KR102269741B1 - 머신러닝을 이용한 오버랩 패턴의 엑스선 검사 방법 - Google Patents
머신러닝을 이용한 오버랩 패턴의 엑스선 검사 방법 Download PDFInfo
- Publication number
- KR102269741B1 KR102269741B1 KR1020200005680A KR20200005680A KR102269741B1 KR 102269741 B1 KR102269741 B1 KR 102269741B1 KR 1020200005680 A KR1020200005680 A KR 1020200005680A KR 20200005680 A KR20200005680 A KR 20200005680A KR 102269741 B1 KR102269741 B1 KR 102269741B1
- Authority
- KR
- South Korea
- Prior art keywords
- machine learning
- ray inspection
- overlap
- unit
- inspection method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8887—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/10—Different kinds of radiation or particles
- G01N2223/101—Different kinds of radiation or particles electromagnetic radiation
- G01N2223/1016—X-ray
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Pathology (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
도 2는 본 발명의 머신러닝을 이용한 오버랩 패턴의 엑스선 검사 시스템에 대한 구성도이다.
도 3은 본 발명의 오버랩 패턴을 가지는 검사대상에 대한 이미지의 예시이다.
도 4는 본 발명의 머신러닝을 이용한 오버랩 패턴의 엑스선 검사 시스템에서 제어부의 실시예를 나타내는 블록도이다.
도 5는 본 발명의 개념에 따른 머신러닝을 이용한 오버랩 패턴의 엑스선 검사 방법을 설명하기 위한 순서도이다.
도 6은 본 발명의 머신러닝을 이용한 오버랩 패턴의 엑스선 검사 방법에서 보이드를 검출하는 과정을 설명하기 위한 도면이다.
60...검사대상 100...기본이미지
110...칩 121...제1파트
121b...개체제1파트 122...제2파트
123a...보이드 123b...개체보이드파트
130...개별화영역 200...제어부
210...기본이미지 처리부 221...오버랩 검출부
222...파트영역 추출부 231...픽셀 카운팅부
232...검증부 240...피드백부
300...머신러닝 알고리즘
Claims (5)
- a) 엑스선 검사장비(50)로부터 전송된 검사대상의 이미지신호를 통해 기본이미지 처리부(210)에서 기본이미지를 생성하는 단계;
b) 오버랩 검출부(221)에서 머신러닝 알고리즘(300)에 의하여 오버랩 영역이 검출되는 단계;
c) 파트영역 추출부(222)에서 머신러닝 알고리즘에 의하여 중첩되는 부품에 대응되는 오버랩 영역의 변화를 학습되어 각각의 부품에 대응되는 파트영역이 클러스터링되는 단계;
d) 상기 추출된 하나 이상의 파트영역에 대하여 영역 내에 존재하는 픽셀을 카운팅하는 단계;
f) 선택된 파트영역에 대해 검증부가 픽셀값을 기초로 불량을 검출하는 단계;를 포함하는 머신러닝을 이용한 오버랩 패턴의 엑스선 검사 방법.
- 제1항에 있어서,
상기 f) 단계 이전에,
e) 각 파트영역에 대하여 카운팅된 픽셀에 따라 유효성을 검증하는 단계;를 더 포함하는 머신러닝을 이용한 오버랩 패턴의 엑스선 검사 방법.
- 제2항에 있어서,
상기 e) 단계는,
선택된 파트영역에 대한 픽셀비율과 기준되는 픽셀비율을 비교하여 머신러닝 알고리즘(300)의 개입 결과의 유효성에 대한 판단을 수행하는 머신러닝을 이용한 오버랩 패턴의 엑스선 검사 방법.
