[go: up one dir, main page]

KR102162250B1 - Method for Preparing Monocyclic Aromatics by Using the Same and Catalyst for Preparing Monocyclic Aromatics - Google Patents

Method for Preparing Monocyclic Aromatics by Using the Same and Catalyst for Preparing Monocyclic Aromatics Download PDF

Info

Publication number
KR102162250B1
KR102162250B1 KR1020180131178A KR20180131178A KR102162250B1 KR 102162250 B1 KR102162250 B1 KR 102162250B1 KR 1020180131178 A KR1020180131178 A KR 1020180131178A KR 20180131178 A KR20180131178 A KR 20180131178A KR 102162250 B1 KR102162250 B1 KR 102162250B1
Authority
KR
South Korea
Prior art keywords
catalyst
monocyclic aromatic
gallium
aromatic compound
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020180131178A
Other languages
Korean (ko)
Other versions
KR20200050013A (en
Inventor
곽근재
전기원
강석창
박경아
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020180131178A priority Critical patent/KR102162250B1/en
Publication of KR20200050013A publication Critical patent/KR20200050013A/en
Application granted granted Critical
Publication of KR102162250B1 publication Critical patent/KR102162250B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • C07C1/044Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof containing iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/04Benzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/06Toluene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/073Ethylbenzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/08Xylenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/183After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • C07C2529/46Iron group metals or copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 본 발명은 갈륨이 치환된 알루미노실리케이트계를 포함하는 단환 방향족 화합물의 합성용 촉매 및 이를 이용하여 합성가스로부터 단환 방향족 화합물의 합성방법에 관한 것으로, 보다 상세하게는 알루미노실리케이트계 지지체에 갈륨이 치환되어 지지체 구조 내부에 공유결합으로 연결되어짐에 따라서 루이스 산점을 유도시킬 수 있어서, 탈수소방향족화 반응을 활성을 향상시킬 수 있는 촉매 및 이를 이용한 합성가스로부터 단환 방향족 화합물의 합성방법에 관한 것이다. The present invention relates to a catalyst for synthesizing monocyclic aromatic compounds including gallium-substituted aluminosilicates, and a method for synthesizing monocyclic aromatic compounds from synthesis gas using the same, and more particularly, to an aluminosilicate-based support A catalyst capable of inducing a Lewis acid point as the gallium is substituted and linked by a covalent bond inside the support structure, thereby enhancing the activity of the dehydrogenation aromatization reaction, and a method for synthesizing monocyclic aromatic compounds from synthesis gas using the same. will be.

Description

단환 방향족 화합물의 합성용 촉매 및 이를 이용한 단환 방향족 화합물의 합성방법{Method for Preparing Monocyclic Aromatics by Using the Same and Catalyst for Preparing Monocyclic Aromatics}Catalyst for the synthesis of monocyclic aromatic compounds and method for synthesizing monocyclic aromatic compounds using the same {Method for Preparing Monocyclic Aromatics by Using the Same and Catalyst for Preparing Monocyclic Aromatics}

본 발명은 갈륨이 치환된 알루미노실리케이트계를 포함하는 단환 방향족 화합물의 합성용 촉매 및 이를 이용하여 합성가스로부터 단환 방향족 화합물의 합성방법에 관한 것이다.The present invention relates to a catalyst for synthesizing monocyclic aromatic compounds including gallium-substituted aluminosilicates, and a method for synthesizing monocyclic aromatic compounds from synthesis gas using the same.

GTL 기술의 핵심 공정인 피셔-트롭쉬(FT) 합성공정은 천연가스의 개질반응을 통해 제조된 합성가스로부터 탄화수소를 제조하는 공정이다. 그러나 FT 합성공정을 통해 배출되는 탄화수소는 탄소수 범위가 광범위하므로, 제품생산을 위해서는 추가적인 분리 및 업그레이딩 공정이 필요하다. 이에, GTL 공정의 간소화 및 효율적인 제품생산을 위하여 FT 합성공정 조건을 조절하여, 비교적 좁은 탄소수 범위의 탄화수소를 합성하고자 하는 연구가 활발하게 진행되고 있다.The Fischer-Tropsch (FT) synthesis process, the core process of GTL technology, is a process for producing hydrocarbons from synthetic gas produced through the reforming reaction of natural gas. However, since hydrocarbons discharged through the FT synthesis process have a wide range of carbon atoms, additional separation and upgrading processes are required for product production. Accordingly, studies to synthesize hydrocarbons having a relatively narrow carbon number range by adjusting the FT synthesis process conditions for simplification of the GTL process and efficient product production are being actively conducted.

FT 합성공정에는 주로 철계 촉매와 코발트계 촉매가 사용된다. 기술 개발 초기에는 철계 촉매가 주로 사용되었으나, 최근에는 코발트계 촉매가 주로 이용되고 있다. 하지만, 코발트계 촉매를 이용한 FT 합성공정에서는 원료로 사용되는 합성가스의 조성비로서 H2/CO의 몰비를 2에 가깝게 맞추어야 하므로 운전 조건을 맞추기가 까다로울 뿐만 아니라, 합성가스 내에 포함된 이산화탄소의 이용에 대해서는 고려치 않고 있기 때문에 공정 전체의 열효율 및 탄소효율이 비교적 낮으며 이차적인 환경문제가 발생할 수 있다. 이에 반하여 철계 촉매를 이용한 FT 합성공정에서는 수성가스전환반응에 의하여 이산화탄소를 탄화수소로 전환할 수 있기 때문에 열효율 및 탄소효율이 비교적 높은 친환경 공정이다. Iron-based catalysts and cobalt-based catalysts are mainly used in the FT synthesis process. In the early stages of technology development, iron-based catalysts were mainly used, but cobalt-based catalysts are mainly used in recent years. However, in the FT synthesis process using a cobalt catalyst, the molar ratio of H2/CO as the composition ratio of the synthesis gas used as a raw material must be adjusted close to 2, so it is not only difficult to meet the operating conditions, but also the use of carbon dioxide contained in the synthesis gas Since it is not considered, the thermal efficiency and carbon efficiency of the entire process are relatively low, and secondary environmental problems may occur. On the other hand, in the FT synthesis process using an iron-based catalyst, since carbon dioxide can be converted into hydrocarbons by a water gas conversion reaction, it is an eco-friendly process with relatively high thermal efficiency and carbon efficiency.

한편, 벤젠, 톨루엔, 자일렌, 에틸벤젠 등의 단환 방향족 화합물은 합성섬유, 각종 플라스틱, 휘발유 첨가제 등 석유화학제품의 기초 원료로 이용되고 있다. 종래 방법에서는 단환 방향족 화합물은 주로 혼합 연료유로부터 제조되고 있다. 상기 방향족 화합물의 제조방법으로서 특허문헌 1에는 제올라이트 촉매를 사용하여 경질 사이클유(LCO) 등에 포함된 다환 방향족 화합물로부터 제조하는 방법이 제안되어 있다.Meanwhile, monocyclic aromatic compounds such as benzene, toluene, xylene, and ethylbenzene are used as basic raw materials for petrochemical products such as synthetic fibers, various plastics, and gasoline additives. In the conventional method, monocyclic aromatic compounds are mainly produced from mixed fuel oil. As a method for producing the aromatic compound, Patent Document 1 proposes a method for producing a polycyclic aromatic compound contained in light cycle oil (LCO) or the like using a zeolite catalyst.

이에, 본 발명자는 합성가스를 원료로 사용하여 단환 방향족 화합물과 장쇄 올레핀 화합물을 직접 합성하기 위해 피셔-트롭쉬(FT) 합성공정에 의한 C1 ~ C15의 단쇄 탄화수소의 제조 단계와 제조된 단쇄 탄화수소의 탈수소화 단계를 포함하는 합성방법을 개시한 바 있다(특허문헌 2 참조).Accordingly, the present inventors have prepared the steps of preparing short-chain hydrocarbons of C1 to C15 by the Fischer-Tropsch (FT) synthesis process in order to directly synthesize monocyclic aromatic compounds and long-chain olefin compounds using syngas as raw materials, and of the prepared short-chain hydrocarbons. A synthesis method including a dehydrogenation step has been disclosed (see Patent Document 2).

