[go: up one dir, main page]

KR102122173B1 - Hydrogen production system and hydrogen production method for hydrogen station - Google Patents

Hydrogen production system and hydrogen production method for hydrogen station Download PDF

Info

Publication number
KR102122173B1
KR102122173B1 KR1020180167601A KR20180167601A KR102122173B1 KR 102122173 B1 KR102122173 B1 KR 102122173B1 KR 1020180167601 A KR1020180167601 A KR 1020180167601A KR 20180167601 A KR20180167601 A KR 20180167601A KR 102122173 B1 KR102122173 B1 KR 102122173B1
Authority
KR
South Korea
Prior art keywords
hydrogen
heat exchanger
hydrogen production
water vapor
piping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020180167601A
Other languages
Korean (ko)
Inventor
김요한
박진모
한자령
김형식
이영철
Original Assignee
한국가스공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국가스공사 filed Critical 한국가스공사
Priority to KR1020180167601A priority Critical patent/KR102122173B1/en
Application granted granted Critical
Publication of KR102122173B1 publication Critical patent/KR102122173B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00103Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor in a heat exchanger separate from the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0866Methods of heating the process for making hydrogen or synthesis gas by combination of different heating methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

The present invention relates to a hydrogen production device utilizing steam reforming. Particularly, the present invention relates to a hydrogen production device and a hydrogen production method for a hydrogen station, utilizing steam reforming. According to the present invention, it is possible to improve the efficiency of a process and enhance the stability of a purification process by using waste heat at the front and rear end of a water gas converter (31), generated when a low temperature shift process is applied, for heating the air entering a reformer.

Description

수소스테이션용 수소제조장치 및 수소제조방법{Hydrogen production system and hydrogen production method for hydrogen station}Hydrogen production system and hydrogen production method for hydrogen station

본 발명은 수증기 개질을 활용한 수소제조장치 및 수소제조방법에 관한 것으로서, 자세하게는 저온 전환 공정을 적용했을 때 발생하는 수성 가스 전환기 전 후단 폐열의 공정 내 재활용을 통해 공정의 효율 향상 및 정제 공정 안정화를 제고하는 수증기 개질을 활용한 수소스테이션용 수소제조장치 및 수소제조방법에 관한 것이다.The present invention relates to a hydrogen production apparatus and a hydrogen production method utilizing steam reforming, and in detail, it improves the efficiency of the process and stabilizes the purification process through recycling in the process of waste heat before and after the water gas converter that occurs when a low temperature conversion process is applied. The present invention relates to a hydrogen production device and a hydrogen production method for a hydrogen station utilizing water vapor reforming.

수증기 개질을 활용하여 수소를 생산하는 공정이 개시되어 있는데, 이는 통상적으로 수증기 메탄 개질(SMR, Steam methane reforming) 공정에서 원료인 천연가스나 액화석유가스(LPG)를 대부분 일산화탄소(CO), 이산화탄소(CO2) 및 수소(H2)로 전환시킨다. 생성된 일산화탄소를 수성 가스 전환 반응(WGS, Water Gas Shift Reaction)을 활용하여 추가적으로 수소를 생산해내고, 최종적으로 압력 변동 흡착(PSA, Pressure Swing Absorption) 등을 통하여 고순도의 수소를 생산하게 된다. 이 때 수성 가스 전환 반응에서 가능한 한 일산화탄소를 많이 전환시키면 후공정의 정제 공정에서 일산화탄소 정제 부하를 감소시킬 수 있고, 수소 회수율을 향상시킬 수 있다.A process for producing hydrogen by using steam reforming has been disclosed, which usually uses natural gas or liquefied petroleum gas (LPG), a raw material in steam methane reforming (SMR), carbon monoxide (CO), carbon dioxide ( CO 2 ) and hydrogen (H 2 ). The produced carbon monoxide is additionally produced hydrogen by utilizing a water gas shift reaction (WGS), and finally, high purity hydrogen is produced through pressure swing absorption (PSA). At this time, when the carbon monoxide is converted as much as possible in the water gas conversion reaction, the carbon monoxide refining load can be reduced in the post-refining process and the hydrogen recovery rate can be improved.