- 제2항에 있어서,
상기 e) 단계에서 비유효성으로 분류된 경우 사용자에 의하여 선택된 파트영역에 대한 픽셀을 입력부에서 입력받아 피드백부(240)에서 학습강화를 위한 데이터로 사용하도록 하는 머신러닝을 이용한 오버랩 패턴의 엑스선 검사 방법. - 삭제
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200005680A KR102269741B1 (ko) | 2020-01-16 | 2020-01-16 | 머신러닝을 이용한 오버랩 패턴의 엑스선 검사 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200005680A KR102269741B1 (ko) | 2020-01-16 | 2020-01-16 | 머신러닝을 이용한 오버랩 패턴의 엑스선 검사 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102269741B1 true KR102269741B1 (ko) | 2021-06-29 |
Family
ID=76626822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200005680A Active KR102269741B1 (ko) | 2020-01-16 | 2020-01-16 | 머신러닝을 이용한 오버랩 패턴의 엑스선 검사 방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102269741B1 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102372724B1 (ko) * | 2021-08-19 | 2022-03-10 | (주)파이브텍 | 컴퓨터비전 기술을 이용한 바이오가스플랜트 관리시스템 |
KR102422482B1 (ko) * | 2021-09-16 | 2022-07-20 | 라이트브라더스 주식회사 | 그레이 스케일 분석에 의한 제품의 비파괴 검사 장치, 방법, 및 컴퓨터 판독 가능한 기록 매체 |
US12082958B2 (en) | 2022-01-03 | 2024-09-10 | Electronics And Telecommunications Research Institute | System and method for detecting internal load by using X-ray image of container |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2934455B2 (ja) * | 1988-08-26 | 1999-08-16 | 株式会社日立製作所 | X線透過画像によるはんだ付部の検査方法及びその装置 |
JP2005326332A (ja) * | 2004-05-17 | 2005-11-24 | Sony Corp | 画像情報処理装置および方法、並びにプログラム |
WO2015041259A1 (ja) * | 2013-09-18 | 2015-03-26 | 株式会社イシダ | 検査装置 |
WO2019159440A1 (ja) * | 2018-02-14 | 2019-08-22 | 株式会社イシダ | 検査装置 |
-
2020
- 2020-01-16 KR KR1020200005680A patent/KR102269741B1/ko active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2934455B2 (ja) * | 1988-08-26 | 1999-08-16 | 株式会社日立製作所 | X線透過画像によるはんだ付部の検査方法及びその装置 |
JP2005326332A (ja) * | 2004-05-17 | 2005-11-24 | Sony Corp | 画像情報処理装置および方法、並びにプログラム |
WO2015041259A1 (ja) * | 2013-09-18 | 2015-03-26 | 株式会社イシダ | 検査装置 |
WO2019159440A1 (ja) * | 2018-02-14 | 2019-08-22 | 株式会社イシダ | 検査装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102372724B1 (ko) * | 2021-08-19 | 2022-03-10 | (주)파이브텍 | 컴퓨터비전 기술을 이용한 바이오가스플랜트 관리시스템 |
KR102422482B1 (ko) * | 2021-09-16 | 2022-07-20 | 라이트브라더스 주식회사 | 그레이 스케일 분석에 의한 제품의 비파괴 검사 장치, 방법, 및 컴퓨터 판독 가능한 기록 매체 |
CN115825115A (zh) * | 2021-09-16 | 2023-03-21 | 赖特兄弟有限公司 | 自行车无损检查装置、方法、计算机可读存储介质 |
CN115825115B (zh) * | 2021-09-16 | 2024-03-29 | 赖特兄弟有限公司 | 自行车无损检查装置、方法、计算机可读存储介质 |
US12082958B2 (en) | 2022-01-03 | 2024-09-10 | Electronics And Telecommunications Research Institute | System and method for detecting internal load by using X-ray image of container |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10885618B2 (en) | Inspection apparatus, data generation apparatus, data generation method, and data generation program | |
CN109978817B (zh) | 信息处理装置、识别系统、设定方法以及存储介质 | |
JP6757378B2 (ja) | 画像識別装置、画像識別方法及び画像識別プログラム | |
KR102269741B1 (ko) | 머신러닝을 이용한 오버랩 패턴의 엑스선 검사 방법 | |
US10963676B2 (en) | Image processing method and apparatus | |
TW202203152A (zh) | 訓練自動缺陷分類之檢測儀器的方法與系統及其儲存媒體 | |
KR102745059B1 (ko) | 반도체 시편의 검사에 사용가능한 훈련 데이터의 생성 | |
Zhang et al. | Deep learning based solder joint defect detection on industrial printed circuit board X-ray images | |
JP6749655B1 (ja) | 検査装置、異常検出方法、コンピュータプログラム、学習モデルの生成方法、及び学習モデル | |
JP2019159961A (ja) | 検査システム、画像識別システム、識別システム、識別器生成システム、及び学習データ生成装置 | |
US12288388B2 (en) | System and method to alter an image | |
Liao et al. | A flexible PCB inspection system based on statistical learning | |
US12211191B2 (en) | Automatic inspection using artificial intelligence models | |
CN115908236A (zh) | 用于预测印刷电路板组件的质量的系统和方法 | |
JP2016181098A (ja) | 領域検出装置および領域検出方法 | |
Wang et al. | A multiple-stage defect detection model by convolutional neural network | |
CN116563291A (zh) | 一种smt智能防错上料检测仪 | |
Ghosh et al. | Automated defective pin detection for recycled microelectronics identification | |
Berenguer et al. | Explainable-by-design semi-supervised representation learning for covid-19 diagnosis from ct imaging | |
Li et al. | PCB-DETR: A detection network of PCB surface defect with spatial attention offset module | |
JP2021050959A (ja) | 検査装置及びプログラム | |
Kim et al. | Automated end-of-line quality assurance with visual inspection and convolutional neural networks | |
Farrag et al. | Detection of stencil printing direction in printed circuit boards assembly using solder paste inspection data | |
CN112184717A (zh) | 用于质检的自动化分割方法 | |
US12228528B2 (en) | Food product monitoring solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20200116 |
|
PA0201 | Request for examination | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20201214 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20210611 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20210622 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20210622 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20240527 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20250528 Start annual number: 5 End annual number: 5 |