KR102164920B1 - Process for Preparing Lithium Difluorobis(oxalato)phosphate - Google Patents
Process for Preparing Lithium Difluorobis(oxalato)phosphate Download PDFInfo
- Publication number
- KR102164920B1 KR102164920B1 KR1020190114609A KR20190114609A KR102164920B1 KR 102164920 B1 KR102164920 B1 KR 102164920B1 KR 1020190114609 A KR1020190114609 A KR 1020190114609A KR 20190114609 A KR20190114609 A KR 20190114609A KR 102164920 B1 KR102164920 B1 KR 102164920B1
- Authority
- KR
- South Korea
- Prior art keywords
- ldfop
- lithium
- oxalato
- phosphate
- molar ratio
- Prior art date
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 28
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 229910019142 PO4 Inorganic materials 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 title claims abstract description 24
- 239000010452 phosphate Substances 0.000 title claims abstract description 24
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims abstract description 112
- -1 lithium hexafluorophosphate Chemical compound 0.000 claims abstract description 48
- 238000006243 chemical reaction Methods 0.000 claims abstract description 39
- 235000006408 oxalic acid Nutrition 0.000 claims abstract description 32
- 239000005055 methyl trichlorosilane Substances 0.000 claims abstract description 30
- JLUFWMXJHAVVNN-UHFFFAOYSA-N methyltrichlorosilane Chemical compound C[Si](Cl)(Cl)Cl JLUFWMXJHAVVNN-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910013870 LiPF 6 Inorganic materials 0.000 claims description 19
- 239000003125 aqueous solvent Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 239000002904 solvent Substances 0.000 claims description 6
- 150000005678 chain carbonates Chemical class 0.000 claims description 3
- 150000005676 cyclic carbonates Chemical class 0.000 claims description 3
- 150000002148 esters Chemical class 0.000 claims description 3
- 150000002825 nitriles Chemical class 0.000 claims description 3
- 125000004122 cyclic group Chemical group 0.000 claims description 2
- 239000006227 byproduct Substances 0.000 abstract description 17
- 239000000126 substance Substances 0.000 abstract description 10
- 238000003756 stirring Methods 0.000 description 25
- 239000007789 gas Substances 0.000 description 19
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 18
- 239000000203 mixture Substances 0.000 description 14
- 239000000243 solution Substances 0.000 description 13
- 238000005481 NMR spectroscopy Methods 0.000 description 12
- 239000007787 solid Substances 0.000 description 11
- WEVYAHXRMPXWCK-FIBGUPNXSA-N acetonitrile-d3 Chemical compound [2H]C([2H])([2H])C#N WEVYAHXRMPXWCK-FIBGUPNXSA-N 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 239000000706 filtrate Substances 0.000 description 9
- 230000000977 initiatory effect Effects 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 239000000654 additive Substances 0.000 description 7
- 239000011255 nonaqueous electrolyte Substances 0.000 description 6
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000005049 silicon tetrachloride Substances 0.000 description 5
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 229910003902 SiCl 4 Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- YNQRWVCLAIUHHI-UHFFFAOYSA-L dilithium;oxalate Chemical compound [Li+].[Li+].[O-]C(=O)C([O-])=O YNQRWVCLAIUHHI-UHFFFAOYSA-L 0.000 description 3
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- YTZKOQUCBOVLHL-UHFFFAOYSA-N tert-butylbenzene Chemical compound CC(C)(C)C1=CC=CC=C1 YTZKOQUCBOVLHL-UHFFFAOYSA-N 0.000 description 2
- BHOCBLDBJFCBQS-UHFFFAOYSA-N trifluoro(methyl)silane Chemical compound C[Si](F)(F)F BHOCBLDBJFCBQS-UHFFFAOYSA-N 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- RDOGTTNFVLSBKG-UHFFFAOYSA-N 1,2-difluoro-3-methoxybenzene Chemical compound COC1=CC=CC(F)=C1F RDOGTTNFVLSBKG-UHFFFAOYSA-N 0.000 description 1
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- QYIOFABFKUOIBV-UHFFFAOYSA-N 4,5-dimethyl-1,3-dioxol-2-one Chemical compound CC=1OC(=O)OC=1C QYIOFABFKUOIBV-UHFFFAOYSA-N 0.000 description 1
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 description 1
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013075 LiBF Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013131 LiN Inorganic materials 0.000 description 1
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 1
- 229910013385 LiN(SO2C2F5)2 Inorganic materials 0.000 description 1
- 229910013872 LiPF Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 101150058243 Lipf gene Proteins 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229930188620 butyrolactone Natural products 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- PFPYHYZFFJJQFD-UHFFFAOYSA-N oxalic anhydride Chemical compound O=C1OC1=O PFPYHYZFFJJQFD-UHFFFAOYSA-N 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 238000001926 trapping method Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/6564—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
- C07F9/6571—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
- C07F9/6574—Esters of oxyacids of phosphorus
- C07F9/65748—Esters of oxyacids of phosphorus the cyclic phosphorus atom belonging to more than one ring system
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
Abstract
본 발명은 리튬 디플루오로비스(옥살라토)인산염의 제조방법에 관한 것이다. 본 발명의 제조방법에 따르면, 헥사플루오로인산 리튬과 옥살산에 메틸트라이클로로실레인(MeSiCl3)을 부가하여 반응시킴으로써 LDFOP에 대한 화학선택성이 매우 높아 고순도의 LDFOP를 효율적이고 공업적으로 제조할 수 있고, 게다가 반응시 생성되는 부산물들의 제거가 용이하다.The present invention relates to a method for producing lithium difluorobis (oxalato) phosphate. According to the manufacturing method of the present invention, by adding methyltrichlorosilane (MeSiCl 3 ) to lithium hexafluorophosphate and oxalic acid and reacting, the chemical selectivity to LDFOP is very high, and high purity LDFOP can be efficiently and industrially manufactured. In addition, it is easy to remove by-products generated during the reaction.
Description
본 발명은 리튬 디플루오로비스(옥살라토)인산염의 제조방법에 관한 것으로, 보다 상세하게는 리튬이차전지용 비수전해액 첨가제로 사용되는 고순도의 리튬 디플루오로비스(옥살라토)인산염을 효율적이고 공업적으로 제조하는 방법에 관한 것이다.The present invention relates to a method for producing lithium difluorobis (oxalato) phosphate, and more particularly, to a high purity lithium difluorobis (oxalato) phosphate used as a non-aqueous electrolyte additive for lithium secondary batteries. It relates to a method of manufacturing industrially.
하기 화학식 1 및 2로 각각 표시되는 리튬 디플루오로비스(옥살라토)인산염 (LDFOP) 및 리튬 테트라플루오로(옥살라토)인산염 (LTFOP)은 리튬이차전지, 리튬 이온 캐퍼시터 등의 성능 향상을 위한 비수전해액 첨가제로 사용되고 있다[참고문헌: 미국특허 제6,783,896호, 국제특허공개 WO 2009/066559호].Lithium difluorobis (oxalato) phosphate (LDFOP) and lithium tetrafluoro (oxalato) phosphate (LTFOP) represented by the following formulas 1 and 2, respectively, improve the performance of lithium secondary batteries and lithium ion capacitors. It is used as a non-aqueous electrolyte additive for [Reference: US Patent No. 6,783,896, International Patent Publication No. WO 2009/066559].
[화학식 1][Formula 1]
[화학식 2][Formula 2]
상기 LDFOP 및 LTFOP의 제조방법은 대한민국 특허공개 제2011-0086102호에 개시되어 있다. 구체적으로, 헥사플루오로인산 리튬(LiPF6)과 옥살산에 사염화규소(SiCl4)를 적가한 후, 승온 반응시켜 LDFOP/LTFOP 혼합물 용액을 얻을 수 있으며, 염소 화합물이나 유리산이 적은 LDFOP/LTFOP 혼합물 용액을 제공한다고 기술되어 있다. 그러나, 상기 제조방법은 LDFOP만을 화학선택적으로 제조할 수 없다는 문제점이 있다. 또한, 상기 제조방법은 반응액에 잔류되어 있는 부산물인 HCl 및 SiF4(bp -86℃)를 감압함으로써 제거할 수 있지만, 대부분 가스로 발생되어 나오는 이들의 비점(bp)이 낮아 포집(trapping)을 통해 대기 중으로 배출시키지 않도록 완전히 제거하기가 용이하지 않다는 문제점도 있다.A method of manufacturing the LDFOP and LTFOP is disclosed in Korean Patent Publication No. 2011-0086102. Specifically, lithium hexafluorophosphate (LiPF 6 ) and silicon tetrachloride (SiCl 4 ) are added dropwise to oxalic acid and then reacted at elevated temperature to obtain an LDFOP/LTFOP mixture solution, and an LDFOP/LTFOP mixture solution with less chlorine compounds or free acids It is stated to provide However, the above manufacturing method has a problem that only LDFOP cannot be chemically selectively manufactured. In addition, the above manufacturing method can be removed by decompressing HCl and SiF 4 (bp -86°C), which are by-products remaining in the reaction solution, but their boiling point (bp) is mostly low and trapping. There is also a problem in that it is not easy to completely remove it so that it is not discharged into the atmosphere through.
