은 고용량이면서 고수명을 구현할 수 있도록 이중층으로 형성된 양극 활물질 및 이를 포함하는 리튬이차전지용 양극 전극에 관한 것이다.The present invention relates to a positive electrode active material formed in a double layer to realize high capacity and long life, and a positive electrode for a lithium secondary battery including the same.

리튬이차전지의 양극 전지는 고에너지밀도를 위하여 전극 내 양극 활물질의 양을 증가시키므로 양극 전극의 두께가 점점 두꺼워 지고 있어 안정성이 저하된다. 일반적으로 양극 활물질은 충방전 도중에 모두 동일하게 퇴화되는 것이 아니라 집전체(current collector)의 반대쪽에 위치한 양극 활물질 입자가 빠르게 퇴화(도 1의 파란원)되어 효율이 저하된다.Since the positive electrode battery of a lithium secondary battery increases the amount of positive electrode active material in the electrode for high energy density, the thickness of the positive electrode becomes thicker and the stability is deteriorated. In general, the positive active material does not deteriorate equally during charging and discharging, but the positive active material particles located on the opposite side of the current collector rapidly deteriorate (the blue circle in FIG. 1 ), resulting in reduced efficiency.

기존에는 대부분 LiCoO2(LCO)을 양극 활물질로 사용하였지만, 고용량 전지 구현을 위하여 상기 Co 전이금속 대신 Ni을 사용한 Li(NixCoyMnz)O2(NCM) 소재가 개발되었다. 상기 Li(NixCoyMnz)O2(NCM) 소재는 고용량을 갖는 대신 수명이 떨어지는 문제가 있으므로, 최적의 에너지를 얻으면서 고수명 전극을 구현하기 위하여 고용량 NCM 소재를 집전체 바닥에 코팅 후, 상기 NCM 소재 상면에 고안전성 LCO를 적층한 이중층을 갖는 양극 활물질을 도입하여 고용량/고수명의 양극 전극을 구현하고자 한다.
In the past, LiCoO 2 (LCO) was mostly used as a positive electrode active material, but for realizing a high-capacity battery, a Li(Ni x Co y Mn z )O 2 (NCM) material using Ni instead of the Co transition metal has been developed. Since the Li(Ni x Co y Mn z )O 2 (NCM) material has a problem of having a low lifespan instead of having a high capacity, a high-capacity NCM material is coated on the bottom of the current collector to realize a long-life electrode while obtaining optimal energy After that, a positive electrode active material having a double layer in which a high safety LCO is laminated on the upper surface of the NCM material is introduced to realize a high capacity/high lifespan positive electrode.

이하, 본 발명을 상세하게 설명한다. Hereinafter, the present invention will be described in detail.

본 발명의 양극 활물질은 이중층으로 형성된 구조로서, 구체적으로 Li(NixCoyMnz)O2 (0<x<1, 0<y<1, 0<z<1, x+y+z=1)(이하, NCM) 층 및 상기 Li(NixCoyMnz)O2 층 상면에 형성된 LiCoO2(이하, LCO) 층을 포함한다.The cathode active material of the present invention has a structure formed in a double layer, specifically Li(Ni x Co y Mn z )O 2 (0<x<1, 0<y<1, 0<z<1, x+y+z= 1) (hereinafter referred to as NCM) layer and a LiCoO 2 (hereinafter, LCO) layer formed on the Li(Ni x Co y Mn z )O 2 layer.

본 발명의 양극 활물질은 상기 NCM 층의 두께가 20 내지 40 ㎛, 바람직하게는 20 내지 30 ㎛이며; 상기 LCO 층의 두께가 30 내지 50 ㎛, 바람직하게는 30 내지 40 ㎛로서, 통상 약 100 ㎛의 두께로 적층되는 종래의 양극 활물질에 비하여 낮은 두께(50 내지 90 ㎛의 높이)로 적층됨에도 불구하고 종래의 전극에 비하여 고에너지밀도를 보인다. The positive active material of the present invention is the NCM the thickness of the layer is from 20 to 40 μm, preferably from 20 to 30 μm; Although the thickness of the LCO layer is 30 to 50 μm, preferably 30 to 40 μm, it is laminated to a low thickness (a height of 50 to 90 μm) compared to a conventional positive active material that is usually laminated to a thickness of about 100 μm. It shows high energy density compared to the conventional electrode.

특히, 상기 LCO 층의 두께는 상기 NCM 층의 두께보다 5 내지 10 ㎛ 더 두꺼우며, 최상단 층의 구조 퇴화가 가장 심각하지만, 여러 사이클의 충방전 후에서 상단 LCO 양극 활물질에 크랙이 발생하지 않아 고용량 및 고수명의 효능을 발휘한다.In particular, the thickness of the LCO layer is It is 5 to 10 μm thicker than the thickness of the layer, and the structure deterioration of the top layer is the most severe, but cracks do not occur in the upper LCO cathode active material after several cycles of charging and discharging, thereby exhibiting the effects of high capacity and long life.

또한, 본 발명의 NCM 입자와 LCO 입자는 60:40 내지 80:20의 중량비, 바람직하게는 60:40 내지 70:30의 중량비로 사용된다. NCM 입자와 LCO 입자가 상기 중량비를 벗어나는 경우에는 여러 사이클의 충방전 후에서 양극 활물질에 미세 핀홀이 발생하여 고용량 및 고수명의 효능을 발휘할 수 없다.In addition, the NCM particles and LCO particles of the present invention are used in a weight ratio of 60:40 to 80:20, preferably 60:40 to 70:30 by weight. If the NCM particles and the LCO particles are out of the above weight ratio, fine pinholes are generated in the positive electrode active material after several cycles of charging and discharging, so that the effect of high capacity and long life cannot be exhibited.

