[go: up one dir, main page]

KR102156733B1 - Self-assembled polymeric micelles of phosphonium glycol chitosan derivatives specifically targeting mitochondria, preparation method and uses thereof - Google Patents

Self-assembled polymeric micelles of phosphonium glycol chitosan derivatives specifically targeting mitochondria, preparation method and uses thereof Download PDF

Info

Publication number
KR102156733B1
KR102156733B1 KR1020180136760A KR20180136760A KR102156733B1 KR 102156733 B1 KR102156733 B1 KR 102156733B1 KR 1020180136760 A KR1020180136760 A KR 1020180136760A KR 20180136760 A KR20180136760 A KR 20180136760A KR 102156733 B1 KR102156733 B1 KR 102156733B1
Authority
KR
South Korea
Prior art keywords
tpp
gme
cancer
polymer
glycol chitosan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020180136760A
Other languages
Korean (ko)
Other versions
KR20200053305A (en
Inventor
최준식
이영화
박해인
Original Assignee
충남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교 산학협력단 filed Critical 충남대학교 산학협력단
Priority to KR1020180136760A priority Critical patent/KR102156733B1/en
Publication of KR20200053305A publication Critical patent/KR20200053305A/en
Application granted granted Critical
Publication of KR102156733B1 publication Critical patent/KR102156733B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 미토콘드리아 표적형 포스포니움 글리콜 키토산 유도체의 자가조립 중합체 미셀, 이의 제조방법 및 이의 용도에 관한 것으로, 포스포니움 글리콜 키토산 유도체(GC-TPP 및 GME-TPP)는 세포 독성이 거의 없으며, 세포 안으로 이동이 우수하며, 세포 안으로 이동된 후, 특이적으로 미토콘드리아로 이동하는 특징이 있을 뿐만 아니라, 항암제 등의 소수성 약물을 본 발명의 미셀 내부에 용이하게 탑재할 수 있어, 약물전달체로서 우수한 효과가 있는 것이다.The present invention relates to a self-assembled polymer micelle of a mitochondrial-targeted phosphonium glycol chitosan derivative, a preparation method thereof, and a use thereof, wherein the phosphonium glycol chitosan derivatives (GC-TPP and GME-TPP) have little cytotoxicity, It is excellent in migration into the cell, and after it is moved into the cell, it specifically moves to the mitochondria, as well as hydrophobic drugs such as anticancer agents can be easily mounted inside the micelles of the present invention, which has an excellent effect as a drug delivery system. There is.

Description

미토콘드리아 표적형 포스포니움 글리콜 키토산 유도체의 자가조립 중합체 미셀, 이의 제조방법 및 이의 용도{Self-assembled polymeric micelles of phosphonium glycol chitosan derivatives specifically targeting mitochondria, preparation method and uses thereof}Self-assembled polymeric micelles of phosphonium glycol chitosan derivatives specifically targeting mitochondria, preparation method and uses thereof {Self-assembled polymeric micelles of phosphonium glycol chitosan derivatives specifically targeting mitochondria, preparation method and uses thereof}

본 발명은 미토콘드리아 표적형 포스포니움 글리콜 키토산 유도체의 자가조립 중합체 미셀, 이의 제조방법 및 이의 용도에 관한 것이다.The present invention relates to a self-assembled polymer micelle of a mitochondrial-targeted phosphonium glycol chitosan derivative, a method for preparing the same, and a use thereof.

바이오 의약품은 제약 업계에서 점점 더 중요해지고 있는데, 그 중에서도 약물 전달 시스템을 기반으로 하는 연구가 전 세계적으로 활발히 진행되고 있다. 약물 전달 시스템(DDS)은 부작용을 최소화하면서 치료 효과를 극대화하기 위하여, 효과적으로 장기간 혈중 수준을 유지하고, 약물을 타겟 부위로 선택적 전달하는 것이 목표이다. 이전의 화학 요법 치료에서 약물 운반체는 투여 횟수가 증가함에 따라 항암제의 다제 내성(MDR)이 발생하여 계속적인 약물 투여해도 큰 영향을 미치지 않으므로, 이를 극복하기 위한 방법 중 하나로, 장기간 혈액 속에서 유지할 수 있는 나노 크기의 전달체를 제조하여 그 전달체를 통해 약물의 농도를 유지하는 방법이 개시되었고, 또 다른 방법은 질병 부위 즉, 표적 부위로 선택적 전달을 위한 고분자에 약물을 결합시키는 방법이 있다.Biopharmaceuticals are becoming more and more important in the pharmaceutical industry, and among them, research based on drug delivery systems is being actively conducted worldwide. In order to maximize the therapeutic effect while minimizing side effects, the drug delivery system (DDS) aims to effectively maintain blood levels for a long time and selectively deliver drugs to target sites. In previous chemotherapy treatments, as the number of administration of the drug carrier increases, multi-drug resistance (MDR) of anticancer drugs occurs, and continuous drug administration does not have a significant effect. As one of the methods to overcome this, it can be maintained in the blood for a long time. A method of manufacturing a delivery system having a nano-sized size and maintaining the concentration of a drug through the delivery system has been disclosed, and another method is a method of binding the drug to a polymer for selective delivery to a disease site, that is, a target site.

한편, 키토산[β-(1-4)-2-아미노-2-데옥시-D-글루칸]은 키틴의 탈 아세틸화에 의해 생성되는 천연 다당류의 일종이다. 키토산은 독성이 없고, 낮은 면역원성, 항균 효과, 항암 효과 및 생분해성이 있다. On the other hand, chitosan [β-(1-4)-2-amino-2-deoxy-D-glucan] is a kind of natural polysaccharide produced by deacetylation of chitin. Chitosan is not toxic, has low immunogenicity, antibacterial effect, anticancer effect and biodegradability.

또한, 글리콜 키토산은 일종의 키토산 유도체이며, 표면에 1차 아민기를 가진 양이온성 폴리머로, 모든 pH에서 키토산의 특성이 있으며, 키토산에 비해 용해도가 좋은 장점이 있다. 또한 글리콜 키토산의 2-아민-2-데옥시 모이어티를 통해 다양한 유도체를 만들 수 있으며, 기능성 리간드에 결합하기가 매우 쉽다.In addition, glycol chitosan is a kind of chitosan derivative, a cationic polymer having a primary amine group on the surface, has the characteristics of chitosan at all pHs, and has an advantage of good solubility compared to chitosan. In addition, various derivatives can be made through the 2-amine-2-deoxy moiety of glycol chitosan, and it is very easy to bind to functional ligands.

또한, TPP(Triphenylphosphonium)는 포도상구균(Staphylococcus epidermidis)과 대장균(Escherichia coli)에 대한 항균 활성뿐만 아니라 항암 활성이 있으며, 미토콘트리아 타겟 구조로 잘 알려져 있다. TPP의 독특한 화학 구조인, 페닐기에 의해 친유성기와 양전하의 포스포니움(phosphonium)기를 가지고 있어 미토콘드리아의 외부 수용액에서 비극성 지질 환경인 미토콘드리아 막으로 들어가는 활성화 에너지가 낮아서 쉽게 통과할 수 있다. 최근 연구들에서, TPP는 수용성 고분자를 결합하거나 양 친매성 공중합체를 표적 미토콘드리아에 결합시키는데 사용되어왔다.In addition, TPP (Triphenylphosphonium) is Staphylococcus epidermidis and Escherichia coli ), as well as anti-cancer activity, is well known as a mitochondrial target structure. TPP's unique chemical structure, which has a lipophilic group and a positively charged phosphonium group by a phenyl group, has low activation energy entering the mitochondrial membrane, which is a nonpolar lipid environment, from an aqueous solution outside the mitochondria, so it can easily pass through. In recent studies, TPP has been used to bind water-soluble polymers or to bind amphiphilic copolymers to target mitochondria.

