[go: up one dir, main page]

KR102067878B1 - Robot hand for performing task using regrasping and control method thereof - Google Patents

Robot hand for performing task using regrasping and control method thereof Download PDF

Info

Publication number
KR102067878B1
KR102067878B1 KR1020170170643A KR20170170643A KR102067878B1 KR 102067878 B1 KR102067878 B1 KR 102067878B1 KR 1020170170643 A KR1020170170643 A KR 1020170170643A KR 20170170643 A KR20170170643 A KR 20170170643A KR 102067878 B1 KR102067878 B1 KR 102067878B1
Authority
KR
South Korea
Prior art keywords
hand
task
robot hand
information
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020170170643A
Other languages
Korean (ko)
Other versions
KR20190070387A (en
Inventor
황희선
김민규
김정훈
이만기
김종찬
노경석
Original Assignee
한국로봇융합연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국로봇융합연구원 filed Critical 한국로봇융합연구원
Priority to KR1020170170643A priority Critical patent/KR102067878B1/en
Publication of KR20190070387A publication Critical patent/KR20190070387A/en
Application granted granted Critical
Publication of KR102067878B1 publication Critical patent/KR102067878B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1612Programme controls characterised by the hand, wrist, grip control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0009Gripping heads and other end effectors comprising multi-articulated fingers, e.g. resembling a human hand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/023Optical sensing devices including video camera means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1661Programme controls characterised by programming, planning systems for manipulators characterised by task planning, object-oriented languages

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Multimedia (AREA)
  • Manipulator (AREA)

Abstract

본 발명은 재파지를 이용하여 테스크를 수행하는 로봇 핸드 및 그 제어방법에 관한 것으로, 본 발명은 특정 업무를 로봇 핸드가 수행하기 위해, 현재 파지한 형태로는 주어진 목적에 맞는 기능(manipulation)을 할 수 없을 때, 재파지(regrasping)를 사용하여 특정 업무를 완수할 수 있는 로봇 핸드 및 그 제어방법에 관한 것이다. 상기의 기술적 과제를 달성하기 위한 본 발명의 일 양상인 복수의 객체를 이동시켜 태스크(task)를 수행하는 로봇 핸드에 있어서, 상기 복수의 객체 중 제 1 객체를 파지하여 이동시키는 핸드; 및 상기 태스크를 수행할 수 없는지 여부를 판단하는 제어부;를 포함하되, 상기 태스크를 수행할 수 없다고 판단되는 경우, 상기 제어부는, 상기 핸드가 상기 파지한 제 1 객체를 해방하도록 제어하고, 상기 태스크를 수행할 수 있도록 상기 핸드가 상기 제 1 객체를 재파지하도록 제어할 수 있다.The present invention relates to a robot hand for performing a task using a re-grip, and a control method thereof. The present invention relates to a robot hand performing a specific task in a currently held form in order to perform a task for a given purpose. The present invention relates to a robot hand and a control method thereof capable of accomplishing a specific task by using regrasping when it is not possible. A robot hand that performs a task by moving a plurality of objects to achieve the above technical problem, the robot hand comprising: a hand for holding and moving a first object of the plurality of objects; And a controller configured to determine whether the task cannot be performed. If it is determined that the task cannot be performed, the controller controls the hand to release the first object held by the hand and performs the task. The hand may be controlled to re-hold the first object to perform the operation.

Description

재파지를 이용하여 테스크를 수행하는 로봇 핸드 및 그 제어방법{ROBOT HAND FOR PERFORMING TASK USING REGRASPING AND CONTROL METHOD THEREOF}ROBOT HAND FOR PERFORMING TASK USING REGRASPING AND CONTROL METHOD THEREOF}

본 발명은 재파지를 이용하여 테스크를 수행하는 로봇 핸드 및 그 제어방법에 관한 것으로, 본 발명은 특정 업무를 로봇 핸드가 수행하기 위해, 현재 파지한 형태로는 주어진 목적에 맞는 기능(manipulation)을 할 수 없을 때, 재파지(regrasping) 동작을 사용하여 특정 업무를 완수할 수 있는 로봇 핸드 및 그 제어방법에 관한 것이다.The present invention relates to a robot hand for performing a task using a re-grip, and a control method thereof. The present invention relates to a robot hand performing a specific task in a currently held form in order to perform a task for a given purpose. The present invention relates to a robot hand capable of accomplishing a specific task by using a regrasping operation and a control method thereof.

로봇 핸드(robot hand)는 복수의 손가락에 의해서 물체를 구속 또는 이동시키는 기계의 손을 의미하고, 로봇 암(arm)이 넓은 작업 영역 내에서의 대체적인 위치 결정을 하는 데 반해 로봇 핸드는 한정된 영역 내에서의 미세한 조작이나 물체의 파악을 하는데 이용되고 있다.Robot hand refers to the hand of a machine that constrains or moves an object by a plurality of fingers. The robot hand is a limited area, while the robot arm makes an alternative positioning within a wide working area. It is used to make fine manipulations and grasp objects in the interior.

또한, 이러한 인공지능 및 로봇기술은 다양한 분야에 활용이 확산 중이며, 제조환경에서의 부품파지 및 조립의 핸들링 기술돌파(Breakthrough)를 위한 핵심기술로 활용될 수 있다.In addition, the artificial intelligence and robot technology is spreading in various fields, and can be used as a core technology for breaking through handling technology of gripping and assembling parts in a manufacturing environment.

단, 전술한 로봇 핸드를 기초로 실제 제조환경에서 수행되는 대부분의 작업은, 부품을 잡고 조립하는 핸들링 작업이며 정형화된 환경에서의 단순반복 작업을 제외하고 대부분의 핸들링 작업은 사람의 수 공정에 의해 수행된다는 문제점이 있다.However, most of the operations performed in the actual manufacturing environment based on the above-described robot hands are handling operations for holding and assembling parts, and most handling operations are performed by human processes except for simple repetitive operations in a standardized environment. There is a problem that it is performed.

따라서 상기 문제점을 해소하고, 제조환경의 변화에 대응하여 생산효율을 높이기 위해 인공지능이 탑재된 파지/조립 기술 개발이 시급한 실정이다.Therefore, in order to solve the above problems and to increase production efficiency in response to changes in the manufacturing environment, it is urgent to develop a grip / assembly technology equipped with artificial intelligence.

(1) 대한민국 특허청 등록번호 제10-1323217호(1) Korean Patent Office Registration No. 10-1323217 (2) 대한민국 특허청 등록번호 제 10-1048762호(2) Registration number 10-1048762 of the Korean Intellectual Property Office

본 발명은 재파지를 이용하여 테스크를 수행하는 로봇 핸드 및 그 제어방법에 관한 것으로, 본 발명은 특정 업무를 로봇 핸드가 수행하기 위해, 현재 grasping 한 형태로는 주어진 목적에 맞는 manipulation을 할 수 없을 때 regrasping을 사용하여 특정 업무를 완수할 수 있는 로봇 핸드 및 그 제어방법을 사용자에게 제공하고자 한다.The present invention relates to a robot hand for performing a task using re-gripping and a control method thereof, and the present invention cannot perform manipulation for a given purpose in a form grasping in order to perform a specific task by the robot hand. When you use regrasping to provide a robot hand that can accomplish a specific task and its control method to the user.

또한, 본 발명은 특정 업무를 로봇 핸드가 수행하기 위해, 현재 grasping 한 형태로는 주어진 목적에 맞는 manipulation을 할 수 없을 때 regrasping을 사용하여 특정 업무를 완수할 수 있는 기술을 제안하는 것을 목적으로 한다.In addition, an object of the present invention is to propose a technique for performing a specific task by using a regrasping when the robot hand can perform a specific task, when the currently grasping form does not allow manipulation for a given purpose. .

또한, 본 발명은 양팔 로봇이 물체를 조립작업 할 때, 현재 물체를 잡고 있는 상태에서는 조립 작업이 이루어질 수 없는 경우, 한쪽이나 양쪽 물건을 놓고 조립작업이 가능 하도록 다시 잡는데 필요한 최적 알고리즘을 제안하는 것을 목적으로 한다.In addition, the present invention proposes an optimal algorithm required for reassembling one or both objects when the two-armed robot can assemble the object, if the assembly operation can not be carried out while holding the current object. The purpose.

또한, 본 발명은 촉각센서를 추가적으로 활용하여 기존에 많이 활용되는 normal force 측정은 물론이고 shear force, 대상 물체의 전도성 등을 측정하여 대상물 분류 및 학습할 수 있는 핸들링 기술을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a handling technology capable of classifying and learning an object by additionally using a tactile sensor and measuring shear force, conductivity of an object, and the like as well as normal force measurement, which is widely used.

한편, 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems that are not mentioned are clearly to those skilled in the art from the following description. It can be understood.

상기의 기술적 과제를 달성하기 위한 본 발명의 일 양상인 복수의 객체를 이동시켜 태스크(task)를 수행하는 로봇 핸드에 있어서, 상기 복수의 객체 중 제 1 객체를 파지하여 이동시키는 핸드; 및 상기 태스크를 수행할 수 없는지 여부를 판단하는 제어부;를 포함하되, 상기 태스크를 수행할 수 없다고 판단되는 경우, 상기 제어부는, 상기 핸드가 상기 파지한 제 1 객체를 해방하도록 제어하고, 상기 태스크를 수행할 수 있도록 상기 핸드가 상기 제 1 객체를 재파지하도록 제어할 수 있다.A robot hand that performs a task by moving a plurality of objects to achieve the above technical problem, the robot hand comprising: a hand for holding and moving a first object of the plurality of objects; And a controller configured to determine whether the task cannot be performed. If it is determined that the task cannot be performed, the controller controls the hand to release the first object held by the hand and performs the task. The hand may be controlled to re-hold the first object to perform the operation.

또한, 상기 제 1 객체의 방향 및 위치 중 적어도 하나가 변경되어 상기 태스크를 수행할 수 없다고 판단되는 경우, 상기 제어부가 상기 핸드의 해방 및 재파지 동작을 제어할 수 있다.In addition, when it is determined that at least one of the direction and location of the first object is changed and the task cannot be performed, the controller may control the release and re-holding operation of the hand.

또한, 상기 태스크는 상기 복수의 객체를 미리 설정된 순서에 따라 이동시켜 수행 가능하고, 상기 미리 설정된 순서와 다르게 상기 제 1 객체가 이동되어 상기 태스크를 수행할 수 없다고 판단되는 경우, 상기 제어부가 상기 핸드의 해방 및 재파지 동작을 제어할 수 있다.In addition, the task may be performed by moving the plurality of objects in a preset order, and when it is determined that the first object is moved and cannot perform the task differently from the preset order, the controller controls the hand. Can control the release and re-holding of

또한, 상기 태스크는 상기 복수의 객체를 미리 설정된 순서에 따라 이동시켜 수행 가능하고, 상기 제어부는, 상기 제 1 객체를 재파지에 적합한 방향 및 위치로 배치되도록 상기 핸드가 상기 파지한 제 1 객체를 해방하도록 제어할 수 있다.The task may be performed by moving the plurality of objects in a preset order, and the controller may control the first object held by the hand so that the first object is disposed in a direction and a position suitable for re-holding. Can be controlled to release.

또한, 상기 제어부는, 상기 핸드가 상기 해방한 제 1 객체를 일정 각도로 회전시키도록 제어하고, 상기 핸드가 상기 회전된 제 1 객체를 재파지하도록 제어할 수 있다.The controller may control the hand to rotate the released first object at an angle, and control the hand to re-hold the rotated first object.

또한ㄷ, 상기 제어부는, 상기 태스크의 수행이 완료될 때까지, 상기 핸드의 해방 및 재파지 동작을 반복하여 수행할 수 있다.In addition, the controller may repeat the release and re-holding of the hand until the task is completed.

또한, 상기 복수의 객체에 대한 영상을 획득하는 카메라;를 더 포함하고, 상기 제어부는, 상기 카메라를 통해 획득된 영상을 기초로 상기 제 1 객체의 변화된 방향 및 위치 중 적어도 하나를 결정하며, 상기 핸드가 상기 변화된 방향 및 위치 중 적어도 하나를 함께 이용하여 상기 제 1 객체를 재파지하도록 제어할 수 있다.The apparatus may further include a camera configured to acquire images of the plurality of objects, and the controller may determine at least one of a changed direction and a position of the first object based on the image acquired through the camera. The hand may be controlled to re-hold the first object using at least one of the changed direction and position.

또한, 상기 핸드가 상기 파지를 위해 제 1 객체와 접촉되는 경우, 상기 제 1 객체의 수직항력(normal force), 전단력(shear force) 및 전도성(conductive) 중 적어도 하나의 촉각 팩터를 감지하는 촉각센서;를 더 포함하고, 상기 핸드가 상기 촉각센서에서 감지한 적어도 하나의 촉각 팩터를 함께 이용하여 상기 제 1 객체를 재파지하도록 제어할 수 있다.In addition, when the hand is in contact with the first object for the gripping, a tactile sensor that detects at least one tactile factor of normal force, shear force, and conductive of the first object It may further include; and may control to re-hold the first object by using the hand together with at least one tactile factor detected by the tactile sensor.

또한, 상기 핸드는 복수의 손가락을 포함하고, 상기 복수의 손가락 각각은 상기 제 1 객체와 이격된 거리를 센싱하는 거리 센서를 포함하며, 상기 제 1 객체를 파지 또는 재파지하는 경우, 상기 복수의 거리 센서를 통해 획득된 정보를 기초로, 상기 복수의 손가락 각각은 동일한 속도로 상기 제 1 객체에 근접 이동할 수 있다.The hand may include a plurality of fingers, and each of the plurality of fingers may include a distance sensor configured to sense a distance spaced from the first object, and when the first object is gripped or re-gripping, Based on the information obtained through the distance sensor, each of the plurality of fingers may move in close proximity to the first object at the same speed.

한편, 상기의 기술적 과제를 달성하기 위한 본 발명의 다른 일 양상인 복수의 객체를 이동시켜 태스크(task)를 수행하는 방법에 있어서, 핸드가 상기 복수의 객체 중 제 1 객체를 파지하여 이동시키는 제 1 단계; 제어부가 상기 태스크를 수행할 수 없는지 여부를 판단하는 제 2 단계; 상기 태스크를 수행할 수 없다고 판단되는 경우, 상기 핸드가 상기 파지한 제 1 객체를 해방하는 제 3 단계; 및 상기 제어부의 제어에 따라 상기 태스크를 수행할 수 있도록 상기 핸드가 상기 제 1 객체를 재파지하는 제 4 단계;를 포함할 수 있다.Meanwhile, in a method of performing a task by moving a plurality of objects, which is another aspect of the present invention for achieving the above technical problem, a hand that grips and moves a first object of the plurality of objects; Stage 1; A second step of determining, by a controller, whether the task cannot be performed; A third step of releasing, by the hand, the first object held by the hand when it is determined that the task cannot be performed; And a fourth step of the hand re-holding the first object to perform the task under the control of the controller.

또한, 상기 제 2 단계에서, 상기 제 1 객체의 방향 및 위치 중 적어도 하나가 변경되어 상기 태스크를 수행할 수 없다고 판단되는 경우, 상기 제 3 단계 및 제 4 단계에서, 상기 제어부가 상기 핸드의 해방 및 재파지 동작을 제어할 수 있다.In addition, in the second step, when it is determined that at least one of the direction and location of the first object is changed to perform the task, in the third and fourth steps, the controller releases the hand. And re-holding operation.

또한, 상기 태스크는 상기 복수의 객체를 미리 설정된 순서에 따라 이동시켜 수행 가능하고, 상기 제 2 단계에서, 상기 미리 설정된 순서와 다르게 상기 제 1 객체가 이동되어 상기 태스크를 수행할 수 없다고 판단되는 경우, 상기 제 3 단계 및 제 4 단계에서, 상기 제어부가 상기 핸드의 해방 및 재파지 동작을 제어할 수 있다.The task may be performed by moving the plurality of objects in a preset order, and in the second step, when it is determined that the first object is moved and cannot perform the task differently from the preset order. In the third and fourth steps, the controller may control the release and re-holding of the hand.

또한, 상기 태스크는 상기 복수의 객체를 미리 설정된 순서에 따라 이동시켜 수행 가능하고, 상기 제 3 단계에서, 상기 제어부는 상기 제 1 객체를 재파지에 적합한 방향 및 위치로 배치되도록 상기 핸드가 상기 파지한 제 1 객체를 해방하도록 제어할 수 있다.The task may be performed by moving the plurality of objects in a predetermined order, and in the third step, the controller may be configured to hold the first object in a direction and a position suitable for re-holding. It is possible to control to release one first object.

또한, 상기 제 3 단계 및 제 4 단계 사이에는, 상기 핸드가 상기 해방한 제 1 객체를 일정 각도로 회전시키는 단계;를 더 포함하고, 상기 제 4 단계에서, 상기 핸드는 상기 회전된 제 1 객체를 재파지할 수 있다.The method may further include rotating the first object released by the hand at a predetermined angle between the third and fourth steps. In the fourth step, the hand may include the rotated first object. Can be re-held.

또한, 상기 태스크의 수행이 완료될 때까지, 상기 제 2 단계 내지 제 4 단계는 반복하여 수행될 수 있다.In addition, the second to fourth steps may be repeatedly performed until the task is completed.

또한, 상기 제 1 단계 및 제 2 단계 사이에는, 카메라가 상기 복수의 객체에 대한 영상을 획득하는 단계;를 더 포함하고, 상기 제 3 단계 및 제 4 단계 사이에는, 상기 제어부가 상기 카메라를 통해 획득된 영상을 기초로 상기 제 1 객체의 변화된 방향 및 위치 중 적어도 하나를 결정하는 단계;를 더 포함하며, 상기 제 4 단계에서는, 상기 핸드가 상기 변화된 방향 및 위치 중 적어도 하나를 함께 이용하여 상기 제 1 객체를 재파지 할 수 있다.The method may further include: obtaining, by the camera, images of the plurality of objects between the first and second steps. Between the third and fourth steps, the controller may control the camera through the camera. And determining at least one of a changed direction and a position of the first object based on the acquired image. In the fourth step, the hand uses the at least one of the changed direction and the position together to perform the determination. The first object can be retried.

또한, 상기 제 1 단계 및 제 2 단계 사이에는, 상기 핸드가 상기 파지를 위해 제 1 객체와 접촉되는 경우, 촉각센서가 상기 제 1 객체의 수직항력(normal force), 전단력(shear force) 및 전도성(conductive) 중 적어도 하나의 촉각 팩터를 감지하는 단계;를 더 포함하고, 상기 제 4 단계에서는, 상기 핸드가 상기 촉각센서에서 감지한 적어도 하나의 촉각 팩터를 함께 이용하여 상기 제 1 객체를 재파지 할 수 있다.In addition, between the first and second steps, when the hand is in contact with the first object for the gripping, the tactile sensor causes the normal force, shear force and conductivity of the first object. and detecting at least one tactile factor of the conductive, in the fourth step, the hand re-holds the first object using at least one tactile factor detected by the tactile sensor. can do.

본 발명은 특정 업무를 로봇 핸드가 수행하기 위해, 현재 grasping 한 형태로는 주어진 목적에 맞는 manipulation을 할 수 없을 때 regrasping을 사용하여 특정 업무를 완수할 수 있는 기술을 제공할 수 있다.The present invention can provide a technique for performing a specific task by using a regrasping when the robot hand can perform a specific task, the currently grasping form can not be manipulated for a given purpose.