수성 가스 전환 반응은 발열 반응이므로 저온에서 진행될수록 일산화탄소 전환율이 높다. 즉 기존의 고온 전환(HTS, High Temperature Shift)공정(도 2)이 아닌 저온 전환(LTS, Low Temperature Shift) 공정(도 3)으로 구성되었을 때 더 높은 일산화탄소 전환율과 수소 생산량을 갖는다.Since the water gas conversion reaction is an exothermic reaction, the higher the temperature at a lower temperature, the higher the carbon monoxide conversion rate. That is, when it is composed of a low temperature shift (LTS, low temperature shift) process (FIG. 3) rather than a conventional high temperature shift (HTS, high temperature shift) process (FIG. 2), it has a higher carbon monoxide conversion rate and hydrogen production.

하지만 저온 전환 적용을 위해서는 반응기 전후단에서 추가적인 폐열 회수가 필요하다. 대형 수소 제조 공정의 경우, 발생하는 폐열을 별도의 공정에서 흡수, 처리하는 것이 용이하나 연결공정이 없이 하나의 제조장치 내에서 모든 폐열을 회수, 활용하여야 하는 수소스테이션용 수소제조장치에서는 폐열의 활용처가 제한적이고 이는 곧 열효율의 감소로 이어지게 된다. 또한 통상적으로 수성 가스 전환 공정 후단의 열을 활용하여 공정에 사용되는 수증기를 생산하는데, 저온 전환 공정이 적용됨에 따라 수성 가스 전환 공정 후단의 배출 온도가 250℃ 전후로 조정되면서 수증기 생성에 필요한 에너지가 부족하여 추가적으로 열효율이 떨어지게 된다. However, for the low-temperature conversion application, additional waste heat recovery is required at the front and rear of the reactor. In the case of a large hydrogen production process, it is easy to absorb and process the generated waste heat in a separate process, but the waste heat is used in the hydrogen production device for hydrogen stations that requires recovery and utilization of all waste heat in one manufacturing device without a connection process. The place is limited and this leads to a decrease in thermal efficiency. In addition, water is usually used for producing water vapor by utilizing heat at the end of the water gas conversion process. As the low temperature conversion process is applied, the discharge temperature at the end of the water gas conversion process is adjusted to around 250°C, and the energy required to generate water vapor is insufficient. Therefore, the thermal efficiency is additionally reduced.

대한민국 공개특허 제10-2016-0140713호 공보Republic of Korea Patent Publication No. 10-2016-0140713 대한민국 등록특허 제10-1162255호 공보Republic of Korea Registered Patent No. 10-1162255

본 발명은 일산화탄소(CO) 전환율이 높은 저온 전환 공정을 적용했을 때 발생하는 수성 가스 전환 공정 전 후단 폐열의 공정 내 재활용을 통해 공정의 효율을 향상시키고 정제 공정의 안정화를 제고하는 것을 목적으로 한다.The present invention aims to improve the efficiency of the process and improve the stabilization of the purification process through recycling in the process of the waste heat before and after the water gas conversion process that occurs when a low temperature conversion process with a high carbon monoxide (CO) conversion rate is applied.

