[go: up one dir, main page]

KR102267160B1 - Cathod active material and manufacturing method of the same - Google Patents

Cathod active material and manufacturing method of the same Download PDF

Info

Publication number
KR102267160B1
KR102267160B1 KR1020200169792A KR20200169792A KR102267160B1 KR 102267160 B1 KR102267160 B1 KR 102267160B1 KR 1020200169792 A KR1020200169792 A KR 1020200169792A KR 20200169792 A KR20200169792 A KR 20200169792A KR 102267160 B1 KR102267160 B1 KR 102267160B1
Authority
KR
South Korea
Prior art keywords
active material
positive electrode
electrode active
concentration gradient
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020200169792A
Other languages
Korean (ko)
Other versions
KR20200143658A (en
KR102267160B9 (en
Inventor
최문호
김직수
윤진경
전석용
정재용
이석환
Original Assignee
주식회사 에코프로비엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190145165A external-priority patent/KR20190132306A/en
Application filed by 주식회사 에코프로비엠 filed Critical 주식회사 에코프로비엠
Priority to KR1020200169792A priority Critical patent/KR102267160B1/en
Publication of KR20200143658A publication Critical patent/KR20200143658A/en
Application granted granted Critical
Publication of KR102267160B1 publication Critical patent/KR102267160B1/en
Publication of KR102267160B9 publication Critical patent/KR102267160B9/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 양극활물질 및 이의 제조 방법에 관한 것으로서, 더욱 상세하게는 Al 화합물과 잔류 리튬이 반응하여 표면에 LiAlO2 를 포함하는 양극활물질 및 이의 이의 제조 방법에 관한 것이다. The present invention relates to a positive electrode active material and a method for manufacturing the same, and more particularly, to a positive electrode active material comprising LiAlO 2 on the surface of an Al compound and residual lithium by reacting the same, and to a method for manufacturing the same.

Description

양극활물질 및 이의 제조 방법{CATHOD ACTIVE MATERIAL AND MANUFACTURING METHOD OF THE SAME}Cathode active material and manufacturing method thereof

본 발명은 양극활물질 및 이의 제조 방법에 관한 것으로서, 더욱 상세하게는 표면에 Al 화합물과 잔류 리튬이 반응하여 생성되는 LiAlO2 를 포함하는 양극활물질 및 이의 이의 제조 방법에 관한 것이다. The present invention relates to a positive electrode active material and a method for manufacturing the same, and more particularly, to a positive electrode active material including LiAlO 2 produced by reacting an Al compound and residual lithium on a surface thereof, and a method for manufacturing the same.

리튬 복합 산화물을 제조하는 방법은 일반적으로 전이 금속 전구체를 제조하고, 상기 전이 금속 전구체와 리튬 화합물을 혼합한 후, 상기 혼합물을 소성하는 단계를 포함한다. A method for preparing a lithium composite oxide generally includes preparing a transition metal precursor, mixing the transition metal precursor and a lithium compound, and then calcining the mixture.

이때, 상기 리튬 화합물로는 LiOH 및/또는 Li2CO3가 사용된다. 일반적으로 양극활물질의 Ni함량이 65% 이하일 경우에는 Li2CO3를 사용하며, Ni 함량이 65% 이상일 경우에는 저온 반응이기에 LiOH를 사용하는 것이 바람직하다. 그러나, Ni 함량이 65% 이상인 니켈 리치 시스템(Ni rich system)은 저온 반응이기에 양극활물질 표면에 LiOH, Li2CO3형태로 존재하는 잔류 리튬량이 높다는 문제점이 있다. 이러한 잔류 리튬 즉, 미반응 LiOH 및 Li2CO3는 전지 내에서 전해액 등과 반응하여 가스 발생 및 스웰링(swelling) 현상을 유발함으로써, 고온 안전성이 심각하게 저하되는 문제를 야기시킨다. 또한, 미반응 LiOH는 극판 제조 전 슬러리 믹싱시 점도가 높아 겔화를 야기시키기도 한다.In this case, LiOH and/or Li 2 CO 3 are used as the lithium compound. In general, when the Ni content of the cathode active material is 65% or less, Li 2 CO 3 is used, and when the Ni content is 65% or more, it is preferable to use LiOH because it is a low-temperature reaction. However, since the Ni rich system having a Ni content of 65% or more is a low-temperature reaction, there is a problem in that the amount of residual lithium present in the form of LiOH, Li 2 CO 3 on the surface of the positive electrode active material is high. Such residual lithium, ie, unreacted LiOH and Li 2 CO 3 , reacts with an electrolyte and the like in the battery to generate gas and cause swelling, thereby causing a problem in which high-temperature stability is seriously deteriorated. In addition, unreacted LiOH may cause gelation due to high viscosity when mixing the slurry before manufacturing the electrode plate.