또한, 본 발명에 따르면, 기존 많이 활용되는 normal force 측정은 물론이고 shear force까지 감지할 수 있고 대상 물체의 전도성 등을 측정하여 대상물 분류를 할 수 있는 촉각 센서를 개발하고 인간처럼 이러한 촉각 정보를 활용 가능하다. In addition, according to the present invention, it is possible to detect not only normal force, but also shear force, which is widely used, and to develop a tactile sensor that can classify objects by measuring conductivity of an object and utilizing such tactile information as a human being. It is possible.

또한, 본 발명은 시각 및 촉각정보를 이용한 부품의 실시간 위치/자세/상태 인식 기술, 부품의 안정파지를 위한 최적 파지형태 추론지능 기술, 인식정보와 경험에 기반한 지능적 파지기술(단일 그리퍼/손 이용, 30종 이상 물체), 시각 및 촉각정보를 이용한 부품의 위치/방향 조작(In-Hand) 기술, 경험기반 다양한 부품의 조립 전략 학습 기술을 통해, 단순반복 작업을 제외하고 대부분의 핸들링 작업은 사람의 수 공정에 의해 수행되고 있는 현재의 문제점을 해소할 수 있다.In addition, the present invention is a real-time position / posture / state recognition technology of parts using visual and tactile information, the optimal grip type reasoning intelligence technology for stable gripping of parts, intelligent gripping technology based on recognition information and experience (using a single gripper / hand) , More than 30 kinds of objects), position / direction manipulation of parts using visual and tactile information, and experience-based assembly strategy learning of various parts. It is possible to solve the current problem which is being performed by the manual process.

한편, 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the effect obtained in the present invention is not limited to the above-mentioned effects, other effects that are not mentioned will be clearly understood by those skilled in the art from the following description. Could be.

도 1는 본 발명이 제안하는 로봇 핸드 시스템의 구성을 설명하는 블록 구성도이다.
도 2는 본 발명이 제안하는 로봇 핸드의 구성을 설명하는 도면이다.
도 3은 본 발명의 비젼, 제어 및 기계 학습에 따라 객체를 파지하는 구체적인 일례를 도시한 것이다.
도 4는 비젼 시스템을 기초로 객체를 파지하는 본 발명에 따른 로봇 핸드 시스템의 구성을 설명하는 블록 구성도이다.
도 5는 본 발명에 따라 물체의 대략적인 위치, 모양 등을 비젼을 통해 파악하여 Grasping을 시도하고, task의 수행을 실패하는 경우에는 알고리즘에 따라 실패한 이벤트를 학습하는 방법을 설명하는 순서도이다.
도 6은 비젼 시스템 이외에 촉각 센서를 추가적으로 이용하여 객체를 파지하는 본 발명에 따른 로봇 핸드 시스템의 구성을 설명하는 블록 구성도이다.
도 7a 및 도 7b는 본 발명과 관련하여, 비젼 정보와 촉각 정보를 함께 이용한 로봇 파지의 구체적인 모습의 일례를 도시한 것이다.
도 8은 본 발명과 관련하여, 비젼 정보와 촉각 정보를 함께 이용한 로봇 파지의 동작을 설명하는 순서도이다.
도 9는 본 발명의 파지에 이용되는 소형상 모델 및 3차원 위치 피팅의 일례를 도시한 것이다.
도 10은 본 발명에 따란 3차원 위치로 피팅시켜 파지에 적용하는 일례를 구체적으로 도시한 것이다.
도 11은 본 발명과 관련하여, 비젼 정보와 촉각 정보를 함께 이용한 로봇 파지의 전체적인 동작을 설명하는 순서도이다.
도 12는 본 발명과 관련하여, 러닝을 이용한 객체 파지를 설명하는 순서도의 일례를 도시한 것이다.
도 13은 본 발명과 관련하여, 물체의 방향 및 위치 변화에 따라 파지 방법이 변화하는 일례를 도시한 것이다.
도 14는 본 발명에 따른 재파지의 필요성을 설명하기 위한 도면이다.
도 15는 본 발명에 따른 재파지 학습 모델의 일례를 도시한 것이다.
도 16은 본 발명의 파지 성공 확률에 따른 재파지 수행 방법을 설명하기 위한 도면이다.
도 17은 본 발명과 관련하여, 재파지를 적용한 task의 수행을 설명하는 도면이다.
도 18은 본 발명과 관련하여, 현재 grasping 한 형태로는 주어진 목적에 맞는 manipulation을 할 수 없을 때, regrasping을 사용하여 특정 업무를 완수할 수 있는 방법을 설명하는 순서도이다.
1 is a block diagram illustrating the configuration of a robot hand system proposed by the present invention.
2 is a view for explaining the configuration of the robot hand proposed by the present invention.
Figure 3 illustrates a specific example of gripping an object in accordance with the vision, control and machine learning of the present invention.
4 is a block diagram illustrating a configuration of a robot hand system according to the present invention for gripping an object based on a vision system.
FIG. 5 is a flowchart illustrating a method of grasping an approximate position and shape of an object through a vision and attempting grasping, and learning a failed event according to an algorithm when a task fails.
6 is a block diagram illustrating a configuration of a robot hand system according to the present invention for gripping an object by additionally using a tactile sensor in addition to a vision system.
7A and 7B illustrate an example of a specific shape of a robot gripping using vision information and tactile information in connection with the present invention.
8 is a flowchart illustrating the operation of the robot gripping using vision information and tactile information in conjunction with the present invention.
Fig. 9 shows an example of the miniature model and the three-dimensional position fitting used for the gripping of the present invention.
Figure 10 illustrates in detail an example of applying to the gripping by fitting to the three-dimensional position according to the present invention.
FIG. 11 is a flowchart illustrating the overall operation of the robot gripping using vision information and tactile information in conjunction with the present invention.
12 illustrates an example of a flowchart illustrating object gripping using learning in connection with the present invention.
FIG. 13 illustrates an example in which a gripping method changes according to a change in a direction and a position of an object in relation to the present invention.
14 is a view for explaining the need for re-hold according to the present invention.
15 illustrates an example of a rephasing learning model according to the present invention.
16 is a view for explaining a method for performing re-gripping according to the gripping success probability of the present invention.
FIG. 17 is a view for explaining execution of a task to which re-pagment is applied in accordance with the present invention.
FIG. 18 is a flowchart illustrating a method of accomplishing a specific task by using regrasping when the present grasping form does not allow manipulation for a given purpose.

본 발명의 구체적인 설명에 앞서, 본 발명에 적용되는 로봇 핸드 시스템의 구성을 도면을 참조하여 설명한다.Prior to the detailed description of the present invention, the configuration of the robot hand system applied to the present invention will be described with reference to the drawings.

도 1는 본 발명이 제안하는 로봇 핸드 시스템의 구성을 설명하는 블록 구성도이다.1 is a block diagram illustrating the configuration of a robot hand system proposed by the present invention.

도 1을 참조하면, 로봇 핸드 시스템(100)은 무선 통신부(110), A/V(Audio/Video) 입력부(120), 사용자 입력부(130), 센싱부(140), 출력부(150), 메모리(160), 인터페이스부(170), 제어부(180), 전원 공급부(190) 및 로봇 핸드(200) 등을 포함할 수 있다. Referring to FIG. 1, the robot hand system 100 may include a wireless communication unit 110, an audio / video input unit 120, a user input unit 130, a sensing unit 140, an output unit 150, The memory 160, the interface unit 170, the controller 180, the power supply unit 190, and the robot hand 200 may be included.

단, 도 1에 도시된 구성요소들이 필수적인 것은 아니어서, 그보다 많은 구성요소들을 갖거나 그보다 적은 구성요소들을 갖는 로봇 핸드 시스템이 구현될 수도 있다.However, since the components shown in FIG. 1 are not essential, a robot hand system having more or fewer components may be implemented.

이하, 상기 구성요소들에 대해 차례로 살펴본다.Hereinafter, the components will be described in order.

무선 통신부(110)는 로봇 핸드 시스템과 무선 통신 시스템 사이 또는 기기와 기기가 위치한 네트워크 사이의 무선 통신을 가능하게 하는 하나 이상의 모듈을 포함할 수 있다. The wireless communication unit 110 may include one or more modules that enable wireless communication between the robot hand system and the wireless communication system or between the device and the network in which the device is located.

예를 들어, 무선 통신부(110)는 이동통신 모듈(112), 무선 인터넷 모듈(113), 근거리 통신 모듈(114) 및 위치정보 모듈(115) 등을 포함할 수 있다.For example, the wireless communication unit 110 may include a mobile communication module 112, a wireless internet module 113, a short range communication module 114, a location information module 115, and the like.

이동통신 모듈(112)은, 이동 통신망 상에서 기지국, 외부의 기기, 서버 중 적어도 하나와 무선 신호를 송수신한다. The mobile communication module 112 transmits and receives a wireless signal with at least one of a base station, an external device, and a server on a mobile communication network.

문자/멀티미디어 메시지 송수신에 따른 다양한 형태의 데이터를 포함할 수 있다. It may include various types of data according to text and multimedia message transmission and reception.

무선 인터넷 모듈(113)은 무선 인터넷 접속을 위한 모듈을 말하는 것으로, 로봇 핸드 시스템에 내장되거나 외장될 수 있다. 무선 인터넷 기술로는 WLAN(Wireless LAN)(Wi-Fi), Wibro(Wireless broadband), Wimax(World Interoperability for Microwave Access), HSDPA(High Speed Downlink Packet Access) 등이 이용될 수 있다. The wireless internet module 113 refers to a module for wireless internet access and may be embedded or external to the robot hand system. Wireless Internet technologies may include Wireless LAN (Wi-Fi), Wireless Broadband (Wibro), World Interoperability for Microwave Access (Wimax), High Speed Downlink Packet Access (HSDPA), and the like.

근거리 통신 모듈(114)은 근거리 통신을 위한 모듈을 말한다. 근거리 통신(short range communication) 기술로 블루투스(Bluetooth), RFID(Radio Frequency Identification), 적외선 통신(IrDA, infrared Data Association), UWB(Ultra Wideband), ZigBee, 와이파이(Wireless Fidelity, Wi-Fi) 등이 이용될 수 있다.The short range communication module 114 refers to a module for short range communication. Short range communication technologies include Bluetooth, Radio Frequency Identification (RFID), Infrared Data Association (IrDA), Ultra Wideband (UWB), ZigBee, and Wireless Fidelity (Wi-Fi). Can be used.

위치정보 모듈(115)은 로봇 핸드 시스템의 위치를 획득하기 위한 모듈로서, 그의 대표적인 예로는 GPS(Global Position System) 모듈이 있다.The position information module 115 is a module for obtaining the position of the robot hand system, and a representative example thereof is a GPS (Global Position System) module.

도 1을 참조하면, A/V(Audio/Video) 입력부(120)는 오디오 신호 또는 비디오 신호 입력을 위한 것으로, 이에는 카메라(121)와 마이크(122) 등이 포함될 수 있다. 카메라(121)는 촬영 모드에서 이미지 센서에 의해 얻어지는 정지영상 또는 동영상 등의 화상 프레임을 처리한다. 처리된 화상 프레임은 디스플레이부(151)에 표시될 수 있다.Referring to FIG. 1, the A / V input unit 120 is for inputting an audio signal or a video signal, and may include a camera 121 and a microphone 122. The camera 121 processes image frames such as still images or moving images obtained by the image sensor in the photographing mode. The processed image frame may be displayed on the display unit 151.

카메라(121)에서 처리된 화상 프레임은 메모리(160)에 저장되거나 무선 통신부(110)를 통하여 외부로 전송될 수 있다. The image frame processed by the camera 121 may be stored in the memory 160 or transmitted to the outside through the wireless communication unit 110.

카메라(121)는 사용 환경에 따라 2개 이상이 구비될 수도 있다.Two or more cameras 121 may be provided according to the use environment.

마이크(122)는 녹음모드, 음성인식 모드 등에서 마이크로폰(Microphone)에 의해 외부의 음향 신호를 입력받아 전기적인 음성 데이터로 처리한다. 처리된 음성 데이터는 이동통신 모듈(112)을 통하여 이동통신 기지국으로 송신 가능한 형태로 변환되어 출력될 수 있다. 마이크(122)에는 외부의 음향 신호를 입력받는 과정에서 발생되는 잡음(noise)을 제거하기 위한 다양한 잡음 제거 알고리즘이 구현될 수 있다.The microphone 122 receives an external sound signal by a microphone in a recording mode or a voice recognition mode, and processes the external sound signal into electrical voice data. The processed voice data may be converted into a form transmittable to the mobile communication base station through the mobile communication module 112 and output. The microphone 122 may implement various noise removing algorithms for removing noise generated in the process of receiving an external sound signal.

사용자 입력부(130)는 사용자가 로봇 핸드 시스템의 동작 제어를 위한 입력 데이터를 발생시킨다. 사용자 입력부(130)는 키 패드(key pad) 돔 스위치 (dome switch), 터치 패드(정압/정전), 조그 휠, 조그 스위치 등으로 구성될 수 있다. The user input unit 130 generates input data for the user to control the operation of the robot hand system. The user input unit 130 may include a key pad dome switch, a touch pad (static pressure / capacitance), a jog wheel, a jog switch, and the like.

센싱부(140)는 로봇 핸드 시스템의 개폐 상태, 로봇 핸드 시스템의 위치, 사용자 접촉 유무, 로봇 핸드 시스템의 방위, 로봇 핸드 시스템의 가속/감속 등과 같이 로봇 핸드 시스템의 현 상태를 감지하여 로봇 핸드 시스템의 동작을 제어하기 위한 센싱 신호를 발생시킨다. The sensing unit 140 detects the current state of the robot hand system such as the open / closed state of the robot hand system, the position of the robot hand system, the presence or absence of user contact, the orientation of the robot hand system, the acceleration / deceleration of the robot hand system, and the like. Generates a sensing signal for controlling the operation of.

센싱부(140)는 전원 공급부(190)의 전원 공급 여부, 인터페이스부(170)의 외부 기기 결합 여부 등을 센싱할 수도 있다. The sensing unit 140 may sense whether the power supply unit 190 supplies power or whether the interface unit 170 is coupled to an external device.

한편, 상기 센싱부(140)는 근접 센서(미도시)를 포함할 수 있다. On the other hand, the sensing unit 140 may include a proximity sensor (not shown).

출력부(150)는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시키기 위한 것으로, 이에는 디스플레이부(151), 음향 출력 모듈(152), 알람부(153), 햅틱 모듈(154) 및 프로젝터 모듈(155) 등이 포함될 수 있다.The output unit 150 is used to generate an output related to visual, auditory or tactile senses, which includes a display unit 151, an audio output module 152, an alarm unit 153, a haptic module 154, and a projector module ( 155) may be included.

디스플레이부(151)는 로봇 핸드 시스템에서 처리되는 정보를 표시(출력)한다. The display unit 151 displays (outputs) information processed in the robot hand system.

디스플레이부(151)는 액정 디스플레이(liquid crystal display, LCD), 박막 트랜지스터 액정 디스플레이(thin film transistor-liquid crystal display, TFT LCD), 유기 발광 다이오드(organic light-emitting diode, OLED), 플렉시블 디스플레이(flexible display), 3차원 디스플레이(3D display) 중에서 적어도 하나를 포함할 수 있다. The display unit 151 includes a liquid crystal display (LCD), a thin film transistor-liquid crystal display (TFT LCD), an organic light-emitting diode (OLED), and a flexible display (flexible). and at least one of a 3D display.

이들 중 일부 디스플레이는 그를 통해 외부를 볼 수 있도록 투명형 또는 광투과형으로 구성될 수 있다. 이는 투명 디스플레이라 호칭될 수 있는데, 상기 투명 디스플레이의 대표적인 예로는 TOLED(Transparant OLED) 등이 있다. 디스플레이부(151)의 후방 구조 또한 광 투과형 구조로 구성될 수 있다. Some of these displays can be configured to be transparent or light transmissive so that they can be seen from the outside. This may be referred to as a transparent display. A representative example of the transparent display is TOLED (Transparant OLED). The rear structure of the display unit 151 may also be configured as a light transmissive structure.

로봇 핸드 시스템의 구현 형태에 따라 디스플레이부(151)가 2개 이상 존재할 수 있다. 예를 들어, 로봇 핸드 시스템에는 복수의 디스플레이부들이 하나의 면에 이격되거나 일체로 배치될 수 있고, 또한 서로 다른 면에 각각 배치될 수도 있다. There may be two or more display units 151 according to the implementation form of the robot hand system. For example, in the robot hand system, a plurality of display units may be spaced apart or integrally disposed on one surface, or may be disposed on different surfaces, respectively.

디스플레이부(151)와 터치 동작을 감지하는 센서(이하, '터치 센서'라 함)가 상호 레이어 구조를 이루는 경우(이하, '터치 스크린'이라 함)에, 디스플레이부(151)는 출력 장치 이외에 입력 장치로도 사용될 수 있다. 터치 센서는, 예를 들어, 터치 필름, 터치 시트, 터치 패드 등의 형태를 가질 수 있다.When the display unit 151 and a sensor for detecting a touch operation (hereinafter, referred to as a touch sensor) form a mutual layer structure (hereinafter referred to as a touch screen), the display unit 151 may be configured in addition to an output device. Can also be used as an input device. The touch sensor may have, for example, a form of a touch film, a touch sheet, a touch pad, or the like.

터치 센서는 디스플레이부(151)의 특정 부위에 가해진 압력 또는 디스플레이부(151)의 특정 부위에 발생하는 정전 용량 등의 변화를 전기적인 입력신호로 변환하도록 구성될 수 있다. 터치 센서는 터치 되는 위치 및 면적뿐만 아니라, 터치 시의 압력까지도 검출할 수 있도록 구성될 수 있다. The touch sensor may be configured to convert a change in pressure applied to a specific portion of the display unit 151 or capacitance generated in a specific portion of the display unit 151 into an electrical input signal. The touch sensor may be configured to detect not only the position and area of the touch but also the pressure at the touch.

터치 센서에 대한 터치 입력이 있는 경우, 그에 대응하는 신호(들)는 터치 제어기로 보내진다. 터치 제어기는 그 신호(들)를 처리한 다음 대응하는 데이터를 제어부(180)로 전송한다. 이로써, 제어부(180)는 디스플레이부(151)의 어느 영역이 터치 되었는지 여부 등을 알 수 있게 된다.If there is a touch input to the touch sensor, the corresponding signal (s) is sent to the touch controller. The touch controller processes the signal (s) and then transmits the corresponding data to the controller 180. As a result, the controller 180 can know which area of the display unit 151 is touched.

상기 근접 센서(미도시)는 상기 터치스크린에 의해 감싸지는 로봇 핸드 시스템의 내부 영역 또는 상기 터치 스크린의 근처에 배치될 수 있다. 상기 근접 센서는 소정의 검출면에 접근하는 물체, 혹은 근방에 존재하는 물체의 유무를 전자계의 힘 또는 적외선을 이용하여 기계적 접촉이 없이 검출하는 센서를 말한다. 근접 센서는 접촉식 센서보다는 그 수명이 길며 그 활용도 또한 높다. The proximity sensor (not shown) may be disposed in the inner region of the robot hand system surrounded by the touch screen or near the touch screen. The proximity sensor refers to a sensor that detects the presence or absence of an object approaching a predetermined detection surface or an object present in the vicinity without using a mechanical contact by using an electromagnetic force or infrared rays. Proximity sensors have a longer life and higher utilization than touch sensors.