리튬이차전지의 성능을 향상시키기 위해 비수전해액 조성에서 LDFOP와 같은 첨가제의 역할이 매우 중요하다고 알려져 있다. 일반적으로 첨가제의 순도가 전지의 성능에 크게 영향을 미치는 것으로 보고되어 있으며, 따라서 고순도의 첨가제 제조 시 LDFOP에 대한 화학선택성이 매우 중요하며, 선택성이 떨어질 경우 LDFOP와 LTFOP 혼합물을 현재의 화학공정기술로 분리정제하는 것은 매우 어렵다.It is known that the role of additives such as LDFOP in the composition of a non-aqueous electrolyte is very important to improve the performance of lithium secondary batteries. In general, it is reported that the purity of the additive greatly affects the performance of the battery. Therefore, when manufacturing high-purity additives, the chemical selectivity for LDFOP is very important.If the selectivity is poor, the mixture of LDFOP and LTFOP is used as the current chemical process technology. It is very difficult to separate and purify.
다른 제조방법으로는 미국특허공개 제2010/0267984호에 옥살산 리튬을 이용하는 방법이 개시되어 있는데, 그 중 LiPF6를 고온으로 가열하여 PF5 가스를 생성시켜 옥살산 리튬과 반응시키는 방법은 공업화하기 어렵고 생성물의 비율을 조절하기 어려우며, 옥살산 리튬과 LiPF6를 고체 상태로 혼합하여 밀링한 다음 고온으로 가열하는 방법 역시 공업화하기 어려운 문제점이 있다.As another manufacturing method, U.S. Patent Publication No. 2010/0267984 discloses a method of using lithium oxalate, of which LiPF 6 is heated to a high temperature to generate PF 5 gas and reacted with lithium oxalate is difficult to industrialize. It is difficult to control the ratio of, and the method of mixing lithium oxalate and LiPF 6 in a solid state, milling and then heating it to a high temperature, also has a problem that it is difficult to industrialize.
본 발명자들은 리튬 디플루오로비스(옥살라토)인산염(LDFOP)의 제조에 있어서 상기한 문제점을 해결하고자 예의 연구 검토한 결과, 헥사플루오로인산 리튬과 옥살산에 메틸트라이클로로실레인(MeSiCl3)을 부가하여 반응시킴으로써, LDFOP에 대한 화학선택성(chemoselectivity)이 매우 높아 고순도의 LDFOP를 보다 효율적으로 대량 생산할 수 있으며, 또한 생성되는 부산물들의 비점(bp)이 상대적으로 높아 포집으로 제거하기 용이함을 알아내고, 본 발명을 완성하게 되었다.The present inventors studied intensively to solve the above problems in the production of lithium difluorobis (oxalato) phosphate (LDFOP), and as a result, methyl trichlorosilane (MeSiCl 3 ) in lithium hexafluorophosphate and oxalic acid By adding and reacting, the chemoselectivity for LDFOP is very high, so that high-purity LDFOP can be mass-produced more efficiently, and the boiling point (bp) of the produced by-products is relatively high, so it is easy to remove by collection. , Has completed the present invention.
따라서, 본 발명의 목적은 고순도의 리튬 디플루오로비스(옥살라토)인산염을 효율적이고 공업적으로 제조하는 방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a method for efficiently and industrially producing high purity lithium difluorobis(oxalato)phosphate.
본 발명의 일 실시형태는, 헥사플루오로인산 리튬(LiPF6)과 옥살산에 메틸트라이클로로실레인(MeSiCl3)을 부가하여 반응시키는 단계를 포함하는 리튬 디플루오로비스(옥살라토)인산염(LDFOP)의 제조방법에 관한 것이다.In one embodiment of the present invention, lithium difluorobis (oxalato) phosphate comprising the step of reacting by adding methyl trichlorosilane (MeSiCl 3 ) to lithium hexafluorophosphate (LiPF 6 ) and oxalic acid ( LDFOP) to a manufacturing method.
본 발명의 제조방법에 따르면, 헥사플루오로인산 리튬에 대한 옥살산 및/또는 메틸트라이클로로실레인(MeSiCl3)의 몰비, 및/또는 반응 온도를 조절함으로써 고순도 LDFOP을 고수율로 화학선택적으로 제조할 수 있다.According to the manufacturing method of the present invention, by controlling the molar ratio of oxalic acid and/or methyltrichlorosilane (MeSiCl 3 ) to lithium hexafluorophosphate, and/or the reaction temperature, high-purity LDFOP can be chemically selectively prepared in high yield. I can.
본 발명의 일 실시형태에서, 헥사플루오로인산 리튬과 옥살산의 몰비는 1:1.8 내지 1:2.2, 바람직하기로 1:1.95 내지 1:2.1일 수 있다. 헥사플루오로인산 리튬과 옥살산의 몰비가 상기 범위를 만족하는 경우, LDFOP의 수율 및 화학선택성이 우수하다.In one embodiment of the present invention, the molar ratio of lithium hexafluorophosphate and oxalic acid may be 1:1.8 to 1:2.2, preferably 1:1.95 to 1:2.1. When the molar ratio of lithium hexafluorophosphate and oxalic acid satisfies the above range, the yield and chemical selectivity of LDFOP are excellent.
본 발명의 일 실시형태에서, 헥사플루오로인산 리튬과 메틸트라이클로로실레인(MeSiCl3)의 몰비는 1:1.2 내지 1:2.5, 바람직하기로 1:1.8 내지 1:2.0일 수 있다. 헥사플루오로인산 리튬과 메틸트라이클로로실레인의 몰비가 상기 범위를 만족하는 경우, LDFOP의 수율 및 화학선택성이 우수하다.In one embodiment of the present invention, the molar ratio of lithium hexafluorophosphate and methyl trichlorosilane (MeSiCl 3 ) may be 1:1.2 to 1:2.5, preferably 1:1.8 to 1:2.0. When the molar ratio of lithium hexafluorophosphate and methyltrichlorosilane satisfies the above range, the yield and chemical selectivity of LDFOP are excellent.
LDFOP를 100%의 화학선택성으로 제조하기에 적합한 헥사플루오로인산 리튬과 옥살산의 몰비는 1:1.95 내지 1:2.1이고, 헥사플루오로인산 리튬과 메틸트라이클로로실레인(MeSiCl3)의 몰비는 1:1.8 내지 1:2.0이다.The molar ratio of lithium hexafluorophosphate and oxalic acid suitable for preparing LDFOP with 100% chemical selectivity is 1:1.95 to 1:2.1, and the molar ratio of lithium hexafluorophosphate and methyltrichlorosilane (MeSiCl 3 ) is 1 :1.8 to 1:2.0.
본 발명의 제조방법에서 반응 온도는 바람직하게는 20 내지 70℃의 범위일 수 있다. 상기 범위를 벗어나는 경우 LDFOP의 수율 및/또는 화학선택성이 떨어질 수 있다.In the production method of the present invention, the reaction temperature may preferably be in the range of 20 to 70°C. If it is out of the above range, the yield and/or chemical selectivity of LDFOP may deteriorate.
바람직하기로, 20 내지 45℃의 범위에서 반응시킨 다음, 50 내지 70℃의 범위로 승온하여 반응시킴으로써 100%의 화학선택성으로 LDFOP를 제조할 수 있다.Preferably, LDFOP can be prepared with 100% chemical selectivity by reacting by reacting in the range of 20 to 45°C and then raising the temperature in the range of 50 to 70°C.
본 발명에서 사용되는 옥살산은 시판되고 있는 2수화물을 건조하여 사용할 수 있으며, 건조의 방법은 특별히 한정되는 것은 아니나 가열, 진공 건조 등의 방법을 이용할 수 있다.The oxalic acid used in the present invention can be used by drying a commercially available dihydrate, and the drying method is not particularly limited, but a method such as heating or vacuum drying can be used.
본 발명의 일 실시형태에서, 상기 반응은 비수용매 중에서 수행될 수 있다.In one embodiment of the present invention, the reaction may be carried out in a non-aqueous solvent.
상기 비수용매로는 환상 카보네이트, 쇄상 카보네이트, 쇄상 니트릴, 환상 에스테르, 쇄상 에스테르 및 쇄상 할로겐화 용매로 구성된 군으로부터 선택된 하나 이상의 용매가 사용될 수 있다. 예를 들면, 프로필렌카보네이트, 에틸렌카보네이트, 부틸렌카보네이트 등의 환상 카보네이트, 디에틸카보네이트, 디메틸카보네이트, 에틸메틸카보네이트 등의 쇄상 카보네이트, 아세토니트릴, 프로피오니트릴 등의 쇄상 니트릴, 부티로락톤, 발레로락톤 등의 환상 에스테르, 아세트산에틸, 프로피온산에틸 등의 쇄상 에스테르, 디클로로메탄, 1,2-디클로로에탄 등의 쇄상 할로겐화 용매 등이 사용될 수 있으나, 이에 한정되는 것은 아니다.As the non-aqueous solvent, at least one solvent selected from the group consisting of cyclic carbonate, chain carbonate, chain nitrile, cyclic ester, chain ester, and chain halogenated solvent may be used. For example, cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, and ethylmethyl carbonate, chain nitriles such as acetonitrile and propionitrile, butyrolactone, valero Cyclic esters such as lactone, chain esters such as ethyl acetate and ethyl propionate, and chain halogenated solvents such as dichloromethane and 1,2-dichloroethane may be used, but are not limited thereto.
