[go: up one dir, main page]

KR102220867B1 - Solid oxide fuel cell having durable electrolyte under negative current conditions - Google Patents

Solid oxide fuel cell having durable electrolyte under negative current conditions Download PDF

Info

Publication number
KR102220867B1
KR102220867B1 KR1020190049292A KR20190049292A KR102220867B1 KR 102220867 B1 KR102220867 B1 KR 102220867B1 KR 1020190049292 A KR1020190049292 A KR 1020190049292A KR 20190049292 A KR20190049292 A KR 20190049292A KR 102220867 B1 KR102220867 B1 KR 102220867B1
Authority
KR
South Korea
Prior art keywords
layer
electrolyte
solid oxide
fuel cell
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020190049292A
Other languages
Korean (ko)
Other versions
KR20200125260A (en
Inventor
임형태
손민지
김민우
Original Assignee
창원대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 창원대학교 산학협력단 filed Critical 창원대학교 산학협력단
Priority to KR1020190049292A priority Critical patent/KR102220867B1/en
Publication of KR20200125260A publication Critical patent/KR20200125260A/en
Application granted granted Critical
Publication of KR102220867B1 publication Critical patent/KR102220867B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0236Glass; Ceramics; Cermets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

본 발명은 양극(cathode)층, 전해질(electrolyte)층 및 음극(anode)층의 순서로 적층된 고체산화물 연료전지에 있어서, 상기 전해질층은, 양극층에 접하는 제1 전해질층 및 음극층에 접하는 제2 전해질층을 포함하는 이중층 구조(Bi-layer structure)로 이루어지며, 상기 양극층에 접하는 제1 전해질층은, 프라세오디움(Pr)으로 도핑된 세리아(praseodymium cerium oxide, PCO) 고체산화물 및 YSZ(Yttria-stabilized zirconia)을 포함하고, 상기 음극층에 접하는 제2 전해질층은 YSZ로 이루어진 것을 특징으로 하는 역전류에 의한 열화 현상이 방지된 고체산화물 연료전지에 관한 것으로서,
본 발명에 따른 이중층(Bi-layer) 구조의 전해질층을 적용한 고체산화물 연료전지는, 공기극/전해질 계면쪽 전해질층인 제1 전해질층만 전자 전도성(P-type)을 가지고 있어 역전류 상황에서 공기극/전해질 박리를 효과적으로 방지할 수 있고, 전해질 내부 중 한 층에서만 전자 전도성을 지니므로 누설 전류 또한 방지 할 수 있다.
The present invention provides a solid oxide fuel cell stacked in the order of a cathode layer, an electrolyte layer, and a cathode layer, wherein the electrolyte layer comprises a first electrolyte layer in contact with the anode layer and a first electrolyte layer in contact with the cathode layer. Consisting of a bi-layer structure including a second electrolyte layer, the first electrolyte layer in contact with the anode layer is a praseodymium cerium oxide (PCO) solid oxide doped with praseodymium (Pr) and A solid oxide fuel cell comprising YSZ (Yttria-stabilized zirconia), wherein the second electrolyte layer in contact with the cathode layer is made of YSZ,
In the solid oxide fuel cell to which a bi-layered electrolyte layer according to the present invention is applied, only the first electrolyte layer, which is the electrolyte layer on the cathode/electrolyte interface, has electron conductivity (P-type), so that the cathode is in a reverse current situation. /Electrolyte peeling can be effectively prevented, and leakage current can also be prevented because only one layer of the electrolyte has electronic conductivity.

Description

역전류에 의한 열화 현상이 방지된 고체산화물 연료전지{SOLID OXIDE FUEL CELL HAVING DURABLE ELECTROLYTE UNDER NEGATIVE CURRENT CONDITIONS}Solid oxide fuel cell preventing deterioration due to reverse current {SOLID OXIDE FUEL CELL HAVING DURABLE ELECTROLYTE UNDER NEGATIVE CURRENT CONDITIONS}

본 발명은 신규한 적층 구조를 가지는 고체산화물 연료전지에 대한 것으로서, 보다 상세하게는, 역전류 상황(negative current condition)에서 SOFC 셀 스택의 열화 현상을 방지할 수 있는 구조를 가지는 전해질층을 포함하는 고체산화물 연료전지에 대한 것이다.The present invention relates to a solid oxide fuel cell having a novel stacked structure, and more particularly, comprising an electrolyte layer having a structure capable of preventing deterioration of an SOFC cell stack in a negative current condition. It is about solid oxide fuel cells.