상기 근접 센서의 예로는 투과형 광전 센서, 직접 반사형 광전 센서, 미러 반사형 광전 센서, 고주파 발진형 근접 센서, 정전용량형 근접 센서, 자기형 근접 센서, 적외선 근접 센서 등이 있다. 상기 터치스크린이 정전식인 경우에는 상기 포인터의 근접에 따른 전계의 변화로 상기 포인터의 근접을 검출하도록 구성된다. 이 경우 상기 터치 스크린(터치 센서)은 근접 센서로 분류될 수도 있다.Examples of the proximity sensor include a transmission photoelectric sensor, a direct reflection photoelectric sensor, a mirror reflection photoelectric sensor, a high frequency oscillation proximity sensor, a capacitive proximity sensor, a magnetic proximity sensor, and an infrared proximity sensor. When the touch screen is capacitive, the touch screen is configured to detect the proximity of the pointer by the change of the electric field according to the proximity of the pointer. In this case, the touch screen (touch sensor) may be classified as a proximity sensor.

이하에서는 설명의 편의를 위해, 상기 터치스크린 상에 포인터가 접촉되지 않으면서 근접되어 상기 포인터가 상기 터치스크린 상에 위치함이 인식되도록 하는 행위를 "근접 터치(proximity touch)"라고 칭하고, 상기 터치스크린 상에 포인터가 실제로 접촉되는 행위를 "접촉 터치(contact touch)"라고 칭한다. 상기 터치스크린 상에서 포인터로 근접 터치가 되는 위치라 함은, 상기 포인터가 근접 터치될 때 상기 포인터가 상기 터치스크린에 대해 수직으로 대응되는 위치를 의미한다.Hereinafter, for convenience of explanation, the act of allowing the pointer to be recognized without being in contact with the touch screen so that the pointer is located on the touch screen is referred to as a "proximity touch", and the touch The act of actually touching the pointer on the screen is called "contact touch." The position where the proximity touch is performed by the pointer on the touch screen refers to a position where the pointer is perpendicular to the touch screen when the pointer is in proximity proximity.

상기 근접센서는, 근접 터치와, 근접 터치 패턴(예를 들어, 근접 터치 거리, 근접 터치 방향, 근접 터치 속도, 근접 터치 시간, 근접 터치 위치, 근접 터치 이동 상태 등)을 감지한다. 상기 감지된 근접 터치 동작 및 근접 터치 패턴에 상응하는 정보는 터치 스크린상에 출력될 수 있다. The proximity sensor detects a proximity touch and a proximity touch pattern (for example, a proximity touch distance, a proximity touch direction, a proximity touch speed, a proximity touch time, a proximity touch position, and a proximity touch movement state). Information corresponding to the sensed proximity touch operation and proximity touch pattern may be output on the touch screen.

또한, 본 발명에 따른 로봇 핸드 시스템(100)은 자이로 센서(141)를 포함할 수 있다.In addition, the robot hand system 100 according to the present invention may include a gyro sensor 141.

자이로 센서(141)는 지구의 회전과 관계없이 높은 정확도로 항상 처음에 설정한 일정 방향을 유지하는 성질을 이용하여 물체의 방위 변화를 측정하는 센서이고, 자이로스코프에는 기계적인 방식과 광을 이용하는 광학식이 있다.The gyro sensor 141 is a sensor for measuring a change in azimuth of an object by using a property that always maintains a constant direction initially set with high accuracy regardless of the rotation of the earth. The gyroscope has an optical method using a mechanical method and light. have.

또한, 본 발명에 따른 로봇 핸드 시스템(100)는 가속도 센서(142)를 포함할 수 있다.In addition, the robot hand system 100 according to the present invention may include an acceleration sensor 142.

가속도센서(142)는 출력신호를 처리하여 물체의 가속도, 진동, 충격 등의 동적 힘을 측정하는 것이다. The acceleration sensor 142 processes an output signal to measure dynamic force such as acceleration, vibration, and impact of an object.

가속도 센서(142)는 검출 방식으로 크게 분류하면 관성식, 자이로식, 실리콘반도체식이 있는데, 진도계나 경사계 등도 가속도센서의 한 종류로 볼 수 있다.The acceleration sensor 142 is classified into a detection method, and includes an inertial type, a gyro type, and a silicon semiconductor type. An accelerometer or an inclinometer may also be regarded as a kind of acceleration sensor.

또한, 본 발명에 따른 로봇 핸드 시스템(100)는 압력 센서(143)를 포함할 수 있다.In addition, the robot hand system 100 according to the present invention may include a pressure sensor 143.

압력 센서(143)는 액체 또는 기체의 압력을 검출하고, 계측이나 제어에 사용하기 쉬운 전기 신호로 변환하여 전송하는 장치 및 소자를 말한다.The pressure sensor 143 is a device and an element which detect the pressure of a liquid or gas, and convert it into an electrical signal which is easy to use for measurement or control, and transmits it.

측정의 원리는 변위나 변형을 비롯하여 분자 밀도의 열전도율을 이용하는 등 매우 많은 종류가 쓰이고 있는데, 최근에는 실리콘을 재료로 한 변형 게이지형의 압력 센서가 개발되어 정밀한 압력 계측에 사용되고 있으며. 집적 회로를 동일한 기판 위에 만들어 넣어 신호 처리까지 하는 집적화 압력 센서도 개발되어 있다.There are many kinds of measurement principles such as displacement, deformation and thermal conductivity of molecular density. Recently, a strain gauge type pressure sensor made of silicon has been developed and used for precise pressure measurement. Integrated pressure sensors have also been developed that build integrated circuits on the same substrate and even process signals.

또한, 본 발명에 따른 로봇 핸드 시스템(100)은 촉각 센서(144)를 포함할 수도 있다.In addition, the robot hand system 100 according to the present invention may include a tactile sensor 144.

촉각 센서(144, Tactile Sensor)는 로봇에서 인공적으로 인간의 촉각을 실현하려는 압력 센서로스 크게 접촉 센서, 압력 센서, 미끄러짐 센서, 온도 센서 등으로 구분되는데, 인간의 고도화된 촉각 시스템을 구현하기 위해 필요한 기술이다.Tactile sensor (144, Tactile sensor) is a pressure sensor that is intended to artificially realize human tactile sense in a robot, and is classified into a contact sensor, a pressure sensor, a slip sensor, and a temperature sensor, which are necessary to realize an advanced human tactile system. Technology.

촉각센서 어레이(tactile sensor array)는 접촉각 센서(144)나 압각센서를 평면 형상으로 수 개~수 십개 나열하여 2차원적 정보를 얻기 위한 센서로서, 형상 또는 운동의 검출에도 이용할 수 있다. The tactile sensor array is a sensor for obtaining two-dimensional information by arranging several to several dozen contact angle sensors 144 or pressure sensors in a planar shape, and can also be used for detection of shape or motion.

이들 센서의 다수는 도전성 고무 또는 압전성 고분자, 감압고분자의 양면의 전극 중 어느 한쪽을 분할하여 배열형 센서를 구성하고 있는데, 2차원적 압력분포는 상대하는 전극간의 저항변화 또는 전압출력으로부터 검출된다. Many of these sensors form an array type sensor by dividing either one of a conductive rubber, a piezoelectric polymer, and electrodes on both sides of a reduced pressure polymer, and a two-dimensional pressure distribution is detected from a resistance change or a voltage output between the electrodes.

특히, 본 발명에 따른 촉각 센서(144)는 로봇 핸드(200)가 접촉하는 객체의 직항력(normal force), 전단력(shear force) 및 전도성(conductive) 중 적어도 하나를 감지할 수 있다.In particular, the tactile sensor 144 according to the present invention may detect at least one of normal force, shear force, and conductive of an object that the robot hand 200 contacts.

한편, 음향 출력 모듈(152)은 녹음 모드, 음성인식 모드, 방송수신 모드 등에서 무선 통신부(110)로부터 수신되거나 메모리(160)에 저장된 오디오 데이터를 출력할 수 있다. 음향 출력 모듈(152)은 로봇 핸드 시스템에서 수행되는 기능과 관련된 음향 신호를 출력하기도 한다. 이러한 음향 출력 모듈(152)에는 리시버(Receiver), 스피커(speaker), 버저(Buzzer) 등이 포함될 수 있다.The sound output module 152 may output audio data received from the wireless communication unit 110 or stored in the memory 160 in a recording mode, a voice recognition mode, a broadcast receiving mode, and the like. The sound output module 152 may also output sound signals related to functions performed in the robot hand system. The sound output module 152 may include a receiver, a speaker, a buzzer, and the like.

알람부(153)는 로봇 핸드 시스템의 이벤트 발생을 알리기 위한 신호를 출력한다. The alarm unit 153 outputs a signal for notifying occurrence of an event of the robot hand system.

알람부(153)는 비디오 신호나 오디오 신호 이외에 다른 형태, 예를 들어 진동으로 이벤트 발생을 알리기 위한 신호를 출력할 수도 있다. The alarm unit 153 may output a signal for notifying occurrence of an event in a form other than a video signal or an audio signal, for example, vibration.

상기 비디오 신호나 오디오 신호는 디스플레이부(151)나 음성 출력 모듈(152)을 통해서도 출력될 수 있어서, 그들(151,152)은 알람부(153)의 일부로 분류될 수도 있다.The video signal or the audio signal may be output through the display unit 151 or the audio output module 152, so that they 151 and 152 may be classified as part of the alarm unit 153.

햅틱 모듈(haptic module)(154)은 사용자가 느낄 수 있는 다양한 촉각 효과를 발생시킨다. 햅틱 모듈(154)이 발생시키는 촉각 효과의 대표적인 예로는 진동이 있다. 햅택 모듈(154)이 발생하는 진동의 세기와 패턴 등은 제어 가능하다. The haptic module 154 generates various haptic effects that a user can feel. Vibration is a representative example of the haptic effect generated by the haptic module 154. The intensity and pattern of vibration generated by the haptic module 154 can be controlled.

예를 들어, 서로 다른 진동을 합성하여 출력하거나 순차적으로 출력할 수도 있다. For example, different vibrations may be synthesized and output or may be sequentially output.

햅틱 모듈(154)은, 진동 외에도, 접촉 피부면에 대해 수직 운동하는 핀 배열, 분사구나 흡입구를 통한 공기의 분사력이나 흡입력, 피부 표면에 대한 스침, 전극(eletrode)의 접촉, 정전기력 등의 자극에 의한 효과와, 흡열이나 발열 가능한 소자를 이용한 냉온감 재현에 의한 효과 등 다양한 촉각 효과를 발생시킬 수 있다. In addition to vibration, the haptic module 154 may be configured to provide a pin array that vertically moves with respect to the contact skin surface, a jetting force or suction force of air through an injection or inlet, grazing to the skin surface, contact with an electrode, electrostatic force, and the like. Various tactile effects can be generated, such as effects by the endothermic and the reproduction of a sense of cold using the elements capable of endotherm or heat generation.

햅틱 모듈(154)은 직접적인 접촉을 통해 촉각 효과의 전달할 수 있을 뿐만 아니라, 사용자가 손가락이나 팔 등의 근 감각을 통해 촉각 효과를 느낄 수 있도록 구현할 수도 있다. 햅틱 모듈(154)은 로봇 핸드 시스템의 구성 태양에 따라 2개 이상이 구비될 수 있다.The haptic module 154 may not only deliver the haptic effect through direct contact, but also may implement the user to feel the haptic effect through a muscle sense such as a finger or an arm. The haptic module 154 may be provided with two or more according to the configuration of the robot hand system.

프로젝터 모듈(155)은, 로봇 핸드 시스템을 이용하여 이미지 프로젝트(project) 기능을 수행하기 위한 구성요소로서, 제어부(180)의 제어 신호에 따라 디스플레이부(151)상에 디스플레이되는 영상과 동일하거나 적어도 일부가 다른 영상을 외부 스크린 또는 벽에 디스플레이할 수 있다.The projector module 155 is a component for performing an image project function using a robot hand system, which is the same as or at least the image displayed on the display unit 151 according to a control signal of the controller 180. Some may display other images on an external screen or wall.

구체적으로, 프로젝터 모듈(155)은, 영상을 외부로 출력하기 위한 빛(일 예로서, 레이저 광)을 발생시키는 광원(미도시), 광원에 의해 발생한 빛을 이용하여 외부로 출력할 영상을 생성하기 위한 영상 생성 수단 (미도시), 및 영상을 일정 초점 거리에서 외부로 확대 출력하기 위한 렌즈(미도시)를 포함할 수 있다. 또한, 프로젝터 모듈(155)은, 렌즈 또는 모듈 전체를 기계적으로 움직여 영상 투사 방향을 조절할 수 있는 장치(미도시)를 포함할 수 있다.In detail, the projector module 155 may generate a light source (not shown) for generating light (for example, laser light) for outputting the image to the outside, and an image to be output to the outside using the light generated by the light source. And an image generating means (not shown), and a lens (not shown) for expanding and outputting the image to the outside at a predetermined focal length. In addition, the projector module 155 may include an apparatus (not shown) which may mechanically move the lens or the entire module to adjust the image projection direction.

프로젝터 모듈(155)은 디스플레이 수단의 소자 종류에 따라 CRT(Cathode Ray Tube) 모듈, LCD(Liquid Crystal Display) 모듈 및 DLP(Digital Light Processing) 모듈 등으로 나뉠 수 있다. 특히, DLP 모듈은, 광원에서 발생한 빛이 DMD(Digital Micromirror Device) 칩에 반사됨으로써 생성된 영상을 확대 투사하는 방식으로 프로젝터 모듈(151)의 소형화에 유리할 수 있다.The projector module 155 may be divided into a cathode ray tube (CRT) module, a liquid crystal display (LCD) module, a digital light processing (DLP) module, and the like, according to the device type of the display means. In particular, the DLP module may be advantageous in miniaturization of the projector module 151 by expanding and projecting an image generated by reflecting light generated from a light source to a digital micromirror device (DMD) chip.

바람직하게, 프로젝터 모듈(155)은, 로봇 핸드 시스템의 측면, 정면 또는 배면에 길이 방향으로 구비될 수 있다. 물론, 프로젝터 모듈(155)은, 필요에 따라 로봇 핸드 시스템의 어느 위치에라도 구비될 수 있음은 당연하다.Preferably, the projector module 155 may be provided in the longitudinal direction on the side, front or back of the robot hand system. Of course, the projector module 155 may be provided at any position of the robot hand system as necessary.

한편, 메모리부(160)는 제어부(180)의 처리 및 제어를 위한 프로그램이 저장될 수도 있고, 입/출력되는 데이터들(예를 들어, 메시지, 오디오, 정지영상, 동영상 등)의 임시 저장을 위한 기능을 수행할 수도 있다. 상기 메모리부(160)에는 상기 데이터들 각각에 대한 사용 빈도도 함께 저장될 수 있다. 또한, 상기 메모리부(160)에는 상기 터치스크린 상의 터치 입력시 출력되는 다양한 패턴의 진동 및 음향에 관한 데이터를 저장할 수 있다.Meanwhile, the memory unit 160 may store a program for processing and controlling the controller 180 and may temporarily store input / output data (for example, a message, audio, still image, video, etc.). It can also perform a function. The memory unit 160 may also store the frequency of use of each of the data. In addition, the memory unit 160 may store data regarding vibration and sound of various patterns output when a touch input on the touch screen is performed.

메모리(160)는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 카드 타입의 메모리(예를 들어 SD 또는 XD 메모리 등), 램(Random Access Memory, RAM), SRAM(Static Random Access Memory), 롬(Read-Only Memory, ROM), EEPROM(Electrically Erasable Programmable Read-Only Memory), PROM(Programmable Read-Only Memory), 자기 메모리, 자기 디스크, 광디스크 중 적어도 하나의 타입의 저장매체를 포함할 수 있다. 로봇 핸드 시스템은 인터넷(internet)상에서 상기 메모리(160)의 저장 기능을 수행하는 웹 스토리지(web storage)와 관련되어 동작할 수도 있다.The memory 160 may be a flash memory type, a hard disk type, a multimedia card micro type, a card type memory (for example, SD or XD memory), RAM (Random Access Memory, RAM), Static Random Access Memory (SRAM), Read-Only Memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Programmable Read-Only Memory (PROM), Magnetic Memory, Magnetic It may include a storage medium of at least one type of disk, optical disk. The robot hand system may operate in connection with a web storage that performs a storage function of the memory 160 on the Internet.

인터페이스부(170)는 로봇 핸드 시스템에 연결되는 모든 외부기기와의 통로 역할을 한다. 인터페이스부(170)는 외부 기기로부터 데이터를 전송받거나, 전원을 공급받아 로봇 핸드 시스템 내부의 각 구성 요소에 전달하거나, 로봇 핸드 시스템 내부의 데이터가 외부 기기로 전송되도록 한다. 예를 들어, 유/무선 헤드셋 포트, 외부 충전기 포트, 유/무선 데이터 포트, 메모리 카드(memory card) 포트, 식별 모듈이 구비된 장치를 연결하는 포트, 오디오 I/O(Input/Output) 포트, 비디오 I/O(Input/Output) 포트, 이어폰 포트 등이 인터페이스부(170)에 포함될 수 있다. The interface unit 170 serves as a passage with all external devices connected to the robot hand system. The interface unit 170 receives data from an external device, receives power, transfers the power to each component inside the robot hand system, or transmits data inside the robot hand system to an external device. For example, wired / wireless headset ports, external charger ports, wired / wireless data ports, memory card ports, ports for connecting devices with identification modules, audio input / output (I / O) ports, The video input / output (I / O) port, the earphone port, and the like may be included in the interface unit 170.

식별 모듈은 로봇 핸드 시스템의 사용 권한을 인증하기 위한 각종 정보를 저장한 칩으로서, 사용자 인증 모듈(User Identify Module, UIM), 가입자 인증 모듈(Subscriber Identify Module, SIM), 범용 사용자 인증 모듈(Universal Subscriber Identity Module, USIM) 등을 포함할 수 있다. 식별 모듈이 구비된 장치(이하 '식별 장치')는, 스마트 카드(smart card) 형식으로 제작될 수 있다. 따라서 식별 장치는 포트를 통하여 로봇 핸드 시스템과 연결될 수 있다. The identification module is a chip that stores various types of information for authenticating the use rights of the robot hand system. The identification module (User Identify Module, UIM), Subscriber Identify Module (SIM), Universal Subscriber (Universal Subscriber) Identity Module, USIM) and the like. A device equipped with an identification module (hereinafter referred to as an 'identification device') may be manufactured in the form of a smart card. Therefore, the identification device can be connected to the robot hand system through the port.