이러한 미반응 Li을 제거하기 위하여 일반적으로 수세 공정을 도입하지만, 이 경우 수세시 양극 활물질 표면 손상이 발생하여 용량 및 율 특성이 저하되고 또한 고온 저장시 저항이 증가하는 또 다른 문제를 야기시킨다.In order to remove such unreacted Li, a water washing process is generally introduced, but in this case, the surface of the cathode active material is damaged during washing, thereby causing another problem in that capacity and rate characteristics are lowered and resistance is increased when stored at a high temperature.

본 발명은 미반응 Li을 제거하면서도 수명 특성, 고온 저장 특성 및 입자 강도를 향상시킬 수 있는 새로운 양극활물질 및 이의 제조 방법을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a novel positive electrode active material capable of improving lifespan characteristics, high temperature storage characteristics, and particle strength while removing unreacted Li, and a method for manufacturing the same.

본 발명은 상기와 같은 과제를 해결하기 위하여 표면에 LiAlO2 를 포함하는 양극활물질을 제공한다. The present invention provides a positive electrode active material including LiAlO 2 on the surface in order to solve the above problems.

본 발명에 의한 양극활물질은 XRD 에서 2θ 가 45 내지 46 에서 피크를 나타내는 LiAlO2 를 포함하는 것을 특징으로 한다. The positive electrode active material according to the present invention is characterized in that it contains LiAlO 2 , which exhibits a peak at 2θ of 45 to 46 in XRD.

본 발명에 의한 양극활물질은 아래 화학식 1로 표시되는 것을 특징으로 한다. The positive electrode active material according to the present invention is characterized in that it is represented by the following formula (1).

[화학식 1] Li1+aNibM1cM2dO2 [Formula 1] Li 1+a Ni b M1 c M2 d O 2

(상기 화학식 1에서 a = 0, 0.75 ≤ b ≤ 0.95 이고, b+c+d = 1 이고, (In Formula 1, a = 0, 0.75 ≤ b ≤ 0.95, b + c + d = 1,

M1 은 Co, Cr, Mo, Ti 및 Zr 으로 이루어진 그룹에서 선택되는 어느 하나 이상이고 M1 is any one or more selected from the group consisting of Co, Cr, Mo, Ti and Zr,

M2 는 Mn, Al, Cr, Mo, Ti 및 Zr 으로 이루어진 그룹에서 선택되는 어느 하나 이상임)M2 is any one or more selected from the group consisting of Mn, Al, Cr, Mo, Ti and Zr)

본 발명에 의한 양극활물질의 잔류 리튬이 0.6 wt% 이하인 것을 특징으로 한다. It is characterized in that the residual lithium of the positive electrode active material according to the present invention is 0.6 wt% or less.

본 발명에 의한 양극활물질은 입자강도가 150 MPa 이상인 것을 특징으로 한다. The positive electrode active material according to the present invention is characterized in that the particle strength is 150 MPa or more.

본 발명은 또한, The present invention also

양극활물질을 준비하는 제 1 단계; A first step of preparing a cathode active material;

Al을 포함하는 화합물과 상기 양극활물질을 혼합하여 열처리하는 제 2 단계를 포함하는 본 발명에 의한 양극활물질의 제조 방법을 제공한다.There is provided a method for producing a cathode active material according to the present invention, comprising a second step of heat-treating a compound containing Al and the cathode active material.

본 발명에 의한 양극활물질의 제조 방법에 있어서, 상기 Al을 포함하는 화합물은 Al(OH)3, Al2O3, Al(NO3)3,Al2(SO4)3, AlCl3, AlH3, AlF3 및 AlPO4 등으로 이루어진 그룹에서 선택되는 것을 특징으로 한다. In the method for manufacturing a cathode active material according to the present invention, the compound containing Al is Al(OH) 3 , Al 2 O 3 , Al(NO 3 ) 3 , Al 2 (SO 4 ) 3 , AlCl 3 , AlH 3 , AlF 3 and AlPO 4 It is characterized in that it is selected from the group consisting of.

본 발명에 의한 양극활물질의 제조 방법은 The method for producing a cathode active material according to the present invention is

상기 제 1 단계 후 제 2 단계 사이에 between the first step and the second step

수세 용액을 온도를 일정하게 유지하면서 준비하는 제 1-1 단계; Step 1-1 of preparing a water washing solution while maintaining a constant temperature;

상기 수세 용액에 양극활물질을 넣고 교반하는 제 1-2 단계; a first 1-2 step of adding a cathode active material to the washing solution and stirring;

수세된 양극활물질을 건조시키는 제 1-3 단계; 를 더 포함하는 것을 특징으로 한다. Steps 1-3 of drying the washed positive electrode active material; It is characterized in that it further comprises.