고체산화물 연료전지(Solid Oxide Fuel Cell, SOFC)는 수소와 산소의 화학반응에 의해 화학에너지를 전기에너지로 변환시키는 전지이다. 고체산화물 연료전지는 단위 셀 하나 당 최대 약 1V의 기전력을 내는 셀을 여러 장 스택(stack)하여 원하는 출력을 내어 사용한다. 이러한 스택 운전을 하다보면 시스템 오작동이나 지진과 같은 천재지변 등으로 인해 수소 연료 공급이 중단 되는 상황이 발생 할 수 있다. 연료 공급이 중단 되면 부하를 내리고 전기 생산을 중단하게 되는데, 고온에서 수소 공급이 중단되면 니켈 연료극의 재산화가 이루어 질 수 있다. 니켈이 재산화 되면 연료극의 부피팽창으로 인해 미세구조에 물리적 손상을 일으켜 삼상계면(Triple Phase Boundary, TPB)의 감소를 초래해 영구적인 성능 감소를 가져온다. 따라서, 연료공급 중단 시 전지의 내구성 확보를 위해서는 연료극을 보호할 수 있는 기술이 필요하다. A solid oxide fuel cell (SOFC) is a battery that converts chemical energy into electrical energy through a chemical reaction between hydrogen and oxygen. The solid oxide fuel cell stacks several cells that generate an electromotive force of up to about 1V per unit cell to produce a desired output. During such a stack operation, the supply of hydrogen fuel may be interrupted due to a system malfunction or natural disaster such as an earthquake. When the fuel supply is interrupted, the load is lowered and electricity production is stopped. If the supply of hydrogen is stopped at high temperatures, the nickel anode can be re-oxidized. When nickel is re-oxidized, it causes physical damage to the microstructure due to volume expansion of the anode, resulting in a decrease in the Triple Phase Boundary (TPB), resulting in a permanent decrease in performance. Therefore, in order to secure the durability of the battery when fuel supply is stopped, a technology capable of protecting the anode is required.

Ni-NiO가 평형을 이루는 포텐셜을 살펴보면(도 1) 작동온도인 700~800℃에서 최소 0.7V 이상의 개방회로 전압을 유지해야 함을 알 수 있다. 하지만, 연료 공급이 중단된 상황에서는 셀의 개방회로 전압이 0.7V 이하로 감소할 수 있기 때문에 니켈의 재산화가 이루어질 수 있으며 결국엔 스택 고장(failure)으로 이어질 수 있다. 수소 공급이 중단된 상황에서도 셀 전압을 높게 유지할 수 있는 가장 효과적인 방법은 전류를 역으로 공급하여 평형 포텐셜 이상을 유지하는 것이다. 고체산화물전지에 전류를 공급하면 수소 공급 중단 시 니켈 연료극 쪽으로 침투한 산소분자들을 환원시켜 (이온화하여) 산소이온전도성 전해질로 통과시키고, 반대편 공기극 에서 산화반응으로 다시 산소분자로 배출시킬 수 있다(도 2 및 도 3). 고체산화물 연료전지의 전해질로 가장 널리 사용되는 물질인 8mol% 이트리아(yttria)가 도핑된 지르코니아(YSZ) 전해질은 이와 같은 역전류 작동조건에서 매우 취약하다. 역전류 작동 시, 고체 전해질 내부에 비정상적으로 높은 산소 화학 포텐셜이 형성되어 전극과 전해질 간의 박리를 일으킬 수 있기 때문이다(도 4). 즉, 순수 YSZ 로만 이루어진 전해질 셀의 경우에는 역전류 공급은 니켈 재산화를 방지할 수 있지만 공기극/전해질 간의 박리현상을 일으킬 수 있다.Looking at the potential at which Ni-NiO is in equilibrium (FIG. 1), it can be seen that an open circuit voltage of at least 0.7V or more must be maintained at an operating temperature of 700 to 800°C. However, when the fuel supply is interrupted, since the open circuit voltage of the cell can be reduced to 0.7V or less, reoxidation of nickel may occur, which may eventually lead to stack failure. The most effective way to keep the cell voltage high even when the hydrogen supply is interrupted is to reverse the current to maintain above the equilibrium potential. When current is supplied to the solid oxide battery, oxygen molecules that have penetrated toward the nickel anode are reduced (ionized) when the supply of hydrogen is stopped and passed through the oxygen ion conductive electrolyte, and the oxygen molecules can be discharged back to the oxygen molecule through oxidation at the opposite cathode (Fig. 2 and 3). A zirconia (YSZ) electrolyte doped with 8 mol% yttria, which is the most widely used material as an electrolyte for a solid oxide fuel cell, is very vulnerable under such reverse current operating conditions. This is because during reverse current operation, an abnormally high oxygen chemical potential is formed inside the solid electrolyte, which may cause separation between the electrode and the electrolyte (FIG. 4). That is, in the case of an electrolyte cell made of pure YSZ only, reverse current supply may prevent nickel reoxidation, but may cause a peeling phenomenon between the cathode/electrolyte.