상기 NCM 층을 구성하는 Li(NixCoyMnz)O2 입자의 입경은 1 내지 10 ㎛, 바람직하게는 2 내지 6 ㎛이며; 상기 LCO 층을 구성하는 LiCoO2 입자의 입경 역시 1 내지 10 ㎛, 바람직하게는 2 내지 6 ㎛이다. 상기 두 입자의 입경이 상기 하한치 미만인 경우에는 양극 전극에 사용되는 도전체 입자의 양이 적어 양극 전극의 성능이 저하될 수 있으며, 상기 상한치 초과인 경우에는 수명이 저하될 수 있다. The particle diameter of Li(Ni x Co y Mn z )O 2 particles constituting the NCM layer is 1 to 10 μm, preferably 2 to 6 μm; The particle diameter of LiCoO 2 particles constituting the LCO layer is also 1 to 10 μm, preferably 2 to 6 μm. When the particle diameter of the two particles is less than the lower limit, the performance of the anode electrode may be deteriorated due to the small amount of conductive particles used in the cathode electrode, and when the particle diameter exceeds the upper limit, the lifespan may be reduced.

본 발명에 사용되는 NCM 입자는 x가 0.6-0.8의 소수이며, y는 0.1-0.3의 소수이고, z는 0.1-0.3의 소수일 수 있다. NCM 입자의 x, y 및 z의 수가 상기 범위를 벗어나는 경우에는 여러 사이클의 충방전 후 크랙이 발생하여 양극 전극의 용량 및 수명이 저하될 수 있다.
In the NCM particles used in the present invention, x may be a prime number of 0.6-0.8, y may be a prime number of 0.1-0.3, and z may be a prime number of 0.1-0.3. If the number of x, y, and z of the NCM particles is out of the above range, cracks may occur after several cycles of charging and discharging, thereby reducing the capacity and lifespan of the positive electrode.

또한, 본 발명은 상기 이중층 양극 활물질을 포함하는 리튬이차전지용 양극 전극을 제공한다.In addition, the present invention provides a positive electrode for a lithium secondary battery comprising the double-layer positive electrode active material.

본 발명의 리튬이차전지용 양극 전극은 집전체(current collector), 상기 집전체의 상면에 형성된 NCM 층 및 상기 NCM 층 상면에 형성된 LCO 층을 포함한다.The positive electrode for a lithium secondary battery of the present invention includes a current collector, an NCM layer formed on an upper surface of the current collector, and the NCM and an LCO layer formed on top of the layer.

본 발명은 집전체, NCM 층 및 LCO 층의 순으로 적층되어 고용량 및 고수명의 효과를 얻을 수 있는 것으로서, 만약 집전체, LCO 층 및 NCM 층의 순으로 적층된 전극을 사용하는 경우에는 본 발명에 비하여 성능이 저하될 수 있으며, LCO 층을 단독으로 사용하는 경우에는 높은 안정성을 보이지만 용량이 낮고, NCM 층을 단독으로 사용하는 경우에는 용량이 높지만 안정성이 낮은 문제가 있다.
In the present invention, the effect of high capacity and long life can be obtained by stacking the current collector, the NCM layer and the LCO layer in this order. If an electrode stacked in the order of the current collector, the LCO layer and the NCM layer is used, the present invention Performance may be degraded compared to that, and when the LCO layer is used alone, high stability is shown, but the capacity is low, and when the NCM layer is used alone, there is a problem that the capacity is high but stability is low.

또한, 본 발명은 상기 리튬이차전지용 양극 전극을 포함하는 리튬이차전지 또는 리튬캐패시터를 제공할 수 있다.
In addition, the present invention may provide a lithium secondary battery or lithium capacitor including the positive electrode for the lithium secondary battery.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are presented to aid the understanding of the present invention, but the following examples are merely illustrative of the present invention and it will be apparent to those skilled in the art that various changes and modifications are possible within the scope and spirit of the present invention, It goes without saying that such variations and modifications fall within the scope of the appended claims.

실시예 1. 집전체, NCM 층, LCO 층의 순으로 적층Example 1. Stacked in order of current collector, NCM layer, and LCO layer

LiNi0 .8Co0 .1Mn0 .1O2 파우더(NCM811)와 super-P(TIMCAL), PVdF(Polyvinylidene-fluoride) 바인더를 94:3:3의 중량비로 혼합한 후 상기 혼합물의 질량만큼 NMP(N-methylpyrrolidone)를 추가하여 혼합함으로써 슬러리(slurry)를 제조하였다. 상기 얻어진 슬러리를 bar coater를 이용하여 40 ㎛의 두께로 Al foil(집전체) 위에 캐스팅(casting)한 후 120 ℃의 convection oven에서 완전히 NMP를 건조하고 roll press를 통해 두께가 30 ㎛가 되도록 LiNi0.8Co0.1Mn0.1O2 층을 형성하였다. LiNi 0 .8 Co 0 .1 Mn 0 .1 O 2 powder (NCM811) and the super-P (TIMCAL), PVdF (Polyvinylidene-fluoride) of a binder 94: 3 were mixed in a weight ratio of 3 by weight of the mixture A slurry was prepared by adding and mixing N-methylpyrrolidone (NMP). After casting the obtained slurry on Al foil (current collector) to a thickness of 40 μm using a bar coater, completely dry NMP in a convection oven at 120° C. and roll press LiNi 0.8 so that the thickness becomes 30 μm. A Co 0.1 Mn 0.1 O 2 layer was formed.