한편, 본 발명 관련 기술로는 한국등록특허 제1720458호에 글리콜키토산-디쿠알리니움 자가조립 중합체 미셀, 이의 제조방법 및 이의 용도에 관한 기술이 개시되어 있으나, 본 발명의 미토콘드리아 표적형 포스포니움 글리콜 키토산 유도체의 자가조립 중합체 미셀, 이의 제조방법 및 이의 용도에 관한 것은 개시된 바 없다.On the other hand, as a technology related to the present invention, a glycol chitosan-diqualinium self-assembling polymer micelle, a preparation method and a use thereof are disclosed in Korean Patent No. 1720458, but the mitochondrial target type phosphonium glycol of the present invention There is no disclosure regarding self-assembled polymer micelles of chitosan derivatives, methods for preparing the same, and uses thereof.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명은 미토콘드리아 표적형 포스포니움 글리콜 키토산 유도체의 자가조립 중합체 미셀, 이의 제조방법 및 이의 용도에 관한 것으로, 본 발명의 포스포니움 글리콜 키토산 유도체(GC-TPP 및 GME-TPP)는 세포 독성이 거의 없으며, 세포 안으로 이동이 우수하며, 세포 안으로 이동된 후, 특이적으로 미토콘드리아로 이동하는 특징이 있을 뿐만 아니라, 항암제 등의 소수성 약물을 본 발명의 미셀 내부에 용이하게 탑재할 수 있다는 것을 확인함으로써, 본 발명을 완성하였다.The present invention was derived from the above requirements, and the present invention relates to a self-assembled polymer micelle of a mitochondrial target type phosphonium glycol chitosan derivative, a preparation method thereof, and a use thereof, and the phosphonium glycol chitosan derivative of the present invention (GC-TPP and GME-TPP) have almost no cytotoxicity, excellent migration into cells, and after being moved into cells, they specifically migrate to mitochondria, as well as hydrophobic drugs such as anticancer agents. By confirming that it can be easily mounted inside the micelle, the present invention was completed.

상기 목적을 달성하기 위하여, 본 발명은 글리콜 키토산 또는 이의 유도체;와 트리페닐포스포니움;으로 이루어진 중합체를 제공한다.In order to achieve the above object, the present invention provides a polymer consisting of glycol chitosan or a derivative thereof; and triphenylphosphonium.

또한, 본 발명은 상기 글리콜 키토산 또는 이의 유도체;와 트리페닐포스포니움;으로 이루어진 GC-TPP 또는 GME-TPP 중합체가 자가조립되어 형성한 미셀을 제공한다.In addition, the present invention provides a micelle formed by self-assembly of a GC-TPP or GME-TPP polymer consisting of the glycol chitosan or a derivative thereof; and triphenylphosphonium.

또한, 본 발명은 상기 GC-TPP 또는 GME-TPP 중합체가 자가조립되어 형성한 미셀을 포함하는 약물전달체를 제공한다.In addition, the present invention provides a drug delivery system comprising micelles formed by self-assembly of the GC-TPP or GME-TPP polymer.

또한, 본 발명은 상기 약물 전달체를 포함하는 암의 예방 또는 치료용 약학 조성물을 제공한다.In addition, the present invention provides a pharmaceutical composition for preventing or treating cancer comprising the drug delivery system.

본 발명은 미토콘드리아 표적형 포스포니움 글리콜 키토산 유도체의 자가조립 중합체 미셀, 이의 제조방법 및 이의 용도에 관한 것으로, 본 발명의 약물전달 시스템은 세포 독성이 없으며, 세로 내로 이동한 후, 특이적으로 미토콘드리아로 이동하는 특징이 있어 미토콘트리아 타겟 약물 전달에 유용하게 사용될 수 있다.The present invention relates to a self-assembled polymer micelle of a mitochondrial-targeted phosphonium glycol chitosan derivative, a method for preparing the same, and a use thereof, and the drug delivery system of the present invention has no cytotoxicity, and is specifically mitochondrial after migration into the longitudinal direction. Since it has a characteristic of moving to, it can be usefully used for mitochondrial target drug delivery.

도 1은 자가조립 GC-TPP 및 GME-TPP 미셀 및 이의 미토콘드리아 표적 단계를 나타낸 구성도이다.
도 2는 GC-TPP, GC-MA 및 GME-TPP 중합체의 합성과정을 나타낸 것이다.
도 3은 GC, GC-MA, GC-MA-EDA 및 GME-TPP에 대한 1H NMR 스펙트럼이다.
도 4는 GC, GC-TPP, GME-TPP 및 TPP에 대한 FT-IR 스펙트럼이다.
도 5는 FE-SEM(Field Emission Scanning Electron Microscope)으로 측정한 GC-TPP 및 GME-TPP의 형태 및 DLS(dynamic light scattering)으로 측정한 입자의 크기를 나타낸 것으로, (A,C)는 GC-TPP이고, (B,D)는 GME-TPP이다(scale bars= 500nm).
도 6은 유세포 분석기를 이용한 중합체의 세포 결합을 확인한 결과로, AlexaFluor 488 표지된 0.1㎍/㎖의 GC, GME, GC-TPP 및 GME-TPP를 24시간 동안 처리한 HeLa 세포를 아무것도 처리하지 않은 세포(Control)와 비교한 녹색 형광 강도의 변화를 나타낸 히스토그램이다. (A) Control, (B) GC, (C) GME, (C) GC-TPP, (E) GME-TPP (F) GC, GME, GC-TPP 및 GME-TPP를 겹친 그래프이다.
도 7은 HeLa 세포주의 공촛점 레이저 현미경 이미지이다. 핵과 중합체는 Bisbenzimide(Hochest 33342, 청색) 및 Alexafluor 488 (녹색)로 염색하였고, 미토콘드리아는 Mitotracker Red FM으로 염색한 것이다. 노란색 형광은 중합체(녹색)와 Mitotracker (적색)의 형광 이미지를 겹쳐서 나타난 것이다.
도 8은 HEK 293(A), HeLa(B), NIH3T3(C) 및 HepG2(D) 세포의 세포생존율(%)을 확인한 결과이다.
도 9는 HEK 293(A), HeLa(B), NIH3T3(C) 및 HepG2(D) 세포에서의 GC, GC-TPP 및 GME-TPP의 세포독성(cytotoxicity)을 확인한 결과이다.
도 10은 GC-TPP 및 GME-TPP가 HeLa 세포에서 미토콘드리아를 표적화하는 것을 확인한 공초점 이미지이다.
1 is a block diagram showing the self-assembled GC-TPP and GME-TPP micelles and mitochondrial targeting steps thereof.
Figure 2 shows the synthesis of GC-TPP, GC-MA and GME-TPP polymers.
3 is a 1 H NMR spectrum for GC, GC-MA, GC-MA-EDA and GME-TPP.
4 is an FT-IR spectrum for GC, GC-TPP, GME-TPP and TPP.
5 shows the shapes of GC-TPP and GME-TPP measured by FE-SEM (Field Emission Scanning Electron Microscope) and the size of particles measured by dynamic light scattering (DLS), (A,C) is GC- TPP, (B,D) is GME-TPP (scale bars= 500 nm).
Figure 6 is a result of confirming the cell binding of the polymer using a flow cytometer, AlexaFluor 488-labeled 0.1 ㎍ / ㎖ of GC, GME, GC-TPP and GME-TPP treated for 24 hours HeLa cells treated with nothing cells It is a histogram showing the change in green fluorescence intensity compared to (Control). (A) Control, (B) GC, (C) GME, (C) GC-TPP, (E) GME-TPP (F) GC, GME, GC-TPP and GME-TPP are overlapped graphs.
7 is a confocal laser microscope image of HeLa cell lines. Nucleus polymers were stained with Bisbenzimide (Hochest 33342, blue) and Alexafluor 488 (green), and mitochondria were stained with Mitotracker Red FM. Yellow fluorescence is a result of superimposing fluorescence images of polymer (green) and Mitotracker (red).
8 is a result of confirming the cell viability (%) of HEK 293 (A), HeLa (B), NIH3T3 (C) and HepG2 (D) cells.
9 is a result of confirming the cytotoxicity of GC, GC-TPP and GME-TPP in HEK 293 (A), HeLa (B), NIH3T3 (C) and HepG2 (D) cells.
10 is a confocal image confirming that GC-TPP and GME-TPP target mitochondria in HeLa cells.

본 발명은 글리콜 키토산 또는 이의 유도체;와 트리페닐포스포니움;으로 이루어진 중합체에 관한 것이다(도 1). The present invention relates to a polymer consisting of glycol chitosan or a derivative thereof; and triphenylphosphonium (FIG. 1).