한국 공개특허 제10-2015-0128715호 (공개일: 2015. 11. 18)Korean Patent Application Publication No. 10-2015-0128715 (published date: 2015. 11. 18) 국제공개특허 WO 2010-078356 (공개일: 2010. 07. 08)International Publication Patent WO 2010-078356 (Publication date: 2010. 07. 08)

본 발명이 해결하고자 하는 기술적 과제는, 종래기술의 문제점인 역전류 상황에서의 공기극/전해질 박리를 효과적으로 방지할 수 있고, 전해질 내부 중 한 층에서만 전자 전도성을 지니므로 누설 전류 또한 방지할 수 있는 고체산화물 연료전지룰 제공하는 것이다.The technical problem to be solved by the present invention is that it is possible to effectively prevent the separation of the cathode/electrolyte in a reverse current situation, which is a problem of the prior art, and has an electronic conductivity in only one layer inside the electrolyte, so that a solid that can also prevent leakage current. It is to provide oxide fuel cells.

기존 순수 YSZ(Yttria-stabilized zirconia) 전해질을 사용한 셀을 SOEC로서 구동시키면 시간 당 전압의 감소뿐 아니라 작동 후, 개방회로전압 및 출력밀도의 감소 뿐 아니라 공기극과 전해질 계면에 박리가 일어날 수 있다. When a cell using an existing pure Yttria-stabilized zirconia (YSZ) electrolyte is driven as an SOEC, not only a decrease in voltage per hour, but also a decrease in open circuit voltage and power density after operation, as well as a decrease in the open circuit voltage and power density, may occur at the interface between the cathode and the electrolyte.

이와 같은 공기극과 전해질 계면간의 박리현상의 원인은 역전류에 의한 공기극/전해질 계면에서의 높은 산소분압에 의한 것으로 박리현상을 방지하기 위해서는 공기극/전해질 계면에 가까운 전해질 영역의 산소분압을 감소시키는 것이 중요하다. The cause of the separation between the cathode and the electrolyte interface is due to the high oxygen partial pressure at the cathode/electrolyte interface due to reverse current. To prevent the separation, it is important to reduce the oxygen partial pressure in the electrolyte region close to the cathode/electrolyte interface. Do.

전자 전도성을 보이는 PCO 와 같은 물질이 첨가된 YSZ를 전해질로 사용할 경우 PCO dopant 에 의한 혼합 전도성이 발생하므로 (전자홀 전도 + 이온전도) 역전류 작동 시에도 산소분압을 안정하게 유지함으로써 공기극과 전해질간의 박리를 방지할 수 있다. When YSZ containing a material such as PCO that exhibits electron conductivity is used as an electrolyte, mixed conductivity by PCO dopant occurs (electron hole conduction + ion conduction), so even when reverse current is operated, the oxygen partial pressure is stably maintained between the cathode and the electrolyte. It can prevent peeling.

다만, YSZ 전해질 모든 영역에 PCO 를 첨가할 경우, 전해질 전 영역이 혼합전도체가 되므로 누설 전류가 발생하여 성능을 떨어뜨릴 수 있으므로 반드시 국부적으로 혼합 전도성을 부여하는 것이 중요하다. However, when PCO is added to all regions of the YSZ electrolyte, it is important to provide mixed conductivity locally because the entire region of the electrolyte becomes a mixed conductor, and leakage current may be generated to degrade performance.

이에, 본 발명에서는 산소분압이 높게 형성되는 공기극/전해질 계면 쪽 전해질 영역에만 전자전도성을 부여하고, 다른 한층은 순수 YSZ 층으로 누설 전류를 방지함으로써 기본성능과 역전류에 대한 안정성을 모두 달성할 수 있는 고체산화물 연료전지로서, 역전류 운전 시 공기극에 인접한 전해질 영역에 형성되는 산소 분압을 낮추고자 순수 YSZ 층을 연료극에 배치하고 P-type 혼합전도성을 지니는 물질을 첨가한 YSZ 층을 공기극에 배치한 이중층 전해질 (Bi-layer) 구조의 고체산화물 연료전지를 제공한다(도 5).Accordingly, in the present invention, electron conductivity is provided only in the electrolyte region on the cathode/electrolyte interface where the oxygen partial pressure is formed high, and the other layer is a pure YSZ layer to prevent leakage current, thereby achieving both basic performance and stability against reverse current. As a solid oxide fuel cell, a pure YSZ layer is placed on the anode to reduce the oxygen partial pressure formed in the electrolyte region adjacent to the cathode during reverse current operation, and a YSZ layer added with a material having P-type mixed conductivity is placed on the cathode. A solid oxide fuel cell having a bi-layer structure is provided (FIG. 5).