본 발명에 의한 양극활물질의 제조 방법에 있어서, 상기 수세 용액은 증류수 또는 알칼리 수용액인 것을 특징으로 한다. In the method for manufacturing a cathode active material according to the present invention, the washing solution is distilled water or an aqueous alkali solution.

본 발명에 의한 양극활물질의 제조 방법에 있어서, 상기 건조시키는 단계에서는, 건조 온도 80~200 ℃, 건조 시간 5~20 시간으로 진공 건조되는 것을 특징으로 한다. In the manufacturing method of the positive electrode active material according to the present invention, in the drying step, it is characterized in that vacuum drying is performed at a drying temperature of 80 to 200 ° C. and a drying time of 5 to 20 hours.

본 발명에 의한 양극활물질은 알루미늄으로 도핑하여 표면에 존재하는 잔류 리튬이 알루미늄과 반응하여 LiAlO2 로 존재함으로써, 잔류 리튬을 감소시킬 뿐만 아니라 입자 강도를 증가시키는 효과를 나타낸다. The cathode active material according to the present invention is doped with aluminum so that residual lithium present on the surface reacts with aluminum to form LiAlO 2 , thereby exhibiting the effect of not only reducing residual lithium but also increasing particle strength.

도 1은 본 발명의 일 실시예 및 비교예에서 제조된 활물질의 XRD 를 측정한 결과를 나타낸다.
도 2는 본 발명의 일 실시예 및 비교예에서 제조된 활물질의 입자 강도를 측정한 결과를 나타낸다.
도 3 및 도 4는 본 발명의 일 실시예 및 비교예에서 제조된 활물질의 잔류 리튬양을 측정한 결과를 나타낸다.
도 5는 본 발명의 일 실시예 및 비교예에서 제조된 활물질을 포함하는 전지의 수명 특성을 측정한 결과를 나타낸다.
1 shows the results of measuring XRD of the active materials prepared in Examples and Comparative Examples of the present invention.
Figure 2 shows the results of measuring the particle strength of the active material prepared in Example and Comparative Example of the present invention.
3 and 4 show the results of measuring the amount of residual lithium in the active materials prepared in Examples and Comparative Examples of the present invention.
5 shows the results of measuring the lifespan characteristics of the batteries including the active materials prepared in Examples and Comparative Examples of the present invention.

이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail by way of Examples. However, the present invention is not limited by the following examples.

<실시예> 농도 구배 양극활물질 코팅<Example> Concentration gradient cathode active material coating

회분식 반응기(batch reactor) (용량 70L, 회전모터의 출력 80W이상)에 증류수 20 리터와 킬레이팅제로서 암모니아를 840 g 를 넣은 뒤 반응기내의 온도를 50℃로 유지하면서 모터를 400 rpm 으로교반하였다.20 liters of distilled water and 840 g of ammonia as a chelating agent were put in a batch reactor (capacity 70L, output of rotation motor 80W or more), and the motor was stirred at 400 rpm while maintaining the temperature in the reactor at 50°C.

제 2 단계로서 황산니켈, 황산코발트, 및 황산망간 몰 비가9 : 1 : 0 비율로 혼합된 2.5M 농도의 제1 전구체 수용액을 2.2리터/시간으로, 28% 농도의 암모니아 수용액을 0.15리터/시간으로 반응기에 연속적으로 투입하였다. 또한, pH 조정을 위해 25% 농도의 수산화나트륨 수용액을 공급하여 pH가 11로 유지되도록 하였다. 임펠러 속도는 400rpm으로 조절하였다. 만들어진 제1 전구체 수용액과 암모니아, 수산화나트륨 용액을 반응기 내로 연속적으로 27 L 투입하였다.As a second step, 2.2 liters/hour of a 2.5M aqueous solution of the first precursor mixed with nickel sulfate, cobalt sulfate, and manganese sulfate in a molar ratio of 9: 1: 0, and a 28% aqueous ammonia solution of 0.15 liters/hour was continuously introduced into the reactor. In addition, a 25% concentration of sodium hydroxide aqueous solution was supplied to adjust the pH so that the pH was maintained at 11. The impeller speed was adjusted to 400 rpm. 27 L of the prepared first precursor aqueous solution, ammonia, and sodium hydroxide solution were continuously introduced into the reactor.