상기 본 발명의 목적들 및 다른 특징들을 달성하기 위한 본 발명의 일 관점에 따르면, According to one aspect of the present invention for achieving the above objects and other features of the present invention,

수증기 메탄 개질기(11); 상기 수증기 메탄 개질기(11)의 일측에 배관으로 연결된 제1차 열교환기(21); 상기 제1차 열교환기(21)의 일측에 배관으로 연결된 제2차 열교환기(22); 상기 제2차 열교환기(22)의 일측에 배관으로 연결된 수성 가스 전환기(31); 상기 수성 가스 전환기(31)의 일측에 배관으로 연결된 제3차 열교환기(23); 상기 제3차 열교환기(23)의 일측에 배관으로 연결된 냉각기(51); 및 상기 냉각기(51)의 일측에 배관으로 연결된 생산가스 정제기(61)로 이루어지는 수소제조장치에 있어서,Water vapor methane reformer 11; A primary heat exchanger (21) connected by piping to one side of the steam methane reformer (11); A second heat exchanger 22 connected by piping to one side of the first heat exchanger 21; A water gas switcher 31 connected by piping to one side of the second heat exchanger 22; A third heat exchanger 23 connected by piping to one side of the water gas converter 31; A cooler 51 connected by piping to one side of the third heat exchanger 23; And in the hydrogen production apparatus consisting of a production gas purifier 61 connected by piping to one side of the cooler 51,

제1차 에어는 상기 제3차 열교환기(23)에서 가열된 후 가열 후 제1차 에어로서 상기 수증기 메탄 개질기(11)에 공급되고, 제2차 에어는 상기 제2차 열교환기(22)에서 가열된 후 가열 후 제2차 에어로서 상기 수증기 메탄 개질기(11)에 공급되며, 상기 수증기 메탄 개질기(11)의 연도 가스는 수증기 생성장치(41)를 통과하여 수증기를 생성하도록 구성된 것을 특징으로 하는 수소스테이션용 수소제조장치가 제공된다. 또한 상기 장치에 의해 수소를 제조하는 방법이 제공된다.The primary air is heated in the tertiary heat exchanger 23 and then heated and supplied to the steam methane reformer 11 as primary air, and the secondary air is the secondary heat exchanger 22 After being heated at, it is supplied to the water vapor methane reformer 11 as secondary air after heating, and the flue gas of the water vapor methane reformer 11 is configured to pass through the water vapor generating device 41 to generate water vapor. A hydrogen production device for a hydrogen station is provided. Also provided is a method for producing hydrogen by the apparatus.

본 발명에 따르면 저온 전환 공정을 적용했을 때 발생하는 수성 가스 전환기 전 후단 폐열의 공정 내 재활용을 통해 공정의 효율 향상 및 정제 공정 안정화를 제고하는 효과가 있다.According to the present invention, there is an effect of improving the efficiency of the process and stabilizing the purification process through recycling in the process of waste heat before and after the water gas converter that occurs when the low temperature conversion process is applied.

전반적인 공정 효율이 4 내지 5% 가량 상승함을 확인할 수 있다. 또한 저온 전환 반응기 적용으로 인해 기존 대비 최종 생산물의 일산화탄소(CO)의 농도가 감소하여 압력 변동 흡착 공정의 효율화 및 회수율의 향상을 제고하는 효과가 있다.It can be seen that the overall process efficiency is increased by about 4 to 5%. In addition, due to the application of a low-temperature conversion reactor, the concentration of carbon monoxide (CO) in the final product is reduced compared to the existing one, thereby improving the efficiency of the pressure fluctuation adsorption process and improving the recovery rate.

도 1은 본 발명에서 제시하는 공정으로서 저온 전환 공정을 적용한 모식도이다.
도 2는 종래의 수소스테이션급 수소제조 공정에 고온 전환 공정을 적용한 모식도이다.
도 3은 종래의 수소스테이션급 수소제조 공정에 저온 전환 공정을 적용한 모식도이다.
1 is a schematic diagram of applying a low temperature conversion process as a process proposed in the present invention.
2 is a schematic diagram of applying a high temperature conversion process to a conventional hydrogen station-class hydrogen production process.
3 is a schematic diagram of applying a low temperature conversion process to a conventional hydrogen station-class hydrogen production process.