즉, 전술한 기술적 과제를 달성하기 위해, 본 발명은 높은 산소 분압으로 박리가 일어나는 공기극(양극)과 가까운 전해질 영역의 전자 전도성을 부여하기 위해, 양극(cathode)층, 전해질(electrolyte)층 및 음극(anode)층의 순서로 적층된 고체산화물 연료전지에 있어서, 상기 전해질층은, 양극층에 접하는 제1 전해질층 및 음극층에 접하는 제2 전해질층의 이중층 구조(Bi-layer structure)로 이루어지며, 상기 양극층에 접하는 제1 전해질층은, 프라세오디움(Pr)으로 도핑된 세리아(praseodymium cerium oxide, PCO) 고체산화물 및 YSZ(Yttria-stabilized zirconia)을 포함하고, 상기 음극층에 접하는 제2 전해질층은 YSZ로 이루어진 것을 특징으로 하는 역전류에 의한 열화 현상이 방지된 고체산화물 연료전지를 제공한다.That is, in order to achieve the above-described technical problem, the present invention provides the electron conductivity of the electrolyte region close to the air electrode (anode) where peeling occurs due to high oxygen partial pressure, the cathode layer, the electrolyte layer, and the cathode In the solid oxide fuel cell stacked in the order of (anode) layers, the electrolyte layer has a bi-layer structure of a first electrolyte layer in contact with an anode layer and a second electrolyte layer in contact with a cathode layer, , The first electrolyte layer in contact with the anode layer includes praseodymium cerium oxide (PCO) solid oxide and YSZ (Yttria-stabilized zirconia) doped with praseodymium (Pr), and a second electrolyte layer in contact with the anode layer The electrolyte layer is made of YSZ, and provides a solid oxide fuel cell in which deterioration due to reverse current is prevented.

이때, 상기 음극층은, 음극 지지층(Anode Support, AS) 및 상기 음극 지지층 상에 형성되는 음극 기능층(Anode Functional Layer, AFL)을 포함해 이루어질 수 있다.In this case, the cathode layer may include an anode support (AS) and an anode functional layer (AFL) formed on the anode support layer.

상기 음극 지지층 및 음극 기능층은 니켈(Ni)계 소재로 이루어질 수 있으며, 나아가, 상기 음극 지지층과 음극 기능층은 니켈 및 YSZ를 포함할 수 있다.The negative electrode support layer and the negative electrode functional layer may be made of a nickel (Ni)-based material, and further, the negative electrode support layer and the negative electrode functional layer may include nickel and YSZ.

또한, 상기 양극층은, 상기 전해질층 상에 형성된 양극 기능층(Cathode Functional Layer, CFL) 및 상기 양극 기능층 상에 형성된 양극 집전층(Current Collector, CC)을 포함할 수 있으며, 일례로, 상기 양극 기능층은 LSM(Sr-doped LaMnO3) 및 YSZ를 포함하고, 상기 양극 집전층은 LSM을 포함할 수 있다.In addition, the anode layer may include a cathode functional layer (CFL) formed on the electrolyte layer and an anode collector layer (Current Collector, CC) formed on the anode functional layer, for example, the The anode functional layer may include Sr-doped LaMnO3 (LSM) and YSZ, and the anode current collector layer may include LSM.

그리고, 본 발명은 발명의 다른 측면에서 상기 고체산화물 연료전지로 이루어진 단위 셀을 복수 개 포함하는 고체산화물 연료전지 스택을 제공한다.In another aspect, the present invention provides a solid oxide fuel cell stack including a plurality of unit cells made of the solid oxide fuel cell.

본 발명에 따른 이중층(Bi-layer) 구조의 전해질층을 적용한 고체산화물 연료전지는, 공기극/전해질 계면쪽 전해질층인 제1 전해질층만 전자 전도성(P-type)을 가지고 있어 역전류 상황에서 공기극/전해질 박리를 효과적으로 방지할 수 있고, 전해질 내부 중 한 층에서만 전자 전도성을 지니므로 누설 전류 또한 방지 할 수 있다.In the solid oxide fuel cell to which a bi-layered electrolyte layer according to the present invention is applied, only the first electrolyte layer, which is the electrolyte layer on the cathode/electrolyte interface, has electron conductivity (P-type), so that the cathode is in a reverse current situation. /Electrolyte peeling can be effectively prevented, and leakage current can also be prevented because only one layer of the electrolyte has electronic conductivity.