상기 중합체는 미토콘드리아 표적형인 것이 특징이며, 하기 반응식 (1)에 따라 글리콜 키토산(GC)과 트리페닐포스포니움(TPP) 클로라이드를 반응 제1 용매 내에서 반응시켜 제조된 GC-TPP 중합체이거나; The polymer is characterized in that it is a mitochondrial target type, and is a GC-TPP polymer prepared by reacting glycol chitosan (GC) and triphenylphosphonium (TPP) chloride in a reaction first solvent according to the following Scheme (1);

반응 제2 용매 내에서 글리콜 키토산(GC)의 아민기에 메틸아크릴레이트(MA)를 첨가반응시켜 글리콜 키토산-메틸아크릴레이트(GC-MA)를 합성하고, 상기 합성된 GC-MA에 에틸렌디아민(EDA)를 첨가하여 GC-MA-EDA(GME)를 합성하여, 상기 합성된 GME를 트리페닐포스포니움(TPP) 클로라이드와 반응시켜 제조된 GME-TPP 중합체인 것을 특징으로 하는 중합체다.In the reaction second solvent, methyl acrylate (MA) was added to the amine group of glycol chitosan (GC) to synthesize glycol chitosan-methylacrylate (GC-MA), and ethylenediamine (EDA) was added to the synthesized GC-MA. ) To synthesize GC-MA-EDA (GME), and reacting the synthesized GME with triphenylphosphonium (TPP) chloride. It is a GME-TPP polymer.

[반응식 1][Scheme 1]

Figure 112018111061474-pat00001
Figure 112018111061474-pat00001

상기 반응식 1에서, n은 독립적으로 1~10,000인 정수이다.In Reaction Scheme 1, n is independently an integer ranging from 1 to 10,000.

상기 반응 제1 용매 또는 반응 제2 용매는 독립적으로 물, C1~C4의 저급알코올, 아세톤, DMF(dimethylformamide), DMSO(dimethyl sulfoxide), 아세토니트릴 및 THF(Tetrahydrofuran)중에서 선택된 1종 이상인 것이 바람직하며, 더 바람직하게는 물 및 C1~C4의 저급알코올의 혼합물이고, 가장 바람직하게는 메탄올이지만 이에 한정하는 것은 아니다. The reaction first solvent or reaction second solvent is independently at least one selected from water, C 1 ~ C 4 lower alcohol, acetone, DMF (dimethylformamide), DMSO (dimethyl sulfoxide), acetonitrile, and THF (Tetrahydrofuran). Preferably, it is a mixture of water and a lower alcohol of C 1 ~ C 4 more preferably, most preferably methanol, but is not limited thereto.

상기 반응식 1의 반응온도는 20~60℃가 바람직하며, 더 바람직하게는 30~45℃일 수 있고, 바람직한 반응시간은 1~5일이고, 더 바람직하게는 2~4일이지만 이에 한정하는 것은 아니다.The reaction temperature in Scheme 1 is preferably 20 to 60°C, more preferably 30 to 45°C, and the preferred reaction time is 1 to 5 days, more preferably 2 to 4 days, but limited thereto no.

또한, 본 발명은 상기 글리콜 키토산 또는 이의 유도체;와 트리페닐포스포니움;으로 이루어진 GC-TPP 또는 GME-TPP 중합체가 자가조립되어 형성한 미셀에 관한 것이다. 상기 글리콜 키토산-트리페닐포스포니움(GC-TPP) 미셀은 내부에 소수성 약물을 탑재할 수 있으며, 상기 소수성 약물은 항암제인 것이 바람직하며, 더 바람직하게는 독소루비신이지만 이에 한정하지 않는다. In addition, the present invention relates to a micelle formed by self-assembly of a GC-TPP or GME-TPP polymer consisting of the glycol chitosan or a derivative thereof; and triphenylphosphonium. The glycol chitosan-triphenylphosphonium (GC-TPP) micelle may contain a hydrophobic drug therein, and the hydrophobic drug is preferably an anticancer agent, more preferably doxorubicin, but is not limited thereto.

또한, 본 발명은 상기 GC-TPP 또는 GME-TPP 중합체가 자가조립되어 형성한 미셀을 포함하는 약물전달체에 관한 것이다. In addition, the present invention relates to a drug delivery system comprising micelles formed by self-assembly of the GC-TPP or GME-TPP polymer.

또한, 본 발명은 상기 약물 전달체를 포함하는 암의 예방 또는 치료용 약학 조성물에 관한 것이다. 상기 암은 자궁경부암, 간암, 위암, 유방암, 폐암, 뇌암, 신경교종, 전립선암, 자궁암 또는 피부암인 것이 바람직하지만 이에 한정하지 않는다.In addition, the present invention relates to a pharmaceutical composition for preventing or treating cancer comprising the drug delivery system. The cancer is preferably cervical cancer, liver cancer, stomach cancer, breast cancer, lung cancer, brain cancer, glioma, prostate cancer, uterine cancer, or skin cancer, but is not limited thereto.

본 발명의 약학 조성물은 상기 약물 전달체 이외에 추가로 담체, 부형제 또는 희석제를 더 포함할 수 있고, 본 발명의 약학 조성물은 경구 또는 비경구로 투여될 수 있으며, 비 경구 투여 시 피부 외용 또는 복강 내, 직장, 정맥, 근육, 피하, 자궁 내 경막 또는 뇌혈관 내 주사 방식을 선택하는 것이 바람직하다.The pharmaceutical composition of the present invention may further include a carrier, excipient, or diluent in addition to the drug delivery system, and the pharmaceutical composition of the present invention may be administered orally or parenterally. When administered parenterally, the pharmaceutical composition may be administered externally to the skin or intraperitoneally, or , It is preferable to select intravenous, intramuscular, subcutaneous, intrauterine dura mater or cerebrovascular injection.

본 발명의 약학 조성물은 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제될 수 있다. 경구투여를 위한 고형 제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형 제제는 하나 이상의 화합물에 적어도 하나 이상의 부형제 예를 들면, 전분, 탄산칼슘, 수크로오스(sucrose) 또는 락토오스(lactose), 젤라틴 등을 섞어 조제된다. 또한, 단순한 부형제 이외에 스테아린산 마그네슘, 탈크 등과 같은 윤활제들도 사용된다. 경구 투여를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성 용제, 현탁제, 유제, 동결건조제, 좌제가 포함된다. 비수성 용제 및 현탁 용제로는 프로필렌글리콜(propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈tween) 61, 카카오지, 라우린지, 글리세로 젤라틴 등이 사용될 수 있다.The pharmaceutical composition of the present invention may be prepared using diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrants, and surfactants. Solid preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, and these solid preparations include at least one excipient in one or more compounds, such as starch, calcium carbonate, sucrose, or lactose ( lactose), gelatin, etc. In addition, in addition to simple excipients, lubricants such as magnesium stearate and talc are also used. Liquid preparations for oral administration include suspensions, liquid solutions, emulsions, syrups, etc.In addition to water and liquid paraffin, which are commonly used simple diluents, various excipients such as wetting agents, sweetening agents, fragrances, and preservatives may be included. have. Formulations for parenteral administration include sterilized aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized agents, and suppositories. As the non-aqueous solvent and the suspension solvent, propylene glycol, polyethylene glycol, vegetable oil such as olive oil, and injectable ester such as ethyl oleate may be used. As a base for suppositories, witepsol, macrogol, tween 61, cacao butter, laurin, glycero gelatin, and the like may be used.

본 발명에 따른 조성물은 약제학적으로 유효한 양으로 투여한다. 본 발명에 있어서, '약제학적으로 유효한 양'은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효용량 수준은 환자의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기한 요소들을 모두 고려하여 부작용없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.The composition according to the present invention is administered in a pharmaceutically effective amount. In the present invention, the'pharmaceutically effective amount' means an amount sufficient to treat a disease at a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level is the type of disease, severity, and drug activity of the patient. , Sensitivity to drugs, time of administration, route of administration and rate of excretion, duration of treatment, factors including drugs used concurrently, and other factors well known in the medical field. The composition of the present invention may be administered as an individual therapeutic agent or administered in combination with other therapeutic agents, may be administered sequentially or simultaneously with a conventional therapeutic agent, and may be administered single or multiple. It is important to administer an amount capable of obtaining the maximum effect in a minimum amount without side effects in consideration of all the above factors, and this can be easily determined by a person skilled in the art.