LiCoO2 파우더와 super-P, PVdF 바인더를 94:3:3의 중량비로 혼합한 후 상기 혼합물의 질량만큼 NMP(N-methylpyrrolidone)를 추가하여 혼합함으로써 슬러리(slurry)를 제조하였다. 상기 코팅된 LiNi0.8Co0.1Mn0.1O2 층 위에 상기 제조된 LiCoO2 슬러리를 bar coater를 이용하여 50 ㎛의 두께로 casting하고, 120 ℃의 convection oven으로 완전히 NMP를 건조시킨 후 roll press를 통해 두께가 40 ㎛가 되도록 LiCoO2 층을 형성하여 집전체, LiNi0.8Co0.1Mn0.1O2 층, LiCoO2 층의 순으로 적층된 양극 전극을 제조하였다. LiCoO 2 powder and super-P, PVdF binder was mixed in a weight ratio of 94:3:3, and then NMP (N-methylpyrrolidone) was added as much as the mass of the mixture and mixed to prepare a slurry. On the coated LiNi 0.8 Co 0.1 Mn 0.1 O 2 layer, the prepared LiCoO 2 slurry was cast to a thickness of 50 μm using a bar coater, and the NMP was completely dried in a convection oven at 120° C. A LiCoO 2 layer was formed so as to have a thickness of 40 μm to prepare a positive electrode stacked in this order of a current collector, a LiNi 0.8 Co 0.1 Mn 0.1 O 2 layer, and a LiCoO 2 layer.

상기 제조된 양극 전극의 구조는 얻어진 ICP 비율에 따라 LiNi0.8Co0.1Mn0.1O2 과 LiCoO2 67:33 중량비인 것을 확인하였다.
The structure of the prepared positive electrode was confirmed to be LiNi 0.8 Co 0.1 Mn 0.1 O 2 and LiCoO 2 67:33 weight ratio according to the obtained ICP ratio.

비교예 1. 집전체, LCO 층, NCM 층의 순으로 적층Comparative Example 1. A current collector, an LCO layer, and an NCM layer are stacked in this order

상기 실시예 1과 동일하게 실시하되, 집전체, LiNi0.8Co0.1Mn0.1O2 층, LiCoO2 층으로 적층되는 대신 집전체, LiCoO2 층, LiNi0.8Co0.1Mn0.1O2 층의 순으로 적층된 양극 전극을 제조하였다.
The same procedure as in Example 1, except that the current collector, LiNi 0.8 Co 0.1 Mn 0.1 O 2 layer, and LiCoO 2 layer were laminated instead of the current collector, LiCoO 2 layer, LiNi 0.8 Co 0.1 Mn 0.1 O 2 layer was stacked in this order A positive electrode was prepared.

비교예 2. NCM 층 단독Comparative Example 2. NCM layer alone

LiNi0.8Co0.1Mn0.1O2 파우더와 super-P, PVdF(Polyvinylidene-fluoride) 바인더를 94:3:3의 중량비로 혼합한 후 상기 혼합물의 질량만큼 NMP(N-methylpyrrolidone)를 추가하여 혼합함으로써 슬러리(slurry)를 제조하였다. 상기 얻어진 슬러리를 bar coater를 이용하여 50 ㎛의 두께로 Al foil(집전체) 위에 캐스팅(casting)한 후 120 ℃의 convection oven에서 완전히 NMP를 건조하고 roll press를 통해 두께가 40 ㎛가 되도록 LiNi0.8Co0.1Mn0.1O2 층을 형성하여 집전체, LiNi0.8Co0.1Mn0.1O2 층의 순으로 적층된 양극 전극을 제조하였다.
LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder and super-P, PVdF (Polyvinylidene-fluoride) binder were mixed in a weight ratio of 94:3:3, and then NMP (N-methylpyrrolidone) was added as much as the mass of the mixture and mixed to make a slurry. (slurry) was prepared. After casting the obtained slurry on Al foil (current collector) to a thickness of 50 μm using a bar coater, dry NMP completely in a convection oven at 120° C. and roll press LiNi 0.8 so that the thickness becomes 40 μm. Co 0.1 Mn 0.1 O 2 to form a layer of the positive electrode current collector in the electrode stack, LiNi 0.8 Co 0.1 Mn 0.1 O order of two layers was prepared.

비교예 3. LCO 층 단독Comparative Example 3. LCO layer alone

LiCoO2 파우더와 super-P, PVdF 바인더를 94:3:3의 중량비로 혼합한 후 상기 혼합물의 질량만큼 NMP(N-methylpyrrolidone)를 추가하여 혼합함으로써 슬러리(slurry)를 제조하였다. 상기 코팅된 LiNi0.8Co0.1Mn0.1O2 층 위에 상기 제조된 LiCoO2 슬러리를 bar coater를 이용하여 50 ㎛의 두께로 casting하고, 120 ℃의 convection oven으로 완전히 NMP를 건조시킨 후 roll press를 통해 두께가 40 ㎛가 되도록 LiCoO2 층을 형성하여 집전체, LiCoO2 층의 순으로 적층된 양극 전극을 제조하였다.
LiCoO 2 powder and super-P, PVdF binder was mixed in a weight ratio of 94:3:3, and then NMP (N-methylpyrrolidone) was added as much as the mass of the mixture and mixed to prepare a slurry. On the coated LiNi 0.8 Co 0.1 Mn 0.1 O 2 layer, the prepared LiCoO 2 slurry was cast to a thickness of 50 μm using a bar coater, and the NMP was completely dried in a convection oven at 120° C. A LiCoO 2 layer was formed to have a thickness of 40 μm to prepare a positive electrode in which a current collector and a LiCoO 2 layer were stacked in this order.