다음으로 제 3 단계로서 황산니켈, 황산코발트, 및 황산망간 몰 비가 65 : 15 : 20 비율로 혼합된 2.5M 농도의 농도구배층 형성용 수용액을 만들어 상기 회분식 반응기(batch reactor)외에 별도의 교반기에서 상기 제 2 단계에서 제조된 황산니켈, 황산코발트, 및 황산망간 몰 비가 9: 1 : 0 비율로 혼합된 2.5M 농도의 제1 전구체 수용액의 용량을 10L로 고정시킨 후 2.2 리터/시간의 속도로 투입하면서 교반하여 제 2 전구체 수용액을 만들고 동시에 상기 회분식 반응기(batch reactor)로 도입하였다. 상기 제 2 전구체 수용액 중의 황산니켈, 황산 코발트, 및 황산망간 몰 비가 쉘층의 농도인 4: 2 :4 가 될 때까지 상기 농도구배층 형성용 수용액을 혼합하면서 회분식 반응기(batch reactor)로 도입하였으며, 28% 농도의 암모니아 수용액은 0.08L/시간의 속도로 투입하고, 수산화나트륨 용액은 pH가 11이 되도록 유지하였다. 이 때 투입된 제2 전구체 수용액과 암모니아, 수산화나트륨 용액은 17L이다.Next, as a third step, nickel sulfate, cobalt sulfate, and manganese sulfate in a molar ratio of 65:15:20 were mixed in an aqueous solution for forming a concentration gradient layer at a concentration of 2.5M, and in a separate stirrer in addition to the batch reactor. After fixing the volume of the first precursor aqueous solution having a concentration of 2.5M to 10L, in which nickel sulfate, cobalt sulfate, and manganese sulfate prepared in the second step were mixed at a molar ratio of 9: 1: 0, at a rate of 2.2 liters/hour A second precursor aqueous solution was prepared by stirring while being added, and was introduced into the batch reactor at the same time. It was introduced into a batch reactor while mixing the aqueous solution for forming the concentration gradient layer until the mole ratio of nickel sulfate, cobalt sulfate, and manganese sulfate in the second precursor aqueous solution became 4: 2:4, which is the concentration of the shell layer, An aqueous ammonia solution having a concentration of 28% was added at a rate of 0.08 L/hour, and the sodium hydroxide solution was maintained so that the pH was 11. At this time, the second precursor aqueous solution, ammonia, and sodium hydroxide solution were 17L.

다음으로 제 4 단계로서, 황산니켈, 황산코발트, 및 황산망간 몰 비가4 :2 : 4 비율로 혼합된 제 3 전구체 수용액을 회분식 반응기(batch reactor)로 5 L 부피를 차지할 때까지 투입하였으며, 반응이 종결되고 난 후, 회분식 반응기(batch reactor)로부터 구형의 니켈망간코발트 복합수산화물 침전물을 얻었다.Next, as a fourth step, a third aqueous precursor solution in which nickel sulfate, cobalt sulfate, and manganese sulfate were mixed in a molar ratio of 4:2:4 was added in a batch reactor until it occupied a volume of 5 L, and the reaction was carried out. After this was completed, a spherical nickel-manganese-cobalt composite hydroxide precipitate was obtained from a batch reactor.

상기 침전된 복합금속수산화물을 여과하고, 물 세척한 후에 110℃ 온풍건조기에서 12시간 건조시켜 내부 코어층은 (Ni0.9Co0.1)(OH)2로 외부 쉘층은 (Ni0.9Co0.1)(OH)2에서 (Ni0.4Co0.2Mn0.4)(OH)2 까지 연속적인 농도 구배를 갖는 금속 복합 산화물 형태의 전구체 분말을 얻었다. The precipitated composite metal hydroxide was filtered, washed with water, and dried in a hot air dryer at 110° C. for 12 hours. The inner core layer was (Ni 0.9 Co 0.1 )(OH) 2 and the outer shell layer was (Ni 0.9 Co 0.1 )(OH) A precursor powder in the form of a metal complex oxide having a continuous concentration gradient from 2 to (Ni 0.4 Co 0.2 Mn 0.4 )(OH) 2 was obtained.

상기 금속 복합 수산화물과 수산화리튬(LiOH)을 1 : 1.02 몰 비로 혼합한 후에 2℃/min의 승온 속도로 가열 한 후 790℃에서 20시간 소성시켜 내부 코어층은 Li(Ni0.9Co0.1)O2로 외부 쉘층은 Li(Ni0.9Co0.1)O2 에서 Li(Ni0.4Co0.2Mn0.4)O2 까지 연속적인 농도 구배를 갖는 양극 활물질 분말을 얻었다.The metal composite hydroxide and lithium hydroxide (LiOH) were mixed in a molar ratio of 1:1.02, heated at a temperature increase rate of 2 °C/min, and calcined at 790 °C for 20 hours to form an inner core layer of Li(Ni 0.9 Co 0.1 )O 2 As the outer shell layer of the furnace, a cathode active material powder having a continuous concentration gradient from Li(Ni 0.9 Co 0.1 )O 2 to Li(Ni 0.4 Co 0.2 Mn 0.4 )O 2 was obtained.