이들 비수용매는 탈수된 것을 사용하는 것이 바람직하며, 본 발명에 사용되는 비수용매 중의 수분 농도는 바람직하게는 100 중량ppm 이하이다. 수분 농도가 100 중량ppm을 상회하면 LiPF6, LTFOP 및 LDFOP가 가수분해되기 때문에 바람직하지 않다.It is preferable to use a dehydrated one of these non-aqueous solvents, and the moisture concentration in the non-aqueous solvent used in the present invention is preferably 100 ppm by weight or less. If the moisture concentration exceeds 100 ppm by weight, LiPF 6 , LTFOP and LDFOP are hydrolyzed, which is not preferable.
본 발명에서 사용되는 비수용매 중의 LiPF6의 농도는 특별히 한정되지 않고 임의의 농도로 할 수 있으나, 하한은 바람직하게는 1 중량%, 보다 바람직하게는 5 중량%이고, 상한은 바람직하게는 40 중량%, 보다 바람직하게는 20 내지 30 중량%의 범위이다. 농도가 1 중량%를 하회하면 얻어진 LDFOP 용액의 농도가 너무 낮기 때문에, 비수전해액 전지의 전해액으로서 사용하기 위해서 수분에 민감한 제품을 장시간에 걸쳐 농축시켜야 하므로 경제적이지 않다. 한편 농도가 40 중량%를 넘으면 용액의 점도가 상승함으로써 반응을 원활하게 수행하는 것이 곤란하고, 또한 반응용액의 여과 속도가 낮아지기 때문에 바람직하지 않다.The concentration of LiPF 6 in the non-aqueous solvent used in the present invention is not particularly limited and may be any concentration, but the lower limit is preferably 1% by weight, more preferably 5% by weight, and the upper limit is preferably 40% by weight. %, more preferably 20 to 30% by weight. If the concentration is less than 1% by weight, the concentration of the obtained LDFOP solution is too low. Therefore, it is not economical because a product sensitive to moisture must be concentrated over a long period of time in order to be used as an electrolyte for a nonaqueous electrolyte battery. On the other hand, when the concentration exceeds 40% by weight, it is difficult to perform the reaction smoothly due to an increase in the viscosity of the solution, and the filtration rate of the reaction solution is lowered, which is not preferable.
본 발명의 일 실시형태에 따른 제조방법은 비수용매 중에서 반응을 수행한 후, 비수용매를 일부 제거하거나 첨가하여 원하는 농도, 바람직하게는 10 내지 30 wt%의 LDFOP 용액을 수득하는 단계를 포함할 수 있다.The manufacturing method according to an embodiment of the present invention may include the step of obtaining a LDFOP solution of a desired concentration, preferably 10 to 30 wt% by performing the reaction in a non-aqueous solvent, and then removing or adding a part of the non-aqueous solvent. have.
본 발명의 제조방법은 생성물인 LDFOP 또는 LDFOP/LTFOP 혼합물이 수분에 의해 가수분해를 받기 때문에 수분을 함유하지 않는 분위기에서 반응을 수행하는 것이 바람직하다. 예를 들면, 질소, 아르곤 등의 불활성 가스 분위기에서 반응을 수행하는 것이 바람직하다.In the production method of the present invention, since the product LDFOP or LDFOP/LTFOP mixture is hydrolyzed by moisture, it is preferable to perform the reaction in an atmosphere that does not contain moisture. For example, it is preferable to carry out the reaction in an inert gas atmosphere such as nitrogen and argon.
본 발명의 일 실시형태에서, 상기 반응시 생성되는 부산물은 포집(trapping)으로 완전히 제거될 수 있다.In one embodiment of the present invention, by-products generated during the reaction may be completely removed by trapping.
구체적으로, 상기 포집은 얼음 배스로 냉각된 과량의 물을 1차로 통과시킨 후, 추가로 -50℃ 저온 트랩을 통과시키는 방법으로 수행될 수 있다.Specifically, the collection may be performed by first passing excess water cooled with an ice bath, and then passing through a -50°C low temperature trap.
주요 부산물은 메틸트라이플루오로실레인(MeSiF3)(bp -30℃) 화합물과 HCl이며, 상기 포집 방법으로 함께 제거될 수 있다.The main by-products are methyltrifluorosilane (MeSiF 3 ) (bp -30°C) compound and HCl, and can be removed together by the above trapping method.
본 발명의 제조방법에 따르면, 헥사플루오로인산 리튬과 옥살산에 메틸트라이클로로실레인(MeSiCl3)을 부가하여 반응시킴으로써 LDFOP에 대한 화학선택성(chemoselectivity)을 80% 이상, 특히 100%까지 향상시킬 수 있어 고순도의 LDFOP을 보다 효율적이고 공업적으로 제조할 수 있으며, 또한 반응시 생성되는 주요 부산물인 메틸트라이플루오로실레인(MeSiF3)의 비점(bp)이 -30℃ 이상으로 높아 포집이 용이하다는 장점이 있다.According to the manufacturing method of the present invention, by adding methyltrichlorosilane (MeSiCl 3 ) to lithium hexafluorophosphate and oxalic acid and reacting, the chemoselectivity for LDFOP can be improved by 80% or more, especially up to 100%. Therefore, it is possible to manufacture high-purity LDFOP more efficiently and industrially, and the boiling point (bp) of methyltrifluorosilane (MeSiF 3 ), a major by-product generated during the reaction, is higher than -30°C, making it easy to collect. There is an advantage.
본 발명의 제조방법에 사용된 메틸트라이클로로실레인(MeSiCl3)은 종래 사용되는 사염화규소(SiCl4)와 비교하여 LDFOP에 대한 탁월한 화학선택성을 보여주며, 또한 LDFOP를 전혀 생성시키지 않는 유사한 화학구조의 디메틸디클로로실레인(Me2SiCl2) 대비 뛰어난 반응성을 가짐을 알 수 있다.Methyl trichlorosilane (MeSiCl 3 ) used in the manufacturing method of the present invention shows excellent chemical selectivity for LDFOP compared to silicon tetrachloride (SiCl 4 ) used in the past, and also has a similar chemical structure that does not generate LDFOP at all. It can be seen that it has excellent reactivity compared to dimethyldichlorosilane (Me 2 SiCl 2 ).
본 발명에 따라 제조되는 LDFOP 또는 LDFOP/LTFOP 혼합물을 사용하여 비수전해액 전지용 전해액을 조제하는 방법은 특별히 한정되는 것은 아니나, LDFOP 또는 LDFOP/LTFOP 혼합물 용액에 소정의 농도가 되도록 상기 비수용매, 주전해질, 및 기타 첨가제를 첨가함으로써 원하는 비수전해액 전지용 전해액을 얻을 수 있다.The method of preparing the electrolyte for a non-aqueous electrolyte battery using LDFOP or LDFOP/LTFOP prepared according to the present invention is not particularly limited, but the non-aqueous solvent, main electrolyte, And other additives can be added to obtain a desired electrolyte for a non-aqueous electrolyte battery.
주전해질로서는 LiPF6, LiBF4, LiClO4, LiAsF6, LiSbF6, LiCF3SO3, LiN(SO2CF3)2, LiN(SO2C2F5)2, LiN(SO2CF3)(SO2C4F9), LiC(SO2CF3)3, LiPF3(C3F7)3, LiB(CF3)4, LiBF3(C2F5) 등으로 대표되는 전해질 리튬염을 사용할 수 있다.Main electrolytes include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiN(SO 2 CF 3 ) Electrolytic lithium salt represented by (SO 2 C 4 F 9 ), LiC(SO 2 CF 3 ) 3 , LiPF 3 (C 3 F 7 ) 3 , LiB(CF 3 ) 4 , LiBF 3 (C 2 F 5 ), etc. You can use
또한 기타 첨가제로서는 디플루오로(옥살라토)붕산 리튬, 시클로헥실 벤젠, t-부틸 벤젠, 비닐렌 카보네이트, 비닐에틸렌카보네이트, 디플루오로아니솔, 플루오로에틸렌카보네이트, 프로판 술톤, 디메틸비닐렌 카보네이트 등의 과충전 방지 효과, 부극(負極) 피막 형성 효과, 정극(正極) 보호 효과를 가지는 화합물 등을 사용할 수 있다.In addition, other additives include lithium difluoro(oxalato)borate, cyclohexyl benzene, t-butyl benzene, vinylene carbonate, vinylethylene carbonate, difluoroanisole, fluoroethylene carbonate, propane sultone, dimethylvinylene carbonate. Compounds having an overcharge prevention effect, negative electrode film formation effect, positive electrode protection effect, etc. can be used.