비교예 4. LiNiComparative Example 4. LiNi 0.80.8 CoCo 0.10.1 MnMn 0.10.1 OO 22 + LiCoO + LiCoO 2 2 혼합 층(단층 구조)Mixed layer (single layer structure)

LiNi0.8Co0.1Mn0.1O2 파우더와 LiCoO2 파우더를 67:33의 중량비로 혼합한 후 상기 혼합된 금속산화물과 super-P, PVdF 바인더를 94:3:3의 중량비로 혼합한 후 상기 혼합물의 질량만큼 NMP(N-methylpyrrolidone)를 추가하여 혼합함으로써 슬러리(slurry)를 제조하였다. 상기 얻어진 슬러리를 bar coater를 이용하여 90 ㎛의 두께로 Al foil(집전체) 위에 캐스팅(casting)한 후 120 ℃의 convection oven에서 완전히 NMP를 건조하고 roll press를 통해 두께가 70 ㎛가 되도록 LiNi0.8Co0.1Mn0.1O2 + LiCoO2 혼합 층을 형성하여 집전체, LiNi0.8Co0.1Mn0.1O2 + LiCoO2 혼합 층의 순으로 적층된 양극 전극을 제조하였다.
LiNi 0.8 Co 0.1 Mn 0.1 O 2 powder and LiCoO 2 powder were mixed in a weight ratio of 67:33, and then the mixed metal oxide and super-P, PVdF binder were mixed in a weight ratio of 94:3:3. A slurry was prepared by adding and mixing NMP (N-methylpyrrolidone) by mass. After casting the obtained slurry on Al foil (current collector) to a thickness of 90 μm using a bar coater, completely dry NMP in a convection oven at 120° C. and roll press LiNi 0.8 so that the thickness becomes 70 μm. Co 0.1 Mn 0.1 O 2 + LiCoO 2 mixed layer of the positive electrode current collector laminated with, LiNi 0.8 Co 0.1 Mn 0.1 O 2 + LiCoO 2 in order to form a mixed layer was prepared.

<시험예><Test Example>

상기 실시예 및 비교예에서 제조된 양극 전극을 1.1 cm 지름의 disk로 punching하여 Li disk, PP separator, 1.0 M LiPF6 EC/EMC(3:7의 부피%)와 함께 2032 coin cell을 제작하여 전기화학 평가를 진행하였다. By punching the positive electrode prepared in the Examples and Comparative Examples with a disk having a diameter of 1.1 cm, a 2032 coin cell was prepared together with a Li disk, a PP separator, and 1.0 M LiPF6 EC/EMC (3:7 volume %) to produce electrochemical Evaluation was carried out.

시험예 1. SEM 측정Test Example 1. SEM measurement

도 3a는 실시예 및 비교예에 따라 제조된 양극 전극의 단면을 SEM으로 촬영한 사진이며, 도 3b는 실시예 및 비교예에 따라 제조된 양극 전극의 단면을 EDS mapping을 통하여 전극의 구조를 측정한 사진이다.Figure 3a is a photograph taken by SEM of the cross-section of the anode electrode prepared according to Examples and Comparative Examples, and Figure 3b is a cross-section of the anode electrode prepared according to Examples and Comparative Examples to measure the structure of the electrode through EDS mapping it's one picture

도 3a에 도시된 바와 같이, 비교예 2의 LiNi0.8Co0.1Mn0.1O2 층은 크고 작은 둥근형태의 구조를 보이며, 비교예 3의 LiCoO2 층은 크고 작은 기하학적 모양의 구조를 보이는 것을 확인하였다. 이에 따라 집전체/LiNi0.8Co0.1Mn0.1O2 층/LiCoO2 층으로 형성된 실시예 1은 하측(집전체측)이 크고 작은 둥근형태의 구조이고 상측이 크고 작은 기하학적 모양의 구조를 보이는 것을 확인하였고; 집전체/LiCoO2 층/LiNi0.8Co0.1Mn0.1O2 층으로 형성된 비교예 1은 하측이 크고 작은 기하학적 모양의 구조를 보이고 상측이 크고 작은 둥근형태의 구조를 보이는 것을 확인하였으며; 집전체/LiCoO2+LiNi0 .8Co0 .1Mn0 .1O2 층으로 형성된 비교예 4는 크고 작은 기하학적 모양과 둥근형태의 구조가 혼재되어 있는 것을 확인하였다.As shown in FIG. 3a , the LiNi 0.8 Co 0.1 Mn 0.1 O 2 layer of Comparative Example 2 showed a large and small round structure, and the LiCoO 2 layer of Comparative Example 3 had large and small geometric structures. . Accordingly, it was confirmed that Example 1 formed of a current collector/LiNi 0.8 Co 0.1 Mn 0.1 O 2 layer/LiCoO 2 layer had a large and small round structure on the lower side (current collector side) and a large and small geometrical structure on the upper side. did; It was confirmed that Comparative Example 1 formed of a current collector/LiCoO 2 layer/LiNi 0.8 Co 0.1 Mn 0.1 O 2 layer had a large and small geometrical structure on the lower side and a large and small round structure on the upper side; Full house comparison / LiCoO 2, LiNi 0 .8 Co + Mn 0 .1 0 .1 O formed in a two-layer Example 4, it was confirmed that the mixed large and small geometric shape and type of spherical structure.