본 발명의 추가적인 목적들, 특징들 및 장점들은 다음의 상세한 설명 및 첨부도면으로부터 보다 명료하게 이해될 수 있다. Additional objects, features and advantages of the present invention may be more clearly understood from the following detailed description and accompanying drawings.

본 발명의 상세한 설명에 앞서, 본 발명은 다양한 변경을 도모할 수 있고, 여러 가지 실시 예를 가질 수 있는 바, 아래에서 설명되고 도면에 도시된 예시들은 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Prior to the detailed description of the present invention, the present invention is capable of various changes, and may have various embodiments. The examples described below and illustrated in the drawings are intended to limit the present invention to specific embodiments. No, it should be understood to include all modifications, equivalents, or substitutes included in the spirit and scope of the present invention.

어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않은 것으로 이해되어야 할 것이다.When an element is said to be "connected" to or "connected" to another component, it is understood that other components may be directly connected to or connected to the other component, but may exist in the middle. It should be. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that no other component exists in the middle.

본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in this specification are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this specification, terms such as “include” or “have” are intended to indicate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, and that one or more other features are present. It should be understood that the existence or addition possibilities of fields or numbers, steps, operations, components, parts or combinations thereof are not excluded in advance.

또한, 명세서에 기재된 "...부", "...유닛", "...모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.In addition, terms such as "... unit", "... unit", "... module" described in the specification mean a unit that processes at least one function or operation, which is hardware or software or hardware and It can be implemented with a combination of software.

또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조부호를 부여하고 이에 대해 중복되는 설명은 생략하기로 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In addition, in the description with reference to the accompanying drawings, the same reference numerals are assigned to the same components regardless of reference numerals, and redundant descriptions thereof will be omitted. In the description of the present invention, when it is determined that detailed descriptions of related known technologies may unnecessarily obscure the subject matter of the present invention, detailed descriptions thereof will be omitted.

상기 본 발명의 목적들 및 다른 특징들을 달성하기 위한 본 발명의 일 관점에 따르면, According to one aspect of the present invention for achieving the above objects and other features of the present invention,

수증기 메탄 개질기(11); 상기 수증기 메탄 개질기(11)의 일측에 배관으로 연결된 제1차 열교환기(21); 상기 제1차 열교환기(21)의 일측에 배관으로 연결된 제2차 열교환기(22); 상기 제2차 열교환기(22)의 일측에 배관으로 연결된 수성 가스 전환기(31); 상기 수성 가스 전환기(31)의 일측에 배관으로 연결된 제3차 열교환기(23); 상기 제3차 열교환기(23)의 일측에 배관으로 연결된 냉각기(51); 및 상기 냉각기(51)의 일측에 배관으로 연결된 생산가스 정제기(61)로 이루어지는 수소제조장치에 있어서,Water vapor methane reformer 11; A primary heat exchanger (21) connected by piping to one side of the steam methane reformer (11); A second heat exchanger 22 connected by piping to one side of the first heat exchanger 21; A water gas switcher 31 connected by piping to one side of the second heat exchanger 22; A third heat exchanger 23 connected by piping to one side of the water gas converter 31; A cooler 51 connected by piping to one side of the third heat exchanger 23; And in the hydrogen production apparatus consisting of a production gas purifier 61 connected by piping to one side of the cooler 51,

제1차 에어는 상기 제3차 열교환기(23)에서 가열된 후 가열 후 제1차 에어로서 상기 수증기 메탄 개질기(11)에 공급되고, 제2차 에어는 상기 제2차 열교환기(22)에서 가열된 후 가열 후 제2차 에어로서 상기 수증기 메탄 개질기(11)에 공급되며, 상기 수증기 메탄 개질기(11)의 연도 가스는 수증기 생성장치(41)를 통과하여 수증기를 생성하도록 구성된 것을 특징으로 하는 수소스테이션용 수소제조장치가 제공된다.The primary air is heated in the tertiary heat exchanger 23 and then heated and supplied to the steam methane reformer 11 as primary air, and the secondary air is the secondary heat exchanger 22 After being heated at, it is supplied to the water vapor methane reformer 11 as secondary air after heating, and the flue gas of the water vapor methane reformer 11 is configured to pass through the water vapor generating device 41 to generate water vapor. A hydrogen production device for a hydrogen station is provided.