그러나, 단쇄 탄화수소의 방향족화에 유용한 종래의 제올라이트계 촉매의 문제점은 방향족화합물의 선택도가 상대적으로 낮은 문제점이 있으며, 또한, 방향족화 공정에 있어서 종래의 제올라이트계 촉매의 촉매 활성이 시간이 지남에 따라 감소된다는 것이 발견되었다. 따라서, 탈수소방향족화 단계에서 사용되는 촉매의 조성과 온도 및 압력 조건을 별도로 제어하여 촉매의 비활성화 속도를 감소시킬 수 있는 단환 방향족 화합물 제조용 촉매 및 이를 이용한 단환 방향족 화합물의 제조방법에 대한 기술 개발이 여전히 필요한 실정이다.However, the problem of the conventional zeolite catalyst useful for aromatization of short-chain hydrocarbons is a problem that the selectivity of the aromatic compound is relatively low, and the catalytic activity of the conventional zeolite catalyst in the aromatization process is over time. It was found to decrease accordingly. Accordingly, there is still a technology development for a catalyst for producing monocyclic aromatic compounds that can reduce the deactivation rate of the catalyst by separately controlling the composition, temperature, and pressure conditions of the catalyst used in the dehydroaromatization step and a method for producing monocyclic aromatic compounds using the same. It is a necessary situation.

한국공개특허 제10-2014-0027082호(공개일 : 2011.12.28.)Korean Patent Publication No. 10-2014-0027082 (Publication date: 2011.12.28.) 한국등록특허 제10-1600430호(공고일 : 2016.03.07)Korean Patent Registration No. 10-1600430 (announcement date: 2016.03.07)

본 발명의 주된 목적은 상술한 문제점을 해결하기 위한 것으로서, 갈륨이 치환된 알루미노실리케이트계 촉매를 사용하여 합성가스를 원료로 사용하여 피셔-트롭시 반응과 탈수소방향족화 반응으로 이루어진 2단 공정으로 단환 방향족 화합물을 제조하는, 단환 방향족 화합물의 합성방법을 제공하는데 있다.The main object of the present invention is to solve the above-described problems, and a two-stage process consisting of a Fischer-Tropsch reaction and a dehydrogenation aromatication reaction using a synthesis gas as a raw material using a gallium-substituted aluminosilicate catalyst. It is to provide a method for synthesizing a monocyclic aromatic compound for producing a monocyclic aromatic compound.

상기와 같은 목적을 달성하기 위하여, 본 발명의 일 구현예는 결정성 알루미노실리케이트계 촉매의 내부 또는 표면 상에 실리콘(Si) 원자가 갈륨(Ga) 원자로 치환된, 탄화수소로부터 단환 방향족 화합물의 합성용 촉매를 제공한다.In order to achieve the above object, an embodiment of the present invention is for the synthesis of monocyclic aromatic compounds from hydrocarbons in which a silicon (Si) atom is substituted with a gallium (Ga) atom on the inside or the surface of a crystalline aluminosilicate catalyst. Provides a catalyst.

본 발명의 바람직한 일 구현예에서, 상기 갈륨(Ga) 원자의 함량은 전체 촉매량에 대하여 갈륨(Ga) 원자의 중량%가 0.5 ~ 10을 범위인 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, the content of the gallium (Ga) atom may be characterized in that the weight% of the gallium (Ga) atom is in the range of 0.5 to 10 with respect to the total catalyst amount.

본 발명의 바람직한 일 구현예에서, 상기 결정성 알루미노실리케이트는 ZSM-5, H-beta, L-zeolite, Y-zeolite, SAPO-34, MCM-22 및 H-USY로 구성된 군에서 선택되는 1 종 이상인 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, the crystalline aluminosilicate is 1 selected from the group consisting of ZSM-5, H-beta, L-zeolite, Y-zeolite, SAPO-34, MCM-22 and H-USY It can be characterized by more than a species.

본 발명의 바람직한 일 구현예에서, 상기 결정성 알루미노실리케이트는 Si/Al의 몰비가 10 ~ 150인 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, the crystalline aluminosilicate may be characterized in that the molar ratio of Si/Al is 10 to 150.

본 발명의 바람직한 일 구현예에서, 상기 결정성 알루미노실리케이트계 촉매는 아연(Zn), 백금(Pt), 팔라듐(Pd), 텅스텐(W), 코발트(Co) 및 철(Fe)로 구성된 군에서 선택되는 1종 이상의 조촉매가 더 함유된 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, the crystalline aluminosilicate catalyst is a group consisting of zinc (Zn), platinum (Pt), palladium (Pd), tungsten (W), cobalt (Co) and iron (Fe). It may be characterized in that it further contains at least one cocatalyst selected from.

또한, 본 발명의 일 구현예는 a) 합성가스의 피셔-트롭쉬(FT) 반응으로부터 탄화수소를 제조하는 단계; 및 b) 상기 단환 방향족 화합물의 합성용 촉매의 존재 하에서, 상기 탄화수소의 탈수소방향족화 반응으로부터 단환 방향족 화합물을 제조하는 단계;를 포함하는 단환 방향족 화합물의 합성방법 제공한다.In addition, an embodiment of the present invention is a) preparing a hydrocarbon from the Fischer-Tropsch (FT) reaction of syngas; And b) preparing a monocyclic aromatic compound from the dehydroaromatization reaction of the hydrocarbon in the presence of a catalyst for synthesizing the monocyclic aromatic compound.

본 발명의 바람직한 일 구현예에서, 상기 피셔-트롭쉬 반응에서 철계 촉매가 사용될 수 있으며, 상기 철계 촉매는 구리(Cu), 망간(Mn), 코발트(Co), 니켈(Ni), 아연(Zn), 알루미늄(Al), 나트륨(Na), 크롬(Cr), 실 리콘(Si) 및 칼륨(K)으로 구성된 군에서 선택된 1종 이상의 조촉매를 더 포함하는 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, an iron-based catalyst may be used in the Fischer-Tropsch reaction, and the iron-based catalyst is copper (Cu), manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn ), aluminum (Al), sodium (Na), chromium (Cr), silicon (Si), and potassium (K) may be characterized in that it further comprises at least one cocatalyst selected from the group consisting of.

본 발명의 바람직한 일 구현예에서, 상기 피셔-트롭쉬 반응은 250 ~ 350 ℃에서 10 ~ 30 bar로 수행하는 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, the Fischer-Tropsch reaction may be characterized in that it is performed at 250 to 350 °C at 10 to 30 bar.

본 발명의 바람직한 일 구현예에서, 상기 합성가스는 H2/CO의 몰비가 H2/CO의 몰비가 0.1 ~ 3 범위인 것을 특징으로 할 수 있다.In one preferred embodiment, the synthesis gas may be characterized in that the molar ratio of H 2 / CO in a molar ratio of H 2 / CO ~ 3 0.1 range.

본 발명의 바람직한 일 구현예에서, 상기 탈수소방향족화 반응은 350 ~ 550 ℃에서 1 ~ 5 bar로 수행하는 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, the dehydrogenation aromatication reaction may be characterized in that it is carried out at 1 to 5 bar at 350 to 550 °C.

본 발명의 바람직한 일 구현예에서, 상기 단환 방향족 화합물은 벤젠, 톨루엔, 에틸벤젠 및 자일렌으로 구성된 군에서 선택되는 1종 이상의 화합물을 포함하는 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, the monocyclic aromatic compound may be characterized in that it includes at least one compound selected from the group consisting of benzene, toluene, ethylbenzene, and xylene.

본 발명에 따르면, 갈륨이 치환된 알루미노실리케이트계 촉매를 사용하여 단환 방향족 화합물을 제조하면, 촉매의 안정성이 뛰어나 공정 시간이 연장됨에도 불구하고 단환 방향족 화합물을 높은 선택도로 수득할 수 있으며, 촉매의 수명도 연장되어 경제적 잇점이 있다.According to the present invention, when a monocyclic aromatic compound is prepared using a gallium-substituted aluminosilicate-based catalyst, a monocyclic aromatic compound can be obtained with high selectivity despite the prolonged process time due to excellent catalyst stability. It has an economic advantage as its lifespan is also extended.

