[go: up one dir, main page]

KR102059139B1 - Vision inspection method - Google Patents

Vision inspection method Download PDF

Info

Publication number
KR102059139B1
KR102059139B1 KR1020150191078A KR20150191078A KR102059139B1 KR 102059139 B1 KR102059139 B1 KR 102059139B1 KR 1020150191078 A KR1020150191078 A KR 1020150191078A KR 20150191078 A KR20150191078 A KR 20150191078A KR 102059139 B1 KR102059139 B1 KR 102059139B1
Authority
KR
South Korea
Prior art keywords
vision inspection
slit light
image
light
image acquisition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020150191078A
Other languages
Korean (ko)
Other versions
KR20170079967A (en
Inventor
유홍준
백경환
Original Assignee
(주)제이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)제이티 filed Critical (주)제이티
Priority to KR1020150191078A priority Critical patent/KR102059139B1/en
Priority to TW105103261A priority patent/TWI624660B/en
Priority to SG11201706456WA priority patent/SG11201706456WA/en
Priority to PCT/KR2016/001243 priority patent/WO2016129870A1/en
Priority to CN201680009805.XA priority patent/CN107209128B/en
Priority to PCT/KR2016/014188 priority patent/WO2017116027A1/en
Priority to TW105143889A priority patent/TWI623739B/en
Publication of KR20170079967A publication Critical patent/KR20170079967A/en
Application granted granted Critical
Publication of KR102059139B1 publication Critical patent/KR102059139B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95638Inspecting patterns on the surface of objects for PCB's
    • G01N2021/95646Soldering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95638Inspecting patterns on the surface of objects for PCB's
    • G01N2021/95661Inspecting patterns on the surface of objects for PCB's for leads, e.g. position, curvature
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30152Solder

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)

Abstract

본 발명은 소자핸들러에 관한 것으로서, 보다 상세하게는 소자에 대한 비전검사를 수행하는 소자핸들러 및 비전검사방법에 관한 것이다.
본 발명은, 표면에서 다수의 구형 형상의 돌출부(1a)들이 형성된 소자(1)에 대하여 상기 다수의 돌출부(1a)에 대한 비전검사를 수행하는 비전검사방법에 있어서, 상기 소자(1)의 표면에 대하여 상대이동시키면서 상기 소자(1)의 표면에 대한 광의 입사각이 0°보다 크고 90°보다 작은 제1입사각을 가지는 슬릿광을 상기 소자(1)의 표면에 조사하면서, 상기 소자(1)의 표면 상의 높이를 광삼각법에 의하여 측정하는 동시에 상기 슬릿광이 조사된 상기 소자(1)의 표면에 대한 제1이미지를 획득하는 이미지획득단계와; 상기 이미지획득단계에서 획득된 상기 제1이미지에서 픽셀단위로 픽셀 값이 미리 설정된 값 이상의 영역 내에서 상기 이미지획득단계에서 측정된 높이가 최대인 위치를 상기 돌출부(1a)의 정점의 위치로 지정하는 슬릿광분석단계를 포함하는 것을 특징으로 하는 비전검사방법을 개시한다.
The present invention relates to a device handler, and more particularly, to a device handler and a vision inspection method for performing a vision inspection on the device.
According to the present invention, in the vision inspection method for performing the vision inspection on the plurality of protrusions (1a) with respect to the device (1) having a plurality of spherical protrusions (1a) formed on the surface, the surface of the device (1) The slit light having a first incident angle greater than 0 ° and smaller than 90 ° while irradiating relative to the surface of the device 1 is irradiated onto the surface of the device 1 while An image acquisition step of measuring a height on a surface by a phototriangulation method and simultaneously acquiring a first image of the surface of the element 1 to which the slit light is irradiated; In the first image acquired in the image acquisition step, the position at which the height measured in the image acquisition step is maximum is set as the position of the apex of the protrusion 1a in a region of pixel value greater than or equal to a preset value in units of pixels. Disclosed is a vision inspection method comprising a slit light analysis step.

Description

비전검사방법 {Vision inspection method}Vision inspection method

본 발명은 비전검사방법에 관한 것으로서, 보다 상세하게는 소자에 대한 비전검사를 수행하는 비전검사방법에 관한 것이다.The present invention relates to a vision inspection method, and more particularly, to a vision inspection method for performing a vision inspection on the device.

반도체 소자는, 반도체 공정, 소잉공정 등을 거쳐 고객 트레이 등에 적재되어 출하된다. 여기서 각 공정은, 수율향상 및 출하 후 신뢰성 향상을 위하여 비전검사 등을 수행하고 있다.The semiconductor element is loaded onto a customer tray or the like and shipped through a semiconductor process, a sawing process, or the like. Here, each process is performing vision inspection for improving yield and improving reliability after shipment.