상기 인터페이스부는 로봇 핸드 시스템이 외부 크래들(cradle)과 연결될 때 상기 크래들로부터의 전원이 상기 로봇 핸드 시스템에 공급되는 통로가 되거나, 사용자에 의해 상기 크래들에서 입력되는 각종 명령 신호가 상기 이동기기로 전달되는 통로가 될 수 있다. 상기 크래들로부터 입력되는 각종 명령 신호 또는 상기 전원은 상기 이동기기가 상기 크래들에 정확히 장착되었음을 인지하기 위한 신호로 동작될 수도 있다.The interface unit may be a passage through which power from the cradle is supplied to the robot hand system when the robot hand system is connected to an external cradle, or various command signals input from the cradle by a user are transmitted to the mobile device. It can be a passage. Various command signals or power input from the cradle may be operated as signals for recognizing that the mobile device is correctly mounted on the cradle.

제어부(controller, 180)는 통상적으로 로봇 핸드 시스템의 전반적인 동작을 제어한다. The controller 180 typically controls the overall operation of the robot hand system.

전원 공급부(190)는 제어부(180)의 제어에 의해 외부의 전원, 내부의 전원을 인가 받아 각 구성요소들의 동작에 필요한 전원을 공급한다.The power supply unit 190 receives an external power source and an internal power source under the control of the controller 180 to supply power for operation of each component.

여기에 설명되는 다양한 실시예는 예를 들어, 소프트웨어, 하드웨어 또는 이들의 조합된 것을 이용하여 컴퓨터 또는 이와 유사한 장치로 읽을 수 있는 기록매체 내에서 구현될 수 있다.Various embodiments described herein may be implemented in a recording medium readable by a computer or similar device using, for example, software, hardware or a combination thereof.

하드웨어적인 구현에 의하면, 여기에 설명되는 실시예는 ASICs (application specific integrated circuits), DSPs (digital signal processors), DSPDs (digital signal processing devices), PLDs (programmable logic devices), FPGAs (field programmable gate arrays, 프로세서(processors), 제어기(controllers), 마이크로 컨트롤러(micro-controllers), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적인 유닛 중 적어도 하나를 이용하여 구현될 수 있다. 일부의 경우에 본 명세서에서 설명되는 실시예들이 제어부(180) 자체로 구현될 수 있다.According to a hardware implementation, the embodiments described herein include application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), and the like. It may be implemented using at least one of processors, controllers, micro-controllers, microprocessors, and electrical units for performing other functions. The described embodiments may be implemented by the controller 180 itself.

소프트웨어적인 구현에 의하면, 본 명세서에서 설명되는 절차 및 기능과 같은 실시예들은 별도의 소프트웨어 모듈들로 구현될 수 있다. 상기 소프트웨어 모듈들 각각은 본 명세서에서 설명되는 하나 이상의 기능 및 작동을 수행할 수 있다. 적절한 프로그램 언어로 쓰여진 소프트웨어 어플리케이션으로 소프트웨어 코드가 구현될 수 있다. 상기 소프트웨어 코드는 메모리(160)에 저장되고, 제어부(180)에 의해 실행될 수 있다.According to the software implementation, embodiments such as the procedures and functions described herein may be implemented as separate software modules. Each of the software modules may perform one or more functions and operations described herein. Software code may be implemented in software applications written in a suitable programming language. The software code may be stored in the memory 160 and executed by the controller 180.

또한, 본 발명에 따른 시스템(100)은 로봇 핸드(200)를 포함할 수 있다.In addition, the system 100 according to the present invention may include a robot hand 200.

로봇 핸드(200)는 크게 손바닥부(210) 및 손가락부(200)를 포함한다.The robot hand 200 largely includes a palm 210 and a finger 200.

손가락부(200)는 적어도 하나의 마디를 갖는 구조로 구성 가능하고, 거리 센서(미도시)를 통해, 객체에 대해 동일한 속도로 이동하는 것도 가능하다.The finger part 200 may be configured to have at least one node, and may move at the same speed with respect to an object through a distance sensor (not shown).

본 발명에 따른 객체는 정보가 아예 존재하지 않는 상태의 객체, 외부로부터 전달받은 정보가 존재하는 상태의 객체, 실패 이벤트를 통해 정보가 축적된 정보가 존재하는 상태의 객체 등의 대상이 될 수 있다.The object according to the present invention may be a target of an object in a state where no information exists at all, an object in a state in which information received from the outside exists, an object in a state in which information has accumulated information through a failure event, and the like. .

본 발명에 따른 객체에 대한 정보가 존재하는 상태는, 객체에 대한 완벽한 정보를 구축한 상태뿐만 아니라 실패 이벤트 및 러능을 통해 정보가 어느 정도 축적된 상태를 포함한다.The state in which the information about the object according to the present invention includes not only a state in which complete information on the object is constructed but also a state in which information is accumulated to some extent through failure events and capabilities.

한변, 로봇 핸드(200)는 복수로 시스템(100)에 구비될 수 있고, 복수의 로봇 핸드(200)를 통해 단순한 파지 작업뿐만 아니라 특정 순서 및 결합 방향 등을 갖는 태스크(task)를 수행하는 것도 가능하다.On the other hand, the robot hand 200 may be provided in the system 100 in plurality, and performing a task having a specific order and coupling direction as well as a simple gripping operation through the plurality of robot hands 200. It is possible.

전술한 본 발명의 시스템(100) 구성을 기초로 본 명세서에서 제안하고자 하는 구체적인 기술에 대해 도면을 참조하여 설명한다.Based on the configuration of the system 100 of the present invention described above will be described with reference to the drawings the specific technology to be proposed in the present specification.

제 1 실시예 - unknown object를 시각 센서를 이용하여 핸들링하는 기술Embodiment 1-Technique for Handling Unknown Objects Using a Visual Sensor

종래의 로봇 핸드를 기초로 실제 제조환경에서 수행되는 대부분의 작업은, 부품을 잡고 조립하는 핸들링 작업이며 정형화된 환경에서의 단순반복 작업을 제외하고 대부분의 핸들링 작업은 사람의 수 공정에 의해 수행된다는 문제점이 있었다.Most of the work performed in the actual manufacturing environment based on the conventional robot hand is a handling work for holding and assembling parts, and most of the handling work is performed by manual processes except for simple repetitive work in a standardized environment. There was a problem.

따라서 본 발명은 상기 문제점을 해소하고, 제조환경의 변화에 대응하여 생산효율을 높이기 위해 인공지능이 탑재된 파지/조립 기술을 제안하고자 한다.Accordingly, the present invention aims to solve the above problems and to propose a gripping / assembly technology equipped with artificial intelligence in order to increase production efficiency in response to changes in the manufacturing environment.

즉, 본 발명은 전술한 시스템(100) 구성을 기초로, 물체의 대략적인 위치, 모양 등을 비젼을 통해 파악하여 Grasping을 시도하고, task의 수행을 실패하는 경우에는 알고리즘에 따라 실패한 이벤트를 학습하며, Regrasping을 시도하는 핸들링 기술을 제공하고, 추가적으로 촉각센서를 활용하여 학습 알고리즘의 효율을 더 높이는 기술을 제공하고자 한다.That is, the present invention attempts grasping by grasping an approximate position, shape, and the like of an object through a vision based on the configuration of the system 100 described above. In addition, it provides a handling technique that attempts regrasping, and additionally, provides a technique that increases the efficiency of the learning algorithm by using a tactile sensor.

또한, 본 발명은, 종래의 기계학습을 통한 파지 및 조작 방법 개발을 위해 기존 제안된 model-free 방법과 model-based 방법을 함께 개발해서 오래 걸리는 학습 시간 등의 약점을 극복하고, 모델 불확실성이 있는 상황에서도 활용할 수 있는 핸들링 기술을 제공하는 것을 목적으로 한다.In addition, the present invention, by developing a conventional model-free method and model-based method for the development of gripping and manipulation method through the conventional machine learning to overcome the weak points such as long learning time, there is a model uncertainty Its purpose is to provide handling techniques that can be used in situations.

도 2는 본 발명이 제안하는 로봇 핸드의 구성을 설명하는 도면이다.2 is a view for explaining the configuration of the robot hand proposed by the present invention.

도 2를 참조하면, 객체(10)를 파지하기 위한 로봇 핸드(200)가 도시된다.Referring to FIG. 2, a robot hand 200 for gripping an object 10 is shown.

또한, 본 발명에 따른 시스템(1)에는 복수의 카메라(121)가 배치된다.In addition, a plurality of cameras 121 are arranged in the system 1 according to the invention.

여기서 제어부(180)는 객체(10)에 대한 정보가 전혀 없는 상황에서 로봇 핸드(200)를 제어하여 객체(10)를 파지하는 동작을 수행할 수 있다.Herein, the controller 180 may control the robot hand 200 to grasp the object 10 in a situation where there is no information about the object 10.

즉, 본 발명에서는 객체에 대한 획득한 정보 또는 학습된 정보가 없으므로, 복수의 카메라(121)를 통한 비젼 시스템을 기초로, 대략적인 물체의 위치, 모양을 파악하고, 파악된 정보를 기초로 로봇 핸드(200)를 제어하여 객체(10)를 파지할 수 있다.That is, in the present invention, since there is no acquired information or learned information about the object, based on the vision system through the plurality of cameras 121, the approximate position and shape of the object are detected, and the robot is based on the detected information. The object 10 may be gripped by controlling the hand 200.

구체적으로 이 경우, 제어부(180)는 획득된 영상을 이용하여 객체(10)의 좌표, 크기 및 중심 중 적어도 하나를 결정하고, 파악된 정보를 기초로 로봇 핸드(200)가 바로 객체(10)를 파지하도록 제어할 수 있다.Specifically, in this case, the controller 180 determines at least one of the coordinates, the size, and the center of the object 10 by using the acquired image, and the robot hand 200 is the object 10 immediately based on the identified information. Can be controlled to hold.

이 경우, 제어부(180)는 로봇 핸드(200)가 정밀한 grasping 보다는 power grasping을 기초로 객체(10)를 파지하도록 할 수 있다.In this case, the controller 180 may allow the robot hand 200 to grip the object 10 based on power grasping rather than precise grasping.

로봇 핸드(200)는 정확한 정보를 정보를 기초로 객체(10)를 파지하는 것이 아니므로, 객체(10)를 파지하지 못하거나 파지한 이후에 객체(10)를 해방하는 이벤트가 발생될 수 있다.Since the robot hand 200 does not grip the object 10 based on the correct information, an event for releasing the object 10 may occur after failing or holding the object 10. .

이때, 본 발명에서는 실패한 이벤트에 대한 기계 학습 알고리즘을 적용하고자 한다.In this case, the present invention intends to apply a machine learning algorithm for a failed event.

즉, 로봇 핸드(200)가 객체(10)의 파지를 실패하는 경우, 제어부(180)는 실패 이벤트를 기초로 객체(200)의 좌표, 크기 및 중심 중 적어도 하나를 다시 결정하게 된다.That is, when the robot hand 200 fails to grip the object 10, the controller 180 may determine at least one of the coordinates, the size, and the center of the object 200 again based on the failure event.

이후, 로봇 핸드(200)는 다시 결정된 팩터를 이용하여 객체(10)를 다시 파지하려는 시도를 한다.The robot hand 200 then attempts to grip the object 10 again using the determined factor.

이러한 기계 학습 알고리즘을 객체(10)를 파지하지 못하는 경우에 반복적으로 수행될 수 있고, 결국, 구체적인 정보를 획득한 이후에 객체(10)를 파지하는 방법보다 훨씬 더 적은 시도, 연산량, 시간을 이용하여 객체(10)를 파지할 수 있게 된다.Such machine learning algorithms may be repeatedly performed when the object 10 cannot be grasped, and ultimately, using much less attempts, calculation amounts, and time than grasping the object 10 after obtaining specific information. To hold the object 10.

도 3은 본 발명의 비젼, 제어 및 기계 학습에 따라 객체를 파지하는 구체적인 일례를 도시한 것이다.Figure 3 illustrates a specific example of gripping an object in accordance with the vision, control and machine learning of the present invention.

도 3을 참조하면, 본 발명에 따른 로봇 핸드(200)는 1개의 손바닥부(210)와 3개의 손가락부(220)를 포함하고, 각 손가락부(220)는 복수의 마디로 구성된다.Referring to FIG. 3, the robot hand 200 according to the present invention includes one palm 210 and three fingers 220, and each finger 220 includes a plurality of nodes.

도 3의 (a)를 참조하면, 본 발명에 따른 로봇 핸드(200)는 손바닥부(210)를 기준으로 복수의 손가락부(220)를 펼쳐서 오므리는 동작을 통해 객체(10)를 파지할 수 있다.Referring to FIG. 3A, the robot hand 200 according to the present invention may grip the object 10 by spreading and pinching a plurality of finger parts 220 based on the palm part 210. have.

즉, 카메라(121)를 통해 획득된 영상을 기초로, 제어부(180)는 객체(10)의 좌표, 크기 및 중심 중 적어도 하나를 결정하고, 파악된 정보를 기초로 로봇 핸드(200)가 바로 객체(10)를 파지하도록 제어한다.That is, based on the image acquired through the camera 121, the controller 180 determines at least one of the coordinates, the size, and the center of the object 10, and the robot hand 200 immediately based on the identified information. Control to grip the object (10).

이때, 로봇 핸드(200)가 객체(10)를 파지하지 못하거나 파지한 이후에 객체(10)를 해방하는 이벤트가 발생하는 경우, 제어부(180)는 실패 이벤트를 기초로 객체(200)의 좌표, 크기 및 중심 중 적어도 하나를 다시 결정하고, 로봇 핸드(200)는 다시 결정된 팩터를 이용하여 객체(10)를 다시 파지하려는 시도를 한다.In this case, when an event for releasing the object 10 occurs after the robot hand 200 does not hold or grip the object 10, the controller 180 coordinates the object 200 based on the failure event. Determine at least one of the size and the center, and the robot hand 200 attempts to grasp the object 10 again using the determined factor.

이러한 기계 학습 알고리즘에 따라 로봇 핸드(200)가 객체(10)를 파지하는 모습은 변화될 수 있다.According to the machine learning algorithm, the appearance of the robot hand 200 holding the object 10 may be changed.

즉, 도 3의 (a)와 같이 객체(10)의 우 측면에서 파지하는 시도를 할 수 있고, (b)에 도시된 것과 같이 좌 측면에서 파지하는 시도를 할 수 있으며, (c)에 도시된 것과 같이 객체(10)의 하단을 받치면서 좌 측면에서 다른 손가락부(220)를 통해 파지하는 것도 가능하다.That is, as shown in (a) of FIG. 3, an attempt may be made to grab from the right side of the object 10, and an attempt may be made to grab from the left side as shown in (b), and (c) As shown, it is possible to grip the other finger portion 220 on the left side while supporting the lower end of the object 10.

도 4는 비젼 시스템을 기초로 객체를 파지하는 본 발명에 따른 로봇 핸드 시스템의 구성을 설명하는 블록 구성도이다.4 is a block diagram illustrating a configuration of a robot hand system according to the present invention for gripping an object based on a vision system.

도 4를 참조하면, 시스템(100)의 비젼 시스템을 이용하는 구성 이외에 촉각 센서(144)를 추가적으로 이용할 수 있는데, 이에 대해서는 도면을 참조하여 구체적으로 후술한다.Referring to FIG. 4, the tactile sensor 144 may be additionally used in addition to the configuration using the vision system of the system 100, which will be described below in detail with reference to the accompanying drawings.

또한, 객체(10)를 그립함에 있어, 제어부(180)는 비전정보(촉각 센서 정보를 함께 이용 가능)를 활용해서 현재 잡고 있는 unknown object(10)의 grasping 안전성을 판단할 수도 있다.In addition, in gripping the object 10, the controller 180 may determine grasping safety of the unknown object 10 currently held by using vision information (which may be used together with tactile sensor information).

구체적으로, 제어부(180)는 파지하고 있는 물체(10)를 움직여 보면서 전체적으로 필요한 힘/토크를 측정해서 안전성을 확인할 수 있다.Specifically, the controller 180 can check the safety by measuring the force / torque required as a whole while moving the holding object 10.

또한, 제어부(180)는 물체(10)의 예상되는 물성치를 고려해서 현재 grasping 형태에서 필요한 힘/토크를 예상할 수도 있다.In addition, the controller 180 may estimate the force / torque required in the current grasping mode in consideration of the expected physical properties of the object 10.

이때, 제어부(180)는 로봇 핸드(200)의 grasping 안전성이 미리 설정된 값보다 낮다고 판단되는 경우, 로봇 핸드(200)가 객체(10)를 해방하고, 학습된 정보를 기초로 재파지하도록 제어할 수도 있다.In this case, when it is determined that grasping safety of the robot hand 200 is lower than a preset value, the controller 180 may control the robot hand 200 to release the object 10 and re-grip based on the learned information. It may be.

재파지(regrasping)을 하기 위해 비전 정보 및 촉각 정보로 최적의 조건 파악하고, regrasing 과정에서 물체를 잡고 조작하려는 목적에 맞게 물건을 잡을 수 있도록 할 수도 있다.It is possible to identify the optimal condition with vision information and tactile information for regrasping and to grab objects for the purpose of grasping and manipulating objects during regrasing process.

도 5는 본 발명에 따라 물체의 대략적인 위치, 모양 등을 비젼을 통해 파악하여 Grasping을 시도하고, task의 수행을 실패하는 경우에는 알고리즘에 따라 실패한 이벤트를 학습하는 방법을 설명하는 순서도이다.FIG. 5 is a flowchart illustrating a method of grasping an approximate position and shape of an object through a vision and attempting grasping, and learning a failed event according to an algorithm when a task fails.

도 5를 참조하면, 가장 먼저, 적어도 하나의 제 1 객체(10)에 대한 영상을 카메라(121)가 획득하는 단계(S10)가 진행된다.Referring to FIG. 5, first, an operation (S10) of acquiring an image of at least one first object 10 by the camera 121 is performed.

여기서 본 발명은 제 1 객체(10)에 대한 사전 정보가 전혀 없고, 카메라(121)를 통해 획득되는 정보만을 기초로 제 1 객체(10)에 대한 파지를 시도하고자 한다.In the present invention, there is no prior information on the first object 10 and attempts to grasp the first object 10 based only on information obtained through the camera 121.

이후, 획득된 영상을 이용하여 제 1 객체(10)의 좌표, 크기 및 중심 중 적어도 하나를 제어부(180)가 결정하는 단계(S11)가 진행된다.Thereafter, the controller 180 determines at least one of the coordinates, the size, and the center of the first object 10 by using the acquired image (S11).

S11 단계에서는 영상을 통해 제어부(180)가 좌표, 크기 및 중심에 대한 모든 정보를 획득하는 것이 아니라 좌표, 크기 및 중심 중 적어도 하나의 팩터(factor)가 결정되는 경우, 결정된 팩터를 이용하여 핸드(200)가 바로 제 1 객체(10)를 파지하도록 제어한다(S12).In operation S11, when the control unit 180 does not acquire all the information about the coordinates, the size, and the center through the image, but determines at least one factor of the coordinates, the size, and the center, the hand 180 uses the determined factor. 200 immediately controls to hold the first object 10 (S12).

S12 단계에서 로봇 핸드(200)는 정확한 정보를 보유하고 있지 못하므로, 제 1 객체(10) 파지를 실패할 수 있다(S13).In operation S12, since the robot hand 200 does not hold accurate information, the robot hand 200 may fail to grasp the first object 10 (S13).