또한 도 3b에 도시된 바와 같이, 실시예 1의 전극은 코발트가 상측에 니켈이 하측에 더 분포하고 있으며, 비교예 1은 실시예 1과 반대로 코발트가 하측에 니켈이 상측에 더 분포하고 있는 것을 확인하였다.
In addition, as shown in Figure 3b, in the electrode of Example 1, cobalt is more distributed on the upper side and nickel is distributed on the lower side, and Comparative Example 1 shows that, in contrast to Example 1, cobalt is more distributed on the lower side and nickel is further distributed on the upper side Confirmed.

시험예 2. 양극 전극의 수명 측정Test Example 2. Measurement of Lifespan of Positive Electrode

도 4a는 실시예 및 비교예에 따라 제조된 양극 전극을 적용한 전지의 1C 충방전 후 방전용량을 측정한 그래프이며, 도 4b는 실시예 및 비교예에 따라 제조된 양극 전극을 적용한 전지의 2C 충방전 후 방전용량을 측정한 그래프이다.Figure 4a is a graph measuring the discharge capacity after 1C charging and discharging of the battery to which the positive electrode prepared according to the Examples and Comparative Examples is applied, and Figure 4B is the 2C charge of the battery to which the positive electrode prepared according to the Examples and Comparative Examples is applied. It is a graph measuring the discharge capacity after discharge.

상기 도 4a 및 도 4b의 방전용량을 하기 [표 1]에 수치로 나타내었다.The discharge capacities of FIGS. 4A and 4B are numerically shown in Table 1 below.

구분division 1C1C 2C2C 1st1st 140th140th 1st1st 140th140th 방전용량
(mAh/g)
discharge capacity
(mAh/g)
용량 유지율
(%)
Capacity retention rate
(%)
방전용량
(mAh/g)
discharge capacity
(mAh/g)
용량 유지율
(%)
Capacity retention rate
(%)
방전용량
(mAh/g)
discharge capacity
(mAh/g)
용량 유지율
(%)
Capacity retention rate
(%)
방전용량
(mAh/g)
discharge capacity
(mAh/g)
용량 유지율
(%)
Capacity retention rate
(%)
실시예 1Example 1 162.3162.3 100100 121.9121.9 74.974.9 149.7149.7 100100 121.0121.0 80.880.8 비교예 1Comparative Example 1 157.9157.9 100100 87.987.9 55.555.5 149.1149.1 100100 77.777.7 52.152.1 비교예 2Comparative Example 2 179.7179.7 100100 29.929.9 16.716.7 162.4162.4 100100 58.1458.14 35.735.7 비교예 3Comparative Example 3 137.3137.3 100100 120.0120.0 87.487.4 126.1126.1 100100 99.199.1 78.678.6 비교예 4Comparative Example 4 166.0166.0 100100 95.395.3 57.457.4 152.3152.3 100100 85.585.5 56.156.1

도 4a, 도 4b 및 표 1에 나타낸 바와 같이, 본 발명의 실시예 1에 따라 제조된 양극 전극으로 제조된 전지는 비교예 1 내지 4에 비하여 1C 및 2C에서 140 사이클 후 방전용량 및 용량 유지율이 우수한 것을 확인하였다.As shown in Figures 4a, 4b and Table 1, the battery prepared with the positive electrode prepared according to Example 1 of the present invention had a discharge capacity and capacity retention rate after 140 cycles at 1C and 2C compared to Comparative Examples 1 to 4 It was confirmed that it was excellent.

반면, 비교예 1, 2 및 4는 1C 및 2C에서 140 사이클 후 방전용량 및 용량 유지율이 낮은 것을 확인하였으며, 특히 비교예 3은 1C에서 140 사이클 후에는 방전용량 및 용량 유지율이 우수한 편이였지만 2C에서 140 사이클 후에는 방전용량 및 용량 유지율이 급격히 저하되므로 안정하지 못하다는 것을 확인하였다.
On the other hand, Comparative Examples 1, 2 and 4 confirmed that the discharge capacity and capacity retention rate after 140 cycles at 1C and 2C were low, and in particular, Comparative Example 3 had excellent discharge capacity and capacity retention rate after 140 cycles at 1C, but at 2C. After 140 cycles, it was confirmed that the discharge capacity and capacity retention rate were rapidly lowered and thus unstable.