도 1은 (a) 본 발명에 따른 갈륨으로 치환된 ZSM-5 (b) 이온교환으로 갈륨이 삽입된 ZSM-5 (c) 합침법으로 갈륨이 삽입된 ZSM-5 (d) 갈륨산화물/실리카 복합물질이 ZSM-5와 물리적으로 혼합된 복합체의 모식도이다.
도 2는 (a) 본 발명에 따른 갈륨으로 치환된 ZSM-5 내 갈륨의 NMR 결과를 나타낸 것이고, (b) 본 발명에 따른 갈륨으로 치환된 ZSM-5의 투과전자현미경(TEM) 사진이며, (c) 알루미늄(Al) 및 (d) 갈륨(Ga)의 Energy-Dispersive X-ray Spectroscopy(EDS) 분석 결과이다.
도 3은 (a) 이온교환으로 갈륨이 삽입된 ZSM-5의 투과전자현미경(TEM) 사진이고, (b) 알루미늄(Al) (c) 갈륨(Ga) (d) 실리콘(Si)의 Energy-Dispersive X-ray Spectroscopy(EDS) 분석 결과이다.
도 4는 (a) 합침법으로 갈륨이 삽입된 ZSM-5의 투과전자현미경(TEM) 사진이고, (b) 알루미늄(Al), 갈륨(Ga) 및 실리콘(Si)의 Energy-Dispersive X-ray Spectroscopy(EDS) 분석 결과를 함께 도시한 것이고, (c) 알루미늄(Al) (d) 갈륨(Ga) (e) 실리콘(Si)의 Energy-Dispersive X-ray Spectroscopy(EDS) 분석 결과이다.
도 5는 (a) ZSM-5 (b) 본 발명에 따른 갈륨으로 치환된 ZSM-5 (c) 이온교환으로 갈륨이 삽입된 ZSM-5 (d) 합침법으로 갈륨이 삽입된 ZSM-5 (e) 갈륨산화물/실리카 복합물질이 ZSM-5와 물리적으로 혼합된 복합체를 탈수소방향족화 반응용 촉매로 사용할 때 단환 방향족 화합물의 합성선택도를 나타낸 결과이다.
도 6는 (a) ZSM-5 (b) 본 발명에 따른 갈륨으로 치환된 ZSM-5 (c) 이온교환으로 갈륨이 삽입된 ZSM-5 (d) 합침법으로 갈륨이 삽입된 ZSM-5 (e) 갈륨산화물/실리카 복합물질이 ZSM-5와 물리적으로 혼합된 복합체를 탈수소방향족화 반응용 촉매로 사용할 때 단환 방향족 화합물의 합성선택도를 시간의 흐름에 따라 도시한 것이다.
1 shows (a) ZSM-5 substituted with gallium according to the present invention (b) ZSM-5 with gallium inserted by ion exchange (c) ZSM-5 with gallium inserted by impregnation method (d) gallium oxide/silica A schematic diagram of a composite material in which a composite material is physically mixed with ZSM-5.
FIG. 2 is a (a) NMR result of gallium in ZSM-5 substituted with gallium according to the present invention, and (b) is a transmission electron microscope (TEM) photograph of ZSM-5 substituted with gallium according to the present invention, (c) Energy-Dispersive X-ray Spectroscopy (EDS) analysis results of aluminum (Al) and (d) gallium (Ga).
3 is (a) a transmission electron microscope (TEM) photograph of ZSM-5 in which gallium is inserted through ion exchange, and (b) the energy of aluminum (Al) (c) gallium (Ga) (d) silicon (Si)- Dispersive X-ray Spectroscopy (EDS) analysis result.
4 is a transmission electron microscope (TEM) photograph of ZSM-5 in which gallium is inserted by (a) an impregnation method, and (b) Energy-Dispersive X-ray of aluminum (Al), gallium (Ga), and silicon (Si). Spectroscopy (EDS) analysis results are shown together, and (c) aluminum (Al) (d) gallium (Ga) (e) silicon (Si) Energy-Dispersive X-ray Spectroscopy (EDS) analysis results.
5 shows (a) ZSM-5 (b) ZSM-5 substituted with gallium according to the present invention (c) ZSM-5 inserted with gallium through ion exchange (d) ZSM-5 inserted with gallium by the impregnation method ( e) This is the result showing the synthesis selectivity of monocyclic aromatic compounds when the complex in which the gallium oxide/silica complex material is physically mixed with ZSM-5 is used as a catalyst for dehydroaromatic reaction.
6 shows (a) ZSM-5 (b) ZSM-5 substituted with gallium according to the present invention (c) ZSM-5 inserted with gallium by ion exchange (d) ZSM-5 inserted with gallium by the impregnation method ( e) The synthesis selectivity of monocyclic aromatic compounds is shown over time when the complex in which the gallium oxide/silica complex material is physically mixed with ZSM-5 is used as a catalyst for dehydroaromatic reaction.

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법 은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by an expert skilled in the art to which the present invention belongs. In general, the nomenclature used in this specification is well known and commonly used in the art.

본원 명세서 전체에서 어떤 부분이 어떤 구성 요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. In the entire specification of the present application, when a certain part "includes" a certain constituent element, it means that other constituent elements may be further included rather than excluding other constituent elements unless otherwise specified.

본 발명은 결정성 알루미노실리케이트계 촉매의 내부 또는 표면 상에 실리콘(Si) 원자가 갈륨(Ga) 원자로 치환된, 탄화수소로부터 단환 방향족 화합물의 합성용 촉매에 관한 것이다.The present invention relates to a catalyst for synthesizing a monocyclic aromatic compound from a hydrocarbon in which a silicon (Si) atom is substituted with a gallium (Ga) atom on the inside or the surface of a crystalline aluminosilicate catalyst.

보다 구체적으로, 본 발명의 탄화수소로부터 단환 방향족 화합물의 합성용 촉매는 결정성 알루미노실리케이트의 내부 또는 표면 상에 존재하는 실리콘(Si) 원자가 용해되어 외부로 배출되고 빈 공간(vacancy)에 갈륨(Ga) 원자가 삽입되어, 도 1(a)에서 도시한 바와 같이, 결정성 알루미노실리케이트의 격자 구조의 내부 혹은 표면 상에 갈륨(Ga) 원자가 산소(O) 원자와 공유결합으로 연결되어 있는 형태를 가지고 있는 것을 특징으로 한다.More specifically, in the catalyst for synthesis of monocyclic aromatic compounds from hydrocarbons of the present invention, silicon (Si) atoms present in or on the surface of the crystalline aluminosilicate are dissolved and discharged to the outside, and gallium (Ga) is discharged to the outside. ) Atoms are inserted, and gallium (Ga) atoms are covalently connected to oxygen (O) atoms on the inside or on the surface of the lattice structure of crystalline aluminosilicate, as shown in Fig. 1(a). It is characterized by having.

상기 결정성 알루미노실리케이트 내부 혹은 표면 상에 치환된 갈륨(Ga) 원자는 루이스 산점을 유도하여 탄화수소의 탈수소화 반응을 촉진하는 역할을 수행한다. 그러나 과량의 루이스 산점이 유도되는 경우 단환 방향족 화합물이 아닌 다환 방향족 화합물이 우세적으로 생성되는 문제점이 생성된다.The gallium (Ga) atom substituted inside or on the surface of the crystalline aluminosilicate serves to induce a Lewis acid point to promote a dehydrogenation reaction of a hydrocarbon. However, when an excessive amount of Lewis acid is induced, there is a problem in that polycyclic aromatic compounds are predominantly produced rather than monocyclic aromatic compounds.

따라서, 상기 갈륨(Ga) 원자의 함량은 전체 촉매량에 대하여 갈륨(Ga) 원자의 중량%가 0.5 ~ 10을 유지하는 것이 좋다. 구체적으로 갈륨(Ga) 원자의 중량%가 0.5 미만일 경우 갈륨(Ga)의 탈수소화 반응에 미치는 영향이 작아서 단환 방향족 화합물의 합성 선택도가 저하될 수 있으며, 갈륨(Ga) 원자의 중량%가 10을 초과할 때는 알루미노실리케이트의 결정성 붕괴로 인해 산특성이 줄어들어들거나 방향족 구조적 선택도가 줄어들어 단환 방향족 화합물의 합성 선택도가 감소하는 문제점이 발생한다.Therefore, the content of the gallium (Ga) atom is preferably 0.5 to 10 by weight of the gallium (Ga) atom with respect to the total catalyst amount. Specifically, when the weight% of the gallium (Ga) atom is less than 0.5, the effect on the dehydrogenation of gallium (Ga) is small, so the synthesis selectivity of the monocyclic aromatic compound may decrease, and the weight% of the gallium (Ga) atom is 10 When it exceeds, the acid characteristics decrease due to crystallinity decay of the aluminosilicate, or the aromatic structural selectivity decreases, resulting in a problem that the synthesis selectivity of the monocyclic aromatic compound decreases.