본 발명의 제조방법에 따르면, 헥사플루오로인산 리튬과 옥살산에 메틸트라이클로로실레인(MeSiCl3)을 부가하여 반응시킴으로써 LDFOP에 대한 화학선택성이 매우 높아 고순도의 LDFOP를 효율적이고 공업적으로 제조할 수 있고, 게다가 반응시 생성되는 부산물들의 제거가 용이하다.According to the manufacturing method of the present invention, by adding methyltrichlorosilane (MeSiCl 3 ) to lithium hexafluorophosphate and oxalic acid and reacting, the chemical selectivity to LDFOP is very high, and high purity LDFOP can be efficiently and industrially manufactured. In addition, it is easy to remove by-products generated during the reaction.
도 1은 실시예 1에서 수득한 생성물의 19F NMR 분석 결과이다.
도 2는 비교예 1에서 수득한 생성물의 19F NMR 분석 결과이다.1 is a 19 F NMR analysis result of the product obtained in Example 1.
2 is a 19 F NMR analysis result of the product obtained in Comparative Example 1.
이하, 실시예에 의해 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예는 오직 발명을 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업자에게 있어서 자명하다.Hereinafter, the present invention will be described in more detail by examples. It will be apparent to those skilled in the art that these examples are for illustrative purposes only, and that the scope of the present invention is not limited to these examples.
실시예 1: 리튬 디플루오로비스(옥살라토)인산염 (LDFOP) 고체의 제조Example 1: Preparation of lithium difluorobis (oxalato) phosphate (LDFOP) solid
글로브 박스 내에서 마그네틱 교반자를 가진 500ml 3구 이중 자켓형 반응기에 헥사플루오르인산 리튬 (LiPF6) 26g (0.171몰)을 넣고 무수 에틸메틸카보네이트 174g을 가하여 충분히 교반하면서 용해한 후 무수 옥살산 30.8g을 첨가하였다. 헥사플루오르인산 리튬과 옥살산의 몰비는 1.00:2.00이었다. 이중 자켓형 반응기를 글로스 박스의 외부로 꺼내, 서큘레이터(circulator)를 이중 자켓형 반응기에 연결 후 40℃로 설정하여 내부온도를 승온하였으며, 밑에는 마그네틱 스터러를 설치하여, 충분히 교반하였다.Lithium hexafluorophosphate (LiPF 6 ) 26 g (0.171 mol) was added to a 500 ml three-neck double jacketed reactor with a magnetic stirrer in a glove box, and 174 g of anhydrous ethyl methyl carbonate was dissolved while sufficiently stirring, and then 30.8 g of anhydrous oxalic acid was added. . The molar ratio of lithium hexafluorophosphate and oxalic acid was 1.00:2.00. The double jacketed reactor was taken out to the outside of the gloss box, and the circulator was connected to the double jacketed reactor, and then the internal temperature was set to 40°C to increase the internal temperature, and a magnetic stirrer was installed underneath and sufficiently stirred.
그 다음에, 메틸트라이클로로실레인 51.2g을 적하 깔대기(dropping funnel)를 통하여, 상기 LiPF6, 옥살산 및 에틸메틸카보네이트의 혼합액에 1시간에 걸쳐 적가하였다. 헥사플루오르인산 리튬과 메틸트라이클로로실레인의 몰비는 1.00:2.00이었다. 적하 개시와 동시에 MeSiF3 및 HCl 가스가 발생하였다. 첨가 종료 후, 서큘레이터 온도를 50℃로 승온하였으며, 추가로 2시간 동안 교반을 계속하여 반응 종료하였다. 반응 종료 후 투명 무색의 여액을 얻었다.Then, 51.2 g of methyltrichlorosilane was added dropwise to the mixture of LiPF 6 , oxalic acid and ethyl methyl carbonate over 1 hour through a dropping funnel. The molar ratio of lithium hexafluorophosphate and methyltrichlorosilane was 1.00:2.00. MeSiF 3 and HCl gas were generated simultaneously with the initiation of dropping. After the addition was completed, the temperature of the circulator was raised to 50° C., and stirring was continued for an additional 2 hours to complete the reaction. After completion of the reaction, a transparent colorless filtrate was obtained.
주요 부산물인 MeSiF3 및 HCl 가스의 포집은 얼음 배스로 냉각된 500g 물을 1차로 통과 시킨 후 추가로 -50℃ 저온 트랩을 통과시키는 방법으로 진행하였다.The main by-products, MeSiF 3 and HCl gas, were first passed through 500 g of water cooled with an ice bath and then additionally passed through a -50°C low temperature trap.
50 내지 55℃ 내에서 가열하면서 진공펌프로 3시간 동안 추가 건조하여 미백색의 목적물 37.5g(수율 87%)을 얻었다. 아세토니트릴-d3에 용해시켜 19F NMR을 측정한 결과, 도 1에 나타낸 바와 같이 LDFOP/LTFOP 몰비는 100:0으로 100.0%의 화학선택성 (chemoselectivity)을 보여 주었다.It was heated within 50 to 55° C. and dried for 3 hours with a vacuum pump to obtain 37.5 g (yield 87%) of an off-white target. As a result of measuring 19 F NMR by dissolving in acetonitrile-d 3 , as shown in FIG. 1, the LDFOP/LTFOP molar ratio was 100:0, showing a chemoselectivity of 100.0%.
실시예 2: 리튬 디플루오로비스(옥살라토)인산염 (LDFOP) 용액의 제조Example 2: Preparation of lithium difluorobis (oxalato) phosphate (LDFOP) solution
글로브 박스 내에서 마그네틱 교반자를 가진 1000ml 3구 이중 자켓형 반응기에 헥사플루오르인산 리튬 (LiPF6) 65.0g (0.428몰)을 넣고 무수 에틸메틸카보네이트 435g을 가하여 충분히 교반하면서 용해한 후 무수 옥살산 90.0g을 첨가하였다. 헥사플루오르인산 리튬과 옥살산의 몰비는 1.00:2.00이었다. 이중 자켓형 반응기를 글로스 박스의 외부로 꺼내, 서큘레이터(circulator)를 이중 자켓형 반응기에 연결 후 40℃로 설정하여 내부온도를 승온하였으며, 밑에는 마그네틱 스터러를 설치하여, 충분히 교반하였다.65.0 g (0.428 mol) of lithium hexafluorophosphate (LiPF 6 ) was added to a 1000 ml three-neck double jacketed reactor with a magnetic stirrer in a glove box, 435 g of anhydrous ethyl methyl carbonate was added, dissolved with sufficient stirring, and 90.0 g of anhydrous oxalic acid was added. I did. The molar ratio of lithium hexafluorophosphate and oxalic acid was 1.00:2.00. The double jacketed reactor was taken out to the outside of the gloss box, and the circulator was connected to the double jacketed reactor, and then the internal temperature was set to 40°C to increase the internal temperature, and a magnetic stirrer was installed underneath and sufficiently stirred.
그 다음에, 메틸트라이클로로실레인 127.9g을 적하 깔대기(dropping funnel)를 통하여, 상기 LiPF6, 옥살산 및 에틸메틸카보네이트의 혼합액에 1시간에 걸쳐 적가하였다. 헥사플루오르인산 리튬과 메틸트라이클로로실레인의 몰비는 1.00:2.00이었다. 적하 개시와 동시에 MeSiF3 및 HCl 가스가 발생하였다. 첨가 종료 후, 서큘레이터 온도를 50℃로 승온하였으며, 추가로 2시간 동안 교반을 계속하여 반응 종료하였다. 반응 종료 후 투명 무색의 여액을 얻었다.Then, 127.9 g of methyl trichlorosilane was added dropwise to the mixture of LiPF 6 , oxalic acid and ethyl methyl carbonate over 1 hour through a dropping funnel. The molar ratio of lithium hexafluorophosphate and methyltrichlorosilane was 1.00:2.00. MeSiF 3 and HCl gas were generated simultaneously with the initiation of dropping. After the addition was completed, the temperature of the circulator was raised to 50° C., and stirring was continued for an additional 2 hours to complete the reaction. After completion of the reaction, a transparent colorless filtrate was obtained.
주요 부산물인 MeSiF3 및 HCl 가스의 포집은 얼음 배스로 냉각된 2000g 물을 1차로 통과 시킨 후 추가로 -50℃ 저온 트랩을 통과시키는 방법으로 진행하였다.The main by-products, MeSiF 3 and HCl gas, were first passed through 2000 g of water cooled with an ice bath and then additionally passed through a -50°C low temperature trap.