양극활물질 입자를 Al 화합물과 건식 또는 습식 코팅 후, 720℃ 에서 열처리를 실시하였다.After dry or wet coating the cathode active material particles with an Al compound, heat treatment was performed at 720°C.

<실시예> NCA 입자 합성<Example> Synthesis of NCA particles

NCA 계열의 양극활물질을 제조하기 위하여 먼저 공침반응에 의하여 NiCo(OH)2 전구체를 제조하였다. 상기 금속 복합 수산화물과 수산화리튬을 1 : 1.02 몰비로 혼합한 후에 2℃/min의 승온 속도로 가열 한 후 750 ℃에서 20시간 소성시켜 양극 활물질 분말을 얻었다.In order to prepare an NCA-based cathode active material, a NiCo(OH) 2 precursor was first prepared by a co-precipitation reaction. After mixing the metal composite hydroxide and lithium hydroxide in a molar ratio of 1:1.02, the mixture was heated at a temperature increase rate of 2°C/min and calcined at 750°C for 20 hours to obtain a cathode active material powder.

양극활물질 입자를 Al화합물과 건식 또는 습식 코팅 후, 720 ℃ 에서 열처리를 실시하였다.After dry or wet coating of the cathode active material particles with an Al compound, heat treatment was performed at 720 °C.

Figure 112020132454588-pat00001
Figure 112020132454588-pat00001

<실험예> XRD 특성 측정<Experimental Example> Measurement of XRD characteristics

상기 실시예 2 및 비교예 6 에서 제조된 활물질의 XRD 를 측정하고 그 결과를 도 1에 나타내었다. XRD of the active materials prepared in Example 2 and Comparative Example 6 were measured, and the results are shown in FIG. 1 .

도 1에서 본 발명의 실시예 2에서 제조된 입자의 경우 비교예와는 달리 45° 내지 46 °에서 피크가 관찰되는 것을 알 수 있다. In FIG. 1 , it can be seen that, in the case of the particles prepared in Example 2 of the present invention, a peak is observed at 45° to 46°, unlike Comparative Example.

<실험예> 입자 강도 측정<Experimental Example> Particle strength measurement

상기 실시예 10 및 비교예 6 에서 제조된 활물질의 입자 강도를 측정하고 그 결과를 도 2에 나타내었다. The particle strength of the active materials prepared in Example 10 and Comparative Example 6 was measured, and the results are shown in FIG. 2 .

도 2에서 본 발명의 실시예 2에서 제조된 입자의 경우 비교예의 입자보다 입자 강도가 20% 정도 개선되는 것을 알 수 있다. It can be seen from FIG. 2 that in the case of the particles prepared in Example 2 of the present invention, the particle strength is improved by about 20% compared to the particles of Comparative Example.

<실험예> 미반응 리튬 측정<Experimental Example> Measurement of unreacted lithium

미반응 리튬의 측정은 pH 적정에 의해 pH 4 가 될 때까지 사용된 0.1M HCl의 양으로 측정한다. 먼저, 양극 활물질 5 g을 DIW 100 ml에 넣고 15 분간 교반 한 뒤 필터링하고, 필터링 된 용액 50 ml를 취한 후 여기에 0.1 M HCl을 가하여 pH 변화에 따른 HCl 소모량을 측정하여 Q1, Q2를 결정하고, 아래 계산식에 따라 미반응 LiOH 및 Li2CO3 을 계산하였다.Measurement of unreacted lithium is measured by the amount of 0.1M HCl used until pH 4 is obtained by pH titration. First, 5 g of the positive electrode active material is put into 100 ml of DIW, stirred for 15 minutes, filtered, and after taking 50 ml of the filtered solution, 0.1 M HCl is added thereto to measure the HCl consumption according to the pH change to determine Q1 and Q2, , unreacted LiOH and Li 2 CO 3 were calculated according to the formula below.