본 발명의 조성물의 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설률 및 질환의 중증도에 따라 그 범위가 다양하게 사용할 수 있다.The dosage of the composition of the present invention can be used in various ranges according to the patient's weight, age, sex, health status, diet, administration time, administration method, excretion rate, and severity of disease.

이하, 실시예를 이용하여 본 발명을 더욱 상세하게 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로 본 발명의 범위가 이들에 의해 제한되지 않는다는 것은 당해 기술분야에서 통상의 지식을 가진 자에게 있어 자명한 것이다. Hereinafter, the present invention will be described in more detail using examples. These examples are only for describing the present invention in more detail, and it is apparent to those of ordinary skill in the art that the scope of the present invention is not limited thereto.

1. 재료구입1. Material purchase

글리콜 키토산(60% 이상, 탈 아세틸화 정도=91.6%), 메틸 아크릴레이트 (99%), 메탄올(무수, 99.8%), 에틸렌디아민(99%이상), (메톡시카르보닐메틸) 트리페닐포스포늄 브로마이드(98%) 및 나일 레드는 시그마-알드리치에서 구입하였다.Glycol chitosan (60% or more, degree of deacetylation = 91.6%), methyl acrylate (99%), methanol (anhydrous, 99.8%), ethylenediamine (99% or more), (methoxycarbonylmethyl) triphenylphos Phonium bromide (98%) and Nile Red were purchased from Sigma-Aldrich.

TSKgel G5000pWxl-CP 및 TSKgel G3000PWx1-CP 컬럼을 통해 겔 투과 크로마토 그래피(GPC)를 이용하여 글리콜 키토산 분자량(Mn=198kDa, Mw=490kDa) 및 분산지수(Mw/Mn)=2.47을 확인하였다. EZ-cytox 시약(EZ-cytox enhanced cell viability assay kit)와 EZ-LDH 시약(Cell Cytoxicity Assay Kit)는 대일 랩 서비스(서울, 한국)에서 구입하였다. 소 태아 혈청(FBS), Dulbecco의 변형된 Eagle 배지(DMEM) 및 100×항생제-항균제를 깁코(Gaithersburg, MD, USA)에서 구입하였다. Alexafluor488 5-SDP 에스테르(Sulfodichlorophenol Ester)와 MitoTracker®Red CMXRos는 인비트로젠(Seoul, Korea)에서 구입했다.Using gel permeation chromatography (GPC) through TSKgel G5000pWxl-CP and TSKgel G3000PWx1-CP columns, the glycol chitosan molecular weight (Mn=198kDa, Mw=490kDa) and dispersion index (Mw/Mn)=2.47 were confirmed. EZ-cytox reagent (EZ-cytox enhanced cell viability assay kit) and EZ-LDH reagent (Cell Cytoxicity Assay Kit) were purchased from Daeil Lab Service (Seoul, Korea). Fetal bovine serum (FBS), Dulbecco's modified Eagle medium (DMEM) and 100× antibiotic-antibacterial agents were purchased from Githersburg, MD, USA. Alexafluor488 5-SDP ester (Sulfodichlorophenol Ester) and MitoTracker ® Red CMXRos were purchased from Invitrogen (Seoul, Korea).

2. 세포배양2. Cell culture

인간 간암 세포주 HepG2, 인간배아신장 유래 세포주 HEK 293, 자궁경부암 세포주 HeLa 및 마우스 정상 섬유아세포 NIH-3T3를 10% FBS, 90% DMEM(Dulbecco's modified eagle medium) 및 1% 항생제와 함께 습도 5% CO2이고, 37℃인 조건으로 배양하였다.Human liver cancer cell line HepG 2 , human embryonic kidney-derived cell line HEK 293, cervical cancer cell line HeLa and mouse normal fibroblasts NIH-3T3 were mixed with 10% FBS, 90% DMEM (Dulbecco's modified eagle medium) and 1% antibiotics with humidity 5% CO Is 2 , Incubated under conditions of 37°C.

실시예Example 1. 글리콜 키토산( 1.Glycol Chitosan ( GCGC )-트)-T 리페닐포스포니움(TPP)의Of Liphenylphosphonium (TPP) 합성 synthesis

GC-TPP는 마이클 첨가 반응이라 불리는 화학 반응을 통해 합성하였다(도 2). 먼저, (메톡시카보닐메틸) 트리페닐포스포니움 브로마이드를 250㎖의 둥근 바닥 플라스크로 옮기고 실온에서 10분 동안 90㎖의 메탄올과 혼합하였다. 그런 다음 증류수 (10㎖)에 용해된 글리콜 키토산을 250㎖의 둥근 바닥 플라스크에 넣었다. 250㎖의 둥근 바닥 플라스크에 질소 가스를 채우고 140rpm으로 진탕하면서 37℃에서 3일 동안 항온 배양하였다. 3일 후, 메탄올을 증발시키고, 생성물을 분자량 1000Da를 갖는 막을 사용하여 증류수에 대해 3일 동안 투석시켰다. 첫째 날에는 100% 메탄올에서 투석을 하였고, 둘째 날에는 메탄올과 증류수의 혼합물을 투석하였으며, 마지막 날은 100%의 증류수로 투석하였다. 최종 생성물을 진공 하에 동결 건조시켰다. GC-TPP was synthesized through a chemical reaction called Michael addition reaction (FIG. 2). First, (methoxycarbonylmethyl) triphenylphosphonium bromide was transferred to a 250 ml round bottom flask and mixed with 90 ml methanol for 10 minutes at room temperature. Then, glycol chitosan dissolved in distilled water (10 ml) was placed in a 250 ml round bottom flask. A 250 ml round bottom flask was filled with nitrogen gas and incubated at 37° C. for 3 days while shaking at 140 rpm. After 3 days, methanol was evaporated, and the product was dialyzed against distilled water for 3 days using a membrane having a molecular weight of 1000 Da. On the first day, dialysis was performed in 100% methanol, on the second day, a mixture of methanol and distilled water was dialyzed, and on the last day, dialysis was performed with 100% distilled water. The final product was lyophilized under vacuum.

GC-MA를 얻기 위해, 메틸아크릴레이트 및 90㎖의 메탄올을 250㎖의 둥근 바닥 플라스크에 넣고 교반하였다. 그런 다음 증류수(10㎖)에 용해된 글리콜 키토산을 250㎖의 둥근 바닥 플라스크에 넣었다. 250㎖의 둥근 바닥 플라스크에 질소 가스를 채우고 140rpm에서 진탕하면서, 37℃에서 3일 동안 항온 배양하였다. 3일 후, 에틸렌디아민을 250㎖의 둥근 바닥 플라스크에 넣고 반응시켰다. 플라스크 내부를 질소 가스로 채운 후, 37℃에서 140rpm으로 3일 동안 진탕 배양기에서 반응시켰다. 3일 후, 메틸아크릴레이트 및 생성물로부터의 메탄올을 증발시켰다. 분자량이 1000Da인 투석막을 사용하여 증류수에서 1일 동안 투석하고 동결 건조하여 GC-MA-EDA를 획득하였다.To obtain GC-MA, methyl acrylate and 90 ml of methanol were added to a 250 ml round bottom flask and stirred. Then, glycol chitosan dissolved in distilled water (10 ml) was put into a 250 ml round bottom flask. A 250 ml round-bottom flask was filled with nitrogen gas and incubated at 37° C. for 3 days while shaking at 140 rpm. After 3 days, ethylenediamine was put into a 250 ml round bottom flask and reacted. After filling the inside of the flask with nitrogen gas, it was reacted in a shaking incubator at 37° C. at 140 rpm for 3 days. After 3 days, methylacrylate and methanol from the product were evaporated. GC-MA-EDA was obtained by dialysis in distilled water for 1 day using a dialysis membrane having a molecular weight of 1000 Da and freeze drying.