반응액을 상온으로 식힌 후 진공펌프로 건조하여 잔류 부산물 및 에틸메틸카보네이트 용매 약 20g을 제거하여 용액 상태의 목적물 507g을 얻었다. 용액 상태의 목적물 2.02g을 취해 내부 표준물질(Internal Standard) 51.4mg을 넣고 아세토니트릴-d3에 용해시켜 19F NMR을 측정한 결과, LDFOP의 농도가 18.6wt%이고 수율이 87.6%인 것으로 계산되었으며, LDFOP/LTFOP 몰비는 100:0으로 100.0%의 화학선택성 (chemoselectivity)을 보여 주었다.After cooling the reaction solution to room temperature, it was dried with a vacuum pump to remove about 20 g of residual by-products and ethyl methyl carbonate solvent to obtain 507 g of the target product in a solution state. Take 2.02 g of the target substance in solution, add 51.4 mg of the internal standard, dissolve in acetonitrile-d 3 , and measure 19 F NMR. As a result, the concentration of LDFOP was 18.6 wt% and the yield was calculated as 87.6%. The LDFOP/LTFOP molar ratio was 100:0, which showed a chemoselectivity of 100.0%.
실시예 3: 리튬 디플루오로비스(옥살라토)인산염 (LDFOP) 고체의 제조Example 3: Preparation of lithium difluorobis(oxalato)phosphate (LDFOP) solid
글로브 박스 내에서 마그네틱 교반자를 가진 500ml 3구 이중 자켓형 반응기에 헥사플루오르인산 리튬 26g (0.171몰)을 넣고 무수 에틸메틸카보네이트 174g을 가하여 충분히 교반하면서 용해한 후 무수옥살산 30.8g을 첨가하였다. 헥사플루오르인산 리튬과 옥살산의 몰비는 1.00:2.00이었다. 이중 자켓형 반응기를 글로스 박스의 외부로 꺼내, 서큘레이터를 이중 자켓형 반응기에 연결 후 40℃로 설정하여 내부온도를 승온하였으며, 밑에는 마그네틱 스터러를 설치하여, 충분히 교반하였다.Lithium hexafluorophosphate 26 g (0.171 mol) was added to a 500 ml three-neck double jacketed reactor with a magnetic stirrer in a glove box, and 174 g of anhydrous ethyl methyl carbonate was dissolved while sufficiently stirring, and then 30.8 g of oxalic anhydride was added. The molar ratio of lithium hexafluorophosphate and oxalic acid was 1.00:2.00. The double jacketed reactor was taken out to the outside of the gloss box, and the circulator was connected to the double jacketed reactor, and the internal temperature was set to 40°C to increase the internal temperature, and a magnetic stirrer was installed at the bottom to sufficiently stir.
그 다음에, 메틸트라이클로로실레인 46.1g을 적하 깔대기를 통하여, 상기 LiPF6, 옥살산 및 에틸메틸카보네이트의 혼합액에 1시간에 걸려 적가하였다. 헥사플루오르인산 리튬과 메틸트라이클로로실레인의 몰비는 1.00:1.80이었다. 적하 개시와 동시에 MeSiF3 및 HCl 가스가 발생하였다. 첨가 종료 후, 서큘레이터 온도를 50℃로 승온하였으며, 추가로 2시간 동안 교반을 계속하여 반응 종료하였다. 반응 종료 후 투명 무색의 여액을 얻었다.Then, 46.1 g of methyl trichlorosilane was added dropwise over 1 hour to the mixture of LiPF 6 , oxalic acid and ethyl methyl carbonate through a dropping funnel. The molar ratio of lithium hexafluorophosphate and methyltrichlorosilane was 1.00:1.80. MeSiF 3 and HCl gas were generated simultaneously with the initiation of dropping. After the addition was completed, the temperature of the circulator was raised to 50° C., and stirring was continued for an additional 2 hours to complete the reaction. After completion of the reaction, a transparent colorless filtrate was obtained.
주요 부산물인 MeSiF3 및 HCl 가스의 포집은 얼음 배스로 냉각된 500g 물을 1차로 통과 시킨 후 추가로 -50℃ 저온 트랩을 통과시키는 방법으로 진행하였다.The main by-products, MeSiF 3 and HCl gas, were first passed through 500 g of water cooled with an ice bath and then additionally passed through a -50°C low temperature trap.
50 내지 55℃ 내에서 가열하면서 진공펌프로 3시간 동안 추가 건조하여 미백색의 목적물 36.8g(수율 85.3%)을 얻었다. 아세토니트릴-d3에 용해시켜 19F NMR을 측정한 결과, LDFOP/LTFOP 몰비는 100:0으로 100.0%의 화학선택성 (chemoselectivity)을 보여 주었다.It was further dried for 3 hours with a vacuum pump while heating within 50 to 55° C. to obtain 36.8 g (yield 85.3%) of an off-white target. As a result of dissolving in acetonitrile-d 3 and measuring 19 F NMR, the LDFOP/LTFOP molar ratio was 100:0, showing a chemoselectivity of 100.0%.
실시예 4: 리튬 디플루오로비스(옥살라토)인산염 (LDFOP) 고체의 제조Example 4: Preparation of lithium difluorobis(oxalato)phosphate (LDFOP) solid
글로브 박스 내에서 마그네틱 교반자를 가진 500ml 3구 이중 자켓형 반응기에 헥사플루오르인산 리튬 26g (0.171몰)을 넣고 무수 에틸메틸카보네이트 174g을 가하여 충분히 교반하면서 용해한 후 무수 옥살산 30.8g을 첨가하였다. 헥사플루오르인산 리튬과 옥살산의 몰비는 1.00:2.00이었다. 이중 자켓형 반응기를 글로스 박스의 외부로 꺼내, 서큘레이터를 이중 자켓형 반응기에 연결 후 40℃로 설정하여 내부온도를 승온하였으며, 밑에는 마그네틱 스터러를 설치하여, 충분히 교반하였다.Lithium hexafluorophosphate 26 g (0.171 mol) was added to a 500 ml three-neck double jacketed reactor with a magnetic stirrer in a glove box, and 174 g of anhydrous ethyl methyl carbonate was dissolved while sufficiently stirring, and then 30.8 g of anhydrous oxalic acid was added. The molar ratio of lithium hexafluorophosphate and oxalic acid was 1.00:2.00. The double jacketed reactor was taken out to the outside of the gloss box, and the circulator was connected to the double jacketed reactor, and the internal temperature was set to 40°C to increase the internal temperature, and a magnetic stirrer was installed at the bottom to sufficiently stir.
그 다음에 메틸트라이클로로실레인 40.9g을 적하 깔대기를 통하여, 상기 LiPF6, 옥살산 및 에틸메틸카보네이트의 혼합액에 1시간에 걸려 적가하였다. 헥사플루오르인산 리튬과 메틸트라이클로로실레인의 몰비는 1.00:1.60이었다. 적하 개시와 동시에 MeSiF3 및 HCl 가스가 발생하였다. 첨가 종료 후, 서큘레이터 온도를 50℃로 승온하였으며, 추가로 2시간 동안 교반을 계속하여 반응 종료하였다. 반응 종료 후 투명 무색의 여액을 얻었다.Then, 40.9 g of methyl trichlorosilane was added dropwise over 1 hour to the mixture of LiPF 6 , oxalic acid and ethyl methyl carbonate through a dropping funnel. The molar ratio of lithium hexafluorophosphate and methyltrichlorosilane was 1.00:1.60. MeSiF 3 and HCl gas were generated simultaneously with the initiation of dropping. After the addition was completed, the temperature of the circulator was raised to 50° C., and stirring was continued for an additional 2 hours to complete the reaction. After completion of the reaction, a transparent colorless filtrate was obtained.
주요 부산물인 MeSiF3 및 HCl 가스의 포집은 얼음 배스로 냉각된 500g 물을 1차로 통과 시킨 후 추가로 -50℃ 저온 트랩을 통과시키는 방법으로 진행하였다.The main by-products, MeSiF 3 and HCl gas, were first passed through 500 g of water cooled with an ice bath and then additionally passed through a -50°C low temperature trap.
50 내지 55℃ 내에서 가열하면서 진공펌프로 3시간 동안 추가 건조하여 미백색의 목적물 37.0g(수율 85.8%)을 얻었다. 아세토니트릴-d3에 용해시켜 19F NMR을 측정한 결과, LDFOP/LTFOP 몰비는 21.0:1으로 95.5%의 화학선택성 (chemoselectivity)을 보여 주었다.While heating within 50 to 55° C., it was further dried with a vacuum pump for 3 hours to obtain 37.0 g (yield 85.8%) of an off-white target. As a result of dissolving in acetonitrile-d 3 and measuring 19 F NMR, the LDFOP/LTFOP molar ratio was 21.0:1, showing a chemoselectivity of 95.5%.