또한 상기 수소스테이션용 수소제조장치에 의해 수소를 제조하는 방법이 제공된다.In addition, a method for producing hydrogen by the hydrogen production apparatus for the hydrogen station is provided.

본 발명은 저온 전환 공정 적용에 따른 열효율 변화를 해결하기 위해 공정에서 활용하던 제1차 및 제2차 에어의 추가적인 가열을 통하여 폐열을 회수하고자 한다. 수성 가스 전환기(31) 전 후단에 열교환기 2개 즉 제2차 열교환기(22) 및 제3차 열교환기(23)를 추가하여 전단에서 발생하는 폐열을 수증기 메탄 개질기(11)로 들어가는 제2차 에어 가열에 활용하고 후단에서 발생하는 폐열은 수증기 메탄 개질기(11)의 버너 연소에 사용되는 제1차 에어 가열에 활용하여 그 열을 회수한다. 또한 수성 가스 전환기(31) 후단에서 수증기 발생기(Steam Generator)로 연결되는 부분을 없애고 개질기 연도 가스만을 활용해서 수증기를 생성하며 수성 가스 전환기(31) 후단의 생성 가스(Product gas)는 냉각기(51)를 이용하여 냉각만 진행한 후 생산가스 정제기(61)에서 정제공정을 진행하여 정제 공정 안정성을 향상시키고자 한 것이다.The present invention seeks to recover waste heat through additional heating of the primary and secondary air used in the process to solve the thermal efficiency change according to the application of the low temperature conversion process. A second heat exchanger entering the water vapor methane reformer 11 by adding two heat exchangers, i.e., the second heat exchanger 22 and the third heat exchanger 23, to the steam methane reformer 11 before and after the water gas converter 31 Used for primary air heating and the waste heat generated at the rear stage is utilized for primary air heating used for burner combustion of the steam methane reformer 11 to recover the heat. In addition, the part connected to the steam generator at the rear end of the water gas converter 31 is removed, and only the flue gas of the reformer is used to generate water vapor, and the product gas at the rear end of the water gas converter 31 is a cooler 51 It is intended to improve the stability of the refining process by proceeding with a refining process in the production gas purifier 61 after only cooling is performed.

바람직하게는 가열 후 제1차 에어의 온도는 190 내지 250℃이고, 상기 가열 후 제2차 에어의 온도는 175 내지 186℃인 수소스테이션용 수소제조장치가 제공된다.Preferably, the temperature of the primary air after heating is 190 to 250°C, and the temperature of the secondary air after heating is 175 to 186°C.

<실시예 및 비교예><Examples and Comparative Examples>

폐열을 회수하지 않는 종래의 공정(비교예 1 내지 4)과 비교하여 폐열을 회수하는 본 발명의 공정(실시예 1 내지4)에서 공정 효율의 증가를 시험한 결과이다.It is the result of testing the increase in process efficiency in the process of the present invention (Examples 1 to 4) in which the waste heat is recovered compared to the conventional process (Comparative Examples 1 to 4) in which the waste heat is not recovered.