도 1은 온도에 따라 Ni-NiO가 평형을 이루는 포텐셜을 보여주는 그래프이다.
도 2는 연료 공급이 중단된 상황에서의 전압 감소 및 역전류 공급에 따른 전압 상승을 보여주는 그래프이다.
도 3은 고체산화물전지에 역전류 공급시 일어나는 연료극 및 공기극 각각에서 일어나는 산소 분자 환원 반응 및 산소 이온 산화 반응을 보여주는 모식도이다.
도 4는 종래 YSZ(Yttria-stabilized zirconia)만으로 이루어진 전해질을 포함하는 고체산화물 연료전지의 단면 모식도이다.
도 5는 본 발명에 따른 이중층(Bi-layer) 구조의 전해질을 포함하는 고체산화물 연료전지의 단면 모식도이다.
도 6은 본원 실시예에 따른 고체산화물 연료전지 셀 제조 과정의 각 단계를 나타낸 흐름도이다.
도 7(a)는 종래의 YSZ 전해질층 포함 고체산화물 연료전지 셀에 대해 수소연료 공급 차단과 함께 정전압(CV) 인가시 시간에 따른 전압 변화를 보여주는 그래프이며, 도 7(b)는 해당 정전압 테스트 후의 셀 단면 미세구조를 보여주는 주사전자현미경(SEM) 사진이다.
도 8(a)는 본원 실시예에서 제조된 이중층(Bi-layer) 구조의 전해질을 포함하는 고체산화물 연료전지 셀에 대해 정전압(CV) 인가시 시간에 따른 전압 변화를 보여주는 그래프이며, 도 8(b)는 해당 정전압 테스트 전후의 I-V 측정 결과를 보여주는 그래프이다.
1 is a graph showing the potential at which Ni-NiO equilibrates with temperature.
2 is a graph showing a voltage increase according to a voltage decrease and reverse current supply in a situation in which fuel supply is stopped.
3 is a schematic diagram showing an oxygen molecule reduction reaction and an oxygen ion oxidation reaction occurring in each of the anode and the cathode that occur when a reverse current is supplied to the solid oxide cell.
4 is a schematic cross-sectional view of a solid oxide fuel cell including an electrolyte consisting of only conventional Yttria-stabilized zirconia (YSZ).
5 is a schematic cross-sectional view of a solid oxide fuel cell including an electrolyte having a bi-layer structure according to the present invention.
6 is a flowchart illustrating each step of a process of manufacturing a solid oxide fuel cell cell according to an exemplary embodiment of the present application.
FIG. 7(a) is a graph showing the voltage change over time when a constant voltage (CV) is applied with the supply of hydrogen fuel to a solid oxide fuel cell including a conventional YSZ electrolyte layer, and FIG. 7(b) is a corresponding constant voltage test. It is a scanning electron microscope (SEM) photograph showing the microstructure of the cell cross-section after.
FIG. 8(a) is a graph showing a voltage change over time when a constant voltage (CV) is applied to a solid oxide fuel cell cell including a bi-layer electrolyte prepared in the present embodiment, and FIG. 8( b) is a graph showing the IV measurement results before and after the corresponding constant voltage test.

본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.In describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted.

본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시예를 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the embodiments according to the concept of the present invention can apply various changes and have various forms, specific embodiments are illustrated in the drawings and will be described in detail in the present specification or application. However, this is not intended to limit the embodiments according to the concept of the present invention to a specific form of disclosure, and it should be understood that all changes, equivalents, and substitutes included in the spirit and scope of the present invention are included.

본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present specification are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present specification, terms such as "comprise" or "have" are intended to designate the presence of a set feature, number, step, action, component, part, or combination thereof, but one or more other features or numbers It is to be understood that the possibility of addition or presence of, steps, actions, components, parts, or combinations thereof is not preliminarily excluded.

이하, 실시예를 통해 본 발명을 보다 상세히 설명하도록 한다.Hereinafter, the present invention will be described in more detail through examples.

<실시예> 본 발명에 따른 이중층(Bi-layer) 구조의 전해질을 구비한 단위 셀의 제조<Example> Preparation of a unit cell having a bi-layer structure electrolyte according to the present invention

도 6에 도시한 바와 같이 아래 (1) 내지 (8)의 단계를 순차적으로 실시해 도 5에 도시된 단면 모식도를 가지는 이중층(Bi-layer) 구조의 전해질을 구비한 고체전해질 연료전지 단위 셀을 제조하였다.As shown in FIG. 6, the following steps (1) to (8) are sequentially performed to prepare a solid electrolyte fuel cell unit cell having an electrolyte of a bi-layer structure having a cross-sectional schematic diagram shown in FIG. I did.