또한, 상기 결정성 알루미노실리케이트계 촉매는 ZSM-5, H-beta, L-zeolite, Y-zeolite, SAPO-34, MCM-22 및 H-USY로 구성된 군에서 선택되는 1 종 이상일 수 있으며, 바람직하게는 Si/Al의 몰비가 10 ~ 150, 바람직하게는 15 ~ 25인 인 결정성 알루미노실리케이트계 촉매를 사용할 수 있다. 만일, 상기 Si/Al의 몰비가 10 미만이면 산점 세기가 증가하여 탈수소화 반응이 격렬하게 진행되어 단환 방향족 화합물이 아닌 다환 방향족 화합물 또는 코크가 생성되기 때문에 바람직하지 않다. 반면에, Si/Al의 몰비가 150을 초과하면 산세기가 감소되어 단환 방향족 화합물의 생산성이 저하되기 때문에 바람직하지 않다.In addition, the crystalline aluminosilicate catalyst may be at least one selected from the group consisting of ZSM-5, H-beta, L-zeolite, Y-zeolite, SAPO-34, MCM-22, and H-USY, Preferably, a crystalline aluminosilicate catalyst having a Si/Al molar ratio of 10 to 150, preferably 15 to 25 may be used. If the molar ratio of Si/Al is less than 10, the acid point intensity increases, and the dehydrogenation reaction proceeds violently, which is not preferable because polycyclic aromatic compounds or coke are produced instead of monocyclic aromatic compounds. On the other hand, when the molar ratio of Si/Al exceeds 150, the acid strength decreases and the productivity of the monocyclic aromatic compound decreases, which is not preferable.

또한, 상기 결정성 알루미노실리케이트계 촉매는 결정성 다공체로서 10 nm 이하의 중간기공을 포함하고 있으며, 미세기공 크기가 1 ~ 8 Å 범위인 것을 사용한다. 이때 결정성 다공체의 기공 크기가 상기 범위를 만족시키지 못하는 경우는 단환 방향족 화합물의 생산성이 저하되기 때문에 바람직하지 않다.In addition, the crystalline aluminosilicate-based catalyst is a crystalline porous body, which includes mesopores of 10 nm or less, and has a micropore size in the range of 1 to 8 Å. At this time, when the pore size of the crystalline porous body does not satisfy the above range, the productivity of the monocyclic aromatic compound is lowered, which is not preferable.

한편, 상기 갈륨이 치환된 결정성 알루미노실리케이트계 촉매는 필요에 따라 아연(Zn), 백금(Pt), 팔라듐(Pd), 텅스텐(W), 코발트(Co) 및 철(Fe)로 구성된 군에서 선택되는 1종 이상의 조촉매를 더 포함할 수도 있다. Meanwhile, the gallium-substituted crystalline aluminosilicate catalyst is a group consisting of zinc (Zn), platinum (Pt), palladium (Pd), tungsten (W), cobalt (Co), and iron (Fe) as necessary. It may further include one or more cocatalysts selected from.

또한, 본 발명은 a) 합성가스의 피셔-트롭쉬(FT) 반응으로부터 탄화수소를 제조하는 단계; 및 b) 상기 단환 방향족 화합물의 합성용 촉매의 존재 하에서, 상기 탄화수소의 탈수소방향족화 반응으로부터 단환 방향족 화합물을 제조하는 단계;를 포함하는 단환 방향족 화합물의 합성방법에 관한 것이다.In addition, the present invention a) the step of producing a hydrocarbon from the Fischer-Tropsch (FT) reaction of syngas; And b) preparing a monocyclic aromatic compound from a dehydroaromatization reaction of the hydrocarbon in the presence of a catalyst for synthesizing the monocyclic aromatic compound.

구체적으로 상기 a) 단계는 합성가스를 원료로 사용하여 피셔-트롭쉬(FT) 합성 공정을 수행하여 탄화수소를 제조하는 과정이다.Specifically, step a) is a process of producing a hydrocarbon by performing a Fischer-Tropsch (FT) synthesis process using syngas as a raw material.

이때, 상기 피셔-트롭쉬 합성공정에서는 철계 촉매가 사용될 수 있으며, 상기 철계 촉매는 필요에 따라 구리(Cu), 망간(Mn), 코발트(Co), 니켈(Ni), 아연(Zn), 알루미늄(Al), 나트륨(Na), 크롬(Cr), 실 리콘(Si) 및 칼륨(K)으로 구성된 군에서 선택된 1종 이상의 조촉매를 더 포함할 수 있다.In this case, an iron-based catalyst may be used in the Fischer-Tropsch synthesis process, and the iron-based catalyst may be copper (Cu), manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), and aluminum as needed. It may further include at least one cocatalyst selected from the group consisting of (Al), sodium (Na), chromium (Cr), silicon (Si), and potassium (K).

본 발명에서 원료로 사용하는 합성가스는 수소(H2) 및 일산화탄소(CO)를 함유하고 있으며, H2/CO의 몰비가 0.1 ~ 3 범위, 바람직하게는 H2/CO의 몰비가 1 ~ 2인 합성가스를 사용한다. 만일, 상기 합성가스의 H2/CO의 몰비가 0.1 미만일 경우, 탄소 침적율이 증가하여 촉매 수명이 짧아질 수 있으며, H2/CO의 몰비가 3을 초과할 경우에는 수소화(hydrogenation)가 촉진됨에 따라 불필요한 메탄 및 단쇄 파라핀의 선택도가 증가하게 된다.Synthesis gas used as a raw material in the present invention include hydrogen (H 2) and a and containing carbon monoxide (CO), H 2 / CO molar ratio of 0.1 to 3 range, preferably at a molar ratio of H 2 / CO of 1 - 2 Phosphorus synthesis gas is used. If the molar ratio of H 2 /CO in the synthesis gas is less than 0.1, the carbon deposition rate increases and the catalyst life may be shortened. If the molar ratio of H 2 /CO exceeds 3, hydrogenation is promoted. As a result, the selectivity of unnecessary methane and short-chain paraffin increases.

전술된 바와 같은 철계 촉매가 충진된 반응기(100) 내로 합성가스가 유입되면, 반응기 내에서 합성가스의 피셔-트롭쉬 반응으로 탄화수소가 형성된다. 이때, 상기 반응기(100)로는 슬러리층 반응기, 고정층 반응기, 유동층 반응기 등의 통상의 피셔-트롭쉬 합성 공정에서 사용할 수 있는 반응기면 제한 없이 적용 가능할 수 있다.When syngas is introduced into the reactor 100 filled with the iron-based catalyst as described above, hydrocarbons are formed by the Fischer-Tropsch reaction of the syngas in the reactor. At this time, the reactor 100 may be applicable without limitation on a reactor that can be used in a typical Fischer-Tropsch synthesis process such as a slurry bed reactor, a fixed bed reactor, and a fluidized bed reactor.

일반적으로 철계 촉매 기반 합성가스의 피셔-트롭쉬 반응에서 250 ~ 350 ℃에서 5 ~ 30 bar의 조건에서 수행하며, 바람직하기로는 300 ∼ 350 ℃ 및 반응압력 15 ∼ 25 bar의 조건에서 수행한다.In general, the Fischer-Tropsch reaction of the iron-based catalyst-based syngas is carried out at 250 to 350° C. under the conditions of 5 to 30 bar, preferably 300 to 350° C. and the reaction pressure at 15 to 25 bar.

상기한 FT 합성공정의 반응온도가 250 ℃ 미만이면 고비점의 탄화수소가 주로 생성되어 단환 방향족 화합물 제조에 필요한 탄화수소에 적합하지 않고, 또한 반면에, 반응온도가 350 ℃를 초과하면 불필요하게 메탄(C1)의 선택도가 증가되어 단환 방향족 화합물의 선택도를 낮추는 원인이 되므로 바람직하지 않다.If the reaction temperature of the above-described FT synthesis process is less than 250°C, hydrocarbons with a high boiling point are mainly produced, which is not suitable for hydrocarbons required for the production of monocyclic aromatic compounds.On the other hand, when the reaction temperature exceeds 350°C, methane (C1 ), the selectivity of the monocyclic aromatic compound is increased, which is not preferable.

FT 합성공정의 반응압력이 5 bar 미만이면 철계 피셔-트롭쉬 반응의 활성이 나타나지 않아서 본 발명이 목적하는 탄소효율이 극대화하는 효과를 얻을 수 없다. 반면에, 반응압력이 30 bar 초과의 압력에서 반응을 하면 탄화수소성장 반응이 주로 일어나 단환 방향족 화합물 수율을 떨어뜨려 바람직 하지 않다. 또한, 고압 유지를 위한 안정상의 문제로 공정운전이 까다롭기 때문에 바람직하지 않다.If the reaction pressure of the FT synthesis process is less than 5 bar, the activity of the iron-based Fischer-Tropsch reaction does not appear, and thus the effect of maximizing the carbon efficiency aimed by the present invention cannot be obtained. On the other hand, when the reaction pressure is higher than 30 bar, a hydrocarbon growth reaction mainly occurs, which lowers the yield of monocyclic aromatic compounds, which is not preferable. In addition, it is not preferable because the process operation is difficult due to a stability problem for maintaining high pressure.