GC-MA-EDA를 상기 용액에 용해시키고(메탄올:증류수=9:1, v/v), 250㎖의 둥근 바닥 플라스크에 첨가하고 교반하였다. 이어서, 메탄올에 용해된 (메톡시카르보닐메틸) 트리페닐포스포니움 브로마이드를 플라스크에 추가하였다. 플라스크를 질소 가스로 채우고 140rpm으로 진탕하면서 37℃에서 3일 동안 항온 처리하였다. 3일 후, 메탄올을 증발시키고, 생성물을 분자량 1000Da를 갖는 막을 사용하여 증류수에 대해 3일 동안 투석시켰다. 첫째 날에는 100% 메탄올에서, 둘째 날에는 메탄올과 증류수로, 마지막 날은 100% 증류수로 투석하였다. 최종 생성물을 진공 하에 동결 건조시켰다. GC-MA-EDA was dissolved in the above solution (methanol:distilled water=9:1, v/v), added to a 250 ml round bottom flask and stirred. Then, triphenylphosphonium bromide (methoxycarbonylmethyl) dissolved in methanol was added to the flask. The flask was filled with nitrogen gas and incubated for 3 days at 37° C. with shaking at 140 rpm. After 3 days, methanol was evaporated, and the product was dialyzed against distilled water for 3 days using a membrane having a molecular weight of 1000 Da. Dialysis was performed with 100% methanol on the first day, methanol and distilled water on the second day, and 100% distilled water on the last day. The final product was lyophilized under vacuum.

GC, GC-TPP, GC-MA, GC-MA-EDA 및 GME-TPP는 1H 핵자기공명분광분석(AVANCE, 600, FT-NMR, 독일 Bruker) 및 푸리에 변환 적외선 분광분석(FT-IR, Bio-Rad Laboratories Inc., Cambridge, USA)을 통해 평가되었다(도 3 및 4).GC, GC-TPP, GC-MA, GC-MA-EDA and GME-TPP are 1 H nuclear magnetic resonance spectroscopy (AVANCE, 600, FT-NMR, Germany Bruker) and Fourier transform infrared spectroscopy (FT-IR, Bio-Rad Laboratories Inc., Cambridge, USA) (Figures 3 and 4).

GC(Glycol chitosan): 1H-NMR(600MHz, D2O, ppm) δ2.0-2.1(NHCOCH3, acetyl group), 2.6-2.8(deacetylated monomer의 H2), 3.4-3.9(H2~H8, multiplet, D-glucosamine unit 및 hydroxyl ethyl substituents), 4.3-4.5(H1)GC (Glycol chitosan): 1 H-NMR (600MHz, D 2 O, ppm) δ2.0-2.1 (NHCOCH 3 , acetyl group), 2.6-2.8 (H2 of deacetylated monomer), 3.4-3.9 (H2~H8, multiplet, D-glucosamine unit and hydroxyl ethyl substituents), 4.3-4.5(H1)

GC-TPP(Glycol chitosan-Triphenylphosphonium):1H-NMR(600MHz, D2O, ppm) δ2.0-2.1(NHCOCH3, acetyl group), 2.8-3.0(deacetylated monomer의 H2), 3.2-3.4 (TPP에 있는 methylene의 H9), 3.6-4.0(H2~H8, multiplet, D-glucosamine unit 및 hydroxyl ethyl substituents), 7.5-7.7(TPP에 있는 phenyl rings의 H10)GC-TPP (Glycol chitosan-Triphenylphosphonium): 1 H-NMR (600MHz, D 2 O, ppm) δ2.0-2.1 (NHCOCH 3 , acetyl group), 2.8-3.0 (H2 of deacetylated monomer), 3.2-3.4 ( H9 of methylene in TPP), 3.6-4.0 (H2~H8, multiplet, D-glucosamine unit and hydroxyl ethyl substituents), 7.5-7.7 (H10 of phenyl rings in TPP)

GC-MA(Glycol chitosan-Methyl acrylate): 1H-NMR(600MHz, D2O, ppm) δ2.0-2.1 (NHCOCH3, acetyl group), 2.4-2.6 (deacetylated monomer의 H2, OCCH2, H10), 2.8-3.0 (H2CCH2N, H9), 3.4-3.9 (H2~H8, multiplet, D-glucosamine unit 및hydroxyl ethyl substituents), 4.3-4.5(H1)GC-MA (Glycol chitosan-Methyl acrylate): 1 H-NMR (600MHz, D 2 O, ppm) δ2.0-2.1 (NHCOCH 3 , acetyl group), 2.4-2.6 (H2, OCCH 2 , H10 of deacetylated monomer) ), 2.8-3.0 (H 2 CCH 2 N, H9), 3.4-3.9 (H2~H8, multiplet, D-glucosamine unit and hydroxyl ethyl substituents), 4.3-4.5(H1)

GC-MA-EDA(Glycol chitosan-Methyl acrylate-Ethylenediamine):1H-NMR(600 MHz, D2O, ppm) δ2.0-2.1(NHCOCH3, acetyl group), 2.3-2.5(deacetylated monomer의 H2, OCCH, H10), 2.9-3.1(H2CCH2N, H9), 3.2-3.4(CONHCH2, H11), 3.4-3.9(H2~H8, multiplet, D-glucosamine unit and hydroxyl ethyl substituents), 4.4-4.5 (H1)GC-MA-EDA (Glycol chitosan-Methyl acrylate-Ethylenediamine): 1 H-NMR (600 MHz, D 2 O, ppm) δ2.0-2.1 (NHCOCH 3 , acetyl group), 2.3-2.5 (H2 in deacetylated monomer) , OCCH, H10), 2.9-3.1(H 2 CCH 2 N, H9), 3.2-3.4(CONHCH 2 , H11), 3.4-3.9(H2~H8, multiplet, D-glucosamine unit and hydroxyl ethyl substituents), 4.4 -4.5 (H1)

GME-TPP(Glycol chitosan-Methyl acrylate-Ethylenediamine-Triphenylphosphonium): 1H-NMR(600MHz, D2O, ppm) δ2.0-2.1(NHCOCH3, acetyl group), 2.5-2.7(deacetylated monomer의 H2, OCCH, H10), 2.8-3.1(HCCHN, H9), 3.2-3.4(TPP에 있는 methylene의 H9, CONHCH2, H11), 3.4-3.9(H2~H8, multiplet, D-glucosamine unit 및 hydroxyl ethyl substituents), 7.5-8.0(TPP에 있는 phenyl rings의 H13)GME-TPP (Glycol chitosan-Methyl acrylate-Ethylenediamine-Triphenylphosphonium): 1 H-NMR (600MHz, D 2 O, ppm) δ2.0-2.1 (NHCOCH 3 , acetyl group), 2.5-2.7 (H2 in deacetylated monomer, OCCH, H10), 2.8-3.1 (HCCHN, H9), 3.2-3.4 (H9 of methylene in TPP, CONHCH 2 , H11), 3.4-3.9 (H2-H8, multiplet, D-glucosamine units and hydroxyl ethyl substituents) , 7.5-8.0 (H13 of phenyl rings in TTP)

실시예Example 2. 2. GCGC -- TPPTPP Wow GMEGME -- TPPTPP of TPPTPP 함량 분석 Content analysis

GC-TPP와 GME-TPP의 TPP 함량을 측정하기 위해 자외선/가시광선 분광 광도계 (Optizen POP, Mecasys, Korea)를 사용하였다. 우선, 메탄올과 증류수에 1:1의 부피비로 TPP를 녹여 각 농도별로 제조하였다. 파장 267.6nm에서의 흡광도를 측정하고, 표준 곡선을 작성하였다. 이 후 GC-TPP와 GME-TPP를 메탄올과 증류수에 1:1의 부피비로 녹여 흡광도를 측정하여 표준 곡선과 비교하였다.To measure the TPP content of GC-TPP and GME-TPP, an ultraviolet/visible spectrophotometer (Optizen POP, Mecasys, Korea) was used. First, TPP was dissolved in methanol and distilled water at a volume ratio of 1:1 to prepare each concentration. The absorbance at a wavelength of 267.6 nm was measured, and a standard curve was created. Thereafter, GC-TPP and GME-TPP were dissolved in methanol and distilled water at a volume ratio of 1:1, and the absorbance was measured and compared with a standard curve.