예를 들어, 제 1 객체(10)가 로봇 핸드(200)가 움직인 장소에 존재하지 않거나 로봇 핸드(200)의 손가락부(220)를 벌린 정도가 제 1 객체(10)의 너비보다 작거나 예상했던 1 객체(10)의 중심부와 다른 중심부를 향해 로봇 핸드(200)가 이동하는 등의 요소로 제 1 객체(10)를 파지하지 못하는 이벤트가 발생될 수 있다.For example, the first object 10 does not exist in the place where the robot hand 200 is moved or the degree that the finger 220 of the robot hand 200 is opened is smaller than the width of the first object 10 or An event that cannot hold the first object 10 may occur due to an element such as the robot hand 200 moving toward the center of the first object 10 and another center.

이때, 제어부(180)는 실패 이벤트를 기초로 제 1 객체의 좌표, 크기 및 중심 중 적어도 하나를 다시 결정(S14)하고, 로봇 핸드(200)는 다시 결정된 팩터를 이용하여 제 1 객체(10)를 다시 파지하게 된다(S15).At this time, the controller 180 determines again at least one of the coordinates, the size, and the center of the first object based on the failure event (S14), and the robot hand 200 uses the determined factor again to determine the first object 10. It is to hold again (S15).

객체(10) 파지에 성공할 때까지, 본 발명에 따른 S13 단계 내지 S15 단계는 반복적으로 수행될 수 있다.Until the object 10 is successfully grabbed, steps S13 to S15 according to the present invention may be repeatedly performed.

또한, 객체(10) 파지에 성공한 경우라도 전술한 것과 같이, 안정성 테스트를 통해, 파지가 불안정하다고 결정되면 객체(10) 파지를 해방하고, 재파지 할 수도 있다.In addition, even when the gripping of the object 10 is successful, as described above, when the gripping is determined to be unstable through the stability test, the gripping of the object 10 may be released and re-gripping.

따라서 본 발명에 따르면, 기계학습을 통한 파지 및 조작 방법 개발을 위해 기존 제안된 model-free 방법과 model-based 방법을 함께 개발해서 오래 걸리는 학습 시간 등의 약점을 극복하고 모델 불확실성이 있는 상황에서도 활용할 수 있도록 상호 보완적인 개발이 될 수 있다.Therefore, according to the present invention, by developing both the proposed model-free method and the model-based method for developing the gripping and operating method through machine learning, it is possible to overcome the weak points such as the long learning time and to use it even in the situation of model uncertainty. Can be complementary developments.

제 2 실시예 - 객체를 카메라 및 촉각센서를 함께 이용하여 핸들링하는 기술Second Embodiment Techniques for Handling Objects Using a Camera and a Tactile Sensor Together

본 발명에서는 제 1 실시예에서 설명한 기계 학습의 효율을 높이기 위해 카메라(121) 이외에 촉각센서(144)를 함께 이용하여 로봇 핸드(200)가 파지를 시도하는 기술을 제안하고자 한다.In the present invention, in order to increase the efficiency of the machine learning described in the first embodiment, the technique using the tactile sensor 144 in addition to the camera 121, the robot hand 200 is to propose a technique to try to grip.

즉, 본 발명은, 종래의 기계학습을 통한 파지 및 조작 방법 개발을 위해 기존 제안된 model-free 방법과 model-based 방법을 함께 개발해서 오래 걸리는 학습 시간 등의 약점을 극복하고, 모델 불확실성이 있는 상황에서도 활용할 수 있는 핸들링 기술을 제공하는 것을 목적으로 한다.That is, the present invention overcomes weaknesses such as long learning time by developing the existing model-free method and the model-based method for developing the gripping and operating method through the conventional machine learning, and has a model uncertainty. Its purpose is to provide handling techniques that can be used in situations.

또한, 제 2 실시예에서는 촉각센서(144)를 추가적으로 활용하여 기존에 많이 활용되는 normal force 측정은 물론이고 shear force, 대상 물체의 전도성 등을 측정하여 대상물 분류 및 학습할 수 있는 핸들링 기술을 제공하는 것을 목적으로 한다.In addition, in the second embodiment, by using the tactile sensor 144 additionally, as well as the conventional normal force measurement, as well as measuring the shear force, the conductivity of the target object and the like to provide a handling technology that can classify and learn the object. For the purpose of

도 6은 비젼 시스템 이외에 촉각 센서를 추가적으로 이용하여 객체를 파지하는 본 발명에 따른 로봇 핸드 시스템의 구성을 설명하는 블록 구성도이다.6 is a block diagram illustrating a configuration of a robot hand system according to the present invention for gripping an object by additionally using a tactile sensor in addition to a vision system.

도 6에 도시된 구성은 전술한 도 2에 도시된 것과 동일하나 추가적으로 촉각 센서(144)를 이용한다.The configuration shown in FIG. 6 is the same as that shown in FIG. 2, but additionally uses a tactile sensor 144.

본 발명에 따른 촉각 센서(144)는 로봇 핸드(200)가 파지하는 객체(10)의 수직항력(normal force), 전단력(shear force) 및 전도성(conductive) 중 적어도 하나를 센싱할 수 있다.The tactile sensor 144 according to the present invention may sense at least one of normal force, shear force, and conductive of the object 10 held by the robot hand 200.

도 6을 참조하면, 본 발명에 따른 시스템(1)에는 복수의 카메라(121)가 배치되고, 로봇 핸드(200)의 손가락부(220)의 적어도 일부에는 촉각 센서(144)가 복수로 구비될 수 있다.Referring to FIG. 6, a plurality of cameras 121 are disposed in the system 1 according to the present invention, and a plurality of tactile sensors 144 may be provided in at least a part of the finger part 220 of the robot hand 200. Can be.

여기서 본 발명은 객체에 대한 획득한 정보 또는 학습된 정보가 없으므로, 복수의 카메라(121)를 통한 비젼 시스템을 기초로, 대략적인 물체의 위치, 모양을 파악하고, 파악된 정보를 기초로 로봇 핸드(200)를 제어하여 객체(10)를 파지할 수 있는데, 구체적으로 제어부(180)는 획득된 영상을 이용하여 객체(10)의 좌표, 크기 및 중심 중 적어도 하나를 결정하고, 파악된 정보를 기초로 로봇 핸드(200)가 바로 객체(10)를 파지하도록 제어할 수 있다.In the present invention, since there is no acquired information or learned information about the object, based on the vision system through the plurality of cameras 121, the approximate position and shape of the object are detected, and the robot hand is based on the detected information. The object 10 may be gripped by controlling the 200. In detail, the controller 180 determines at least one of the coordinates, the size, and the center of the object 10 by using the acquired image, and determines the identified information. Based on this, the robot hand 200 may directly control the gripping of the object 10.

로봇 핸드(200)는 정확한 정보를 정보를 기초로 객체(10)를 파지하는 것이 아니므로, 객체(10)를 파지하지 못하거나 파지한 이후에 객체(10)를 해방하는 이벤트가 발생될 수 있고, 본 발명에서는 실패한 이벤트에 대한 기계 학습 알고리즘을 적용한다.Since the robot hand 200 does not grip the object 10 based on accurate information, an event for releasing the object 10 may occur after failing or holding the object 10. In the present invention, the machine learning algorithm for the failed event is applied.

즉, 로봇 핸드(200)가 객체(10)의 파지를 실패하는 경우, 제어부(180)는 실패 이벤트를 기초로 객체(200)의 좌표, 크기 및 중심 중 적어도 하나를 다시 결정하게 된다.That is, when the robot hand 200 fails to grip the object 10, the controller 180 may determine at least one of the coordinates, the size, and the center of the object 200 again based on the failure event.

이 경우, 도 2에서 설명한 것과 달리, 도 6에서는 로봇 핸드(200)의 손가락부(220)가 파지를 위해 객체(10)와 접촉되는 경우, 촉각센서(144)를 통해 획득된 객체(10)의 수직항력(normal force), 전단력(shear force), 전도성(conductive) 중 적어도 하나가 재파지에 추가적으로 활용된다.In this case, unlike in FIG. 2, in FIG. 6, when the finger part 220 of the robot hand 200 contacts the object 10 for gripping, the object 10 obtained through the tactile sensor 144 is obtained. At least one of the normal force, the shear force and the conductive (conductive) of is additionally utilized for re-holding.

즉, 로봇 핸드(200)는 다시 결정된 팩터와 촉각센서(144)에서 감지한 적어도 하나의 촉각 팩터를 이용하여 객체(10)를 다시 파지하게 되므로, 비젼 시스템만을 이용하는 경우보다 훨씬 더 적은 시도, 연산량, 시간을 이용하여 객체(10)를 파지할 수 있게 된다.That is, since the robot hand 200 grips the object 10 again using the determined factor and at least one tactile factor detected by the tactile sensor 144, the robot hand 200 uses much less trial and calculation amount than when using only the vision system. Using the time, the object 10 can be gripped.

도 7a 및 도 7b는 본 발명과 관련하여, 비젼 정보와 촉각 정보를 함께 이용한 로봇 파지의 구체적인 모습의 일례를 도시한 것이다.7A and 7B illustrate an example of a specific shape of a robot gripping using vision information and tactile information in connection with the present invention.

도 7a의 (a)를 참조하면, 본 발명에 따른 로봇 핸드(200)는 1개의 손바닥부(210)와 2개의 손가락부(220)를 포함하고, 각 손가락부(220)는 복수의 마디로 구성된다.Referring to FIG. 7A (a), the robot hand 200 according to the present invention includes one palm 210 and two fingers 220, and each finger 220 has a plurality of nodes. It is composed.

본 발명에 따른 로봇 핸드(200)는 도 7a의 (a) 내지 (d)에 도시된 것과 같이, 손바닥부(210)를 기준으로 복수의 손가락부(220)를 펼쳐서 오므리는 동작을 통해 객체(10)를 파지할 수 있다.Robot hand 200 according to the present invention, as shown in (a) to (d) of Figure 7a, the object through the operation of unfolding and pinching the plurality of fingers 220 relative to the palm portion 210 10) can be gripped.

즉, 카메라(121)를 통해 획득된 영상을 기초로, 제어부(180)는 객체(10)의 좌표, 크기 및 중심 중 적어도 하나를 결정하고, 파악된 정보를 기초로 로봇 핸드(200)가 바로 객체(10)를 파지하도록 제어한다.That is, based on the image acquired through the camera 121, the controller 180 determines at least one of the coordinates, the size, and the center of the object 10, and the robot hand 200 immediately based on the identified information. Control to grip the object (10).

이때, 도 7a의 (d)에서 로봇 핸드(200)가 객체(10)를 파지하지 못하거나 파지한 이후에 객체(10)를 해방하는 이벤트가 발생하는 경우, 제어부(180)는 실패 이벤트를 기초로 객체(200)의 좌표, 크기 및 중심 중 적어도 하나를 다시 결정하고, 로봇 핸드(200)는 다시 결정된 팩터를 이용하여 객체(10)를 다시 파지하려는 시도를 하는데, 추가적으로 로봇 핸드(200)의 손가락부(220)가 파지를 위해 객체(10)와 접촉되는 경우, 촉각센서(144)를 통해 획득된 객체(10)의 수직항력(normal force), 전단력(shear force), 전도성(conductive) 중 적어도 하나가 재파지에 더 활용된다.In this case, when an event for releasing the object 10 occurs after the robot hand 200 does not hold or grip the object 10 in FIG. 7A, the controller 180 based on the failure event. Re-determining at least one of the coordinates, the size, and the center of the furnace object 200, the robot hand 200 attempts to grasp the object 10 again using the determined factor. When the finger 220 is in contact with the object 10 for holding, the normal force, shear force, or conductive force of the object 10 obtained through the tactile sensor 144 is At least one is further utilized for re- grasping.

이러한 기계 학습 알고리즘에 따라 로봇 핸드(200)가 객체(10)를 파지하는 것은 단순한 파지 이외에 특정 태스크(task)를 수행하기 위해 이용될 수도 있다.According to such a machine learning algorithm, the gripping of the object 10 by the robot hand 200 may be used to perform a specific task in addition to the simple gripping.

즉, 도 7b에 도시된 것과 같이, 2개의 로봇 핸드(200)가 구비되고, 제 1 로봇 핸드(200a)는 제 1 손바닥부(210a) 및 제 1 손가락부(220a)를 포함하며, 제 2 로봇 핸드(200b)는 제 1 손바닥부(210b) 및 제 1 손가락부(220b)를 포함할 수 있다.That is, as shown in FIG. 7B, two robot hands 200 are provided, the first robot hand 200a includes a first palm portion 210a and a first finger portion 220a, and a second The robot hand 200b may include a first palm portion 210b and a first finger portion 220b.

또한, 도 7b에서는 제 1 객체(10a)에 제 2 객체(10b)를 삽입하는 동작을 수행하기 위해, 제 1 로봇 핸드(200a)와 제 2 로봇 핸드(200b)가 이용된다.In addition, in FIG. 7B, the first robot hand 200a and the second robot hand 200b are used to perform the operation of inserting the second object 10b into the first object 10a.

단순한 파지 동작이 아닌 제 1 객체(10a)에 제 2 객체(10b)를 삽입하는 동작을 수행해야 하므로, 2개의 로봇 핸드(200)는 계속적으로 파지를 실패할 수 있고, 이때 전술한 비젼 시스템에 따른 학습 알고리즘이 반복적으로 이용된다.Since the operation of inserting the second object 10b into the first object 10a is not a simple gripping operation, the two robot hands 200 may continuously fail to grasp the above-described vision system. The learning algorithm accordingly is used repeatedly.

더 나아가 촉각 센서(144)를 통해 획득된 객체(10)의 수직항력(normal force), 전단력(shear force), 전도성(conductive) 중 적어도 하나가 재파지에 더 활용된다.Furthermore, at least one of normal force, shear force, and conductive of the object 10 obtained through the tactile sensor 144 is further utilized for re-holding.

예를 들어, 물이 반만 들어있는 물병(10)을 조작하는 경우와 같이, 촉각 정보를 이용해서 물체의 외란(무게중심이 바뀌는 효과)에 맞게 힘 조절을 하면서 물건을 grasping & manipulation할 수 있다.For example, as in the case of manipulating the water bottle 10 containing only half of water, the tactile information may be used to grasping and manipulate the object while adjusting the force according to the disturbance of the object (the effect of changing the center of gravity).

또한, 본 발명에서는 학습된 정보로 물체(10)를 잡는 손(200)의 모양 등을 미리 계산하여 적용할 수도 있다.In addition, in the present invention, the shape of the hand 200 holding the object 10 may be calculated and applied in advance.

또한, 전술한 것과 같이, 특정 태스크(task)를 수행하기 위해, 물체(10)를 잡고 조작하려는 목적에 맞게 물건(10)을 잡는 방법, 방향 등을 변경하는 알고리즘이 적용될 수 있다.In addition, as described above, in order to perform a specific task, an algorithm for changing a method, a direction, or the like of the object 10 may be applied to the purpose of grasping and manipulating the object 10.

제 2 실시예에서 이용되는 촉각 정보는 normal force, shear force, 전기 전도성 등의 정보를 포함하고, 추가적으로 작은 물체(10)를 잡을 때 외부 환경(바닥면 등)과 접촉된 상태에서 잡을 수 있는 정보에 대해서도 추가적으로 획득할 수 있다.The tactile information used in the second embodiment includes information such as normal force, shear force, electrical conductivity, and the like, and information that can be caught in contact with an external environment (bottom surface, etc.) when the small object 10 is held. Can also be obtained additionally.

따라서 비전 정보와 촉각 정보를 함께 활용해서 정밀한 힘(shear force 포함)를 측정하여 정밀한 조립 작업이 가능해질 수 있다.Therefore, by using vision information and tactile information together, precise assembly (including shear force) can be measured, enabling precise assembly work.

도 8은 본 발명과 관련하여, 비젼 정보와 촉각 정보를 함께 이용한 로봇 파지의 동작을 설명하는 순서도이다.8 is a flowchart illustrating the operation of the robot gripping using vision information and tactile information in conjunction with the present invention.

도 8을 참조하면, 가장 먼저, 카메라(121)가 적어도 하나의 제 1 객체(10)에 대한 영상을 획득하는 단계(S20)가 진행된다.Referring to FIG. 8, first, the camera 121 acquires an image of at least one first object 10 (S20).

이후, 제어부(180)는 획득된 영상을 이용하여 상기 제 1 객체의 좌표, 크기 및 중심 중 적어도 하나의 팩터(factor)를 결정(S21)하고, 결정된 팩터를 이용하여 핸드(200)가 제 1 객체(10)를 파지한다(S22).Thereafter, the controller 180 determines at least one factor of the coordinates, the size, and the center of the first object by using the acquired image (S21), and the hand 200 uses the determined factor to determine the first factor. The object 10 is gripped (S22).

이때, 도 5에서의 방법과 달리, 제 2 실시예에서는 핸드(200)가 상기 파지를 위해 제 1 객체(10)와 접촉되는 경우, 제 1 객체(10)의 수직항력(normal force), 전단력(shear force), 전도성(conductive) 중 적어도 하나를 촉각센서(144)가 감지하는 단계(S22)가 진행된다.At this time, unlike the method in FIG. 5, in the second embodiment, when the hand 200 is in contact with the first object 10 for the gripping, the normal force and the shear force of the first object 10. (S22) in which the tactile sensor 144 detects at least one of shear force and conductive.

S22 단계 이후, 부족한 정보로 인해, 로봇 핸드(200)가 제 1 객체(10)의 파지를 실패하는 경우(S23), 제어부(180)는 실패 이벤트를 기초로 제 1 객체의 좌표, 크기 및 중심 중 적어도 하나의 팩터를 다시 결정한다(S24).After step S22, when the robot hand 200 fails to grasp the first object 10 due to insufficient information (S23), the controller 180 controls the coordinates, the size, and the center of the first object based on the failure event. At least one of the factors is determined again (S24).

S24 단계를 기초로, 핸드(200)가 제 1 객체를 다시 파지하고자 하는 경우, 도 5에서의 방법과 달리 제 2 실시예에서는 다시 결정된 팩터 및 촉각센서에서 감지한 적어도 하나의 촉각 팩터를 이용하여 제 1 객체를 다시 파지하게 된다(S25).Based on the step S24, when the hand 200 intends to grip the first object again, unlike the method of FIG. 5, in the second embodiment, the hand 200 uses the determined factor and at least one tactile factor detected by the tactile sensor. The first object is gripped again (S25).

따라서 본 발명에 따르면, 기존 많이 활용되는 normal force 측정은 물론이고 shear force까지 감지할 수 있고 대상 물체의 전도성 등을 측정하여 대상물 분류를 할 수 있는 촉각 센서를 개발하고 인간처럼 이러한 촉각 정보를 활용 가능하다.Therefore, according to the present invention, it is possible to detect not only normal force, but also shear force, which is widely used, and develop a tactile sensor that can classify objects by measuring conductivity of an object and use such tactile information as a human being. Do.