M1 = 23.94 (LiOH Molecular weight)M1 = 23.94 (LiOH Molecular weight)

M2 = 73.89 (Li2CO3 Molecular weight)M2 = 73.89 (Li2CO3 Molecular weight)

SPL Size = (Sample weight × Solution Weight) / Water WeightSPL Size = (Sample weight × Solution Weight) / Water Weight

LiOH(wt %) = [(Q1-Q2)×C×M1×100]/(SPL Size ×1000)LiOH(wt %) = [(Q1-Q2)×C×M1×100]/(SPL Size×1000)

Li2CO3 (wt%)=[2×Q2×C×M2/2×100]/(SPL Size×1000)Li 2 CO 3 (wt%)=[2×Q2×C×M2/2×100]/(SPL Size×1000)

이와 같은 방법을 적용하여 상기 실시예 및 비교예에서 제조된 NCA 계열 리튬 복합 산화물에 있어서 미반응 LiOH 및Li2CO3 의 농도를 측정한 결과는 다음 표 2 및 도 3 과 같다. The results of measuring the concentrations of unreacted LiOH and Li 2 CO 3 in the NCA-based lithium composite oxides prepared in Examples and Comparative Examples by applying this method are shown in Tables 2 and 3 below.

Figure 112020132454588-pat00002
Figure 112020132454588-pat00002

도 3에서 비교예 4는 세척 혹은 표면처리를 진행하지 않아 잔류 리튬이 높게 측정되었으며, 알루미늄 화합물을 코팅 후 열처리를 실시한 실시예 7번은 비교예 4번에 비하여 잔류 리튬이 감소하였다. In FIG. 3 , in Comparative Example 4, no washing or surface treatment was performed, so the residual lithium was measured to be high, and in Example 7, in which heat treatment was performed after coating an aluminum compound, the residual lithium was reduced compared to Comparative Example 4.

또한, 도 3 에서 농도구배형 NCM 양극활물질로 알루미늄 화합물을 코팅 후 열처리를 실시한 실시예 3번은 후처리를 실시하지 않은 비교예 2번에 비하여 잔류 리튬이 개선되었다In addition, in Example 3, in which an aluminum compound was coated with a concentration gradient type NCM positive active material in FIG. 3 and then heat-treated, compared to Comparative Example 2 in which no post-treatment was performed, residual lithium was improved.

<실험예> 충방전 특성 평가<Experimental example> Evaluation of charging and discharging characteristics

상기 실시예 및 비교예에서 제조된 양극활물질을 양극으로 사용하고, 리튬 금속을 음극으로 사용하여 각각 의 코인 셀을 제조하고 C/10 충전 및 C/10 방전 속도(1 C = 150 mA/g)로 3 ~ 4.3 V 사이에서 충방전 실험을 수행한 결과를 도 5 및 상기 표 2 및 도 4 에 나타내었다.Each coin cell was prepared using the positive electrode active material prepared in Examples and Comparative Examples as the positive electrode and lithium metal as the negative electrode, and C/10 charging and C/10 discharging rates (1 C = 150 mA/g) The results of the charging/discharging experiment between 3 and 4.3 V are shown in FIG. 5 and Tables 2 and 4 above.

도 4에서 수세 후 Al 코팅을 실시한 실시예의 경우 수명 특성이 우수한 것을 알 수 있다. 도 4에서 비교예 3과 비교예 5는 각각 수세를 실시한 농도구배형 NCM과 NCA 양극활물질이다. 수세 후 알루미튬 코팅을 실시한 농도구배형 NCM인 실시예 5와 NCA인 실시예 8은 수명 특성이 향상되었다.4 , it can be seen that in the case of the embodiment in which Al coating was performed after washing with water, the lifespan characteristics were excellent. In FIG. 4 , Comparative Example 3 and Comparative Example 5 are concentration gradient type NCM and NCA positive electrode active materials that have been washed with water, respectively. After washing with water, Example 5, which is a concentration gradient type NCM, and Example 8, which is an NCA, which were coated with aluminum, had improved lifespan characteristics.

<실험예>고온저장 전, 후 임피던스 측정 결과<Experimental example> Impedance measurement results before and after high temperature storage

연속적인 농도구배를 갖는 NCM계 양극활물질인실시예 3 의고온저장 전, 후 임피던스를 측정하고, 그 결과를 표 2 및 도 5에 나타내었다. The impedance before and after high-temperature storage of Example 3, which is an NCM-based cathode active material having a continuous concentration gradient, was measured, and the results are shown in Table 2 and FIG. 5 .

도 5에서 세척 및 표면 처리를 실시하지 않은 비교예 2에 비해 Al화합물 코팅 후 열처리를 실시한 실시예3의 저장 전, 후 임피던스가 감소한 것을 확인할 수 있다.In FIG. 5 , it can be seen that the impedance before and after storage of Example 3 in which the heat treatment was performed after the Al compound coating was reduced compared to Comparative Example 2 in which washing and surface treatment were not performed.