그 결과, 표 1에 개시한 바와 같이, GC-TPP의 치환도는 1H-NMR에서 11%, UV-Vis 분광법에서 26%였다. GME-TPP의 경우, 1H-NMR에서 36%, UV-Vis 분광기에서 45%였다.As a result, as disclosed in Table 1, the degree of substitution of GC-TPP was 11% in 1H-NMR and 26% in UV-Vis spectroscopy. For GME-TPP, it was 36% in 1H-NMR and 45% in UV-Vis spectroscopy.

글리콜 키토산(GC)에 TPP가 치환된 정도Degree of substitution of TPP in glycol chitosan (GC) percentage of grafting ratio(%)percentage of grafting ratio(%) polymerspolymers 1H NMR1H NMR UV-spectroscopyUV-spectroscopy GC-TPPGC-TPP 1111 2626 GME-TPPGME-TPP 3636 4545

실시예 3. 크기 및 제타 전위 측정Example 3. Measurement of size and zeta potential

(1) FE-(1) FE- SEMSEM (Field Emission Scanning Electron Microscopy) 및 DLS(dynamic light scattering) 분석(Field Emission Scanning Electron Microscopy) and dynamic light scattering (DLS) analysis

FE-SEM 이미지는 30kV에서 전계 방출 주사 전자 현미경(FE-SEM, ZEISS Merlin Compact, Carl Zeiss Inc., 독일)에 의해 관찰되었다. GC-TPP 및 GME-TPP를 증류수에 용해시키고 30~40℃에서 15~20분 동안 초음파 처리하였다. 시료 10㎕를300 메쉬 copper grid의 표면에 놓고 자연 건조한 상태에서 16시간 동안 건조시킨 후 확인하였다.FE-SEM images were observed with a field emission scanning electron microscope (FE-SEM, ZEISS Merlin Compact, Carl Zeiss Inc., Germany) at 30 kV. GC-TPP and GME-TPP were dissolved in distilled water and sonicated at 30 to 40°C for 15 to 20 minutes. 10 µl of a sample was placed on the surface of a 300 mesh copper grid and dried for 16 hours in a naturally dried state, and then confirmed.

평균 직경은 ELS-Z 기기(Photal, Otusuka Electronics, Otsuka, Japan)를 사용하여 25℃에서 DLS(dynamic light scattering) 방법으로 측정하였다. 시료를 증류수에 용해시키고 30~40℃에서 15~20분 동안 초음파 처리하여 확인하였다.The average diameter was measured by a dynamic light scattering (DLS) method at 25° C. using an ELS-Z instrument (Photal, Otusuka Electronics, Otsuka, Japan). The sample was dissolved in distilled water and confirmed by sonicating at 30-40° C. for 15-20 minutes.

(2) 표면 제타 전위 분석(2) surface zeta potential analysis

표면 제타 전위는 Zetasizer Nano-Zs(Malvern Instruments Ltd., Worcestershire, UK)를 사용하여 25℃에서 측정되었다. 시료는 DLS 시료와 동일하게 준비되었다.The surface zeta potential was measured at 25°C using a Zetasizer Nano-Zs (Malvern Instruments Ltd., Worcestershire, UK). The sample was prepared in the same manner as the DLS sample.

그 결과는 하기 표 2에 개시한 바와 같이, FE-SEM으로 측정한 GC-TPP의 크기는 210nm이고, GME-TPP의 크기는 430nm이며, 물에 녹여 DLS로 측정한 GC-TPP의 입자크기는 590±10nm이고, GME-TPP의 입자 크기는 760±20nm인 것으로 확인되었고(도 5), GC-TPP의 제타 전위는 18.3±1mV이고, GC-TPP의 제타전위는 25.9±4mV로 나타났다. The results are as shown in Table 2 below, the size of GC-TPP measured by FE-SEM is 210 nm, the size of GME-TPP is 430 nm, the particle size of GC-TPP dissolved in water and measured by DLS is It was found that the particle size of GME-TPP was 590±10nm and 760±20nm (FIG. 5), the zeta potential of GC-TPP was 18.3±1mV, and the zeta potential of GC-TPP was 25.9±4mV.

GC-TPP 및 GME-TPP의 평균 직경 및 제타 전위 값 Average diameter and zeta potential values of GC-TPP and GME-TPP 직경 크기(nm)Diameter size (nm) FE-SEMFE-SEM DLSDLS 제타전위(mV)Zeta potential (mV) GC-TPPGC-TPP 210210 590±10590±10 18.3±118.3±1 GME-TPPGME-TPP 430430 760±20760±20 25.9±425.9±4

실시예Example 4. 4. In vitroIn vitro 세포 내 흡수 및 분포 확인 Confirmation of absorption and distribution in cells

HeLa 세포를 사용하여 GC-TPP와 GME-TPP의 세포 내 흡수 및 분포를 조사하였다. HeLa cells were used to investigate the intracellular uptake and distribution of GC-TPP and GME-TPP.

세포를 5.0×103cells/well의 밀도로 8웰 플레이트(u-slide 8 well, ibidi, Germany)에 도말하고, 5% CO2를 함유하는 37℃에서 배양하였다. 글리콜 키토산(GC), GC-TPP 및 GME-TPP를 AlexaFluor488 5-SDP 에스테르(Sulfodichlorophenol Ester)로 표지하였다. 24시간 후, 형광 표지된 시료(최종 농도=5㎍/㎖)을 세포에 처리하고 인큐베이터에서 배양하였다. 미토콘드리아를 실온에서 5분 동안 마이토트래커로 처리하였다. 세포의 핵 염색을 Hochest33342(Bisbenzimidetrihydrochloride)로 5분 동안 처리하였다. 세포를 DPBS로 세척한 후 공초점 레이저 현미경(Zeiss, Oberkochen, Germany)을 사용하여 분석하였다.The cells were plated on an 8-well plate (u-slide 8 well, ibidi, Germany) at a density of 5.0×10 3 cells/well, and cultured at 37° C. containing 5% CO 2 . Glycol chitosan (GC), GC-TPP and GME-TPP were labeled with AlexaFluor488 5-SDP ester (Sulfodichlorophenol Ester). After 24 hours, a fluorescently labeled sample (final concentration = 5 μg/ml) was treated on the cells and cultured in an incubator. Mitochondria were treated with a mitotracker for 5 minutes at room temperature. Nuclear staining of cells was treated with Hochest33342 (Bisbenzimidetrihydrochloride) for 5 minutes. After washing the cells with DPBS, they were analyzed using a confocal laser microscope (Zeiss, Oberkochen, Germany).

GC, GME, GC-TPP 및 GME-TPP의 세포 내 흡수는 HeLa 세포에서 유세포 분석기 (FACS Canto Ⅱ, BD Biosciences)로 형광을 사용하여 분석하였다. 유세포 분석을 위해 약 2.0×105 세포를 6웰 플레이트에서 24시간 동안 배양하였다. 다음날, 세포를 24시간 동안 GC, GME, GC-TPP 및 GME-TPP에 AlexaFluor488로 표지한 시료를 각 웰당 0.1㎍/㎕로 처리하였다. 세포를 1500rpm에서 3분 동안 원심 분리하여 수집하고 DPBS 500㎕에 재 현탁시켰다. 각 세포 시료에 대한 1.0×104 세포의 형광 강도는 BD Cell Quest Pro Software를 사용하여 수행하였다.Intracellular uptake of GC, GME, GC-TPP and GME-TPP was analyzed in HeLa cells using fluorescence with flow cytometry (FACS Canto II, BD Biosciences). For flow cytometry, about 2.0×10 5 cells were cultured in a 6-well plate for 24 hours. The next day, the cells were treated with samples labeled with AlexaFluor488 on GC, GME, GC-TPP and GME-TPP for 24 hours at 0.1 μg/μl per well. Cells were collected by centrifugation at 1500 rpm for 3 minutes and resuspended in 500 μl of DPBS. The fluorescence intensity of 1.0×10 4 cells for each cell sample was performed using BD Cell Quest Pro Software.