실시예 5: 리튬 디플루오로비스(옥살라토)인산염 (LDFOP) 고체의 제조Example 5: Preparation of lithium difluorobis(oxalato)phosphate (LDFOP) solid
글로브 박스 내에서 마그네틱 교반자를 가진 500ml 3구 이중 자켓형 반응기에 헥사플루오르인산 리튬 26g (0.171몰)을 넣고 무수 에틸메틸카보네이트 174g을 가하여 충분히 교반하면서 용해한 후 무수 옥살산 30.8g을 첨가하였다. 헥사플루오르인산 리튬과 옥살산의 몰비는 1.00:2.00이었다. 이중 자켓형 반응기를 글로스 박스의 외부로 꺼내, 서큘레이터를 이중 자켓형 반응기에 연결 후 40℃로 설정하여 내부온도를 승온하였으며, 밑에는 마그네틱 스터러를 설치하여, 충분히 교반하였다.Lithium hexafluorophosphate 26 g (0.171 mol) was added to a 500 ml three-neck double jacketed reactor with a magnetic stirrer in a glove box, and 174 g of anhydrous ethyl methyl carbonate was dissolved while sufficiently stirring, and then 30.8 g of anhydrous oxalic acid was added. The molar ratio of lithium hexafluorophosphate and oxalic acid was 1.00:2.00. The double jacketed reactor was taken out to the outside of the gloss box, and the circulator was connected to the double jacketed reactor, and the internal temperature was set to 40°C to increase the internal temperature, and a magnetic stirrer was installed at the bottom to sufficiently stir.
그 다음에, 메틸트라이클로로실레인 35.8g을 적하 깔대기를 통하여, 상기 LiPF6, 옥살산 및 에틸메틸카보네이트의 혼합액에 1시간에 걸려 적가하였다. 헥사플루오르인산 리튬과 메틸트라이클로로실레인의 몰비는 1.00:1.40이었다. 적하 개시와 동시에 MeSiF3 및 HCl 가스가 발생하였다. 첨가 종료 후, 서큘레이터 온도를 50℃로 승온하였으며, 추가로 2시간 동안 교반을 계속하여 반응 종료 하였다. 반응 종료 후 투명 무색의 여액을 얻었다.Then, 35.8 g of methyl trichlorosilane was added dropwise over 1 hour to the mixture of LiPF 6 , oxalic acid and ethyl methyl carbonate through a dropping funnel. The molar ratio of lithium hexafluorophosphate and methyltrichlorosilane was 1.00:1.40. MeSiF 3 and HCl gas were generated simultaneously with the initiation of dropping. After completion of the addition, the circulator temperature was raised to 50° C., and the reaction was terminated by continuing to stir for an additional 2 hours. After completion of the reaction, a transparent colorless filtrate was obtained.
주요 부산물인 MeSiF3 및 HCl 가스의 포집은 얼음 배스로 냉각된 500g 물을 1차로 통과 시킨 후 추가로 -50℃ 저온 트랩을 통과시키는 방법으로 진행하였다.The main by-products, MeSiF 3 and HCl gas, were first passed through 500 g of water cooled with an ice bath and then additionally passed through a -50°C low temperature trap.
50 내지 55℃ 내에서 가열하면서 진공펌프로 3시간 동안 추가 건조하여 미백색의 목적물 37.2g(수율 86.3%)을 얻었다. 아세토니트릴-d3에 용해시켜 19F NMR을 측정한 결과, LDFOP/LTFOP 몰비는 8.4:1으로 89.4%의 화학선택성 (chemoselectivity)을 보여 주었다.It was further dried for 3 hours with a vacuum pump while heating within 50 to 55° C. to obtain 37.2 g (yield 86.3%) of an off-white target. As a result of measuring 19 F NMR by dissolving in acetonitrile-d 3 , the LDFOP/LTFOP molar ratio was 8.4:1, showing a chemoselectivity of 89.4%.
실시예 6: 리튬 디플루오로비스(옥살라토)인산염 (LDFOP) 고체의 제조Example 6: Preparation of lithium difluorobis(oxalato)phosphate (LDFOP) solid
글로브 박스 내에서 마그네틱 교반자를 가진 500ml 3구 이중 자켓형 반응기에 헥사플루오르인산 리튬 26g (0.171몰)을 넣고 무수 에틸메틸카보네이트 174g을 가하여 충분히 교반하면서 용해한 후 무수 옥살산 30.8g을 첨가하였다. 헥사플루오르인산 리튬과 옥살산의 몰비는 1.00:2.00이었다. 이중 자켓형 반응기를 글로스 박스의 외부로 꺼내, 서큘레이터를 이중 자켓형 반응기에 연결 후 25℃로 설정하였으며, 밑에는 마그네틱 스터러를 설치하여, 충분히 교반하였다.Lithium hexafluorophosphate 26 g (0.171 mol) was added to a 500 ml three-neck double jacketed reactor with a magnetic stirrer in a glove box, and 174 g of anhydrous ethyl methyl carbonate was dissolved while sufficiently stirring, and then 30.8 g of anhydrous oxalic acid was added. The molar ratio of lithium hexafluorophosphate and oxalic acid was 1.00:2.00. The double jacketed reactor was taken out of the gloss box, and the circulator was connected to the double jacketed reactor and then set to 25°C, and a magnetic stirrer was installed underneath, followed by sufficiently stirring.
그 다음에, 메틸트라이클로로실레인 51.2g을 적하 깔대기를 통하여, 상기 LiPF6, 옥살산 및 에틸메틸카보네이트의 혼합액에 1시간에 걸려 적가하였다. 헥사플루오르인산 리튬과 메틸트라이클로로실레인의 몰비는 1.00:2.00이었다. 적하 개시와 동시에 MeSiF3 및 HCl 가스가 발생하였다. 첨가 종료 후, 서큘레이터 온도를 25℃로 유지하면서 3시간 동안 교반을 계속하여 반응 종료 하였다. 반응 종료 후 투명 무색의 여액을 얻었다.Then, 51.2 g of methyl trichlorosilane was added dropwise over 1 hour to the mixture of LiPF 6 , oxalic acid and ethyl methyl carbonate through a dropping funnel. The molar ratio of lithium hexafluorophosphate and methyltrichlorosilane was 1.00:2.00. MeSiF 3 and HCl gas were generated simultaneously with the initiation of dropping. After the addition was completed, stirring was continued for 3 hours while maintaining the circulator temperature at 25°C to terminate the reaction. After completion of the reaction, a transparent colorless filtrate was obtained.
주요 부산물인 MeSiF3 및 HCl 가스의 포집은 얼음 배스로 냉각된 500g 물을 1차로 통과 시킨 후 추가로 -50℃ 저온 트랩을 통과시키는 방법으로 진행하였다.The main by-products, MeSiF 3 and HCl gas, were first passed through 500 g of water cooled with an ice bath and then additionally passed through a -50°C low temperature trap.
50 내지 55℃ 내에서 가열하면서 진공펌프로 3시간 동안 추가 건조하여 미백색의 목적물 37.5g(수율 87%)을 얻었다. 아세토니트릴-d3에 용해시켜 19F NMR을 측정한 결과, LDFOP/LTFOP 몰비는 16.7:1으로 94.4%의 화학선택성 (chemoselectivity)을 보여 주었다.It was heated within 50 to 55° C. and dried for 3 hours with a vacuum pump to obtain 37.5 g (yield 87%) of an off-white target. As a result of dissolving in acetonitrile-d 3 and measuring 19 F NMR, the LDFOP/LTFOP molar ratio was 16.7:1, showing a chemoselectivity of 94.4%.
실시예 7: 리튬 디플루오로비스(옥살라토)인산염 (LDFOP) 고체의 제조Example 7: Preparation of lithium difluorobis(oxalato)phosphate (LDFOP) solid
글로브 박스 내에서 마그네틱 교반자를 가진 500ml 3구 이중 자켓형 반응기에 헥사플루오르인산 리튬 26g (0.171몰)을 넣고 무수 에틸메틸카보네이트 174g을 가하여 충분히 교반하면서 용해한 후 무수 옥살산 30g을 첨가하였다. 헥사플루오르인산 리튬과 옥살산의 몰비는 1.00:1.95이었다. 이중 자켓형 반응기를 글로스 박스의 외부로 꺼내, 서큘레이터를 이중 자켓형 반응기에 연결 후 40℃로 설정하여 내부온도를 승온하였으며, 밑에는 마그네틱 스터러를 설치하여, 충분히 교반하였다.Lithium hexafluorophosphate 26 g (0.171 mol) was added to a 500 ml three-neck double jacketed reactor with a magnetic stirrer in a glove box, and 174 g of anhydrous ethyl methyl carbonate was dissolved while sufficiently stirring, and then 30 g of anhydrous oxalic acid was added. The molar ratio of lithium hexafluorophosphate and oxalic acid was 1.00:1.95. The double jacketed reactor was taken out to the outside of the gloss box, and the circulator was connected to the double jacketed reactor, and the internal temperature was set to 40°C to increase the internal temperature, and a magnetic stirrer was installed at the bottom to sufficiently stir.