Claims (6)

코어층, 전이금속 중 어느 하나 이상이 연속적인 농도구배를 가지는 농도구배부, 및 쉘층을 가지고,
상기 쉘층 표면에 LiAlO2 를 더 포함하고,
잔류리튬이 양극활물질 전체 함량 대비 양극활물질 표면 상에 LiOH 및 Li2CO3의 형태로 존재하고 있는 잔류 리튬의 함량이 0.0141 wt% 이하이고,
입자 강도는 150MPa 이상이며,
하기 화학식 1로 표시되는,
농도구배형 양극활물질:
[화학식 1] Li1+aNibM1cM2dO2
(상기 화학식 1에서 a = 0, 0.75≤ b ≤ 0.95 이고, b+c+d= 1 이고,
M1 은 Co, Cr, Mo, Ti 및 Zr 으로 이루어진 그룹에서 선택되는 어느 하나 이상이고
M2 는 Mn, Al, Cr, Mo, Ti 및 Zr 으로 이루어진 그룹에서 선택되는 어느 하나 이상임).
A core layer, at least one of a transition metal has a concentration gradient having a continuous concentration gradient, and a shell layer,
Further comprising LiAlO 2 on the surface of the shell layer,
The content of residual lithium present in the form of LiOH and Li 2 CO 3 on the surface of the cathode active material relative to the total content of the cathode active material is 0.0141 wt% or less,
The particle strength is more than 150 MPa,
Represented by the following formula (1),
Concentration gradient type positive electrode active material:
[Formula 1] Li 1+a Ni b M1 c M2 d O 2
(In Formula 1, a = 0, 0.75≤b≤0.95, b+c+d=1,
M1 is any one or more selected from the group consisting of Co, Cr, Mo, Ti and Zr,
M2 is any one or more selected from the group consisting of Mn, Al, Cr, Mo, Ti and Zr).
제 1 항에 있어서,
XRD 에서 2θ 가 45° 내지 46° 에서 피크를 나타내는 LiAlO2 를 포함하는,
농도구배형 양극활물질.
The method of claim 1,
including LiAlO 2 in which 2θ in XRD peaks at 45° to 46°,
Concentration gradient type positive electrode active material.
제 1 항에 의한 농도구배형 양극활물질을 제조하는 방법에 있어서,
금속 복합 수산화물 형태의 전구체와 리튬 화합물을 혼합 및 소성하여 양극활물질을 준비하는 단계;
수세 용액에 상기 준비된 양극활물질을 넣고 교반하여 수세하는 단계;
상기 수세된 양극활물질을 건조시키는 단계; 및
Al을 포함하는 화합물과 상기 건조된 양극활물질을 혼합하여 교반하는 단계;를 포함하는,
농도구배형 양극활물질 제조방법.
In the method for manufacturing the concentration gradient type positive electrode active material according to claim 1,
preparing a cathode active material by mixing and firing a precursor in the form of a metal complex hydroxide and a lithium compound;
adding the prepared positive electrode active material to a washing solution and washing with water;
drying the washed positive electrode active material; and
Including; mixing and stirring the compound containing Al and the dried positive electrode active material;
A method for manufacturing a concentration gradient type positive electrode active material.
제 3 항에 있어서,
상기 Al을 포함하는 화합물은 Al(OH)3, Al2O3, Al(NO3)3,Al2(SO4)3, AlCl3, AlH3, AlF3 및 AlPO4등으로 이루어진 그룹에서 선택되는,
농도구배형 양극활물질 제조방법.
4. The method of claim 3,
The compound containing Al is selected from the group consisting of Al(OH) 3 , Al 2 O 3 , Al(NO 3 ) 3 , Al 2 (SO 4 ) 3 , AlCl 3 , AlH 3 , AlF 3 and AlPO 4 , etc. felled,
A method for manufacturing a concentration gradient type positive electrode active material.
제 3 항에 있어서,
상기 수세 용액은 증류수 또는 알칼리 수용액인 것인,
농도구배형 양극활물질 제조방법.
4. The method of claim 3,
The washing solution is distilled water or an aqueous alkali solution,
A method for manufacturing a concentration gradient type positive electrode active material.
제 3 항에 있어서,
상기 수세된 양극활물질을 건조시키는 단계는, 건조 온도 80~200 ℃, 건조 시간 5~20 시간으로 진공 건조시키는 것인,
농도구배형 양극활물질 제조방법.


4. The method of claim 3,
The step of drying the washed positive electrode active material is vacuum drying at a drying temperature of 80 ~ 200 ℃, drying time of 5 ~ 20 hours,
A method for manufacturing a concentration gradient type positive electrode active material.