시험예 3. 1C, 140 사이클 후 SEM 촬영Test Example 3. 1C, SEM after 140 cycles

도 5a는 실시예 1에 따라 제조된 양극 전극을 적용한 전지의 1C에서 140 사이클 후 전극의 단면(전해질측)을 SEM으로 촬영한 사진이며, 도 5b는 비교예 1에 따라 제조된 양극 전극을 적용한 전지의 1C에서 140 사이클 후 전극의 단면(집전체측)을 SEM으로 촬영한 사진이고, 도 5c는 비교예 2에 따라 제조된 양극 전극을 적용한 전지의 1C에서 140 사이클 후 전극의 단면(전해질측)을 SEM으로 촬영한 사진이며, 도 5d는 비교예 2에 따라 제조된 양극 전극을 적용한 전지의 1C에서 140 사이클 후 전극의 단면(집전체측)을 SEM으로 촬영한 사진이다.5A is a photograph taken by SEM of the cross-section (electrolyte side) of the electrode after 140 cycles at 1C of the battery to which the positive electrode prepared according to Example 1 is applied, and FIG. 5B is the positive electrode prepared according to Comparative Example 1 is applied. The cross-section of the electrode (current collector side) at 1C of the battery is a photograph taken by SEM, and FIG. 5C is a cross-section of the electrode after 140 cycles at 1C of the battery to which the positive electrode prepared according to Comparative Example 2 is applied (electrolyte side) ) is a photograph taken by SEM, and FIG. 5d is a photograph taken by SEM of the cross-section (current collector side) of the electrode after 140 cycles at 1C of the battery to which the positive electrode prepared according to Comparative Example 2 is applied.

도 5a 내지 도 5d에 도시된 바와 같이, 실시예 1의 전극은 크랙이 관찰되지 않았지만, 비교예 1의 전지는 표면의 LiNi0.8Co0.1Mn0.1O2 층에서 크랙이 관찰되었으며, 비교예 2의 전지는 LiNi0.8Co0.1Mn0.1O2 입자 모두에서 크랙이 관찰된 것을 확인하였다.As shown in FIGS. 5A to 5D , cracks were not observed in the electrode of Example 1, but cracks were observed in the LiNi 0.8 Co 0.1 Mn 0.1 O 2 layer of the battery of Comparative Example 1 on the surface, In the battery, it was confirmed that cracks were observed in all of the LiNi 0.8 Co 0.1 Mn 0.1 O 2 particles.

실시예 1의 전극은 크랙이 관찰되지 않으므로 고용량 및 고수명 등의 성능 향상이 유도된 것으로 보인다.
Since cracks were not observed in the electrode of Example 1, it seems that performance improvement such as high capacity and long life was induced.

시험예 4. 2C, 90 사이클 후 SEM 촬영Test Example 4. 2C, SEM after 90 cycles

도 6a는 실시예 1에 따라 제조된 양극 전극을 적용한 전지의 2C에서 90 사이클 후 전극의 단면(전해질측)을 SEM으로 촬영한 사진이며, 도 6b는 비교예 1에 따라 제조된 양극 전극을 적용한 전지의 2C에서 90 사이클 후 전극의 단면(집전체측)을 SEM으로 촬영한 사진이고, 도 6c는 비교예 2에 따라 제조된 양극 전극을 적용한 전지의 2C에서 90 사이클 후 전극의 단면(전해질측)을 SEM으로 촬영한 사진이며, 도 6d는 비교예 2에 따라 제조된 양극 전극을 적용한 전지의 2C에서 90 사이클 후 전극의 단면(집전체측)을 SEM으로 촬영한 사진이다. 6A is a photograph taken by SEM of the cross-section (electrolyte side) of the electrode after 90 cycles at 2C of the battery to which the positive electrode prepared according to Example 1 is applied, and FIG. 6B is the positive electrode prepared according to Comparative Example 1 is applied. The cross-section of the electrode (current collector side) after 90 cycles at 2C of the battery is a photograph taken by SEM, and FIG. 6c is a cross-section of the electrode after 90 cycles at 2C of the battery to which the positive electrode prepared according to Comparative Example 2 is applied (electrolyte side) ) is a photograph taken by SEM, and FIG. 6d is a photograph taken by SEM of the cross-section (current collector side) of the electrode after 90 cycles at 2C of the battery to which the positive electrode prepared according to Comparative Example 2 is applied.

도 6a 내지 도 6d에 도시된 바와 같이, 실시예 1의 전극은 크랙이 관찰되지 않았지만, 비교예 1의 전지는 표면의 LiNi0.8Co0.1Mn0.1O2 층에서 크랙이 관찰되었으며, 비교예 2의 전지는 LiNi0.8Co0.1Mn0.1O2 입자 모두에서 크랙이 관찰된 것을 확인하였다.As shown in FIGS. 6A to 6D , cracks were not observed in the electrode of Example 1, but cracks were observed in the LiNi 0.8 Co 0.1 Mn 0.1 O 2 layer on the surface of the battery of Comparative Example 1, and in Comparative Example 2 In the battery, it was confirmed that cracks were observed in all of the LiNi 0.8 Co 0.1 Mn 0.1 O 2 particles.

실시예 1의 전극은 크랙이 관찰되지 않으므로 고용량 및 고수명 등의 성능 향상이 유도된 것으로 보인다.
Since cracks were not observed in the electrode of Example 1, it seems that performance improvement such as high capacity and long life was induced.

시험예 5. 출력 특성 측정 Test Example 5. Measurement of output characteristics

도 7은 실시예 및 비교예에 따라 제조된 양극 전극을 적용한 전지의 전류에 따른 충방전 후 방전용량을 측정한 그래프이다.7 is a graph of measuring the discharge capacity after charging and discharging according to the current of the battery to which the positive electrode prepared according to Examples and Comparative Examples is applied.

도 7에 도시된 바와 같이, 본 발명의 실시예 1에 따라 제조된 전지는 비교예 1 내지 4에 비하여 5 내지 10 C의 고전류에서 출력 특성이 가장 우수한 것을 확인하였다.
As shown in FIG. 7 , it was confirmed that the battery manufactured according to Example 1 of the present invention had the best output characteristics at a high current of 5 to 10 C compared to Comparative Examples 1 to 4.