(1) NiO와 YSZ로 이루어진 anode powder를 die-press 한 후 900℃에서 1시간 열처리하여 음극지지층(AS)을 제조하였다. (1) Anode support layer (AS) was prepared by die-pressing anode powder consisting of NiO and YSZ and then heat treatment at 900°C for 1 hour.

(2) 음극 기능층 (AFL) 제조를 위해서 NiO, YSZ를 각각 60 wt% : 40wt% 비율로 혼합하였으며 입자 미세화를 위해 유성볼밀을 이용하여 추가 분쇄 공정을 실시하였다. (2) To prepare the negative electrode functional layer (AFL), NiO and YSZ were mixed at a ratio of 60 wt%: 40 wt%, respectively, and an additional pulverization process was performed using a planetary ball mill to refine the particles.

(3) 분쇄 후 부탄올 용매를 이용하여 슬러리로 제조하였으며 앞서 제조한 AS 층에 drop 코팅하여 900℃에서 1시간 열처리 하였다. (3) After pulverization, a slurry was prepared using a butanol solvent, and the AS layer prepared above was drop-coated and heat treated at 900°C for 1 hour.

(4) 열처리된 AS/AFL substrate 에 YSZ 슬러리를 drop 코팅하여 1000℃에서 1시간 열처리 하였다. (4) Drop coating of YSZ slurry on the heat-treated AS/AFL substrate was performed at 1000° C. for 1 hour.

(5) PCO : YSZ를 각각 8mol% : 92mol% 비율로 부탄올 용매에 넣고 두 종류의 파우더가 골고루 분산 되도록 전체 파우더의 1% 양의 분산제를 첨가하였다. (5) PCO: YSZ was added to the butanol solvent in a ratio of 8 mol%: 92 mol%, respectively, and a dispersant in an amount of 1% of the total powder was added so that the two types of powder were evenly dispersed.

(6) 제조된 슬러리를 sonication을 이용하여 잘 혼합한 뒤, 순수 YSZ 층 위에 drop 코팅하여 1460℃에서 6시간 소결 하였다. (6) The prepared slurry was well mixed using sonication, and then drop-coated on the pure YSZ layer and sintered at 1460°C for 6 hours.

(7) LSM+YSZ 혼합한 양극기능층을 소결한 셀 위에 screen print 하고 1170℃에서 1시간 열처리 하였다. (7) The anode functional layer mixed with LSM+YSZ was screen printed on the sintered cell and heat-treated at 1170℃ for 1 hour.

(8) 양극 기능층 위에 LSM으로 이루어진 양극을 screen print 하고 1160℃에서 1시간 열처리 하였다. (8) An anode made of LSM was screen printed on the anode functional layer and heat-treated at 1160℃ for 1 hour.

<실험예> 역전류 내구성 테스트<Experimental Example> Reverse current durability test

역전류 작동 하에서의 내구성을 확인하기 위해 초기성능 점검을 실시하고, 수소 공급 차단 후 총 100시간 동안 역전류를 공급하여 셀 개방회로 전압이 니켈-니켈산화 평형 포텐셜 이상이 되도록 0.8V를 유지하였다. In order to check the durability under reverse current operation, an initial performance check was performed, and a reverse current was supplied for a total of 100 hours after the hydrogen supply was cut off, and 0.8V was maintained so that the cell open circuit voltage became more than the nickel-nickel oxide equilibrium potential.

순수 YSZ 전해질 셀의 경우 역전류 테스트 후 수소 재공급 시 1.0 V 개방회로 전압을 회복하지 못하고 매우 불안정한 개방회로 전압을 보였으며(도 7a), 테스트 후 SEM 분석 결과에 따르면 공기극과 전해질 계면간의 박리가 관찰되었다(도 7b). In the case of the pure YSZ electrolyte cell, when hydrogen was resupplied after the reverse current test, the 1.0 V open circuit voltage was not recovered and showed very unstable open circuit voltage (Fig. 7a).According to the SEM analysis result after the test, separation between the cathode and the electrolyte interface was observed. Was observed (Fig. 7b).

반면에, Bi-layer 셀은 약 100시간 동안의 0.8 V 유지 역전류 테스트(도 8a) 후에도 100시간 전 성능과 유사한 수준의 I-V curve 를 보였다(도 8b). On the other hand, the Bi-layer cell showed an I-V curve similar to the performance of 100 hours ago even after the 0.8 V maintenance reverse current test for about 100 hours (FIG. 8A) (FIG. 8B).