이어서, b) 단계는 갈륨으로 치환된 결정성 알루미노실리케이트 촉매의 존재 하에서, 단쇄 탄화수소를 탈수소방향족화 반응을 수행하여 벤젠, 톨루엔, 에틸벤젠, 자일렌 등의 하나의 고리를 가지는 단환 방향족 화합물을 제조하는 단계이다.Subsequently, in step b), in the presence of a crystalline aluminosilicate catalyst substituted with gallium, a monocyclic aromatic compound having one ring such as benzene, toluene, ethylbenzene, xylene, etc. It is a manufacturing step.

탈수소화 공정의 반응온도 및 반응압력을 조절함으로써 단환 방향족 화합물 의 선택도를 조절하는 것이 가능하다. 본 발명에 따른 갈륨으로 치환된 결정성 알루미노실리케이트 촉매의 존재 하에서, 탄화수소의 탈수소방향족화 반응은 350 ~ 550 ℃에서 1 ~ 5 bar로 수행로 수행하는 것이 바람직하다. 즉, 단환 방향족 화합물의 선택도를 높이기 위해서는 상기한 반응온도 및 반응압력 범위 내에서 반응온도는 높게 유지하면서 반응압력은 낮게 유지함으로써, 장쇄올레핀 화합물의 선택도를 낮추고, 단환 방향족 화합물의 선택도를 극대화할 수 있다.It is possible to control the selectivity of the monocyclic aromatic compound by controlling the reaction temperature and the reaction pressure in the dehydrogenation process. In the presence of the crystalline aluminosilicate catalyst substituted with gallium according to the present invention, the dehydroaromatic reaction of hydrocarbons is preferably carried out at 350 to 550 °C at 1 to 5 bar. That is, in order to increase the selectivity of the monocyclic aromatic compound, the selectivity of the long-chain olefin compound is lowered and the selectivity of the monocyclic aromatic compound is reduced by maintaining the reaction temperature high while maintaining the reaction pressure low within the above-described reaction temperature and reaction pressure range. Can be maximized.

상기한 탈수소방향족화공정의 반응온도가 350 ℃ 미만이면 산점이 활성화되지 않아 방향족화 반응이 일어나지 않아 단환 방향족 화합물 제조에 적합하지 않고, 또한 반면에, 반응온도가 550 ℃를 초과하면 탄화수소의 크래킹 반응이 일어나기 때문에 경질 탄화수소의 선택도가 높아져 단환 방향족 화합물 선택도를 낮추는 원인이 되므로 바람직하지 않다.If the reaction temperature of the above dehydroaromatization process is less than 350 ℃, the acid point is not activated and the aromatization reaction does not occur, which is not suitable for producing monocyclic aromatic compounds. On the other hand, if the reaction temperature exceeds 550 ℃, cracking reaction of hydrocarbons Because this occurs, the selectivity of the light hydrocarbon increases, which is the cause of lowering the monocyclic aromatic compound selectivity, which is not preferable.

탈수소방향족화 반응의 압력이 5 bar를 초과하면, 기상의 탄화수소들의 낮은 선속도와 마이크로기공에서 낮은 확산속도로 인해 탈수소화 가속화되어 다환 방향족화합물이나 코크가 생성될 수 있어 바람직 하지 않다. 또한, 상압 미만의 압력은 별도의 감압공정설비가 필요하여 공정운전이 까다롭기 때문에 바람직하지 않다.When the pressure of the dehydroaromatization reaction exceeds 5 bar, dehydrogenation is accelerated due to the low linear velocity of gaseous hydrocarbons and the low diffusion rate in the micropores, and polycyclic aromatic compounds or coke may be produced, which is not preferable. In addition, a pressure below normal pressure is not preferable because a separate decompression process facility is required and the process operation is difficult.

이와 같은 반응으로 제조된 생성물은 벤젠, 톨루엔, 에틸벤젠, 자일렌 등의 하나의 고리를 가지는 방향족 화합물인 단환 방향족 화합물과 경질 탄화수소(C1 ~ C4)가 반응 부산물로서 포함될 수 있다. 이에, 본 발명에서는 기/액상 분리장치 등을 통한 분리정제 단계를 후단에 추가하여 기상의 경질 탄화수소(C1 ~ C4)와 액상의 단환 방향족 화합물을 분리할 수 있다.The product produced by such a reaction may include monocyclic aromatic compounds and light hydrocarbons (C1 to C4), which are aromatic compounds having one ring such as benzene, toluene, ethylbenzene, and xylene, as reaction by-products. Accordingly, in the present invention, a gaseous light hydrocarbon (C1 ~ C4) and a liquid monocyclic aromatic compound can be separated by adding a separation and purification step through a gas/liquid separation device at a later stage.

상기 기/액상 분리장치의 증류온도는 -5 ℃ ~ 5 ℃가 바람직하다. 상기 분리장치의 온도가 -5 ℃ 미만이면 반응의 부생성물인 물이 동결되어 분리장치가 파손될 우려가 있기 때문에 바람직하지 않고, 5 ℃를 초과하면 경질 탄화수소(C1 ~ C4)와 액상 탄화수소(C5+)의 분리가 미흡하여 바람직하지 않다.The distillation temperature of the gas/liquid separation device is preferably -5 °C to 5 °C. If the temperature of the separation device is less than -5 °C, water, which is a by-product of the reaction, is not preferred because there is a risk that the separation device may be damaged, and when it exceeds 5 °C, light hydrocarbons (C1 ~ C4) and liquid hydrocarbons (C5+) It is not preferable because the separation of is insufficient.

또한, 상기 기/액상 분리장치를 통해 분리된 C1 ~ C4의 경질탄화수소는 합성가스 제조를 위한 개질 반응기로 재순환되어 사용될 수 있다.In addition, the light hydrocarbons of C1 to C4 separated through the gas/liquid separation device may be recycled to a reforming reactor for syngas production and used.

이상에서 설명한 바와 같은 본 발명의 합성방법은 하기의 실시예를 통해 보다 구체적으로 설명하겠는 바, 본 발명이 이에 한정되는 것은 아니다.The synthesis method of the present invention as described above will be described in more detail through the following examples, but the present invention is not limited thereto.

<실시예 1 : 갈륨 치환에 따른 제조><Example 1: Preparation according to gallium substitution>

탈이온수 200 mL에 2.56 g의 갈륨 질산염 (Ga(NO3)3·xH2O) 및 1.4 g의 수산화 나트륨 (NaOH)을 용해시킨 균일한 혼합물 용액을 제조하였다. 이후 상기 용액에 ZSM-5 제올라이트 10 g을 첨가하여 용액을 60 ℃에서 24시간 동안 교반시킴으로써 제올라이트 골격의 실리콘을 용해시키는 동시에 갈륨이 치환되도록 유도하였다. 이렇게 얻어진 고체 생성물을 용액과 분리한 후 3번의 수세과정을 거치고 110 ℃에서 12시간 건조하였다. 제조된 상기 제올라이트에 대한 양이온 치환을 위해 1.0 노르말농도 질산암모늄 수용액에 1:30 중량 비로 넣어 75 ℃에서 3시간 동안 교반하고 여과 및 세척 과정을 거쳐 추가적으로 2회 더 양이온 치환 시켰다. 양이온 치환이 완료된 고체 생성물을 110 ℃에서 12 시간 건조하고 550 ℃ 공기 분위기에서 5시간 동안 소성시켜 갈륨(Ga)이 질량기준 3% 치환된 ZSM-5 촉매를 수득하였다.A homogeneous mixture solution was prepared by dissolving 2.56 g of gallium nitrate (Ga(NO3)3·xH2O) and 1.4 g of sodium hydroxide (NaOH) in 200 mL of deionized water. Thereafter, 10 g of ZSM-5 zeolite was added to the solution, and the solution was stirred at 60° C. for 24 hours to dissolve the silicon of the zeolite skeleton and at the same time induce gallium to be substituted. The solid product thus obtained was separated from the solution, washed with water three times, and dried at 110° C. for 12 hours. For the cation substitution of the prepared zeolite, a 1.0 normal concentration ammonium nitrate aqueous solution was added at a weight ratio of 1:30 and stirred at 75° C. for 3 hours, followed by filtration and washing, and the cation was further substituted twice. The solid product having complete cation substitution was dried at 110° C. for 12 hours and calcined in an air atmosphere at 550° C. for 5 hours to obtain a ZSM-5 catalyst in which 3% by mass of gallium (Ga) was substituted.