시험예 6. 전류별 특성 측정Test Example 6. Measurement of characteristics by current

도 8a는 실시예 1에 따라 제조된 양극 전극을 적용한 전지의 전류 별 전압 및 방전용량을 측정한 그래프이며, 도 8b는 비교예 1에 따라 제조된 양극 전극을 적용한 전지의 전류 별 전압 및 방전용량을 측정한 그래프이고, 도 8c는 비교예 2에 따라 제조된 양극 전극을 적용한 전지의 전류 별 전압 및 방전용량을 측정한 그래프이며, 도 8d는 비교예 3에 따라 제조된 양극 전극을 적용한 전지의 전류 별 전압 및 방전용량을 측정한 그래프이다.8A is a graph measuring the voltage and discharge capacity for each current of the battery to which the positive electrode prepared according to Example 1 is applied, and FIG. 8B is the voltage and discharge capacity for each current of the battery to which the positive electrode prepared according to Comparative Example 1 is applied. is a graph measured, FIG. 8c is a graph measuring the voltage and discharge capacity for each current of a battery to which the positive electrode prepared according to Comparative Example 2 is applied, and FIG. 8D is a battery to which the positive electrode prepared according to Comparative Example 3 is applied It is a graph measuring the voltage and discharge capacity for each current.

도 8a 내지 도 8d에 도시된 바와 같이, 5C 전류 조건 하에서 4.0 V에서 발생하는 LiNi0.8Co0.1Mn0.1O2 활물질의 활성도에 따른 평탄면 거동이 다르게 얻어졌다. 실시예 1의 경우에는 LiNi0.8Co0.1Mn0.1O2 4.0 V 평탄면이 뚜렷하게 얻어지고, 111.8 mAh/g 이상으로 방전 용량이 얻어진 반면, 같은 전류 조건 하에서 나머지 전극 구조를 갖는 비교예 1 및 비교예 2에서는 LiNi0.8Co0.1Mn0.1O2 4.0 V 평탄면이 보이나, 실시예 1 보다 방전 용량이 적은 것을 확인하였다. 또한, 비교예 3의 경우에는 LCO가 반응함에 따라 작동 전압이 4.2 V로 높아졌고, 방전 용량 역시 실시예 1 보다 적은 103.0 mAh/g이 얻어졌다. As shown in FIGS. 8A to 8D , the planar surface behavior was obtained differently depending on the activity of the LiNi 0.8 Co 0.1 Mn 0.1 O 2 active material generated at 4.0 V under the 5C current condition. In the case of Example 1, LiNi 0.8 Co 0.1 Mn 0.1 O 2 A 4.0 V flat surface was clearly obtained, and a discharge capacity of 111.8 mAh/g or more was obtained, whereas in Comparative Examples 1 and 2 having the remaining electrode structures under the same current conditions, LiNi 0.8 Co 0.1 Mn 0.1 O 2 Although a 4.0 V flat surface was seen, it was confirmed that the discharge capacity was lower than that of Example 1. In addition, in the case of Comparative Example 3, the operating voltage was increased to 4.2 V as the LCO reacted, and 103.0 mAh/g, which was also less than that of Example 1, was obtained.

이는 실시예 1의 경우 고용량 LiNi0 .8Co0 .1Mn0 .1O2의 고전류 충/방전 조건 하에서 응답속도가 더 높게 유지됨을 의미한다. This is the case of Example 1 means a high capacity is maintained LiNi 0 .8 Co 0 .1 Mn 0 .1 O response time higher under a high current charging / discharging condition of Fig.

Claims (12)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete Li(NixCoyMnz)O2 입자와 LiCoO2 입자의 중량비는 60:40 내지 80:20이고,
Li(NixCoyMnz)O2 층은 두께가 20 내지 40 ㎛이며, LiCoO2 층의 두께는 Li(NixCoyMnz)O2 층의 두께보다 5 내지 10 ㎛ 더 두꺼우며,
상기 Li(NixCoyMnz)O2 의 x는 0.6-0.8의 소수이고, y는 0.1-0.3의 소수이며, z는 0.1-0.3의 소수이고, x+y+z=1을 만족하는 것을 특징으로 하는 리튬이차전지용 양극 전극.
The weight ratio of Li(Ni x Co y Mn z )O 2 particles and LiCoO 2 particles is 60:40 to 80:20,
The Li(Ni x Co y Mn z )O 2 layer has a thickness of 20 to 40 μm, and the thickness of the LiCoO 2 layer is 5 to 10 μm thicker than the thickness of the Li(NixCoyMnz)O2 layer,
The Li(Ni x Co y Mn z )O 2 x is a prime number of 0.6-0.8, y is a prime number of 0.1-0.3, z is a prime number of 0.1-0.3, x + y + z = 1 A positive electrode for a lithium secondary battery, characterized in that.
삭제delete 삭제delete 삭제delete 제6항의 양극 전극을 포함하는 것을 특징으로 하는 리튬이차전지. A lithium secondary battery comprising the positive electrode of claim 6 . 제6항의 양극 전극을 포함하는 것을 특징으로 하는 리튬캐패시터.A lithium capacitor comprising the positive electrode of claim 6 . 제6항의 양극 전극을 포함하는 장치로서, 상기 장치는 통신장비, 에너지저장시스템(Energy Storage System, ESS) 및 운송수단으로 이루어진 군에서 선택된 것을 특징으로 하는 장치.
A device comprising the anode electrode of claim 6, wherein the device is selected from the group consisting of communication equipment, an energy storage system (ESS), and a means of transportation.
KR1020190054201A 2019-05-09 2019-05-09 cathode for lithium secondary battery comprising double layer cathode active material Active KR102280548B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190054201A KR102280548B1 (en) 2019-05-09 2019-05-09 cathode for lithium secondary battery comprising double layer cathode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190054201A KR102280548B1 (en) 2019-05-09 2019-05-09 cathode for lithium secondary battery comprising double layer cathode active material