공정 조건

Process conditions

폐열 미회수한 경우(비교예)

When the waste heat is not recovered (comparative example)

폐열 회수한 경우(실시예)

Waste heat recovery (Example)

폐열(kcal/h)

Waste heat (kcal/h)

효율(%)

efficiency(%)

효율(%)

efficiency(%)

1차 에어 온도(℃)

Primary air temperature (℃)

2차 에어 온도(℃)

Secondary air temperature (℃)

1

One

7142

7142

63.5

63.5

67.8

67.8

191.9

191.9

176.6

176.6

2

2

6511

6511

68.2

68.2

72.6

72.6

208.6

208.6

185.3

185.3

3

3

6818

6818

68.6

68.6

73.3

73.3

242.2

242.2

184.9

184.9

4

4

6337

6337

70.0

70.0

74.6

74.6

236.9

236.9

179.8

179.8

제1차 에어 과열 시 버너의 역화 우려가 있으며, 제2차 에어 과열 시 개질 반응관의 최대 온도가 지나치게 상승할 우려가 있으므로, 상기 네 가지 공정 조건 내에서 실시 가능하다. 상기 실시예와 같이 가장 바람직하게는 제1차 에어의 온도 범위는 191.9 내지 242.2℃, 제2차 에어 온도 범위는 176.6 내지 185.3℃ 범위에서 본 발명 공정이 적용 가능하며, 이 때 전체 공정 효율은 각 실시예 모두 4 내지 5% 가량 증가하였다.There is a fear that the burner may backfire when the first air is overheated, and the maximum temperature of the reforming reaction tube may be excessively increased when the second air is overheated, so it can be carried out within the above four process conditions. As in the above embodiment, most preferably, the temperature range of the primary air is 191.9 to 242.2°C, and the secondary air temperature range is 176.6 to 185.3°C, and the process of the present invention is applicable. All of the examples increased by 4-5%.

표 1에서 효율은 열효율로서, 주입한 천연가스의 총 저위발열량(LHV, low Heating Value) 대비 생산한 수소의 총 저위발열량(LHV)의 백분율을 의미한다.In Table 1, efficiency is thermal efficiency, which means the percentage of total low heat value (LHV) of hydrogen produced compared to the total low heat value (LHV) of injected natural gas.

효율(%)=((생산한 수소의 총 저위발열량(LHV))/(주입한 천연가스의 총 저위발열량(LHV))*100Efficiency (%) = ((Total low calorific value of hydrogen produced (LHV))/(Total low calorific value of natural gas injected (LHV))*100

발전소 등에서 주로 사용하는 효율은 연료의 발열량을 전기로 바꾼 비율로 나타내는데 이 때 발열량을 계산하는 방법은 고위발열량(HHV, High Heating Value) 과 저위발열량 두 가지가 있다. 고위발열량은 연료가 완전 연소했을 때의 열량으로 연소에 의해 발생하는 수증기의 잠열을 포함한 값을 말하며 총 발열량이라고도 하고, 저위 발열량은 열로서 이용할 수 없는 수증기 증발의 잠열을 뺀 값으로 실제로 사용되는 연료의 발열량을 나타내고 순발열량이라고도 불린다.The efficiency mainly used in power plants, etc., is expressed as the ratio of heat generated by fuel to electricity. At this time, there are two methods of calculating heat generation: high heating value (HHV) and low heating value. High heat generation is the value of heat generated when the fuel is completely burned, and includes the latent heat of water vapor generated by combustion. It is also called total heat generation. It represents the calorific value of and is also called net calorific value.

11: 수증기 메탄 개질기
20: 열교환기
21: 제1차 열교환기
22: 제2차 열교환기
23: 제3차 열교환기
31: 수성가스 전환기
32: 수성가스 전환기(고온 전환)
33: 수성가스 전환기(저온 전환)
41: 수증기 생성 장치
51: 냉각기
61: 생산가스 정제기
11: Steam methane reformer
20: heat exchanger
21: primary heat exchanger
22: Second heat exchanger
23: tertiary heat exchanger
31: water gas converter
32: water gas converter (high temperature conversion)
33: water gas converter (low temperature conversion)
41: water vapor generating device
51: cooler
61: gas purifier

Claims (3)