앞서 상세히 설명한 본 발명에 따른 이중층(Bi-layer) 구조의 전해질층을 적용한 고체산화물 연료전지는, 공기극/전해질 계면쪽 전해질층인 제1 전해질층만 전자 전도성(P-type)을 가지고 있어 역전류 상황에서 공기극/전해질 박리를 효과적으로 방지할 수 있고, 전해질 내부 중 한 층에서만 전자 전도성을 지니므로 누설 전류 또한 방지 할 수 있다.In the solid oxide fuel cell to which the electrolyte layer having a bi-layer structure according to the present invention described in detail above is applied, only the first electrolyte layer, which is an electrolyte layer at the cathode/electrolyte interface, has electron conductivity (P-type), and thus reverse current In this situation, it is possible to effectively prevent the cathode/electrolyte from peeling, and since only one layer of the electrolyte has electron conductivity, leakage current can also be prevented.

이상, 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예에는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.In the above, embodiments of the present invention have been described with reference to the accompanying drawings, but those of ordinary skill in the art to which the present invention pertains can be implemented in other specific forms without changing the technical spirit or essential features. You can understand that there is. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not limiting.

Claims (8)

양극(cathode)층, 전해질(electrolyte)층 및 음극(anode)층의 순서로 적층된 고체산화물 연료전지에 있어서,
상기 전해질층은, 양극층에 접하는 제1 전해질층 및 음극층에 접하는 제2 전해질층을 포함하는 이중층 구조(Bi-layer structure)로 이루어지며,
상기 양극층에 접하는 제1 전해질층은, 프라세오디움(Pr)으로 도핑된 세리아(praseodymium cerium oxide, PCO) 고체산화물 및 YSZ(Yttria-stabilized zirconia)을 포함하고,
상기 음극층에 접하는 제2 전해질층은 YSZ로 이루어진 것을 특징으로 하는, 역전류에 의한 열화 현상이 방지된 고체산화물 연료전지.
In the solid oxide fuel cell stacked in order of an anode layer, an electrolyte layer, and a cathode layer,
The electrolyte layer has a bi-layer structure including a first electrolyte layer in contact with the anode layer and a second electrolyte layer in contact with the cathode layer,
The first electrolyte layer in contact with the anode layer includes praseodymium cerium oxide (PCO) solid oxide and YSZ (Yttria-stabilized zirconia) doped with praseodymium (Pr),
The solid oxide fuel cell, characterized in that the second electrolyte layer in contact with the negative electrode layer is made of YSZ.
제1항에 있어서,
상기 제1 전해질층은, 8 mol%의 PCO를 포함하는 것을 특징으로 하는, 역전류에 의한 열화 현상이 방지된 고체산화물 연료전지.
The method of claim 1,
The first electrolyte layer, characterized in that containing 8 mol% of PCO, a solid oxide fuel cell in which deterioration due to reverse current is prevented.
제1항에 있어서,
상기 음극층은,
음극 지지층(Anode Support, AS); 및
상기 음극 지지층 상에 형성되는 음극 기능층(Anode Functional Layer, AFL)을 포함하는 것을 특징으로 하는, 역전류에 의한 열화 현상이 방지된 고체산화물 연료전지.
The method of claim 1,
The cathode layer,
Anode Support (AS); And
A solid oxide fuel cell comprising an anode functional layer (AFL) formed on the anode support layer, and preventing deterioration due to reverse current.
제3항에 있어서,
상기 음극 지지층 및 음극 기능층은 니켈(Ni)계 소재로 이루어진 것을 특징으로 하는, 역전류에 의한 열화 현상이 방지된 고체산화물 연료전지.
The method of claim 3,
The anode support layer and the anode functional layer are made of a nickel (Ni)-based material, wherein deterioration due to reverse current is prevented.
제3항에 있어서,
상기 음극 지지층은 니켈 및 YSZ를 포함하고,
상기 음극 기능층은 니켈 및 YSZ를 포함하는 것을 특징으로 하는, 역전류에 의한 열화 현상이 방지된 고체산화물 연료전지.
The method of claim 3,
The negative electrode support layer includes nickel and YSZ,
The negative electrode functional layer comprises nickel and YSZ, wherein the solid oxide fuel cell from which deterioration due to reverse current is prevented.
제1항에 있어서,
상기 양극층은,
상기 전해질층 상에 형성된 양극 기능층(Cathode Functional Layer, CFL); 및
상기 양극 기능층 상에 형성된 양극 집전층(Current Collector, CC)을 포함하는 것을 특징으로 하는, 역전류에 의한 열화 현상이 방지된 고체산화물 연료전지.
The method of claim 1,
The anode layer,
A cathode functional layer (CFL) formed on the electrolyte layer; And
A solid oxide fuel cell comprising an anode current collector (CC) formed on the anode functional layer.
제6항에 있어서,
상기 양극 기능층은 LSM(Sr-doped LaMnO3) 및 YSZ를 포함하고,
상기 양극 집전층은 LSM을 포함하는 것을 특징으로 하는, 역전류에 의한 열화 현상이 방지된 고체산화물 연료전지.
The method of claim 6,
The anode functional layer includes LSM (Sr-doped LaMnO 3 ) and YSZ,
The positive electrode current collecting layer comprises an LSM, wherein the solid oxide fuel cell in which deterioration due to reverse current is prevented.
제1항 내지 제7항 중 어느 한 항의 고체산화물 연료전지 단위 셀을 복수 개 포함하는 고체산화물 연료전지 스택.A solid oxide fuel cell stack comprising a plurality of solid oxide fuel cell unit cells according to any one of claims 1 to 7.
KR1020190049292A 2019-04-26 2019-04-26 Solid oxide fuel cell having durable electrolyte under negative current conditions Active KR102220867B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190049292A KR102220867B1 (en) 2019-04-26 2019-04-26 Solid oxide fuel cell having durable electrolyte under negative current conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190049292A KR102220867B1 (en) 2019-04-26 2019-04-26 Solid oxide fuel cell having durable electrolyte under negative current conditions