또한, 시각 및 촉각정보를 이용한 부품의 실시간 위치/자세/상태 인식 기술, 부품의 안정파지를 위한 최적 파지형태 추론지능 기술, 인식정보와 경험에 기반한 지능적 파지기술(단일 그리퍼/손 이용, 30종 이상 물체), 시각 및 촉각정보를 이용한 부품의 위치/방향 조작(In-Hand) 기술, 경험기반 다양한 부품의 조립 전략 학습 기술을 통해, 단순반복 작업을 제외하고 대부분의 핸들링 작업은 사람의 수 공정에 의해 수행되고 있는 현재의 문제점을 해소할 수 있다.In addition, real-time position / posture / state recognition technology of parts using visual and tactile information, optimal grip type inference intelligence technology for stable gripping of parts, intelligent gripping technology based on recognition information and experience (using a single gripper / hand, 30 types) Most of the handling work except the simple repetitive work through the process of position / direction manipulation (In-Hand) of parts using abnormal objects), visual and tactile information, and learning of assembly strategy of various parts based on experience. It is possible to solve the current problem being performed by.

제 3 실시예 - 학습된 정보를 기초로 객체를 더 정밀하게 파지하는 방법Third Embodiment-Method of Grasping an Object More Accurately Based on Learned Information

본 발명에 따른 제 3 실시예에서는 전술한 제 1 실시예 및 제 2 실시예를 기초로 객체(10)에 대한 정보가 학습된 경우, 더 빠르고 더 정확하게 객체(10)를 그립할 수 있는 추가적인 방법을 제안한다.In the third embodiment according to the present invention, if the information on the object 10 is learned based on the above-described first and second embodiments, an additional method for faster and more accurate grip of the object 10 can be obtained. Suggest.

제 3 실시예에서 적용되는 추가적인 방법은 다음과 같다.Further methods applied in the third embodiment are as follows.

1) 미리 저장된 참조 화상과 입력 화상의 차이를 오차 함수(에러 function)을 통해 해결하는 방법1) How to solve the difference between the pre-stored reference picture and the input picture through an error function (error function)

2) 잡는 부위 결정에 있어 2차원적인 지점을 정해서 소형상 모델을 결정하고, 3차원 위치로 피팅시켜 파지에 적용하는 방법2) A method of determining a small-size model by determining a two-dimensional point in determining the grabbing area, and fitting it to a three-dimensional position and applying it to a phage.

먼저, 미리 저장된 참조 화상과 입력 화상의 차이를 오차 함수(에러 function)을 통해 해결하는 방법에 대해 설명한다.First, a method of resolving a difference between a previously stored reference picture and an input picture through an error function will be described.

첫 번째 방법에서는 본 시스템(100)은 메모리(160)를 통해 객체(10)와 관련된 정보를 미리 저장하거나 무선 통신부(110)를 통해 외부로부터 수신할 수 있다.In the first method, the system 100 may store information related to the object 10 in advance through the memory 160 or receive the information from the outside through the wireless communication unit 110.

또한, 카메라(121) 또는 촉각 센서(144)를 통해 객체(10)에 대한 파지를 시도하면서 객체(10)에 대한 정보를 획득할 수 있다.In addition, while attempting to grip the object 10 through the camera 121 or the tactile sensor 144, information about the object 10 may be obtained.

이때, 제어부(180)는 미리 저장되거나 외부로부터 수신한 객체(10)에 대한 정보와 카메라(121) 등을 통해 획득된 정보를 서로 비교하여 오차 정도를 판단하고, 미리 저장된 정보를 이용하거나 획득된 정보를 수정하는 방법 등을 수행할 수 있다.In this case, the controller 180 compares the information about the object 10 previously stored or received from the outside with information obtained through the camera 121 to determine the degree of error, and uses the previously stored information or obtained How to modify the information can be performed.

이때, 제어부(180)는 미리 저장되거나 외부로부터 수신한 객체(10)에 대한 정보와 카메라(121) 등을 통해 획득된 정보를 서로 비교하기 위한 오차 함수는 다음과 같다.In this case, the controller 180 compares the information about the object 10 previously stored or received from the outside with the information obtained through the camera 121 and the like is as follows.

Figure 112017123830111-pat00001
Figure 112017123830111-pat00001

여기서 커버 오차는 εcover(u,v,x,y)이며 레인지 오차는 range(u,v,x,y,z)이다. 이들의 오차항은 입력 레인지 화상의 좌표(u,v)에 있는 화소 마다에 평가된다. 참조 레인지 화상 의 화소 평행이동값(x, y, z)은 입력 레인지 화상 에 대한 그 위치를 결정한다. The cover error is ε cover (u, v, x, y) and the range error is range (u, v, x, y, z). These error terms are evaluated for each pixel in coordinates (u, v) of the input range image. The pixel translation value (x, y, z) of the reference range image determines its position with respect to the input range image.

함수는 가중치 λ를 이용해 모든 화상 화소(u,v)에 걸쳐 총합된다(예를 들면 λ=10). 표준화 계수 Ncover 및 Nrange는 오차를 물체 및 화상 사이즈에서 독립시킨다. 오차는 화상 R가 입력 이미지 I 중의 아마 부분 차폐된 물체와 위치 맞춤 될 경우에 최소가 될 수 있다.The function is summed across all image pixels u, v using the weight λ (e.g. λ = 10). Normalization coefficients Ncover and Nrange make the error independent of object and image size. The error may be minimal if the picture R is probably aligned with a partially shielded object in the input image I.

다음으로, 잡는 부위 결정에 있어 2차원적인 지점을 정해서 소형상 모델을 결정하고, 3차원 위치로 피팅시켜 파지에 적용하는 방법에 대해 설명한다.Next, a method of determining a small-size model by determining a two-dimensional point in determining a grabbing area, fitting it to a three-dimensional position, and applying it to the gripping will be described.

도 9는 본 발명의 파지에 이용되는 소형상 모델 및 3차원 위치 피팅의 일례를 도시한 것이고, 도 10은 본 발명에 따란 3차원 위치로 피팅시켜 파지에 적용하는 일례를 구체적으로 도시한 것이다.FIG. 9 illustrates an example of a miniature model and three-dimensional position fitting used in the gripping of the present invention, and FIG. 10 specifically illustrates an example of fitting to a three-dimensional position in accordance with the present invention.

도 9를 참조하면, 제어부(180)는 촬영 화상 내에서 「인식 영역」과 해야 할 범위의 지정을 입력 장치를 통해 받아들인다. 여기서 「인식 영역」이란, 핸드(200) 에 파지시키는 부위를 지정하기 위해 제어부(180)가 촬영 화상 내로 설정하는 영역이다. 인식 영역은 거리 계측의 대상 영역으로서 사용될 수 DT다.Referring to FIG. 9, the controller 180 receives a designation of a "recognition area" and a range to be performed in the captured image through the input device. Here, the "recognition area" is an area set by the control unit 180 in the photographed image in order to designate a portion to be gripped by the hand 200. The recognition area is DT that can be used as the area for measurement of distance.

도 9의 (a)를 참조하면, 제어부(180)가 객체(10)에서 파지하고자 하는 영역을 나타내는 인식영역(11, 12, 13)이 도시된다.Referring to FIG. 9A, recognition regions 11, 12, and 13 representing regions to be gripped by the controller 180 in the object 10 are illustrated.

인식영역(11)은 컵의 동체 부분을 지정하고, 인식영역(12)은 컵 개구의 테두리 부분을 지정하며, 인식영역(13)은 핸들 부분을 지정한다.The recognition area 11 designates the body part of the cup, the recognition area 12 designates the edge portion of the cup opening, and the recognition area 13 designates the handle part.

또한, 도 9의 (b)에 도시된 것과 같이, 해당 인식영역(13)과 연관된 2차원 도형을 나타내는 아이콘 리스트(20)가 디스플레이부(151) 상에 더 표시될 수 있다.In addition, as illustrated in FIG. 9B, an icon list 20 representing a two-dimensional figure associated with the corresponding recognition area 13 may be further displayed on the display unit 151.

도 9의 (b)에 도시된 아이콘 21~24는 각각 소형상 모델의 일례를 나타내고 있다. Icons 21 to 24 shown in FIG. 9B each show an example of a small model.

즉, 아이콘 41은 사각기둥 모델, 아이콘 42는 평판 모델, 아이콘 43은 원기둥 모델, 아이콘 43은 원추대 모델이다. That is, icon 41 is a square cylinder model, icon 42 is a flat model, icon 43 is a cylinder model, and icon 43 is a truncated cone model.

각각의 소형상 모델은 형태 및 크기를 규정하기 위한 형상 파라미터, 위치 및 자세를 규정하기 위한 배치 파라미터를 가진다.Each miniature model has shape parameters to define shape and size, and placement parameters to define position and attitude.

덧붙여 소형상 모델의 종류는 도 9의 (b)에 나타낸 것에 한정되지 않는 것은 물론이며 2차 타원체, L자형 각주, C자형 원기둥 등의 다양한 형상이 더 이용될 수 있다.In addition, the type of the miniature model is not limited to that shown in FIG. 9B, and of course, various shapes such as a secondary ellipsoid, an L-shaped footnote, a C-shaped cylinder, and the like can be further used.

또한, 도 9의 (c)를 참조하면, 인식 영역(11, 12, 13)에 대응하는 작업 공간의 3차원 위치 데이터(30)의 취득을 나타내는 개념도이다. In addition, referring to FIG. 9C, it is a conceptual diagram showing acquisition of three-dimensional position data 30 in the work space corresponding to the recognition areas 11, 12, 13.

도 9의 (c)에서의 3 차원 위치 데이터(30)는 인식 영역과 함께 작업 공간의 로봇(200) 에서 본 깊이를 나타낸다.The three-dimensional position data 30 in FIG. 9C shows the depth seen from the robot 200 in the working space together with the recognition area.

또한, 도 9의 (d)를 참조하면, 소형상 모델(구체적으로는 원기둥 모델, 40)을 겹쳐 표시한 것이며 사용자가 원기둥 모델을 선택했을 경우의 피팅 결과를 나타내고 있다.In addition, referring to FIG. 9 (d), a small-size model (specifically, a cylinder model, 40) is overlaid and shows a fitting result when the user selects the cylinder model.

또한, 도 10을 참조하면, 데이터 구조 구체적인 예이며 원통 모델(40)에 적용 가능한 파지 패턴에 관한 데이터 내용을 나타내고 있다. 10, the data structure specific example and the data content regarding the holding pattern applicable to the cylindrical model 40 are shown.

로봇 핸드(200)의 종류가 다르면, 실행 가능한 파지 패턴이 다르며 같은 소형상 모델에 적용 가능한 파지 패턴도 달라질 수 있다.If the types of the robot hand 200 are different, the possible gripping patterns may be different and the gripping patterns applicable to the same small model may also be different.

즉, 도 10에서 핸드(200)는 핸드 타입이 「평면 3 관절 2 손가락 핸드」이며 소형상 모델이 원통 모델일 때 적용 가능한 파지 패턴으로서, 4개의 파지 패턴이 적용 조건과 함께 기록되어 있다. That is, in FIG. 10, the hand 200 is a grip pattern applicable when the hand type is "flat three joint two finger hand" and the small model is a cylindrical model, and four grip patterns are recorded together with the application conditions.

구체적으로는 4개의 파지 패턴은 측면 가위 파지, 단면 가위 파지, 잡아 포함 파지 및 가장자리 면 가위 파지 등이 이용될 수 있다.Specifically, the four gripping patterns may be used as a side scissors gripping, a cross-section scissors gripping, a gripping containing grip and an edge scissor gripping.

따라서 본 발명에서는 획득된 영상을 기초로 제어부(180)가 로봇 핸드(200)가 파지하고자 하는 지점에 대응되는 2차원 모델을 확정하고, 깊이 정보를 통해 2차원 모델을 3차원 모델로 결정하며, 결정된 3차원 모델의 파지에 최적화된 자세를 결정하여 로봇 핸드(200)가 객체(10)를 파지하도록 할 수 있다.Therefore, in the present invention, the controller 180 determines the 2D model corresponding to the point to be gripped by the robot hand 200 based on the acquired image, and determines the 2D model as a 3D model through depth information. The robot hand 200 may grip the object 10 by determining a posture optimized for grip of the determined 3D model.

이를 통해, 획득된 정보를 기초로 추가적인 정보 획득 없이 로봇 핸드(200)는 신속하게 객체(10)를 그립할 수 있게 된다.Through this, the robot hand 200 can quickly grip the object 10 without obtaining additional information based on the obtained information.

제 44th 실시예Example -  - 비젼vision 정보 및 촉각 정보를 기초로 파지하는 동작을 통해 태스크(task)를 수행하는 방법 How to perform a task by holding on the basis of information and tactile information

또한, 본 발명에서는 전술한 제 1 실시예 내지 제 3 실시예를 기초로 로봇 핸드(200)가 객체(10)를 파지하고, 특정 태스크를 수행하는 방법에 대해 설명한다.In addition, in the present invention, a method for the robot hand 200 gripping the object 10 and performing a specific task will be described based on the first to third embodiments described above.

도 11은 본 발명과 관련하여, 비젼 정보와 촉각 정보를 함께 이용한 로봇 파지의 전체적인 동작을 설명하는 순서도이고, 도 12는 본 발명과 관련하여, 러닝을 이용한 객체 파지를 설명하는 순서도의 일례를 도시한 것이다.FIG. 11 is a flowchart illustrating the overall operation of the robot gripping using vision information and tactile information in connection with the present invention, and FIG. 12 is a flowchart illustrating an object gripping using learning in connection with the present invention. It is.

도 11을 참조하면, 촉각 센서(144) 및 비금속 센서(145)에서 획득된 정보 및 카메라(122)를 통해 획득된 정보를 기초로 제어부(180)는 객체(10)에 대한 물성 등의 성질을 예측하고, 이를 기초로 객체(10)에 대한 파지를 시도한다.Referring to FIG. 11, based on the information obtained from the tactile sensor 144 and the non-metallic sensor 145 and the information obtained through the camera 122, the controller 180 may display properties such as physical properties of the object 10. It predicts and attempts to grasp the object 10 based on this.

이때, 객체에 대한 파지는 실패할 수 있고, 제어부(180)는 실패 이벤트가 발생될 때마다 카메라(122)를 통해 획득된 정보를 기초로 재파지를 위한 팩터를 조절하고, 촉각 센서(144) 등을 통해 획든된 정보를 기초로 중추 촉감 프로세스(S30)를 진행한다.At this time, the gripping on the object may fail, and the controller 180 adjusts a factor for re-gripping based on the information obtained through the camera 122 whenever a failure event occurs, and the tactile sensor 144 The central tactile sensation process (S30) is performed based on the information obtained through the information.

즉, S30 단계에서는 제어신호를 피드백하거나 압력, 거침 정보를 제공하거나 객체(10)에 대한 물성 정보를 제어부(180)에 전달한다.That is, in step S30, the control signal is fed back, pressure and roughness information are provided, or the physical property information about the object 10 is transmitted to the controller 180.

이때, 제어부(180)는 카메라를 통해 획득된 정보와 상기 S30 단계를 통해 획득된 정보를 기초로 객체(10)에 대한 정보를 학습(S31)하고, 학습된 정보를 기초로 객체(10)에 대한 파지 조건을 재 설정(S32)하며, 반영된 재 설정 조건을 기초로 반복적으로 객체(10)를 파지하여 특정 태스크를 수행할 수 있다.At this time, the controller 180 learns the information about the object 10 based on the information obtained through the camera and the information obtained through the step S30 (S31), and based on the learned information to the object 10 Resetting the holding condition for (S32), it is possible to repeatedly hold the object 10 based on the reflected reset condition to perform a specific task.

도 12를 참조하면, 촉각 센서(144)를 통해 획득된 정보를 기초로 학습하는 과정(1100)과 카메라(122)를 통해 획득된 정보를 기초로 학습하는 과정(1000)이 도시되고, 이러한 시각입력 정보와 촉각입력 정보를 기초로 로봇핸드가 파지 동작을 수행하는 과정(1200)이 도시된다.Referring to FIG. 12, a process 1100 of learning based on information obtained through the tactile sensor 144 and a process 1000 of learning based on information obtained through the camera 122 are illustrated. A process 1200 of performing a gripping operation by the robot hand based on the input information and the tactile input information is shown.

제 5 실시예 - 재파지 동작을 통한 태스크(task)를 수행하는 방법Fifth Embodiment-Method of Performing Task Through Re-Gripping Operation

한편, 특정 업무(task)를 로봇 핸드(200)가 수행하기 위해서는, 현재 grasping 한 형태로는 주어진 목적에 맞는 manipulation을 할 수 없을 때 regrasping을 사용하는 것이 필요할 수 있다.On the other hand, in order for the robot hand 200 to perform a specific task, it may be necessary to use regrasping when the grasping form does not allow manipulation for a given purpose.

따라서 본 발명에서는 특정 업무(task)를 로봇 핸드가 수행하기 위해, 현재 grasping 한 형태로는 주어진 목적에 맞는 manipulation을 할 수 없을 때 regrasping을 사용하여 특정 업무를 완수할 수 있는 기술을 제안하는 것을 목적으로 한다.Therefore, in the present invention, in order to perform a specific task (robot hand), the present invention is to propose a technique that can accomplish a specific task using regrasping when the grasping form can not perform the operation for a given purpose. It is done.

즉, 본 발명은 양팔 로봇 핸드(200)가 물체를 조립작업 할 때, 현재 물체를 잡고 있는 상태에서는 조립 작업이 이루어질 수 없는 경우, 한쪽이나 양쪽 물건을 놓고 조립작업이 가능 하도록 다시 잡는데 필요한 최적 알고리즘을 제안하는 것을 목적으로 한다.That is, the present invention, when the two-arm robot hand 200 assembling the object, when the assembly operation can not be made in the state of holding the current object, the optimum algorithm required to re-assembly so that the assembly operation is possible to place one or both objects The purpose is to propose.

또한, 본 발명은 재파지 동작에서 촉각센서(144)를 추가적으로 활용하여 기존에 많이 활용되는 normal force 측정은 물론이고 shear force, 대상 물체의 전도성 등을 측정하여 대상물 분류 및 학습할 수 있는 핸들링 기술을 제공하는 것을 목적으로 한다.In addition, the present invention provides a handling technique for classifying and learning an object by measuring shear force, conductivity of an object, as well as normal force measurement, which is conventionally utilized by additionally using the tactile sensor 144 in re-holding operation. It aims to provide.

도 13은 본 발명과 관련하여, 물체의 방향 및 위치 변화에 따라 파지 방법이 변화하는 일례를 도시한 것이다.FIG. 13 illustrates an example in which the gripping method changes according to a change in the direction and position of an object in relation to the present invention.

도 13의 (a)를 참조하면, 물체(10)는 외부의 힘 또는 파지하고자 하는 동작에 의해 위치 또는 방향이 변화될 수 있다.Referring to FIG. 13A, the object 10 may be changed in position or direction by an external force or an operation to be gripped.

또한, 복수의 객체(10)가 존재하고, 특정 태스크(task)를 수행하기 위해, 복수의 객체(10)가 결합되는 순서가 정해져 있는데, 해당 순서에 대응하지 않는 객체(10)를 파지하는 이벤트가 발생할 수도 있다.In addition, although a plurality of objects 10 exist, and in order to perform a specific task, the order in which the plurality of objects 10 are combined is determined, an event for holding the object 10 that does not correspond to the order May occur.

이 경우에는 도 13의 (b)에 도시된 것과 같이, 변화된 물체(10)의 방향 및 위치 변화를 고려하여 객체(10)에 대한 파지가 수행되어야 한다.In this case, as illustrated in (b) of FIG. 13, the gripping of the object 10 should be performed in consideration of the change in the direction and position of the changed object 10.