수증기 메탄 개질기; 상기 수증기 메탄 개질기의 일측에 배관으로 연결된 제1차 열교환기; 상기 제1차 열교환기의 일측에 배관으로 연결된 제2차 열교환기; 상기 제2차 열교환기의 일측에 배관으로 연결된 수성 가스 전환기; 상기 수성 가스 전환기의 일측에 배관으로 연결된 제3차 열교환기; 상기 제3차 열교환기의 일측에 배관으로 연결된 냉각기; 및 상기 냉각기의 일측에 배관으로 연결된 생산 가스 생산가스 정제기로 이루어지는 수소제조장치에 있어서,
제1차 에어는 상기 제3차 열교환기에서 가열된 후 가열 후 제1차 에어로서 상기 수증기 메탄 개질기에 공급되고, 제2차 에어는 상기 제2차 열교환기에서 가열된 후 가열 후 제2차 에어로서 상기 수증기 메탄 개질기에 공급되며, 상기 수증기 메탄 개질기의 연도 가스는 수증기 생성장치를 통과하여 수증기를 생성하도록 구성된 것을 특징으로 하는 수소스테이션용 수소제조장치.
Water vapor methane reformer; A primary heat exchanger connected by piping to one side of the steam methane reformer; A second heat exchanger connected by piping to one side of the first heat exchanger; A water gas converter connected to a pipe of one side of the second heat exchanger; A third heat exchanger connected by piping to one side of the water gas converter; A cooler connected by piping to one side of the third heat exchanger; And in the hydrogen production apparatus consisting of a production gas production gas purifier connected to a pipe on one side of the cooler,
The primary air is heated in the tertiary heat exchanger and then heated and supplied as the primary air to the steam methane reformer, and the secondary air is heated in the secondary heat exchanger and then heated and then secondary It is supplied to the water vapor methane reformer as air, and the flue gas of the water vapor methane reformer passes through the water vapor generating device to produce water vapor.
제1항에 있어서, 상기 가열 후 제1차 에어의 온도는 190 내지 250℃이고, 상기 가열 후 제2차 에어의 온도는 175 내지 186℃인 것을 특징으로 하는 수소스테이션용 수소제조장치.The hydrogen production apparatus for a hydrogen station according to claim 1, wherein the temperature of the primary air after heating is 190 to 250°C, and the temperature of the secondary air after heating is 175 to 186°C. 제1항 또는 제2항의 수소스테이션용 수소제조장치에 의해 수소를 제조하는 방법.A method for producing hydrogen by the hydrogen production apparatus for a hydrogen station according to claim 1 or 2.
KR1020180167601A 2018-12-21 2018-12-21 Hydrogen production system and hydrogen production method for hydrogen station Active KR102122173B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180167601A KR102122173B1 (en) 2018-12-21 2018-12-21 Hydrogen production system and hydrogen production method for hydrogen station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180167601A KR102122173B1 (en) 2018-12-21 2018-12-21 Hydrogen production system and hydrogen production method for hydrogen station

Publications (1)

Publication Number Publication Date
KR102122173B1 true KR102122173B1 (en) 2020-06-15

Family

ID=71081851

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180167601A Active KR102122173B1 (en) 2018-12-21 2018-12-21 Hydrogen production system and hydrogen production method for hydrogen station

Country Status (1)

Country Link
KR (1) KR102122173B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240030338A (en) 2022-08-30 2024-03-07 한국과학기술연구원 Hydrogen producing system using hydrocarbon reforming process and liquid organic hydrogen carrier