<비교예 1: 함침법에 따른 제조><Comparative Example 1: Preparation according to the impregnation method>

탈이온수 0.5 mL에 0.11 g의 갈륨 질산염 (Ga(NO3)3·xH2O)을 용해시킨 용액을 1 g의 HZSM-5에 함침시켰다. 이 함침된 혼합물을 90 ℃에서 2시간 동안 숙성하고 110 ℃에서 12시간 동안 건조시킨 다음 550 ℃ 공기 분위기에서 5시간 동안 소성하였으며 갈륨 (Ga) 질량기준 3%가 함침된 ZSM-5 촉매를 수득하였다.A solution in which 0.11 g of gallium nitrate (Ga(NO3)3·xH2O) was dissolved in 0.5 mL of deionized water was impregnated with 1 g of HZSM-5. The impregnated mixture was aged at 90° C. for 2 hours, dried at 110° C. for 12 hours, and then calcined in an air atmosphere at 550° C. for 5 hours, thereby obtaining a ZSM-5 catalyst impregnated with 3% by mass of gallium (Ga). .

<비교예 2: 이온교환법에 따른 제조><Comparative Example 2: Preparation according to the ion exchange method>

탈이온수 50 mL에 0.55 g의 갈륨 질산염 (Ga(NO3)3·xH2O)을 용해시킨 균일한 혼합물 용액을 제조하였다. 이후 상기 용액에 ZSM-5 제올라이트 5 g을 첨가하여 80 ℃에서 24시간 동안 교반시킴으로써 갈륨 양이온이 치환되도록 유도하였다. 얻어진 고체 물질을 여과하고 상기의 과정을 2번 반복하여 최종적으로 얻어진 고체 촉매를 여과 세척 후 110 ℃에서 12 시간 건조하고 550 ℃ 공기 분위기에서 5시간 동안 소성시켰다. 이를 통해 갈륨 (Ga) 질량기준 3%가 이온교환된 ZSM-5촉매를 수득하였다.A homogeneous mixture solution was prepared by dissolving 0.55 g of gallium nitrate (Ga(NO3)3·xH2O) in 50 mL of deionized water. Thereafter, 5 g of ZSM-5 zeolite was added to the solution and stirred at 80° C. for 24 hours to induce substitution of gallium cations. The obtained solid material was filtered and the above-described process was repeated twice, and the finally obtained solid catalyst was filtered and washed, dried at 110° C. for 12 hours, and calcined in an air atmosphere at 550° C. for 5 hours. Through this, a ZSM-5 catalyst in which 3% by mass of gallium (Ga) was ion-exchanged was obtained.

<비교예 3: 물리적 혼합에 따른 제조><Comparative Example 3: Preparation according to physical mixing>

탈이온수 50ml에 0.55g의 갈륨질산염 (Ga(NO3)3·xH2O)을 용해시킨 균일한 혼합물 용액을 제조하였다. 이후 상기 용액에 Fuji silysia Q10 촉매지지체용 실리카 2g을 함침시켰다. 함침된 혼합물을 90 ℃에서 2시간동안 유지하고 110℃에서 12시간 동안 건조시킨 다음 550 ℃ 공기 분위기에서 5시간 동안 소성하여 Ga이 함침된 실리카 촉매를 제조하였다. 제조된 촉매와 ZSM-5 3g을 물리적으로 혼합하여 갈륨 (Ga) 질량기준 3%가 포함된 물리적 혼합촉매를 수득하였다. A homogeneous mixture solution was prepared by dissolving 0.55 g of gallium nitrate (Ga(NO3)3·xH2O) in 50 ml of deionized water. Thereafter, 2 g of silica for a Fuji silysia Q10 catalyst support was impregnated into the solution. The impregnated mixture was maintained at 90° C. for 2 hours, dried at 110° C. for 12 hours, and then calcined in an air atmosphere at 550° C. for 5 hours to prepare a silica catalyst impregnated with Ga. The prepared catalyst and 3 g of ZSM-5 were physically mixed to obtain a physical mixed catalyst containing 3% by mass of gallium (Ga).

<실험예 1: <Experimental Example 1: 1717 Ga-NMR의 측정>Measurement of Ga-NMR>

상기 실시예 1에서 제조한 갈륨 치환 촉매를 파우더 형태의 시료로 상온 상압조건에서 71Ga MAS NMR 스펙트럼은 30kHz의 spinning rate의 MAS 조건에서 측정되었다.(Bruker Avance II 900-MHz spectrometer) 도 2(a)에서 나타난 바와 같이 17Ga-NMR로 측정된 결과값에서 160 nm 부근의 피크를 통해서 갈륨 원자가 사면체 배위결합(tetrahedral coordination) 위치에 결합되어 있던 실리콘 원자 자리에 치환되었음을 확인하였다. 이로써 갈륨이 이온결합이나 함침법에 따른 갈륨 원자 삽입에 의해 ZSM-5 표면상에 위치하는 것이 아니라, ZSM-5 지지체 구조 프레임의 구성 성분으로서 존재하는 것을 확인하였다.The gallium-substituted catalyst prepared in Example 1 was a sample in the form of a powder, and the 71 Ga MAS NMR spectrum was measured under the MAS condition of a spinning rate of 30 kHz at room temperature and pressure. (Bruker Avance II 900-MHz spectrometer) FIG. 2 (a ), it was confirmed that the gallium atom was substituted at the site of the silicon atom bonded to the tetrahedral coordination site through the peak near 160 nm in the result value measured by 17 Ga-NMR. Accordingly, it was confirmed that gallium was not located on the surface of ZSM-5 by ion bonding or gallium atom insertion by an impregnation method, but was present as a constituent component of the ZSM-5 support structure frame.

<실험예 2: EDS(Energy-Dispersive X-ray Spectroscopy) Mapping><Experimental Example 2: Energy-Dispersive X-ray Spectroscopy (EDS) Mapping>

상기 비교예 및 실시예에 따라 제조된 촉매 내 실리콘(Si), 알루미늄(Al) 및 갈륨(Ga)의 성분 함량 변화를 분석하기 위하여, EDS 분석을 실시하고 그 결과를 도 2 내지 도4에 나타내었다. 성분 함량 분석은 투과 전자 현미경(TECNAI G2 RETROFIT at 200 kV)을 사용하여 그 단면 화상을 EDS 측정 진행 하였다.In order to analyze the change in the content of silicon (Si), aluminum (Al), and gallium (Ga) in the catalyst prepared according to the Comparative Examples and Examples, EDS analysis was performed and the results are shown in FIGS. 2 to 4. Done. The component content analysis was conducted by EDS measurement of the cross-sectional image using a transmission electron microscope (TECNAI G2 RETROFIT at 200 kV).

도 2(d)는 본 발명에 따른 갈륨으로 치환된 ZSM-5(실시예 1)의 갈륨(Ga)의 EDS 분석 결과를 맵핑한 사진이며, 이를 통해서 갈륨 원자가 ZSM-5 지지체 전체에 고르게 분산되어 치환된 것을 확인하였다. Figure 2 (d) is a picture of the EDS analysis results of gallium (Ga) of ZSM-5 (Example 1) substituted with gallium according to the present invention, through which gallium atoms are evenly dispersed throughout the ZSM-5 support. It was confirmed that it was substituted.

또한, 도 3(c)는 이온교환으로 갈륨이 삽입된 ZSM-5(비교예 1)의 갈륨(Ga)의 (EDS) 분석 결과를 맵핑한 사진이며, ZSM 표면상의 산점에 원자 단위로 삽입되어 있는 것으로 추측된다.In addition, Figure 3 (c) is a photo of the mapping of the (EDS) analysis result of gallium (Ga) of ZSM-5 (Comparative Example 1), which has been inserted with gallium by ion exchange, and is inserted atomically at a scattering point on the ZSM surface. I guess there is.

또한, 도 4(d)는 합침법으로 갈륨이 삽입된 ZSM-5(비교예 2)의 갈륨(Ga)의 EDS 분석 결과를 맵핑한 사진이며, 갈륨 성분이 국부적인 부분에 밀집되어 파티클을 형성하고 있는 것으로 판단된다.In addition, Figure 4 (d) is a picture of the EDS analysis results of gallium (Ga) of ZSM-5 (Comparative Example 2), which has gallium inserted by the impregnation method, and the gallium component is concentrated in a localized area to form particles. It is judged to be doing.