또한, 도 13의 (b)에 도시된 것과 같이, 복수의 객체(10)가 존재하고, 특정 태스크(task)를 수행하기 위해, 복수의 객체(10)가 결합되는 순서가 정해져 있는데, 해당 순서에 대응하지 않는 객체(10)를 파지하는 이벤트가 발생하는 경우에는, 파지한 객체(10)를 해방하고, 새롭게 객체(10)를 파지하는 방법이 적용되어야 한다.In addition, as shown in FIG. 13B, a plurality of objects 10 exist, and in order to perform a specific task, the order in which the plurality of objects 10 are combined is determined. When an event for grasping the object 10 that does not correspond to the event occurs, a method of releasing the grasped object 10 and grasping the object 10 should be applied.

또한, 재파지에 있어, 다음 프로세스에 최적화된 객체(10)의 지점을 그립하거나 객체(10)의 위치, 방향 등을 다음 프로세스에 적합하도록 변화시킨 수 객체(10)를 그립하는 방법 등도 이용될 수 있다.Also, in re-holding, a method of gripping the point of the object 10 optimized for the next process or the number object 10 whose position, direction, etc. of the object 10 is changed to be suitable for the next process may be used. Can be.

도 14는 본 발명에 따른 재파지의 필요성을 설명하기 위한 도면이다.14 is a view for explaining the need for re-hold according to the present invention.

도 14에서는 객체(10)가 복수로 존재하고, 복수의 객체(10)를 조립하는 특정 태스크를 수행하는 것을 목적으로 한다.In FIG. 14, a plurality of objects 10 exist, and an object thereof is to perform a specific task of assembling the plurality of objects 10.

이때, 제어부(180)는 특정 태스크를 수행하기 위해, 복수의 객체(10)를 조립하는 순서 등에 대한 정보를 미리 저장하거나 통신부(110)를 통해 외부로부터 지시 받을 수 있다.In this case, the controller 180 may store information about the order of assembling the plurality of objects 10 in advance or may be instructed from the outside through the communication unit 110 to perform a specific task.

도 14의 (a)에 도시된 것과 같이, 객체(10)는 제 1 객체(10a), 제 2 객체(10b) 및 제 3 객체(10c)가 차례로 결합되어야 완성될 수 있고, 먼저, 제 1 객체(10a)와 제 2 객체(10b)가 결합된 이후에 제 3 객체(10c)가 제 2 객체(10b)와 결합되어야 해당 태스크가 수행될 수 있다.As shown in (a) of FIG. 14, the object 10 may be completed when the first object 10a, the second object 10b, and the third object 10c are combined in turn. After the object 10a and the second object 10b are combined, the corresponding task may be performed only when the third object 10c is combined with the second object 10b.

그러나 이때, 도 14의 (b)에 도시된 것과 같이, 복수의 로봇 핸드(200)가 제 2 객체(10b) 및 제 3 객체(10c)를 먼저 파지하여 결합하는 동작을 수행하는 이벤트가 발생될 수 있다.However, at this time, as shown in FIG. 14B, an event in which the plurality of robot hands 200 grips and combines the second object 10b and the third object 10c first may be generated. Can be.

이러한 도 14의 (b)와 같은 동작을 통해, 도 14의 (c)에 도시된 것과 같이 제 2 객체(10b) 및 제 3 객체(10c)가 결합되어 좌측에 위치되고, 제 1 객체(10a)는 우측에 위치할 수 있다.As shown in FIG. 14B, the second object 10b and the third object 10c are combined and positioned at the left side as shown in FIG. 14C, and the first object 10a is illustrated in FIG. 14B. ) May be located on the right side.

이때, 도 14의 (d)에 도시된 것과 같이, 같이 제 2 객체(10b) 및 제 3 객체(10c)가 결합된 형태의 하단에 제 1 객체(10a)가 결합되는 이벤트가 발생되어 결국 객체(10)를 조립할 수 없는 문제점이 발생한다.At this time, as shown in (d) of FIG. 14, an event in which the first object 10a is combined at the bottom of the form in which the second object 10b and the third object 10c are combined as shown in FIG. A problem arises in which (10) cannot be assembled.

따라서 이 경우, 미리 지정된 순서대로 먼저, 제 1 객체(10a)와 제 2 객체(10b)가 결합된 이후에 제 3 객체(10c)가 제 2 객체(10b)와 결합되어야 해당 태스크가 수행될 수 있도록 하는 방법을 재파지를 통해 수행할 수 있다.Therefore, in this case, the task may be performed only after the first object 10a and the second object 10b are combined with the third object 10c and the second object 10b in the predetermined order. This can be done by rephasing.

즉, 도 14의 (b)에서 제 1 객체(10a)와 제 2 객체(10b)를 2개의 로봇 핸드(200)가 파지해야 하는데, 제 2 객체(10b) 및 제 3 객체(10c)를 파지하는 이벤트가 발생된 경우, 로봇 핸드(200)가 파지한 객체들을 해방하고, 다시 올바른 객체를 파지하도록 할 수 있다.That is, in FIG. 14B, two robotic hands 200 must grasp the first object 10a and the second object 10b, and the second object 10b and the third object 10c are gripped. When the event occurs, the robot hand 200 may release the gripped objects and allow the robot to grasp the correct object again.

또한, 본 발명에서는 잘못된 이벤트가 발생된 경우, 해당 이벤트에 대응하여 파지해야 하는 객체 대상 및 순서 등을 변경하여 재파지를 수행할 수도 있다.In addition, in the present invention, when an invalid event occurs, the retargeting may be performed by changing the object target and the order to be gripped in response to the corresponding event.

즉, 도 14의 (c)에서 제 2 객체(10b) 및 제 3 객체(10c)를 파지하여 결합한 잘못된 이벤트가 발생된 경우, 해당 이벤트에 대응하여 제 2 객체(10b) 및 제 3 객체(10c)가 결합된 구조를 해방하고, 결합된 구조를 좌우로 회전시키거나 제 1 객체(10a)를 죄측으로 이동 및 회전시킨 후, 결합된 구조와 제 1 객체(10a)를 결합시키는 재파지 동작을 통해 특정 태스크를 수행할 수 있다.That is, when an incorrect event in which the second object 10b and the third object 10c are held and combined in FIG. 14C occurs, the second object 10b and the third object 10c in response to the event. ) Releases the combined structure, rotates the combined structure to the left or right, or moves and rotates the first object 10a to the left side, and then performs a re-holding operation of combining the combined structure and the first object 10a. This allows you to perform specific tasks.

도 15는 본 발명에 따른 재파지 학습 모델의 일례를 도시한 것이다.15 illustrates an example of a rephasing learning model according to the present invention.

도 15를 참조하면, ①에서 로봇 핸드(200)는 객체(10)를 수직으로 파지하는 것에 성공한다.Referring to FIG. 15, in ①, the robot hand 200 succeeds in holding the object 10 vertically.

그러나 제어부(180)는 특정 태스크를 수행함에 있어, ①의 형태가 바람직하지 않다는 것을 판단할 수 있고, ② 및 ③과 같이 파지 동작에서 객체(10)를 해방할 수 있다.However, the controller 180 may determine that the shape of ① is not preferable in performing a specific task, and may release the object 10 in the gripping operation such as ② and ③.

또한, 제어부(180)는 특정 태스크 완료를 위해, 다음 프로세스를 알고 있으므로, ② 및 ③의 해방 동작에서 객체(10)가 해방될 때 배치되는 위치 및 방향 등을 변화시킬 수 있다.In addition, since the controller 180 knows the following process for completing a specific task, the controller 180 may change a position and a direction that are disposed when the object 10 is released in the release operation of ② and ③.

이후, 제어부(180)의 제어에 따라 로봇 핸드(200)는 좌측 상단에서 일정 각도로 객체(10)를 파지하여 들어 올리는 ④ 동작을 수행한다.Subsequently, under the control of the controller 180, the robot hand 200 performs a ④ operation of gripping and lifting the object 10 at a predetermined angle from the upper left corner.

④ 동작의 수행에 있어, ① 동작을 기초로 촉각 센서(144)를 통해 획득된 정보와 카메라(122)를 통해 획득된 정보를 함께 이용하여 파지하는 ⑤ 동작이 수행된다.In the performing of the operation, the operation of gripping using the information acquired through the tactile sensor 144 and the information obtained through the camera 122 is performed based on the operation.

이후, ⑤ 동작을 통해 파지된 객체(10)를 미리 지정된 순서 및 프로세스에 따라 이동시키는 ⑥ 동작을 수행할 수 있다.Thereafter, the operation ⑥ of moving the gripped object 10 through the operation ⑤ according to a predetermined order and process may be performed.

또한, 도 16은 본 발명의 파지 성공 확률에 따른 재파지 수행 방법을 설명하기 위한 도면이다.Also, FIG. 16 is a diagram for describing a re-gripping method according to a gripping success probability according to the present invention.

도 16의 (a)를 참조하면, 본 발명에서는 Kernel density estimation 방법을 활용할 수 있다.Referring to FIG. 16A, the Kernel density estimation method may be used in the present invention.

즉, 재파지 동작 후 파지 성공 확률인 P(grasped | s, a)를 기초로 어떤 파지 동작이 성공율이 높은지 여부를 이용하고, 재파지 성공 후 물체 상태 확률인 P(s_new| s, a, grasped)를 기초로 물체 중심을 잡으려면 어떤 동작이 좋은지 여부에 대한 것을 판단하여 이용할 수 있다.That is, based on the success rate of grasp P (grasped | s, a) after the re-gripping operation, it is determined whether the grasp operation has a high success rate, and the object state probability P (s_new | s, a, grasped ) To determine the center of the object can be used to determine what kind of motion is good.

도 16의 (b)에 도시된 것과 같이, 객체(10)를 재파지 함에 있어, Kernel density estimation 방법을 활용하고, 재파지 동작 후 파지 성공 확률인 P(grasped | s, a)를 기초로 어떤 파지 동작이 성공율이 높은지 여부를 이용하며, 도 16의 (c)에 도시된 것과 같이, 재파지 성공 후 물체 상태 확률인 P(s_new| s, a, grasped)를 기초로 물체 중심을 잡으려면 어떤 동작이 좋은지 여부에 대한 것을 판단하여 이용할 수 있다.As shown in (b) of FIG. 16, in re-holding the object 10, a Kernel density estimation method is used, and based on P (grasped | s, a), which is a probability of success after re-holding, Whether the gripping operation has a high success rate, and as shown in (c) of FIG. It can be used to determine whether the operation is good.

도 17은 본 발명과 관련하여, 재파지를 적용한 task의 수행을 설명하는 도면이다.FIG. 17 is a view for explaining execution of a task to which re-pagment is applied in accordance with the present invention. FIG.

도 17의 (a)는 미리 정해진 프로세스에 따라 복수의 객체(10)를 이동시켜 특정 태스크를 수행하는 과정에서, 미리 정해진 프로세스와 어긋나는 이벤트가 발생되는 경우, 바로 해방 및 파지하는 재파지를 수행하는 과정을 도시한 것이다.FIG. 17A illustrates a process of releasing and gripping immediately when an event deviating from a predetermined process occurs while moving a plurality of objects 10 according to a predetermined process to perform a specific task. The process is illustrated.

이에 반해, 도 17의 (b)는 미리 정해진 프로세스에 따라 복수의 객체(10)를 이동시켜 특정 태스크를 수행하는 과정에서, 미리 정해진 프로세스와 어긋나는 이벤트가 발생되는 경우, 해당 상태에서 특정 태스크를 수행하기에 가장 적절한 프로세스를 새롭게 제어부(180)가 결정하고, 그에 따라 히제 및 파지하는 재파지 수행의 과정이 도시된다.In contrast, FIG. 17B illustrates a specific task performed in a state where an event deviating from the predetermined process occurs in a process of moving a plurality of objects 10 according to a predetermined process to perform a specific task. The control unit 180 newly determines a process most suitable for the following, and accordingly, a process of performing the re-holding of the hibernation and gripping is shown.

본 발명에서는 전술한 도 17의 (a) 및 (b)에서 도시된 내용이 모두 적용될 수 있다.In the present invention, all of the contents shown in FIGS. 17A and 17B may be applied.

또한, 도 18은 본 발명과 관련하여, 현재 grasping 한 형태로는 주어진 목적에 맞는 manipulation을 할 수 없을 때, regrasping을 사용하여 특정 업무를 완수할 수 있는 방법을 설명하는 순서도이다.In addition, FIG. 18 is a flowchart illustrating a method of accomplishing a specific task using regrasping when the present grasping form does not allow manipulation for a given purpose.

도 18을 참조하면, 복수의 객체(10)에 대한 영상을 카메라(122)가 획득하는 단계(S40)가 진행된다.Referring to FIG. 18, the camera 122 acquires images of the plurality of objects 10 (S40).

이후, 제어부(180)의 제어를 기초로, 미리 설정된 순서에 따라 로봇 핸드(200)가 상기 복수의 객체 중 제 1 객체를 파지하여 이동시키는 단계(S41)가 진행된다.Subsequently, in operation S41, the robot hand 200 grips and moves a first object of the plurality of objects based on a preset order based on the control of the controller 180.

이후, 제어부(180)는 태스크를 수행할 수 없는지 여부를 판단한다(S41).Thereafter, the controller 180 determines whether the task cannot be performed (S41).

여기서 태스크를 수행할 수 없는 이벤트는 제 1 객체의 위치 및 방향 중 적어도 하나가 변경되어 원하는 대로 제 1 객체를 파지하지 못하거나 이미 잘못된 파지 및 결합이 이루어져 정해진 프로세스 대로는 태스크를 수행할 수 없는 경우 등을 포함할 수 있다.In this case, an event in which a task cannot be performed cannot be carried out according to a predetermined process because at least one of the position and the orientation of the first object has been changed and the first object cannot be grasped as desired, or an incorrect grip and combination has already been performed. And the like.

S41 단계에서 태스크를 수행할 수 없다고 판단되는 경우, 제어부(180)는 로봇 핸드(200)가 상기 파지한 제 1 객체를 해방하도록 제어(S42)한다.If it is determined in step S41 that the task cannot be performed, the controller 180 controls the robot hand 200 to release the gripped first object (S42).

S42 단계 이후, 제어부(180)는 원래의 계획대로 제 1 객체를 파지하거나 잘못 진행된 프로세스에 적합한 계획을 새롭게 수립하고 제 1 객체를 파지할 수 있도록 카메라를 통해 획득된 영상을 기초로 제 1 객체의 변화된 방향 및 위치 중 적어도 하나를 결정(S43)한다.After the step S42, the controller 180 grips the first object according to the original plan or newly establishes a plan suitable for an incorrectly progressed process, and based on the image acquired through the camera to grasp the first object, At least one of the changed direction and position is determined (S43).

또한, 로봇 핸드(200)는 변화된 방향 및 위치를 기초로 제 1 객체를 재파지하는 단계(S44)를 진행한다.In addition, the robot hand 200 proceeds to step S44 of re-holding the first object based on the changed direction and position.

제어부(180)는 특정 태스크가 수행될 때까지, S41 내지 S44 단계가 반복적으로 학습되어 수행되도록 제어할 수 있다.The controller 180 may control the steps S41 to S44 to be repeatedly learned and performed until a specific task is performed.

본 발명은 조립할 때의 regrasping으로서, 이동모양 및 조립 순서 등에 대한 정보를 미리 알고 있으므로, 다음 프로세스를 알고 있고, 다음 작업에 대해 좋은 배치가 되도록 파지에서 해방시 물체를 놓으며, 재파지 동작을 수행할 수 있다.The present invention is a regrasping when assembling, knowing in advance information about the shape of the movement and the order of assembly, so that the following process is known, and the object is released from the gripping so as to have a good arrangement for the next work, and the re-greasing operation Can be.

또한, 본 발명에서는 객체(10)가 예상 모양과 달라 파지하지 못하는 이벤트 발생되는 경우, 객체(10)의 해당 부분을 로봇 핸드(200)를 통해 회전시키고, 다시 시각 정보를 획득한 후, 재파지 동작을 수행할 수도 있다.In addition, in the present invention, when an event occurs in which the object 10 cannot be gripped due to the expected shape, the corresponding part of the object 10 is rotated through the robot hand 200, and the visual information is obtained again, and then re-gripping. You can also perform an operation.

또한, 본 발명에서는 획득된 정보를 바탕으로 각 부품의 조립을 위한 geometric 특징 반영 파일을 생성(구멍의조립방향, 크기등)하고, Permutation하며, 모든 부품의 조합을 통해 1차 조립 작업 시퀀스 확보한 후, 조립되어야 하는 각 파트의 구멍은 모두 사용되었는지 확인할 수 있다. 또한, 조립 작업 시퀀스를 searching하고, Constraint satisfaction problem으로 문제를 해결할 수 있다(조립 과정에서 조립 방향으로 부품간 간섭이 일어나는지 확인).In addition, the present invention generates a geometric feature reflection file (assembly direction, size, etc.) for the assembly of each component based on the obtained information, permutation, and secure the primary assembly sequence through the combination of all components After that, it can be confirmed whether all the holes of each part to be assembled are used. In addition, the assembly sequence can be searched and the problem solved by the constraint satisfaction problem (confirmation of inter-component interference in the assembly direction during assembly).

따라서 본 발명은 특정 업무를 로봇 핸드가 수행하기 위해, 현재 grasping 한 형태로는 주어진 목적에 맞는 manipulation을 할 수 없을 때 regrasping을 사용하여 특정 업무를 완수할 수 있는 기술을 제공할 수 있다.Therefore, the present invention can provide a technique for performing a specific task by using a regrasping when the robot hand can perform a specific task, the currently grasping form can not be manipulated for a given purpose.

또한, 본 발명에 따르면, 기존 많이 활용되는 normal force 측정은 물론이고 shear force까지 감지할 수 있고 대상 물체의 전도성 등을 측정하여 대상물 분류를 할 수 있는 촉각 센서를 개발하고 인간처럼 이러한 촉각 정보를 활용할 수 있다.In addition, according to the present invention, it is possible to detect not only normal force, but also shear force, which is widely used, and develop a tactile sensor that can classify objects by measuring conductivity of an object and utilize such tactile information as a human being. Can be.

또한, 시각 및 촉각정보를 이용한 부품의 실시간 위치/자세/상태 인식 기술, 부품의 안정파지를 위한 최적 파지형태 추론지능 기술, 인식정보와 경험에 기반한 지능적 파지기술(단일 그리퍼/손 이용, 30종 이상 물체), 시각 및 촉각정보를 이용한 부품의 위치/방향 조작(In-Hand) 기술, 경험기반 다양한 부품의 조립 전략 학습 기술을 통해, 단순반복 작업을 제외하고 대부분의 핸들링 작업은 사람의 수 공정에 의해 수행되고 있는 현재의 문제점을 해소할 수 있다.In addition, real-time position / posture / state recognition technology of parts using visual and tactile information, optimal grip type inference intelligence technology for stable gripping of parts, intelligent gripping technology based on recognition information and experience (using a single gripper / hand, 30 types) Most of the handling work except the simple repetitive work through the process of position / direction manipulation (In-Hand) of parts using abnormal objects), visual and tactile information, and learning of assembly strategy of various parts based on experience. It is possible to solve the current problem being performed by.