KR1020200169792A 2019-11-13 2020-12-07 Cathod active material and manufacturing method of the same Active KR102267160B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200169792A KR102267160B1 (en) 2019-11-13 2020-12-07 Cathod active material and manufacturing method of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190145165A KR20190132306A (en) 2019-11-13 2019-11-13 Cathod active material and manufacturing method of the same
KR1020200169792A KR102267160B1 (en) 2019-11-13 2020-12-07 Cathod active material and manufacturing method of the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020190145165A Division KR20190132306A (en) 2019-11-13 2019-11-13 Cathod active material and manufacturing method of the same

Publications (3)

Publication Number Publication Date
KR20200143658A KR20200143658A (en) 2020-12-24
KR102267160B1 true KR102267160B1 (en) 2021-06-21
KR102267160B9 KR102267160B9 (en) 2021-11-12

Family

ID=74087466

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200169792A Active KR102267160B1 (en) 2019-11-13 2020-12-07 Cathod active material and manufacturing method of the same

Country Status (1)

Country Link
KR (1) KR102267160B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117043116A (en) * 2021-03-25 2023-11-10 株式会社Lg化学 Method for preparing positive electrode active material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832389A (en) * 2012-09-25 2012-12-19 湖南长远锂科有限公司 High-nickel positive active material of surface-modified lithium ion battery and preparation method of positive active material
JP2013065468A (en) * 2011-09-16 2013-04-11 Panasonic Corp Lithium ion secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147537A1 (en) * 2012-03-31 2013-10-03 한양대학교 산학협력단 Method for preparing cathode active material precursor for lithium secondary battery, cathode active material precursor for lithium secondary battery prepared thereby, and cathode active material for lithium secondary battery containing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065468A (en) * 2011-09-16 2013-04-11 Panasonic Corp Lithium ion secondary battery
CN102832389A (en) * 2012-09-25 2012-12-19 湖南长远锂科有限公司 High-nickel positive active material of surface-modified lithium ion battery and preparation method of positive active material

Also Published As

Publication number Publication date
KR20200143658A (en) 2020-12-24
KR102267160B9 (en) 2021-11-12

Similar Documents

Publication Publication Date Title
JP7433162B2 (en) Positive electrode active material and its manufacturing method
KR101970207B1 (en) Manufacturing method of cobalt coated precusor for cathod active material, cobalt coated precusor made by the same, and cathod active material made using the same
KR101567039B1 (en) Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same
US20090121179A1 (en) Positive Electrode Material for Secondary Battery and the Preparation Method Thereof
CN114520319B (en) Nickel-based positive electrode material of lithium secondary battery and preparation method thereof
CN115312727A (en) A kind of double-coated positive electrode material and preparation method thereof
CN113845152A (en) Lithium nickel manganate cathode material, preparation method thereof and lithium ion battery
CN111370666A (en) Positive electrode material, preparation method and application thereof
KR20190132306A (en) Cathod active material and manufacturing method of the same
CN112002899A (en) Titanium-gallium-lithium phosphate modified ternary cathode composite material and preparation method thereof
CN108987744A (en) The preparation method of thermal stability and highly-safe nickelic system&#39;s positive electrode
CN108417796A (en) A kind of nickel-cobalt-lithium-aluminate cathode material with low surface alkalinity and preparation method thereof
KR20180015045A (en) Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same
WO2025112251A1 (en) Modified lithium-rich manganese-based positive electrode material, preparation method therefor, and use thereof
CN105895902A (en) Synthesis of novel negative and positive ions Cl and Al-codoped modified rich-lithium layered positive electrode material
KR102101392B1 (en) Method for manufacturing Ni-Co-Mn composite precursor doped with heterogeneous nano-particle
KR20180015046A (en) Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same
KR102267160B1 (en) Cathod active material and manufacturing method of the same
CN114927664A (en) Method for reducing residual alkali of positive electrode material and improving electrical property and application thereof
CN114204003A (en) A kind of three-layer core-shell structure power nickel-rich cathode material and preparation method thereof
KR102027460B1 (en) Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same
CN117059795A (en) High-entropy alloy modified high-nickel cobalt-free positive electrode material and preparation method thereof
WO2024197619A1 (en) Ternary positive electrode material and preparation method therefor and use thereof
CN111039331B (en) Long-life high-tap-density high-nickel ternary cathode material and preparation method thereof
CN109860582B (en) Positive electrode material of lithium ion battery and preparation method thereof

Legal Events

Date Code Title Description
A107 Divisional application of patent
PA0107 Divisional application

Comment text: Divisional Application of Patent

Patent event date: 20201207

Patent event code: PA01071R01D

Filing date: 20191113

Application number text: 1020190145165

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20210105

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20210610

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20210615

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20210615

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
G170 Re-publication after modification of scope of protection [patent]
PG1701 Publication of correction

Patent event code: PG17011E01I

Patent event date: 20211109

Comment text: Request for Publication of Correction

Publication date: 20211112

PR1001 Payment of annual fee

Payment date: 20240516

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20250512

Start annual number: 5

End annual number: 5