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007008756A (en) * 2005-06-30 2007-01-18 Toshiba Corp Plant for generating hydrogen and electric power together
JP2008538097A (en) * 2005-03-29 2008-10-09 テキサコ ディベラップメント コーポレイション Method and apparatus for a heat integrated hydrogen generation system
JP4175921B2 (en) * 2003-03-12 2008-11-05 東京瓦斯株式会社 Heat recovery system in hydrogen production equipment
KR101162255B1 (en) 2004-07-12 2012-07-03 스미토모 세이카 가부시키가이샤 Hydrogen production system and reforming apparatus
KR101172528B1 (en) * 2010-04-30 2012-08-10 부경대학교 산학협력단 Hydrogen production system
KR20160140713A (en) 2014-03-10 2016-12-07 치요다가코겐세츠가부시키가이샤 Hydrogen production system and hydrogen production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4175921B2 (en) * 2003-03-12 2008-11-05 東京瓦斯株式会社 Heat recovery system in hydrogen production equipment
KR101162255B1 (en) 2004-07-12 2012-07-03 스미토모 세이카 가부시키가이샤 Hydrogen production system and reforming apparatus
JP2008538097A (en) * 2005-03-29 2008-10-09 テキサコ ディベラップメント コーポレイション Method and apparatus for a heat integrated hydrogen generation system
JP2007008756A (en) * 2005-06-30 2007-01-18 Toshiba Corp Plant for generating hydrogen and electric power together
KR101172528B1 (en) * 2010-04-30 2012-08-10 부경대학교 산학협력단 Hydrogen production system
KR20160140713A (en) 2014-03-10 2016-12-07 치요다가코겐세츠가부시키가이샤 Hydrogen production system and hydrogen production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240030338A (en) 2022-08-30 2024-03-07 한국과학기술연구원 Hydrogen producing system using hydrocarbon reforming process and liquid organic hydrogen carrier

Similar Documents

Publication Publication Date Title
CN102530865B (en) Be there is the method for being produced hydrogen by steam reformation petroleum fractions of the production of steam of optimization
KR102804535B1 (en) Systems and methods for power production with integrated production of hydrogen
US7718159B2 (en) Process for co-production of electricity and hydrogen-rich gas steam reforming of a hydrocarbon fraction with input of calories by combustion with hydrogen in situ
CN113896168A (en) Method for preparing hydrogen or reducing gas by two-stage ammonia cracking
EP3573926B1 (en) Maximizing steam methane reformer combustion efficiency by pre-heating pre-reformed fuel gas
US8375725B2 (en) Integrated pressurized steam hydrocarbon reformer and combined cycle process
CN101285004A (en) A multifunctional energy system
WO2011056621A2 (en) Psa tail gas preheating
RU2648914C2 (en) Method of hydrogen production and energy generation
Andersen et al. Gas turbine combined cycle with CO2-capture using auto-thermal reforming of natural gas
CN101993730B (en) Multifunctional energy system based on appropriate conversion of chemical energy of fossil fuel
CN114729406A (en) Blast furnace operation method and blast furnace auxiliary equipment
WO2014189109A1 (en) Device for producing directly reduced iron and process for producing directly reduced iron
US11952276B1 (en) Process for producing hydrogen product having reduced carbon intensity
KR102641076B1 (en) System and method for producing decarbonized blue hydrogen gas for cracking operations
KR102122173B1 (en) Hydrogen production system and hydrogen production method for hydrogen station
JP2025521265A (en) Method of generating electricity using a gas turbine
CN110921623A (en) Hydrogen separation and water gas reforming integrated high-pressure hydrogen production system and method thereof
US20110260113A1 (en) Water Gas Shift Reactor System for Integrated Gasification Combined Cycle Power Generation Systems
US9334454B2 (en) Method for producing synthesis natural gas using straw gas
CN106564861A (en) Process for efficiently recovering reforming gas energy in hydrocarbon steam reforming hydrogen production process
Hoffmann et al. Performance and cost analysis of advanced gas turbine cycles with precombustion CO 2 capture
US20100212226A1 (en) Self-generated power integration for gasification
CN108975271B (en) Hydrocarbon steam conversion device with pre-conversion function and utilizing high-temperature first-stage gas to preheat mixed gas and conversion process
US20230167748A1 (en) Method and apparatus for co-generating electricity in a process plant integrated with a thermal power generator using feedwater

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20181221

PA0201 Request for examination
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20200525

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20200606

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20200608

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20230404

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20240326

Start annual number: 5

End annual number: 5