그 결과, 도 6 및 7에 개시한 바와 같이 TPP를 연결하지 않은 GC와 GME는 Control에 비해 약간 증가한 형태로 나타났지만 그 양이 매우 적었다. 이는 GC와 GME 자체로는 세포 안으로 유입이 어려움을 나타내주고 있다. 반면에 TPP를 연결한 GC-TPP와 GME-TPP는 GC와 GME에 비해 많은 양의 나노입자가 유입된 것을 확인할 수 있었다. 또한 GC-TPP보다는 GME-TPP가 더 많이 유입된 것을 확인할 수 있었다. As a result, as disclosed in FIGS. 6 and 7, GC and GME without TPP connection appeared slightly increased compared to Control, but the amount was very small. This indicates that GC and GME itself are difficult to enter cells. On the other hand, it was confirmed that GC-TPP and GME-TPP linked to TPP contained a larger amount of nanoparticles than GC and GME. In addition, it was confirmed that more GME-TPP was introduced than GC-TPP.

실시예Example 5. 5. In VitroIn Vitro 세포 cell 생존률Survival rate (%) 분석(%) analysis

세포 독성 평가를 위해, 인간 간암 세포주 HepG2, 인간배아신장 유래 세포주 HEK 293, 자궁경부암 세포주 HeLa 및 마우스 정상 섬유아세포 NIH-3T3을 96웰 조직배양 플레이트에 1.0×104 세포/웰의 밀도로 접종하고, 37℃에서 10% FBS를 함유하는 DMEM상에서 배양하였다. For cytotoxicity assessment, human liver cancer cell line HepG 2 , human embryonic kidney-derived cell line HEK 293, cervical cancer cell line HeLa, and mouse normal fibroblast NIH-3T3 were inoculated at a density of 1.0×10 4 cells/well in a 96-well tissue culture plate. And cultured in DMEM containing 10% FBS at 37°C.

다음날, 세포를 24시간 동안 각 시료의 다양한 농도(100, 50, 25, 12.5㎍/㎖)로 처리한 후, 10㎕의 EZ-Cytox 및 EZ-LDH 시약을 각 웰에 첨가하였다. 2시간 후, 96웰 마이크로플레이트 판독기(VersaMax, molecular Devices, Sunnyvale, CA, USA)를 사용하여 450nm와 590nm에서 EZ-Cytox 및 EZ-LDH를 측정하였다. The next day, the cells were treated with various concentrations (100, 50, 25, 12.5 µg/ml) of each sample for 24 hours, and 10µl of EZ-Cytox and EZ-LDH reagents were added to each well. After 2 hours, EZ-Cytox and EZ-LDH were measured at 450 nm and 590 nm using a 96-well microplate reader (VersaMax, molecular Devices, Sunnyvale, CA, USA).

Cell viability(%) = [(Absorbance of control - Absorbance of sample)/Absorbance of control]×100Cell viability(%) = [(Absorbance of control-Absorbance of sample)/Absorbance of control]×100

그 결과, 도 8에 개시한 바와 같이, 본 발명에 따른 GC, GC-TPP 및 GME-TPP를 처리해도 세포 생존률은 아무것도 처리하지 않은 경우와 거의 유사하게 나타났으며, 도 9에 개시한 바와 같이 세포독성도 거의 없는 것으로 나타났다.As a result, as disclosed in FIG. 8, even with the treatment of GC, GC-TPP and GME-TPP according to the present invention, the cell viability was almost similar to that of no treatment, and as disclosed in FIG. 9 There was also little cytotoxicity.

실시예Example 6. 6. 공초점Confocal 현미경을 통한 Through the microscope GCGC -- TPPTPP And GMEGME -- TPPTPP 의 미토콘드리아 표적 평가(Mitochondrial target evaluation of ( CLSMCLSM ))

GC-TPP 및 GME-TPP가 미토콘드리아로 표적화 하는지 여부를 확인하기 위해 투석 방법을 사용해 나일 레드가 포함된 GC-TPP 및 GME-TPP를 제조하였다. 시료 용액을 실온에서 1일 동안 분자량 컷-오프 1,000Da 투석막을 사용하여 4L의 증류수에 대해 투석하였다. 미토콘드리아의 표적은 공초점 레이저 스캐닝 현미경으로 관찰하였다. GC-TPP and GME-TPP containing Nile Red were prepared using a dialysis method to determine whether GC-TPP and GME-TPP target to mitochondria. The sample solution was dialyzed against 4 L of distilled water using a molecular weight cut-off 1,000 Da dialysis membrane for 1 day at room temperature. The mitochondrial target was observed with a confocal laser scanning microscope.

HeLa 세포를 웰 당 1.0×104 세포의 농도로 8웰 플레이트에 접종하고 24시간 동안 배양하였다. 다음날 세포를 0.1㎍/㎕의 농도로 나일 레드가 포함된 GC-TPP 및 GME-TPP를 처리하였다. 인큐베이션 후, Hoechst 33342 및 마이토트래커 Red로 5분 동안 세포를 염색하였다. 그런 다음, 세포를 DPBS로 세척하고 Zeiss LSM 5 Live 공초점 레이저 현미경을 사용하여 분석하였다.HeLa cells were inoculated into an 8-well plate at a concentration of 1.0×10 4 cells per well and cultured for 24 hours. The next day, the cells were treated with GC-TPP and GME-TPP containing Nile Red at a concentration of 0.1 µg/µl. After incubation, cells were stained with Hoechst 33342 and Mitotracker Red for 5 minutes. Then, the cells were washed with DPBS and analyzed using a Zeiss LSM 5 Live confocal laser microscope.

그 결과 도 10에 개시한 바와 같이, 본 발명의 GC-TPP 및 GME-TPP가 미토콘드리아로 표적화한다는 것을 확인하였다.As a result, as disclosed in FIG. 10, it was confirmed that the GC-TPP and GME-TPP of the present invention target mitochondria.

Claims (11)

하기 반응식 (1)에 따라 글리콜 키토산(GC)과 트리페닐포스포니움(TPP) 클로라이드를 반응 제1 용매 내에서 반응시켜 제조된 GC-TPP 중합체이거나;
반응 제2 용매 내에서 글리콜 키토산(GC)의 아민기에 메틸아크릴레이트(MA)를 첨가반응시켜 글리콜 키토산-메틸아크릴레이트(GC-MA)를 합성하고, 상기 합성된 GC-MA에 에틸렌디아민(EDA)를 첨가하여 GC-MA-EDA(GME)를 합성하여, 상기 합성된 GME를 트리페닐포스포니움(TPP) 클로라이드와 반응시켜 제조된 GME-TPP 중합체인 것을 특징으로 하는 중합체:
[반응식 1]
Figure 112020062915818-pat00013

상기 반응식 1에서, n은 독립적으로 1~10,000인 정수이다.
It is a GC-TPP polymer prepared by reacting glycol chitosan (GC) and triphenylphosphonium (TPP) chloride in the reaction first solvent according to the following scheme (1);
In the reaction second solvent, methyl acrylate (MA) was added to the amine group of glycol chitosan (GC) to synthesize glycol chitosan-methylacrylate (GC-MA), and ethylenediamine (EDA) was added to the synthesized GC-MA. ) To synthesize GC-MA-EDA (GME), and reacting the synthesized GME with triphenylphosphonium (TPP) chloride, and is a GME-TPP polymer, characterized in that:
[Scheme 1]
Figure 112020062915818-pat00013