Publications (2)

Publication Number Publication Date
KR20200129580A KR20200129580A (en) 2020-11-18
KR102280548B1 true KR102280548B1 (en) 2021-07-21

Family

ID=73697515

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190054201A Active KR102280548B1 (en) 2019-05-09 2019-05-09 cathode for lithium secondary battery comprising double layer cathode active material

Country Status (1)

Country Link
KR (1) KR102280548B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12266788B2 (en) 2019-05-24 2025-04-01 Samsung Sdi Co., Ltd. Cathode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
KR20200144395A (en) * 2019-06-18 2020-12-29 삼성에스디아이 주식회사 Positive electrode for lithium secondary battery, preparing method thereof, and lithium secondary battery comprising the same
KR20250074510A (en) 2023-11-20 2025-05-27 주식회사 엘지에너지솔루션 Positive Electrode Comprising Two Types of Positive Electrode Active Materials and Lithium Secondary Battery Comprising the Same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009203A (en) 2009-05-26 2011-01-13 Nissan Motor Co Ltd Electrode structure, battery, and method for manufacturing electrode structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101407085B1 (en) * 2011-05-02 2014-06-19 주식회사 엘지화학 Secondary battery comprising electrodes having multi layered active layers
KR101520146B1 (en) 2012-02-20 2015-05-14 주식회사 엘지화학 Lithium secondary battery
KR101495302B1 (en) * 2012-04-13 2015-02-24 주식회사 엘지화학 Multi Layered Electrode and the Method of the Same
KR102357836B1 (en) 2014-12-31 2022-02-07 삼성에스디아이 주식회사 Cathode active material for lithium secondary and lithium secondary batteries comprising the same
US10622625B2 (en) * 2016-07-04 2020-04-14 Lg Chem, Ltd. Positive electrode and secondary battery including the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009203A (en) 2009-05-26 2011-01-13 Nissan Motor Co Ltd Electrode structure, battery, and method for manufacturing electrode structure

Also Published As

Publication number Publication date
KR20200129580A (en) 2020-11-18

Similar Documents

Publication Publication Date Title
US8986890B2 (en) Cathodal materials for lithium cells
KR101336309B1 (en) Electrode assembly, battery cell and device comprising the same
JP5664937B2 (en) Secondary battery and assembled battery
US20120115039A1 (en) All Solid Secondary Battery and Manufacturing Method Therefor
Palanisamy et al. In situ replenishment of formation cycle lithium‐ion loss for enhancing battery life
KR102349703B1 (en) Lithium secondary battery
KR20210096814A (en) Lithium secondary battery
KR20210145100A (en) Lithium secondary battery
KR102280548B1 (en) cathode for lithium secondary battery comprising double layer cathode active material
US11677065B2 (en) Cathode active material of lithium secondary battery
KR102352203B1 (en) Lithium secondary battery
KR20150003665A (en) Lithium secondary battery
KR102530678B1 (en) Anode Active Material for Lithium Secondary Battery, Anode Comprising the same, and Lithium Secondary Battery Comprising the Same
JPH08171917A (en) Cell
KR102687648B1 (en) Lithium secondary battery
KR102640199B1 (en) Lithium secondary battery
CN115088097A (en) Negative electrode for secondary battery, and negative electrode material for secondary battery
KR20220026099A (en) Composition for anode of lithium secondary battery and lithium secondary battery
EP4489106A1 (en) Negative electrode sheet, battery cell, battery pack, and electricity-consumption device
JPWO2019181097A1 (en) Solid state battery
US10424788B2 (en) Negative electrode for secondary battery, electrode assembly comprising same, and secondary battery
KR20100119782A (en) Composite compound with mixed crystalline structure
US12300817B2 (en) Anode for lithium secondary battery and lithium secondary battery including the same
KR20250062341A (en) Electrode assembly and rechargeable battery including the same
KR20240043257A (en) Anode for lithium secondary battery and lithium secondary battery including the same

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20190509

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20200928

Patent event code: PE09021S01D

PG1501 Laying open of application
AMND Amendment
E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20210429

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20200928

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

AMND Amendment
PX0901 Re-examination

Patent event code: PX09011S01I

Patent event date: 20210429

Comment text: Decision to Refuse Application

Patent event code: PX09012R01I

Patent event date: 20201127

Comment text: Amendment to Specification, etc.

PX0701 Decision of registration after re-examination

Patent event date: 20210712

Comment text: Decision to Grant Registration

Patent event code: PX07013S01D

Patent event date: 20210611

Comment text: Amendment to Specification, etc.

Patent event code: PX07012R01I

Patent event date: 20210429

Comment text: Decision to Refuse Application

Patent event code: PX07011S01I

Patent event date: 20201127

Comment text: Amendment to Specification, etc.

Patent event code: PX07012R01I

X701 Decision to grant (after re-examination)
GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20210716

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20210716

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20240625

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20250624

Start annual number: 5

End annual number: 5