한편, 상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. Meanwhile, the above-described embodiments of the present invention may be implemented through various means. For example, embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.

하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.In the case of a hardware implementation, a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.

펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.In the case of an implementation by firmware or software, the method according to the embodiments of the present invention may be implemented in the form of a module, a procedure, or a function that performs the functions or operations described above. The software code may be stored in a memory unit and driven by a processor. The memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 예를 들어, 당업자는 상술한 실시예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.The detailed description of the preferred embodiments of the invention disclosed as described above is provided to enable those skilled in the art to implement and practice the invention. Although the above has been described with reference to preferred embodiments of the present invention, those skilled in the art will understand that various modifications and changes can be made without departing from the scope of the present invention. For example, those skilled in the art can use each of the configurations described in the above-described embodiments in combination with each other. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.The invention can be embodied in other specific forms without departing from the spirit and essential features of the invention. Accordingly, the above detailed description should not be interpreted as limiting in all aspects and should be considered as illustrative. The scope of the present invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the present invention are included in the scope of the present invention. The present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein. In addition, the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship or may be incorporated as new claims by post-application correction.

Claims (17)

복수의 객체를 이동시켜 태스크(task)를 수행하는 로봇 핸드에 있어서,
상기 복수의 객체 중 제 1 객체를 파지하여 이동시키는 핸드; 및
상기 태스크를 수행할 수 없는지 여부를 판단하는 제어부;를 포함하되,
상기 태스크를 수행할 수 없다고 판단되는 경우,

상기 제어부는,
상기 핸드가 상기 파지한 제 1 객체를 해방하도록 제어하고,
미리 저장되거나 외부로부터 수신한 상기 제 1 객체에 대한 정보와 카메라가 획득한 영상을 비교하여 오차 정도를 판단하고, 획득된 영상을 기초로 상기 제 1 객체의 변화된 방향 및 위치 중 적어도 하나를 결정하며,
상기 태스크를 수행할 수 있도록 상기 핸드가 상기 제 1 객체를 제 1 재파지하도록 제어하고,

상기 제 1 재파지 시도 이후에, 상기 핸드가 상기 태스크를 수행할 수 없다고 판단되는 경우,
상기 제어부는,
학습된 정보를 활용하여 저장 화상과 입력 화상의 오차를 판단하여 획득된 정보를 수정하며, 상기 제 1 객체의 영역 중 파지하고자 하는 인식영역에 대응되는 2차원 모델을 확정하며,
상기 2차원 모델을 3차원 모델로 변환하여 상기 핸드가 상기 3차원 모델을 파지하기 위한 파지 자세를 결정하고,
상기 태스크를 수행할 수 있도록 상기 핸드가, 상기 결정된 팩터 및 상기 결정된 파지 자세를 기초로 상기 제 1 객체를 다시 재파지하도록 제어하는 것을 특징으로 하는 로봇 핸드.
In the robot hand that performs a task by moving a plurality of objects,
A hand for gripping and moving a first object of the plurality of objects; And
And a controller configured to determine whether the task cannot be performed.
If it is determined that the task can not be performed,

The control unit,
Control the hand to release the gripped first object,
Compare the information about the first object previously stored or received from the outside with the image acquired by the camera to determine an error degree, and determine at least one of a changed direction and a position of the first object based on the acquired image; ,
Control the hand to re-grasp the first object so as to perform the task;

After it is determined that the hand cannot perform the task after the first re-holding attempt,
The control unit,
Determine the error between the stored image and the input image by using the learned information, correct the obtained information, and determine a two-dimensional model corresponding to the recognition region to be gripped in the region of the first object,
Converting the two-dimensional model into a three-dimensional model to determine a holding posture for the hand to hold the three-dimensional model,
And the hand controls to re-grip the first object based on the determined factor and the determined gripping pose to perform the task.
제 1항에 있어서,
상기 제 1 객체의 방향 및 위치 중 적어도 하나가 변경되어 상기 태스크를 수행할 수 없다고 판단되는 경우,
상기 제어부가 상기 핸드의 해방 및 재파지 동작을 제어하는 것을 특징으로 하는 로봇 핸드.
The method of claim 1,
When it is determined that at least one of the direction and the position of the first object is changed, the task cannot be performed.
And the controller controls the release and re-holding operation of the hand.
제 1항에 있어서,
상기 태스크는 상기 복수의 객체를 미리 설정된 순서에 따라 이동시켜 수행 가능하고,
상기 미리 설정된 순서와 다르게 상기 제 1 객체가 이동되어 상기 태스크를 수행할 수 없다고 판단되는 경우,
상기 제어부가 상기 핸드의 해방 및 재파지 동작을 제어하는 것을 특징으로 하는 로봇 핸드.
The method of claim 1,
The task may be performed by moving the plurality of objects in a preset order.
If it is determined that the first object is moved out of the preset order and cannot perform the task,
And the controller controls the release and re-holding operation of the hand.
제 1항에 있어서,
상기 태스크는 상기 복수의 객체를 미리 설정된 순서에 따라 이동시켜 수행 가능하고,
상기 제어부는,
상기 제 1 객체를 재파지에 적합한 방향 및 위치로 배치되도록 상기 핸드가 상기 파지한 제 1 객체를 해방하도록 제어하는 것을 특징으로 하는 로봇 핸드.
The method of claim 1,
The task may be performed by moving the plurality of objects in a preset order.
The control unit,
And the hand controls to release the first object held by the hand so that the first object is disposed in a direction and a position suitable for re-holding.
제 4항에 있어서,
상기 제어부는,
상기 핸드가 상기 해방한 제 1 객체를 일정 각도로 회전시키도록 제어하고,
상기 핸드가 상기 회전된 제 1 객체를 재파지하도록 제어하는 것을 특징으로 하는 로봇 핸드.
The method of claim 4, wherein
The control unit,
Control the hand to rotate the released first object at an angle;
And the hand controls to re-hold the rotated first object.
삭제delete 삭제delete 제 1항에 있어서,
상기 핸드가 상기 파지를 위해 제 1 객체와 접촉되는 경우, 상기 제 1 객체의 수직항력(normal force), 전단력(shear force) 및 전도성(conductive) 중 적어도 하나의 촉각 팩터를 감지하는 촉각센서;를 더 포함하고,
상기 핸드가 상기 촉각센서에서 감지한 적어도 하나의 촉각 팩터를 함께 이용하여 상기 제 1 객체를 재파지하도록 제어하는 것을 특징으로 하는 로봇 핸드.
The method of claim 1,
A tactile sensor that senses at least one tactile factor of normal force, shear force, and conductive when the hand is in contact with the first object for holding; Including more,
And the hand controls to re-grip the first object using at least one tactile factor detected by the tactile sensor.
제 1항에 있어서,
상기 핸드는 복수의 손가락을 포함하고,
상기 복수의 손가락 각각은 상기 제 1 객체와 이격된 거리를 센싱하는 거리 센서를 포함하며,
상기 제 1 객체를 파지 또는 재파지하는 경우,
상기 복수의 거리 센서를 통해 획득된 정보를 기초로, 상기 복수의 손가락 각각은 동일한 속도로 상기 제 1 객체에 근접 이동하는 것을 특징으로 하는 로봇 핸드.
The method of claim 1,
The hand comprises a plurality of fingers,
Each of the plurality of fingers includes a distance sensor for sensing a distance spaced from the first object,
When holding or re-holding the first object,
Based on the information obtained through the plurality of distance sensors, each of the plurality of fingers move closer to the first object at the same speed.
복수의 객체를 이동시켜 태스크(task)를 수행하는 방법에 있어서,
핸드가 상기 복수의 객체 중 제 1 객체를 파지하여 이동시키는 제 1 단계;
제어부가 상기 태스크를 수행할 수 없는지 여부를 판단하는 제 2 단계;
상기 태스크를 수행할 수 없다고 판단되는 경우, 상기 핸드가 상기 파지한 제 1 객체를 해방하는 제 3 단계;
상기 제어부는, 미리 저장되거나 외부로부터 수신한 상기 제 1 객체에 대한 정보와 카메라가 획득한 영상을 비교하여 오차 정도를 판단하고, 획득된 영상을 기초로 상기 제 1 객체의 변화된 방향 및 위치 중 적어도 하나를 결정하는 제 4 단계;
상기 제어부의 제어에 따라 상기 태스크를 수행할 수 있도록 상기 핸드가 상기 제 1 객체를 재파지하는 제 5 단계;
상기 제 1 재파지 시도 이후에, 상기 핸드가 상기 태스크를 수행할 수 없다고 판단되는 제 6 단계;
학습된 정보를 활용하여 저장 화상과 입력 화상의 오차를 판단하여 획득된 정보를 수정하며, 상기 제 1 객체의 영역 중 파지하고자 하는 인식영역에 대응되는 2차원 모델을 확정하고, 상기 2차원 모델을 3차원 모델로 변환하여 상기 핸드가 상기 3차원 모델을 파지하기 위한 파지 자세를 결정하는 제 7 단계; 및
상기 태스크를 수행할 수 있도록 상기 핸드가, 상기 결정된 팩터 및 상기 결정된 파지 자세를 기초로 상기 제 1 객체를 다시 재파지하는 제 8 단계;를 포함하는 방법.
In the method of performing a task by moving a plurality of objects,
A first step of the hand grasping and moving a first object of the plurality of objects;
A second step of determining, by a controller, whether the task cannot be performed;
A third step of releasing, by the hand, the first object held by the hand when it is determined that the task cannot be performed;
The controller may compare the information about the first object previously stored or received from the outside with an image acquired by the camera to determine an error degree, and at least one of a changed direction and a position of the first object based on the acquired image. A fourth step of determining one;
A fifth step of the hand re-holding the first object to perform the task under the control of the controller;
A sixth step after the first re-grasping attempt, determining that the hand cannot perform the task;
The information obtained by determining the error between the stored image and the input image is corrected using the learned information, and a two-dimensional model corresponding to a recognition region to be gripped in the region of the first object is determined, Converting to a 3D model to determine a holding position for the hand to hold the 3D model; And
An eighth step of the hand re-holding the first object based on the determined factor and the determined gripping pose to perform the task.
제 10항에 있어서,
상기 제 2 단계에서, 상기 제 1 객체의 방향 및 위치 중 적어도 하나가 변경되어 상기 태스크를 수행할 수 없다고 판단되는 경우,
상기 제 3 단계 내지 제 5 단계에서, 상기 제어부가 상기 핸드의 해방 및 재파지 동작을 제어하는 것을 특징으로 하는 방법.
The method of claim 10,
In the second step, when it is determined that at least one of the direction and location of the first object is changed to perform the task,
And in the third to fifth steps, the control unit controls the release and re-holding operation of the hand.
제 10항에 있어서,
상기 태스크는 상기 복수의 객체를 미리 설정된 순서에 따라 이동시켜 수행 가능하고,
상기 제 2 단계에서, 상기 미리 설정된 순서와 다르게 상기 제 1 객체가 이동되어 상기 태스크를 수행할 수 없다고 판단되는 경우,
상기 제 3 단계 내지 제 5 단계에서, 상기 제어부가 상기 핸드의 해방 및 재파지 동작을 제어하는 것을 특징으로 하는 방법.
The method of claim 10,
The task may be performed by moving the plurality of objects in a preset order.
In the second step, if it is determined that the first object is moved out of the predetermined order and cannot perform the task,
And in the third to fifth steps, the control unit controls the release and re-holding operation of the hand.
제 10항에 있어서,
상기 태스크는 상기 복수의 객체를 미리 설정된 순서에 따라 이동시켜 수행 가능하고,
상기 제 3 단계에서, 상기 제어부는 상기 제 1 객체를 재파지에 적합한 방향 및 위치로 배치되도록 상기 핸드가 상기 파지한 제 1 객체를 해방하도록 제어하는 것을 특징으로 하는 방법.
The method of claim 10,
The task may be performed by moving the plurality of objects in a preset order.
And wherein in the third step, the controller controls the hand to release the first object held by the hand so that the first object is disposed in a direction and a position suitable for re-holding.
제 13항에 있어서,
상기 제 3 단계 내지 제 5 단계 사이에는,
상기 핸드가 상기 해방한 제 1 객체를 일정 각도로 회전시키는 단계;를 더 포함하고,
상기 제 5 단계에서, 상기 핸드는 상기 회전된 제 1 객체를 재파지하는 것을 특징으로 하는 방법.
The method of claim 13,
Between the third to fifth steps,
And rotating the released first object by the hand at an angle.
And in the fifth step, the hand re-holds the rotated first object.
삭제delete 삭제delete 제 10항에 있어서,
상기 제 1 단계 및 제 2 단계 사이에는,
상기 핸드가 상기 파지를 위해 제 1 객체와 접촉되는 경우, 촉각센서가 상기 제 1 객체의 수직항력(normal force), 전단력(shear force) 및 전도성(conductive) 중 적어도 하나의 촉각 팩터를 감지하는 단계;를 더 포함하고,
상기 제 5 단계에서는,
상기 핸드가 상기 촉각센서에서 감지한 적어도 하나의 촉각 팩터를 함께 이용하여 상기 제 1 객체를 재파지하는 것을 특징으로 하는 방법.
The method of claim 10,
Between the first and second steps,
When the hand is in contact with the first object for the gripping, the tactile sensor detecting at least one tactile factor of normal force, shear force, and conductive of the first object More;
In the fifth step,
And the hand re-holds the first object using at least one tactile factor detected by the tactile sensor.
KR1020170170643A 2017-12-12 2017-12-12 Robot hand for performing task using regrasping and control method thereof Active KR102067878B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170170643A KR102067878B1 (en) 2017-12-12 2017-12-12 Robot hand for performing task using regrasping and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170170643A KR102067878B1 (en) 2017-12-12 2017-12-12 Robot hand for performing task using regrasping and control method thereof

Publications (2)

Publication Number Publication Date
KR20190070387A KR20190070387A (en) 2019-06-21
KR102067878B1 true KR102067878B1 (en) 2020-01-17

Family

ID=67056446

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170170643A Active KR102067878B1 (en) 2017-12-12 2017-12-12 Robot hand for performing task using regrasping and control method thereof

Country Status (1)

Country Link
KR (1) KR102067878B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024058616A1 (en) * 2022-09-15 2024-03-21 Samsung Electronics Co., Ltd. Synergies between pick and place: task-aware grasp estimation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179669A (en) * 1999-12-21 2001-07-03 Meidensha Corp Control device for robot
JP2007245283A (en) 2006-03-15 2007-09-27 Nissan Motor Co Ltd Workpiece attitude detecting device, workpiece attitude detecting method, picking system, and picking method
JP2011224695A (en) * 2010-04-19 2011-11-10 Toyota Motor Corp System for controlling holding of robot, and robot
JP2012055999A (en) 2010-09-07 2012-03-22 Canon Inc System and method for gripping object, program and robot system
WO2013002099A1 (en) 2011-06-29 2013-01-03 三菱電機株式会社 Component supply apparatus
JP2015085455A (en) 2013-10-31 2015-05-07 セイコーエプソン株式会社 Robot, robot system, robot controller
JP2017136677A (en) 2015-07-29 2017-08-10 キヤノン株式会社 Information processing apparatus, information processing method, robot control apparatus, and robot system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126684A (en) * 1992-10-21 1994-05-10 Mitsubishi Electric Corp Object holder and controll method thereof
JPH10249767A (en) * 1997-03-13 1998-09-22 Mitsubishi Electric Corp Moving-type body holding device and control method of the same
KR101048762B1 (en) 2008-12-30 2011-07-15 한국생산기술연구원 How to Create a Gripping Access Point for a Robot Hand
KR101260367B1 (en) * 2011-09-26 2013-05-07 한국과학기술연구원 Method for detecting grasping points using category recognition and computer readable record medium thereof
KR101323217B1 (en) 2012-05-29 2013-10-30 한국과학기술연구원 Grasping force control system and method for a robotic hand

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179669A (en) * 1999-12-21 2001-07-03 Meidensha Corp Control device for robot
JP2007245283A (en) 2006-03-15 2007-09-27 Nissan Motor Co Ltd Workpiece attitude detecting device, workpiece attitude detecting method, picking system, and picking method
JP2011224695A (en) * 2010-04-19 2011-11-10 Toyota Motor Corp System for controlling holding of robot, and robot
JP2012055999A (en) 2010-09-07 2012-03-22 Canon Inc System and method for gripping object, program and robot system
WO2013002099A1 (en) 2011-06-29 2013-01-03 三菱電機株式会社 Component supply apparatus
JP2015085455A (en) 2013-10-31 2015-05-07 セイコーエプソン株式会社 Robot, robot system, robot controller
JP2017136677A (en) 2015-07-29 2017-08-10 キヤノン株式会社 Information processing apparatus, information processing method, robot control apparatus, and robot system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024058616A1 (en) * 2022-09-15 2024-03-21 Samsung Electronics Co., Ltd. Synergies between pick and place: task-aware grasp estimation

Also Published As

Publication number Publication date
KR20190070387A (en) 2019-06-21

Similar Documents

Publication Publication Date Title
KR102109697B1 (en) Robot hand for grasping object by using visual information and tactual information and control method thereof
KR102109696B1 (en) Robot hand for grasping unknown object and control method thereof
CN109551476B (en) Robot system combined with cloud service system
JP6586532B2 (en) Deep machine learning method and apparatus for robot gripping
US10981272B1 (en) Robot grasp learning
KR101945772B1 (en) Methods and systems for generating instructions for a robotic system to carry out a task
Hsiao et al. Contact-reactive grasping of objects with partial shape information
US9089971B2 (en) Information processing apparatus, control method thereof and storage medium
US8060272B2 (en) System and method for image mapping and visual attention
CN104166509B (en) A kind of contactless screen exchange method and system
CN118789549A (en) Determine the action sequence adjusted for the environment of the robot task
JP2019060871A (en) Deformable sensor and method for detecting posture and force in contact with object
US11904470B2 (en) Systems, apparatuses, and methods for robotic learning and execution of skills including navigation and manipulation functions
CN106256512B (en) Robotic device including machine vision
CN109129474A (en) Manipulator active grabbing device and method based on multi-modal fusion
JP7632469B2 (en) ROBOT CONTROL DEVICE, ROBOT CONTROL METHOD, AND PROGRAM
JP2013529554A (en) Method for physical object selection in robotic systems
CN107291811A (en) A sensory cognition enhanced robot system based on cloud knowledge fusion
KR20190094303A (en) Method of redefining position of robot using artificial intelligence and robot of implementing thereof
US20240308082A1 (en) Apparatus and method for controlling robotic manipulators
JP2020013242A (en) Robot control system, robot device and program
US10139910B2 (en) Mobile communications device with adaptive friction of the housing
KR102067878B1 (en) Robot hand for performing task using regrasping and control method thereof
WO2021138340A1 (en) Composability framework for robotic control system
WO2019165613A1 (en) Control method for mobile device, device, and storage device

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20171212

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20181126

Patent event code: PE09021S01D

PG1501 Laying open of application
E90F Notification of reason for final refusal
PE0902 Notice of grounds for rejection

Comment text: Final Notice of Reason for Refusal

Patent event date: 20190717

Patent event code: PE09021S02D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20200110

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20200113

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20200113

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20221212

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20231212

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20241212

Start annual number: 6

End annual number: 6