In Reaction Scheme 1, n is independently an integer ranging from 1 to 10,000.
제1항에 있어서, 상기 중합체는 미토콘드리아 표적형인 것을 특징으로 하는 중합체. The polymer according to claim 1, wherein the polymer is a mitochondrial target type. 삭제delete 제1항에 있어서, 상기 반응 제1 용매 또는 반응 제2 용매는 독립적으로 물, C1~C4의 저급 알코올, 아세톤, DMF(dimethylformamide), DMSO(dimethyl sulfoxide), 아세토니트릴 및 THF(Tetrahydrofuran) 중에서 선택된 1종 이상인 것을 특징으로 하는 중합체.The method of claim 1, wherein the reaction first solvent or reaction second solvent is independently water, C 1 ~ C 4 lower alcohol, acetone, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), acetonitrile, and tetrahydrofuran (THF). Polymer, characterized in that at least one selected from. 제1항, 제2항 및 제4항 중 어느 한 항의 GC-TPP 또는 GME-TPP 중합체가 자가조립되어 형성한 미셀.A micelle formed by self-assembly of the GC-TPP or GME-TPP polymer of any one of claims 1, 2 and 4. 제5항에 있어서, 상기 GC-TPP 또는 GME-TPP 중합체가 자가조립되어 형성한 미셀은 내부에 소수성 약물을 탑재하는 것을 특징으로 하는 미셀.The micelle according to claim 5, wherein the micelles formed by self-assembly of the GC-TPP or GME-TPP polymer have a hydrophobic drug therein. 제6항에 있어서, 상기 소수성 약물은 항암제인 것을 특징으로 하는 미셀.The micelle according to claim 6, wherein the hydrophobic drug is an anticancer agent. 제5항의 GC-TPP 또는 GME-TPP 중합체가 자가조립되어 형성한 미셀을 포함하는 약물전달체.A drug delivery system comprising micelles formed by self-assembly of the GC-TPP or GME-TPP polymer of claim 5. 제8항에 있어서, 상기 약물전달체는 내부에 독소루비신을 탑재한 약물전달체인 것을 특징으로 하는 약물 전달체.The drug delivery system of claim 8, wherein the drug delivery system is a drug delivery system having doxorubicin mounted therein. 제9항의 약물 전달체를 포함하는 암의 예방 또는 치료용 약학 조성물.A pharmaceutical composition for preventing or treating cancer comprising the drug delivery system of claim 9. 제10항에 있어서, 상기 암은 자궁경부암, 간암, 위암, 유방암, 폐암, 뇌암, 신경교종, 전립선암, 자궁암 또는 피부암인 것을 특징으로 하는 암 예방 또는 치료용 약학 조성물.The pharmaceutical composition for preventing or treating cancer according to claim 10, wherein the cancer is cervical cancer, liver cancer, gastric cancer, breast cancer, lung cancer, brain cancer, glioma, prostate cancer, uterine cancer or skin cancer.
KR1020180136760A 2018-11-08 2018-11-08 Self-assembled polymeric micelles of phosphonium glycol chitosan derivatives specifically targeting mitochondria, preparation method and uses thereof Active KR102156733B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180136760A KR102156733B1 (en) 2018-11-08 2018-11-08 Self-assembled polymeric micelles of phosphonium glycol chitosan derivatives specifically targeting mitochondria, preparation method and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180136760A KR102156733B1 (en) 2018-11-08 2018-11-08 Self-assembled polymeric micelles of phosphonium glycol chitosan derivatives specifically targeting mitochondria, preparation method and uses thereof

Publications (2)

Publication Number Publication Date
KR20200053305A KR20200053305A (en) 2020-05-18
KR102156733B1 true KR102156733B1 (en) 2020-09-16

Family

ID=70913063

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180136760A Active KR102156733B1 (en) 2018-11-08 2018-11-08 Self-assembled polymeric micelles of phosphonium glycol chitosan derivatives specifically targeting mitochondria, preparation method and uses thereof

Country Status (1)

Country Link
KR (1) KR102156733B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101720458B1 (en) 2016-03-28 2017-03-27 충남대학교산학협력단 Self-assembled polymeric micelles composed of Glycol chitosan-dequalinium, preparation method and use thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507968B1 (en) * 2001-08-18 2005-08-17 한국과학기술연구원 Anti-cancer drug-chitosan complex forming self-aggregates and preparation method thereof
KR101039095B1 (en) * 2009-03-26 2011-06-03 한남대학교 산학협력단 Biocompatible nanocomposites for drug delivery with pH susceptibility and preparation method thereof
KR101323102B1 (en) * 2011-01-18 2013-10-30 씨제이제일제당 (주) Nanoparticles formed by encapsulating an anticancer drug into glycolchitosan-cholanic acid complex and a process for the preparation thereof
EP2683410A2 (en) * 2011-03-08 2014-01-15 Access Pharmaceuticals, Inc. Targeted nanocarrier systems for delivery of actives across biological membranes
KR20130038426A (en) * 2011-10-07 2013-04-18 성균관대학교산학협력단 Glycol chitosan hydrogel modified hydrophobically with fatty acid-bonded antidiabetic peptide and a pharmaceutical composition for prevention or treatment of diabetes comprising the same
KR101738232B1 (en) * 2015-03-17 2017-05-22 경희대학교 산학협력단 A conjugate of ginsenoside compound K and glycol chitosan and an anti-tumor use thereof
KR101801958B1 (en) * 2015-04-22 2017-11-28 한국과학기술연구원 Polymeric siRNA-Glycol Chitosan Nanocomplex for Tumor-targeted Delivery of siRNA and Method for Preparing the Same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101720458B1 (en) 2016-03-28 2017-03-27 충남대학교산학협력단 Self-assembled polymeric micelles composed of Glycol chitosan-dequalinium, preparation method and use thereof

Also Published As

Publication number Publication date
KR20200053305A (en) 2020-05-18

Similar Documents

Publication Publication Date Title
Liu et al. Dextran-based redox-responsive doxorubicin prodrug micelles for overcoming multidrug resistance
Zhong et al. Polymers with distinctive anticancer mechanism that kills MDR cancer cells and inhibits tumor metastasis
Pang et al. Hyaluronic acid-quercetin conjugate micelles: Synthesis, characterization, in vitro and in vivo evaluation
Song et al. Hyaluronic acid modified liposomes for targeted delivery of doxorubicin and paclitaxel to CD44 overexpressing tumor cells with improved dual-drugs synergistic effect
Lachowicz et al. Blood-compatible, stable micelles of sodium alginate–curcumin bioconjugate for anti-cancer applications
Xie et al. Bacterial microbots for acid-labile release of hybrid micelles to promote the synergistic antitumor efficacy
Li et al. Glucose-conjugated chitosan nanoparticles for targeted drug delivery and their specific interaction with tumor cells
Li et al. GSH/pH dual-responsive biodegradable camptothecin polymeric prodrugs combined with doxorubicin for synergistic anticancer efficiency
Tang et al. Paclitaxel prodrug based mixed micelles for tumor-targeted chemotherapy
Zhao et al. Dual-targeting nanoparticles with core-crosslinked and pH/redox-bioresponsive properties for enhanced intracellular drug delivery
Zhang et al. Supramolecular hydrogels co-loaded with camptothecin and doxorubicin for sustainedly synergistic tumor therapy
TWI482634B (en) Biomedical composition
Yu et al. A bioinspired hierarchical nanoplatform targeting and responding to intracellular pathogens to eradicate parasitic infections
Gao et al. Deoxycholic acid modified-carboxymethyl curdlan conjugate as a novel carrier of epirubicin: In vitro and in vivo studies
Jazani et al. Tumor-targeting intracellular drug delivery based on dual acid/reduction-degradable nanoassemblies with ketal interface and disulfide core locations
Zheng et al. pH-sensitive and pluronic-modified pullulan nanogels for greatly improved antitumor in vivo
Li et al. The preparation and morphology control of heparin-based pH sensitive polyion complexes and their application as drug carriers
Li et al. Targeted delivery of paclitaxel using folate-conjugated heparin-poly (β-benzyl-l-aspartate) self-assembled nanoparticles
Joseph et al. Co-encapsulation of doxorubicin with galactoxyloglucan nanoparticles for intracellular tumor-targeted delivery in murine ascites and solid tumors
Rezaei et al. pH-triggered prodrug micelles for cisplatin delivery: preparation and in vitro/vivo evaluation
Buwalda et al. Reversibly core-crosslinked PEG-P (HPMA) micelles: Platinum coordination chemistry for competitive-ligand-regulated drug delivery
AU2014332069B2 (en) Self-assembled brush block copolymer-nanoparticles for drug delivery
Xu et al. Novel multi-stimuli responsive functionalized PEG-based co-delivery nanovehicles toward sustainable treatments of multidrug resistant tumor
Shukla et al. EGFR targeted albumin nanoparticles of oleanolic acid: In silico screening of nanocarrier, cytotoxicity and pharmacokinetics for lung cancer therapy
US20160324886A1 (en) Chitosan derivatives for inactivation of endotoxins and surface protection of nanoparticles

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20181108

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20200506

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20200910

PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20200910

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20200911

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20230831

Start annual number: 4

End annual number: 4