<실험예 3: 단환 방향족 화합물의 합성><Experimental Example 3: Synthesis of monocyclic aromatic compound>

합성가스로부터 단환방향족 화합물 합성반응에는 1/2인치 스테인리스 고정층 반응기 2개가 직렬로 연결되어 있는 반응시스템을 사용하였다. 첫 번째 고정층 반응기에는 100Fe-6Cu-16Al-4K의 조성비를 가지는 철계 촉매 1 g을 장입하고, 합성가스를 CO2/(CO+CO2) = 0.5, H2/(2CO+3CO2)=1 그리고 1,800 mL/g-cat h의 유속으로 공급하고 반응온도 320 ℃ 및 반응압력 20 bar 조건의 피셔-트롭쉬 합성공정을 통하여 탄화수소를 먼저 제조하였으며, 제조된 탄화수소는 두 번째 고정층 반응기로 이동하여 탈수소화 방향족화 반응이 일어난다. 피셔-트롭시 합성공정에서 제조된 C1∼C15의 단쇄 탄화수소는 트랩에서 응축되지 않고 기체 상태로 탈수소화 방향족화 반응용 촉매로 도입된다. 트랩장치는 이를 위해 내부온도 136 ℃ 및 내부압력 20 bar를 유지하였다.For the synthesis reaction of monocyclic aromatic compounds from syngas, a reaction system in which two 1/2 inch stainless steel fixed bed reactors were connected in series was used. In the first fixed bed reactor, 1 g of an iron-based catalyst having a composition ratio of 100Fe-6Cu-16Al-4K was charged, and the synthesis gas was CO2/(CO+CO2) = 0.5, H2/(2CO+3CO2)=1 and 1,800 mL/ Hydrocarbons were first prepared through the Fischer-Tropsch synthesis process at a flow rate of g-cat h and a reaction temperature of 320 ℃ and a reaction pressure of 20 bar, and the produced hydrocarbons were transferred to the second fixed bed reactor for dehydrogenation aromatization reaction. This happens. Short chain hydrocarbons of C1 to C15 prepared in the Fischer-Tropsch synthesis process are not condensed in a trap and are introduced as a catalyst for dehydrogenation aromatization reaction in a gaseous state. The trap device maintained an internal temperature of 136 °C and an internal pressure of 20 bar for this purpose.

본 실시예에서는 탈수소화 공정을 수행하기 위하여, 1/2인치 스테인리스 고정층 반응기에 본 발명에 따른 갈륨이 치환된 결정성 알루미노 실리케이트계 촉매 0.6 g을 장입하고, 반응온도 500 ℃ 및 반응압력 1 bar 조건에서 수행하여 단환 방향족 화합물을 포함하는 생성물을 수득하였다. 각 생성물의 조성은 On-line GC(TCD, FID) 및 GC/MS를 사용하여 분석하였다.In this embodiment, in order to perform the dehydrogenation process, 0.6 g of a gallium-substituted crystalline aluminosilicate catalyst according to the present invention is charged into a 1/2 inch stainless steel fixed bed reactor, and a reaction temperature of 500° C. and a reaction pressure of 1 bar Under the conditions, a product containing a monocyclic aromatic compound was obtained. The composition of each product was analyzed using On-line GC (TCD, FID) and GC/MS.

하기 도 5에서 ZSM-5, 비교예 1 내지 3 및 실시예 1에 따른 알루미노실리케이트계 촉매를 사용하여 피셔 트롭시 반응에서 생성된 탄화수소의 탈수소방향족화 반응을 통해서 수득된 반응 생성물의 선택도를 도시하였다. 도 5에서 도시한 바와 같이 갈륨으로 치환된 ZSM-5(실시예1)를 촉매로 사용하였을 때 갈륨 원자가 이온결합에 따라 삽입된 ZSM-5(비교예1)나 갈륨 입자가 함침법에 따라 삽입된 ZSM-5 (비교예2)보다 단환 방향족 화합물의 선택도가 높은 것으로 나타났다.In FIG. 5, the selectivity of the reaction product obtained through the dehydroaromatization reaction of the hydrocarbon produced in the Fischer Tropsch reaction using the aluminosilicate catalyst according to ZSM-5, Comparative Examples 1 to 3 and Example 1 is shown. Shown. As shown in Fig. 5, when ZSM-5 (Example 1) substituted with gallium was used as a catalyst, ZSM-5 (Comparative Example 1) in which gallium atoms were inserted according to ionic bonds or gallium particles were inserted according to the impregnation method. It was found that the selectivity of monocyclic aromatic compounds was higher than that of ZSM-5 (Comparative Example 2).

또한, ZSM-5, 비교예 1 내지 3 및 실시예 1에 따른 알루미노실리케이트계 촉매를 사용하여 피셔 트롭시 반응에서 생성된 탄화수소의 탈수소방향족화 반응을 통해서 수득된 반응 생성물의 선택도를 시간의 흐름에 따라 도시하여 각 촉매의 활성 유지 능력을 측정하였다. 도 6에서 이온교환으로 갈륨이 삽입된 ZSM-5(비교예 1)의 단환 방향족 화합물의 선택도는 반응 초기에 갈륨으로 치환된 ZSM-5(실시예 1)와 유사한 값을 나타내다가 시간이 지남에 따라서 촉매의 안정성이 급격하게 떨어지는 것을 확인하였다. 반면, 갈륨으로 치환된 ZSM-5의 단환 방향족 화합물의 선택도는 시간이 지나도 촉매 활성이 유지되어 탈수소방향족화 반응용 촉매로 사용이 유용한 것을 나타난다.In addition, the selectivity of the reaction product obtained through the dehydroaromatization reaction of the hydrocarbon produced in the Fischer Tropsch reaction using the aluminosilicate catalyst according to ZSM-5, Comparative Examples 1 to 3 and Example 1 was determined in terms of time. By plotting according to the flow, the ability to maintain the activity of each catalyst was measured. In FIG. 6, the selectivity of the monocyclic aromatic compound of ZSM-5 (Comparative Example 1) with gallium intercalated by ion exchange showed a similar value to that of ZSM-5 (Example 1) substituted with gallium at the beginning of the reaction, and time passed. Accordingly, it was confirmed that the stability of the catalyst fell rapidly. On the other hand, the selectivity of the monocyclic aromatic compound of ZSM-5 substituted with gallium maintains its catalytic activity over time, indicating that it is useful as a catalyst for dehydroaromatic reaction.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적은 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As the specific parts of the present invention have been described in detail above, it will be apparent to those of ordinary skill in the art that these specific descriptions are only preferred embodiments, and the scope of the present invention is not limited thereby. will be. Accordingly, it will be said that the substantial scope of the present invention is defined by the appended claims and their equivalents.

Claims (11)