그 다음에, 메틸트라이클로로실레인 51.2g을 적하 깔대기를 통하여, 상기 LiPF6, 옥살산 및 에틸메틸카보네이트의 혼합액에 1시간에 걸려 적가하였다. 헥사플루오르인산 리튬과 메틸트라이클로로실레인의 몰비는 1.00:2.00이었다. 적하 개시와 동시에 MeSiF3 및 HCl 가스가 발생하였다. 첨가 종료 후, 서큘레이터 온도를 50℃로 승온하였으며, 추가로 2시간 동안 교반을 계속하여 반응 종료 하였다. 반응 종료 후 투명 무색의 여액을 얻었다.Then, 51.2 g of methyl trichlorosilane was added dropwise over 1 hour to the mixture of LiPF 6 , oxalic acid and ethyl methyl carbonate through a dropping funnel. The molar ratio of lithium hexafluorophosphate and methyltrichlorosilane was 1.00:2.00. MeSiF 3 and HCl gas were generated simultaneously with the initiation of dropping. After completion of the addition, the circulator temperature was raised to 50° C., and the reaction was terminated by continuing to stir for an additional 2 hours. After completion of the reaction, a transparent colorless filtrate was obtained.
주요 부산물인 MeSiF3 및 HCl 가스의 포집은 얼음 배스로 냉각된 500g 물을 1차로 통과 시킨 후 추가로 -50℃ 저온 트랩을 통과시키는 방법으로 진행하였다.The main by-products, MeSiF 3 and HCl gas, were first passed through 500 g of water cooled with an ice bath and then additionally passed through a -50°C low temperature trap.
50 내지 55℃ 내에서 가열하면서 진공펌프로 3시간 동안 추가 건조하여 미백색의 목적물 36.3g(수율 84.2%)을 얻었다. 아세토니트릴-d3에 용해시켜 19F NMR을 측정한 결과, LDFOP/LTFOP 몰비는 100:0으로 100.0%의 화학선택성 (chemoselectivity)을 보여 주었다.While heating within 50 to 55° C., it was further dried with a vacuum pump for 3 hours to obtain 36.3 g (yield 84.2%) of an off-white target. As a result of dissolving in acetonitrile-d 3 and measuring 19 F NMR, the LDFOP/LTFOP molar ratio was 100:0, showing a chemoselectivity of 100.0%.
실시예 8: 리튬 디플루오로비스(옥살라토)인산염 (LDFOP) 고체의 제조Example 8: Preparation of lithium difluorobis(oxalato)phosphate (LDFOP) solid
글로브 박스 내에서 마그네틱 교반자를 가진 500ml 3구 이중 자켓형 반응기에 헥사플루오르인산 리튬 26g (0.171몰)을 넣고 무수 에틸메틸카보네이트 174g을 가하여 충분히 교반하면서 용해한 후 무수 옥살산 32.4g을 첨가하였다. 헥사플루오르인산 리튬과 옥살산의 몰비는 1.00:2.1이었다. 이중 자켓형 반응기를 글로스 박스의 외부로 꺼내, 서큘레이터를 이중 자켓형 반응기에 연결 후 40℃로 설정하여 내부온도를 승온하였으며, 밑에는 마그네틱 스터러를 설치하여, 충분히 교반하였다.Lithium hexafluorophosphate 26 g (0.171 mol) was added to a 500 ml three-neck double jacketed reactor with a magnetic stirrer in a glove box, and 174 g of anhydrous ethyl methyl carbonate was dissolved while sufficiently stirring, and then 32.4 g of anhydrous oxalic acid was added. The molar ratio of lithium hexafluorophosphate and oxalic acid was 1.00:2.1. The double jacketed reactor was taken out to the outside of the gloss box, and the circulator was connected to the double jacketed reactor, and the internal temperature was set to 40°C to increase the internal temperature, and a magnetic stirrer was installed at the bottom to sufficiently stir.
그 다음에, 메틸트라이클로로실레인 51.2g을 적하 깔대기를 통하여, 상기 LiPF6, 옥살산 및 에틸메틸카보네이트의 혼합액에 1시간에 걸려 적가하였다. 헥사플루오르인산 리튬과 메틸트라이클로로실레인의 몰비는 1.00:2.00이었다. 적하 개시와 동시에 MeSiF3 및 HCl 가스가 발생하였다. 첨가 종료 후, 서큘레이터 온도를 50℃로 승온하였으며, 추가로 2시간 동안 교반을 계속하여 반응 종료 하였다. 반응 종료 후 투명 무색의 여액을 얻었다.Then, 51.2 g of methyl trichlorosilane was added dropwise over 1 hour to the mixture of LiPF 6 , oxalic acid and ethyl methyl carbonate through a dropping funnel. The molar ratio of lithium hexafluorophosphate and methyltrichlorosilane was 1.00:2.00. MeSiF 3 and HCl gas were generated simultaneously with the initiation of dropping. After completion of the addition, the circulator temperature was raised to 50° C., and the reaction was terminated by continuing to stir for an additional 2 hours. After completion of the reaction, a transparent colorless filtrate was obtained.
주요 부산물인 MeSiF3 및 HCl 가스의 포집은 얼음 배스로 냉각된 500g 물을 1차로 통과 시킨 후 추가로 -50℃ 저온 트랩을 통과시키는 방법으로 진행하였다.The main by-products, MeSiF 3 and HCl gas, were first passed through 500 g of water cooled with an ice bath and then additionally passed through a -50°C low temperature trap.
50 내지 55℃ 내에서 가열하면서 진공펌프로 3시간 동안 추가 건조하여 미백색의 목적물 37.4g(수율 86.7%)을 얻었다. 아세토니트릴-d3에 용해시켜 19F NMR을 측정한 결과, LDFOP/LTFOP 몰비는 100:0으로 100.0%의 화학선택성 (chemoselectivity)을 보여 주었다.It was further dried for 3 hours with a vacuum pump while heating within 50 to 55°C to obtain 37.4 g (yield 86.7%) of an off-white target. As a result of dissolving in acetonitrile-d 3 and measuring 19 F NMR, the LDFOP/LTFOP molar ratio was 100:0, showing a chemoselectivity of 100.0%.
비교예 1: 사염화규소를 사용한 리튬 디플루오로비스(옥살라토)인산염 (LDFOP) 고체의 제조Comparative Example 1: Preparation of lithium difluorobis (oxalato) phosphate (LDFOP) solid using silicon tetrachloride
글로브 박스 내에서 마그네틱 교반자를 가진 500ml 3구 이중 자켓형 반응기에 헥사플루오르인산 리튬 26g (0.171몰)을 넣고 디에틸 카보네이트 174g을 가하여 충분히 교반하면서 용해한 후 무수 옥살산 30.8g을 첨가하였다. 헥사플루오르인산 리튬과 옥살산의 몰비는 1.00:2.00이었다. 이중 자켓형 반응기를 글로스 박스의 외부로 꺼내, 서큘레이터를 이중 자켓형 반응기에 연결 후 40℃로 설정하여 내부온도를 승온하였으며, 밑에는 마그네틱 스터러를 설치하여, 충분히 교반하였다.Lithium hexafluorophosphate 26 g (0.171 mol) was added to a 500 ml three-neck double jacketed reactor with a magnetic stirrer in a glove box, and 174 g of diethyl carbonate was added to dissolve while sufficiently stirring, and then 30.8 g of anhydrous oxalic acid was added. The molar ratio of lithium hexafluorophosphate and oxalic acid was 1.00:2.00. The double jacketed reactor was taken out to the outside of the gloss box, and the circulator was connected to the double jacketed reactor, and the internal temperature was set to 40°C to increase the internal temperature, and a magnetic stirrer was installed at the bottom to sufficiently stir.
그 다음에, 사염화규소(SiCl4) 29.96g을 적하 깔대기를 통하여, 상기 LiPF6, 옥살산 및 디에틸 카보네이트의 혼합액에 1시간에 걸려 적가하였다. 헥사플루오르인산 리튬과 사염화규소의 몰비는 1.00:1.03이었다. 적하 개시와 동시에 SiF4 및 HCl 가스가 발생하였다. 첨가 종료 후, 서큘레이터 온도를 40℃로 유지하면서 2시간 동안 교반을 계속하여 반응 종료 하였다. 반응 종료 후 투명 무색의 여액을 얻었다.Then, 29.96 g of silicon tetrachloride (SiCl 4 ) was added dropwise over 1 hour to the mixture of LiPF 6 , oxalic acid and diethyl carbonate through a dropping funnel. The molar ratio of lithium hexafluorophosphate and silicon tetrachloride was 1.00:1.03. Simultaneously with the initiation of dropping, SiF 4 and HCl gases were generated. After completion of the addition, stirring was continued for 2 hours while maintaining the circulator temperature at 40° C. to terminate the reaction. After completion of the reaction, a transparent colorless filtrate was obtained.
주요 부산물인 SiF4 및 HCl 가스의 포집은 얼음 배스로 냉각된 30% NaOH 수용액 500g을 통과시키는 방법으로 진행하였다.The main by-products, SiF 4 and HCl gas, were collected by passing 500 g of a 30% NaOH aqueous solution cooled with an ice bath.