Publications (2)

Publication Number Publication Date
KR20200125260A KR20200125260A (en) 2020-11-04
KR102220867B1 true KR102220867B1 (en) 2021-02-26

Family

ID=73571488

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190049292A Active KR102220867B1 (en) 2019-04-26 2019-04-26 Solid oxide fuel cell having durable electrolyte under negative current conditions

Country Status (1)

Country Link
KR (1) KR102220867B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113285084B (en) * 2021-05-17 2022-07-08 福州大学 Method for preparing solid oxide fuel cells in one step

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100648144B1 (en) * 2005-09-15 2006-11-24 한국과학기술연구원 High performance anode supported solid oxide fuel cell
JP2009259568A (en) * 2008-04-16 2009-11-05 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8459467B2 (en) 2008-12-31 2013-06-11 Saint-Gobain Ceramics & Plastics, Inc. SOFC cathode and method for cofired cells and stacks
KR101180182B1 (en) * 2010-12-28 2012-09-05 주식회사 포스코 Solid oxide fuel cell having excellent resistance to delamination
KR20150128715A (en) 2013-03-11 2015-11-18 할도르 토프쉐 에이/에스 Sofc stack with integrated heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100648144B1 (en) * 2005-09-15 2006-11-24 한국과학기술연구원 High performance anode supported solid oxide fuel cell
JP2009259568A (en) * 2008-04-16 2009-11-05 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell

Also Published As

Publication number Publication date
KR20200125260A (en) 2020-11-04

Similar Documents

Publication Publication Date Title
US10622642B2 (en) Anode with remarkable stability under conditions of extreme fuel starvation
US10003083B2 (en) Composition for fuel cell electrode
US20080254336A1 (en) Composite anode showing low performance loss with time
US10062909B2 (en) Composition for fuel cell electrode
KR20160087516A (en) Low and intermediate-temperature type proton-conducting ceramic fuel cells containing bi-layer electrolyte structure for preventing performance degradation and method for manufacturing the same
KR20140057080A (en) Cathode for solid oxide fuel cell, method for preparing the same and solid oxide fuel cell including the same
Shen et al. Robust SOFC anode materials with La-doped SrTiO3 backbone structure
US20250210679A1 (en) Sofc including redox-tolerant anode electrode and method of making the same
KR102220867B1 (en) Solid oxide fuel cell having durable electrolyte under negative current conditions
EP2693545B1 (en) Fuel cell
KR101763722B1 (en) Proton conductive ceramic electrolyte for stacking high reliable fuel cells
KR102128941B1 (en) Method for manufacturing solid oxide fuel cell having durable electrolyte under negative voltage condition
JP7428686B2 (en) Solid oxide electrolyzer cell with electrolysis-resistant air-side electrode
JP6377535B2 (en) Proton conducting fuel cell
JP4409925B2 (en) Fuel electrode for solid oxide fuel cell and method for producing the same
US20140272672A1 (en) Composition for anode in fuel cell
KR102459438B1 (en) Solid oxide fuel cell having co-ionic conductor electrolyte with improved durability and manufacturing method thereof
KR102287531B1 (en) Single cell for solid oxide fuel cell and solid oxide fuel cell conataining thereof
KR20160087181A (en) Solid Oxide Fuel Cell and Manufacturing Method thereof
KR20180120392A (en) Solid Oxide Fuel Cell comprising reduction-prevention layer

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20190426

PA0201 Request for examination
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20200727

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20210217

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20210222

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20210223

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20231220

Start annual number: 4

End annual number: 4