결정성 알루미노실리케이트계 촉매이며,
상기 결정성 알루미노실리케이트계 촉매의 내부 또는 표면 상에 실리콘(Si) 원자가 갈륨(Ga) 원자로 치환되고,
상기 갈륨(Ga) 원자의 함량은 전체 촉매량에 대하여 갈륨(Ga) 원자의 중량%가 0.5 ~ 10 범위인 것을 특징으로 하는 탄화수소로부터 단환 방향족 화합물의 합성용 촉매.
It is a crystalline aluminosilicate catalyst,
A silicon (Si) atom is substituted with a gallium (Ga) atom on the inside or the surface of the crystalline aluminosilicate catalyst,
The content of the gallium (Ga) atom is a catalyst for the synthesis of a monocyclic aromatic compound from a hydrocarbon, characterized in that the weight% of the gallium (Ga) atom is in the range of 0.5 to 10 with respect to the total catalyst amount.
삭제delete 제1항에 있어서,
상기 결정성 알루미노실리케이트는 ZSM-5, H-beta, L-zeolite, Y-zeolite, SAPO-34, MCM-22 및 H-USY로 구성된 군에서 선택되는 1 종 이상인 것을 특징으로 하는 탄화수소로부터 단환 방향족 화합물의 합성용 촉매.
The method of claim 1,
The crystalline aluminosilicate is monocyclic from a hydrocarbon, characterized in that at least one selected from the group consisting of ZSM-5, H-beta, L-zeolite, Y-zeolite, SAPO-34, MCM-22 and H-USY Catalyst for the synthesis of aromatic compounds.
제1항에 있어서,
상기 결정성 알루미노실리케이트는 Si/Al의 몰비가 10 ~ 150인 것을 특징으로 하는 탄화수소로부터 단환 방향족 화합물의 합성용 촉매.
The method of claim 1,
The crystalline aluminosilicate is a catalyst for the synthesis of monocyclic aromatic compounds from hydrocarbons, characterized in that the molar ratio of Si/Al is 10 to 150.
제1항에 있어서,
상기 결정성 알루미노실리케이트계 촉매는 아연(Zn), 백금(Pt), 팔라듐(Pd), 텅스텐(W), 코발트(Co) 및 철(Fe)로 구성된 군에서 선택되는 1종 이상의 조촉매가 더 함유된 것을 특징으로 하는 탄화수소로부터 단환 방향족 화합물의 합성용 촉매.
The method of claim 1,
The crystalline aluminosilicate catalyst is at least one cocatalyst selected from the group consisting of zinc (Zn), platinum (Pt), palladium (Pd), tungsten (W), cobalt (Co) and iron (Fe). Catalyst for the synthesis of monocyclic aromatic compounds from hydrocarbons, characterized in that further contained.
a) 합성가스의 피셔-트롭쉬(FT) 반응으로부터 탄화수소를 제조하는 단계; 및
b) 제1항 내지 제5항 중 어느 한항의 단환 방향족 화합물의 합성용 촉매의 존재 하에서, 상기 탄화수소의 탈수소방향족화 반응으로부터 단환 방향족 화합물을 제조하는 단계;를 포함하는 단환 방향족 화합물의 합성방법.
a) preparing hydrocarbons from the Fischer-Tropsch (FT) reaction of syngas; And
b) In the presence of the catalyst for synthesizing the monocyclic aromatic compound of any one of claims 1 to 5, preparing a monocyclic aromatic compound from the dehydroaromatic reaction of the hydrocarbon;
제6항에 있어서,
상기 피셔-트롭쉬 반응에서 철계 촉매가 사용될 수 있으며, 상기 철계 촉매는 구리(Cu), 망간(Mn), 코발트(Co), 니켈(Ni), 아연(Zn), 알루미늄(Al), 나트륨(Na), 크롬(Cr), 실 리콘(Si) 및 칼륨(K)으로 구성된 군에서 선택된 1종 이상의 조촉매를 더 포함하는 것을 특징으로 하는 단환 방향족 화합물의 합성방법.
The method of claim 6,
In the Fischer-Tropsch reaction, an iron-based catalyst may be used, and the iron-based catalyst is copper (Cu), manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), aluminum (Al), sodium ( Na), chromium (Cr), silicon (Si) and potassium (K) synthesis method of a monocyclic aromatic compound, characterized in that it further comprises at least one cocatalyst selected from the group consisting of.
제6항에 있어서,
상기 피셔-트롭쉬 반응은 250 ~ 350 ℃에서 10 ~ 30 bar로 수행하는 것을 특징으로 하는 단환 방향족 화합물의 합성방법.
The method of claim 6,
The Fischer-Tropsch reaction is a method for synthesizing a monocyclic aromatic compound, characterized in that carried out at 250 ~ 350 ℃ 10 ~ 30 bar.
제6항에 있어서,
상기 합성가스는 H2/CO의 몰비가 0.1 ~ 3 범위인 것을 특징으로 하는 단환 방향족 화합물의 합성방법.
The method of claim 6,
The synthesis gas is a method for synthesizing a monocyclic aromatic compound, characterized in that the molar ratio of H 2 /CO is in the range of 0.1 to 3.
제6항에 있어서,
상기 탈수소방향족화 반응은 350 ~ 550 ℃에서 1 ~ 5 bar로 수행하는 것을 특징으로 하는 단환 방향족 화합물의 합성방법.
The method of claim 6,
The method for synthesizing a monocyclic aromatic compound, characterized in that the dehydrogenation aromatization reaction is performed at 1 to 5 bar at 350 to 550°C.
제6항에 있어서,
상기 단환 방향족 화합물은 벤젠, 톨루엔, 에틸벤젠 및 자일렌으로 구성된 군에서 선택되는 1종 이상의 화합물을 포함하는 것을 특징으로 하는 단환 방향족 화합물의 합성방법.

The method of claim 6,
The monocyclic aromatic compound is a method of synthesizing a monocyclic aromatic compound, characterized in that it comprises at least one compound selected from the group consisting of benzene, toluene, ethylbenzene and xylene.

KR1020180131178A 2018-10-30 2018-10-30 Method for Preparing Monocyclic Aromatics by Using the Same and Catalyst for Preparing Monocyclic Aromatics Active KR102162250B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180131178A KR102162250B1 (en) 2018-10-30 2018-10-30 Method for Preparing Monocyclic Aromatics by Using the Same and Catalyst for Preparing Monocyclic Aromatics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180131178A KR102162250B1 (en) 2018-10-30 2018-10-30 Method for Preparing Monocyclic Aromatics by Using the Same and Catalyst for Preparing Monocyclic Aromatics

Publications (2)

Publication Number Publication Date
KR20200050013A KR20200050013A (en) 2020-05-11
KR102162250B1 true KR102162250B1 (en) 2020-10-06

Family

ID=70729267

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180131178A Active KR102162250B1 (en) 2018-10-30 2018-10-30 Method for Preparing Monocyclic Aromatics by Using the Same and Catalyst for Preparing Monocyclic Aromatics

Country Status (1)

Country Link
KR (1) KR102162250B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017210954A1 (en) * 2016-06-07 2017-12-14 中国科学院大连化学物理研究所 Catalyst and method for manufacturing aromatic hydrocarbon by directly converting synthesis gas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110270004A1 (en) * 2009-06-30 2011-11-03 Shinichiro Yanagawa Catalyst for producing monocyclic aromatic hydrocarbons, and method for producing monocyclic aromatic hydrocarbons
JP2012139640A (en) 2010-12-28 2012-07-26 Jx Nippon Oil & Energy Corp Catalyst for producing monocyclic aromatic hydrocarbon and method of producing the monocyclic aromatic hydrocarbon
KR101600430B1 (en) 2015-01-08 2016-03-07 한국화학연구원 A direct method for preparing monocyclic aromatics and longer-chain olefin by using CO2-rich syngas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017210954A1 (en) * 2016-06-07 2017-12-14 中国科学院大连化学物理研究所 Catalyst and method for manufacturing aromatic hydrocarbon by directly converting synthesis gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C1 가스로부터 방향족 화합물 제조 촉매 기술 개발 최종보고서 (2017.10.31.)

Also Published As

Publication number Publication date
KR20200050013A (en) 2020-05-11

Similar Documents

Publication Publication Date Title
US10472573B2 (en) Method for direct production of gasoline-range hydrocarbons from carbon dioxide hydrogenation
KR101539613B1 (en) Catalyst and process for preparing light aromatic hydrocarbons and light alkanes from hydrocarbonaceous feedstock using the catalyst
Liu et al. Selective conversion of syngas to aromatics over metal oxide/HZSM-5 catalyst by matching the activity between CO hydrogenation and aromatization
KR101600430B1 (en) A direct method for preparing monocyclic aromatics and longer-chain olefin by using CO2-rich syngas
Li et al. Nanocrystal H [Fe, Al] ZSM-5 zeolites with different silica-alumina composition for conversion of dimethyl ether to gasoline
JPH11501286A (en) Hydrocarbon conversion process using zeolite-bound zeolite catalyst
US20110201860A1 (en) Process for conversion of alkanes to aromatics
US20210347711A1 (en) Method for preparing light olefin through catalytic syngas with high selectivity by heteroatom-doped zeolite
GB2236262A (en) Catalyst for production of hydrocarbons from synthesis gas
US5711869A (en) Synthetic crystalline aluminosilicate for the catalytic conversion of hydrocarbons in petrochemical processes
US20170252731A1 (en) Composite catalyst, method for producing composite catalyst, method for producing lower olefin and method for regenerating composite catalyst
US8288303B2 (en) Hydrocracking catalyst and process for producing fuel base material
KR102162250B1 (en) Method for Preparing Monocyclic Aromatics by Using the Same and Catalyst for Preparing Monocyclic Aromatics
US5397561A (en) Zeolite-type material
RU2749513C1 (en) Organic base-modified composite catalyst and method for synthesis of ethylene by hydrogenation of carbon monoxide
EP0018683A1 (en) Process for the preparation of hydrocarbons, and hydrocarbons so prepared
CN108367281B (en) Catalyst composition and isomerization process
KR101941952B1 (en) Method of preparing Beta zeolite-based catalysts and method of hydrocracking petroleum residue to mono-aromatic hydrocarbons using the same
KR20220150834A (en) Method of preparing zeolite with controlled aluminum distribution, and method of preparing aromatic compounds using the zeolite
US20230001389A1 (en) Nanostructured hybrid iron-zeolite catalysts
US10307735B2 (en) Gd-containing, anti-coking solid acid catalysts and preparation method and use thereof
Abramova Development of catalysts based on pentasil-type zeolites for selective synthesis of lower olefins from methanol and dimethyl ether
RU2585289C1 (en) Methane aromatisation catalyst, method for production thereof and method of converting methane to produce aromatic hydrocarbons
US11306049B2 (en) Process using catalytic composition for the conversion of syngas to higher alcohols
KR102186035B1 (en) Direct Method for Preparing Monocyclic Aromatics by Using Syngas

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20181030

PA0201 Request for examination
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20191226

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20200701

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20200925

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20200925

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20230621

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20240624

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20250623

Start annual number: 6

End annual number: 6