50 내지 55℃ 내에서 가열하면서 진공펌프로 3시간 동안 추가 건조하여 미백색의 목적물 36.3g(수율 84.2%)을 얻었다. 아세토니트릴-d3에 용해시켜 19F NMR을 측정한 결과, 도 2에 나타낸 바와 같이 LDFOP/LTFOP 몰비는 3.24:1으로 76.4%의 화학선택성 (chemoselectivity)을 보여 주었다.While heating within 50 to 55° C., it was further dried with a vacuum pump for 3 hours to obtain 36.3 g (yield 84.2%) of an off-white target. As a result of measuring 19 F NMR by dissolving in acetonitrile-d 3 , as shown in FIG. 2, the LDFOP/LTFOP molar ratio was 3.24:1, showing a chemoselectivity of 76.4%.
비교예 2: 디메틸디클로로실레인을 사용한 리튬 디플루오로비스(옥살라토)인산염 (LDFOP)의 제조Comparative Example 2: Preparation of lithium difluorobis (oxalato) phosphate (LDFOP) using dimethyldichlorosilane
실시예 1과 동일한 조건에서 메틸트라이클로로실레인(MeSiCl3) 대신 디메틸디클로로실레인(Me2SiCl2)을 사용하여 합성을 진행하였다. Me2SiCl2 적가 후 반응액 중의 고체가 녹지 않았으며 반응 온도를 50℃로 승온하여 밤샘 교반해도 고체가 그대로 존재하였다. 반응액을 일부 취하여 여과한 후 아세토니트릴-d3에 용해시켜 19F NMR을 측정한 결과, 헥사플루오르인산 리튬이 거의 그대로 남아 있고 LDFOP 혹은 LTFOP가 관찰되지 않았다.Synthesis was carried out using dimethyldichlorosilane (Me 2 SiCl 2 ) instead of methyl trichlorosilane (MeSiCl 3 ) under the same conditions as in Example 1. Me 2 SiCl 2 After dropwise addition, the solid in the reaction solution did not dissolve, and even when the reaction temperature was raised to 50° C. and stirred overnight, the solid remained as it was. A part of the reaction solution was taken, filtered, and dissolved in acetonitrile-d 3 to measure 19 F NMR. As a result, lithium hexafluorophosphate remained almost as it was, and LDFOP or LTFOP was not observed.
Claims (11)
상기 헥사플루오로인산 리튬과 옥살산의 몰비는 1:1.8 내지 1:2.2이며,
상기 헥사플루오로인산 리튬과 메틸트라이클로로실레인의 몰비는 1:1.2 내지 1:2.5이고,
상기 반응 온도가 20 내지 70℃의 범위인 리튬 디플루오로비스(옥살라토)인산염(LDFOP)의 제조방법.Including the step of reacting by adding methyl trichlorosilane (MeSiCl 3 ) to lithium hexafluorophosphate (LiPF 6 ) and oxalic acid,
The molar ratio of the lithium hexafluorophosphate and oxalic acid is 1:1.8 to 1:2.2,
The molar ratio of the lithium hexafluorophosphate and methyl trichlorosilane is 1:1.2 to 1:2.5,
Method for producing lithium difluorobis (oxalato) phosphate (LDFOP) wherein the reaction temperature is in the range of 20 to 70°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190114609A KR102164920B1 (en) | 2019-09-18 | 2019-09-18 | Process for Preparing Lithium Difluorobis(oxalato)phosphate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190114609A KR102164920B1 (en) | 2019-09-18 | 2019-09-18 | Process for Preparing Lithium Difluorobis(oxalato)phosphate |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102164920B1 true KR102164920B1 (en) | 2020-10-13 |
Family
ID=72885254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190114609A KR102164920B1 (en) | 2019-09-18 | 2019-09-18 | Process for Preparing Lithium Difluorobis(oxalato)phosphate |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102164920B1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6783896B2 (en) | 2000-10-03 | 2004-08-31 | Central Glass Company, Limited | Electrolyte for electrochemical device |
WO2009066559A1 (en) | 2007-11-19 | 2009-05-28 | Central Glass Company, Limited | Electrolyte solution for nonaqueous battery and nonaqueous battery using the same |
US20100267984A1 (en) | 2006-09-07 | 2010-10-21 | U.S. Government As Represented By The Secretary Of The Army | Oxyfluorophosphate synthesis process and compound therefrom |
KR20110086102A (en) | 2008-12-16 | 2011-07-27 | 샌트랄 글래스 컴퍼니 리미티드 | Manufacturing method of difluorobis (oxalato) lithium phosphate solution |
KR101739936B1 (en) * | 2016-10-06 | 2017-06-08 | 임광민 | Novel method for preparing lithium difluorophosphate |
KR20180063850A (en) * | 2016-12-02 | 2018-06-12 | 샌트랄 글래스 컴퍼니 리미티드 | Method for producing lithium difluorophosphate |
-
2019
- 2019-09-18 KR KR1020190114609A patent/KR102164920B1/en active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6783896B2 (en) | 2000-10-03 | 2004-08-31 | Central Glass Company, Limited | Electrolyte for electrochemical device |
US20100267984A1 (en) | 2006-09-07 | 2010-10-21 | U.S. Government As Represented By The Secretary Of The Army | Oxyfluorophosphate synthesis process and compound therefrom |
WO2009066559A1 (en) | 2007-11-19 | 2009-05-28 | Central Glass Company, Limited | Electrolyte solution for nonaqueous battery and nonaqueous battery using the same |
KR20110086102A (en) | 2008-12-16 | 2011-07-27 | 샌트랄 글래스 컴퍼니 리미티드 | Manufacturing method of difluorobis (oxalato) lithium phosphate solution |
KR101739936B1 (en) * | 2016-10-06 | 2017-06-08 | 임광민 | Novel method for preparing lithium difluorophosphate |
KR20180063850A (en) * | 2016-12-02 | 2018-06-12 | 샌트랄 글래스 컴퍼니 리미티드 | Method for producing lithium difluorophosphate |
JP2018090439A (en) * | 2016-12-02 | 2018-06-14 | セントラル硝子株式会社 | Process for producing lithium difluorophosphate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101395663B1 (en) | Process for preparing lithium difluorobis(oxalato)phosphate, lithium tetrafluoro(oxalato)phosphate, or their mixture | |
JP5315971B2 (en) | Method for producing difluorobis (oxalato) lithium phosphate solution | |
KR101668293B1 (en) | Method for preparing bis(fluorosulfonyl)imide | |
KR102083080B1 (en) | The method for preparing lithium difluorophosphate using difluorophosphate ester | |
JP6031828B2 (en) | Method for producing tetrafluoro (oxalato) phosphate solution | |
JP2019520312A (en) | Heterocyclic ionic liquid | |
CN114206774B (en) | Method for producing lithium difluorophosphate, method for producing difluorophosphate ester, lithium difluorophosphate, method for producing nonaqueous electrolyte, and method for producing nonaqueous secondary battery | |
JP2018529638A (en) | Process for the production of fluorinated cyclic carbonates and their use for lithium ion batteries | |
CN111606952A (en) | Preparation method, non-aqueous electrolyte and battery of lithium tetrafluorooxalate phosphate | |
KR102209974B1 (en) | Process for Preparing Lithium Tetrafluoro(oxalato)phosphate | |
CN111137870B (en) | Lithium difluorophosphate, preparation method thereof and lithium ion battery electrolyte | |
KR102164920B1 (en) | Process for Preparing Lithium Difluorobis(oxalato)phosphate | |
KR102311311B1 (en) | Lithium Difluorobis(oxalato)phosphate 1,4-Dioxane Solvate, Process for Preparing the Same, and Electrolyte Composition Including the Same | |
KR20220082421A (en) | Preparing method of lithium difluorobis(oxalato)phosphate | |
KR102272371B1 (en) | New lithium phosphate derivatives and New lithium borate derivatives, the method of preparing the same and electrolyte solution and lithium secondary battery containing the same | |
CN113753875B (en) | Preparation method of difluoro lithium bisoxalato phosphate | |
KR102131891B1 (en) | Novel lithium salt compounds, method for preparing same and electrolyte for secondary battery comprising same | |
KR102660204B1 (en) | Method for manufacturing cesium fluoro oxalato phosphate with high purity | |
KR20230007149A (en) | Preparation Method for Lithium Difluoro bis(oxlato)phospholate Having High Purity | |
KR102596526B1 (en) | Manufactuiring method for crystallization of lithium difluorophosphate and Crystallization of lithium difluorophosphate | |
KR102596524B1 (en) | Manufactuiring method for crystallization of lithium difluorophosphate and Crystallization of lithium difluorophosphate | |
CN111943983B (en) | Preparation method of lithium oxalate phosphate solution | |
KR20230060368A (en) | Preparing method for cyclic phosphine compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20190918 |
|
PA0201 | Request for examination | ||
PA0302 | Request for accelerated examination |
Patent event date: 20191210 Patent event code: PA03022R01D Comment text: Request for Accelerated Examination Patent event date: 20190918 Patent event code: PA03021R01I Comment text: Patent Application |
|
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20200129 Patent event code: PE09021S01D |
|
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20200404 |
|
N231 | Notification of change of applicant | ||
PN2301 | Change of applicant |
Patent event date: 20200928 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20201006 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20201007 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20230907 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20240911 Start annual number: 5 End annual number: 5 |