한편 반도체 소자에 대한 비전검사는 리드(lead)나 볼 그리드(ball grid)의 파손여부, 크랙(crack), 스크래치(scratch) 여부 등과 같은 반도체 소자의 외관상태 및 표면상태의 양호여부를 검사한다.On the other hand, the vision inspection of the semiconductor device inspects the appearance and surface condition of the semiconductor device, such as whether a lead or a ball grid is broken, cracks, or scratches.

한편, 상기와 같은 반도체 소자의 외관상태 및 표면상태의 검사가 추가되면서 그 검사시간 및 각 모듈들의 배치에 따라서 전체 공정수행을 위한 시간 및 장치의 크기에 영향을 미치게 된다.On the other hand, as the inspection of the appearance and surface conditions of the semiconductor device as described above is added, the time and the size of the device for the overall process performance depending on the inspection time and the arrangement of each module.

특히 다수의 소자가 적재된 웨이퍼, 트레이 등의 로딩, 각 소자들에 대한 비전검사를 위한 하나 이상의 모듈, 검사 후 검사결과에 따른 언로딩모듈의 구성 및 배치에 따라서 장치의 크기가 달라진다.In particular, the size of the device varies depending on the loading of a plurality of devices loaded wafers, trays, etc., one or more modules for vision inspection of each device, and the configuration and arrangement of the unloading module according to the inspection results after the inspection.

그리고 장치의 크기는 소자검사라인 내에 설치될 수 있는 소자핸들러의 숫자를 제한하거나, 미리 정해진 숫자의 소자핸들러의 설치에 따라서 소자 생산을 위한 설치비용에 영향을 주게 된다.In addition, the size of the device limits the number of device handlers that can be installed in the device inspection line, or affects the installation cost for device production according to the installation of a predetermined number of device handlers.

본 발명의 목적은, 상기와 같은 점들을 인식하여 소자 표면에 형성된 볼단자등 돌출부에 대한 비전검사에 대한 신뢰성을 향상시킬 수 있는 비전검사방법을 제공하는데 있다.It is an object of the present invention to provide a vision inspection method that can recognize the above points and improve the reliability of vision inspection for projections such as ball terminals formed on the surface of the device.

본 발명은 상기와 같은 본 발명의 목적을 달성하기 위하여 창출된 것으로서, 본 발명은, 표면에서 다수의 구형 형상의 돌출부(1a)들이 형성된 소자(1)에 대하여 상기 다수의 돌출부(1a)에 대한 비전검사를 수행하는 비전검사방법에 있어서, 상기 소자(1)의 표면에 대하여 상대이동시키면서 상기 소자(1)의 표면에 대한 광의 입사각이 0°보다 크고 90°보다 작은 제1입사각을 가지는 슬릿광을 상기 소자(1)의 표면에 조사하면서, 상기 소자(1)의 표면 상의 높이를 광삼각법에 의하여 측정하는 동시에 상기 슬릿광이 조사된 상기 소자(1)의 표면에 대한 제1이미지를 획득하는 이미지획득단계와; 상기 이미지획득단계에서 획득된 상기 제1이미지에서 픽셀단위로 픽셀 값이 미리 설정된 값 이상의 영역 내에서 상기 이미지획득단계에서 측정된 높이가 최대인 위치를 상기 돌출부(1a)의 정점의 위치로 지정하는 슬릿광분석단계를 포함하는 것을 특징으로 하는 비전검사방법을 개시한다.The present invention was created in order to achieve the object of the present invention as described above, the present invention, with respect to the device (1) formed with a plurality of spherical protrusions (1a) on the surface of the plurality of protrusions (1a) In a vision inspection method for performing a vision inspection, a slit light having a first incident angle of greater than 0 ° and a less than 90 ° incidence angle of light with respect to the surface of the device 1 while moving relative to the surface of the device 1. While irradiating the surface of the device 1, while measuring the height on the surface of the device 1 by the optical triangulation method while obtaining a first image of the surface of the device 1 is irradiated with the slit light An image acquisition step; In the first image obtained in the image acquisition step, a position at which the height measured in the image acquisition step is maximum is set as the position of the vertex of the protrusion 1a in a region of a pixel value or more, which is preset in pixel units. Disclosed is a vision inspection method comprising a slit light analysis step.

상기 돌출부(1a)는, 볼단자일 수 있다.The protrusion 1a may be a ball terminal.

상기 슬릿광은, 단색광이 사용됨이 바람직하다.As the slit light, monochromatic light is preferably used.

본 발명에 따른 비전검사방법은, 소자표면에서 돌출부, 특히 볼단자의 정점의 위치를 검출함에 있어서 소자표면에 슬릿광을 조사하고 소자에 조사된 이미지로부터 미리 설정된 값 이상의 픽셀값을 가지는 영역 내에서 슬릿광 조사에 의하여 측정된 높이가 최대인 위치를 돌출부의 정점의 위치로 지정함으로써 비전검사의 반복에 따른 신뢰성 향상 및 비전검사속도를 현저히 향상시킬 수 있는 이점이 있다.In the vision inspection method according to the present invention, in detecting the position of the projections, especially the vertices of the ball terminals, on the surface of the device, the surface of the device is irradiated with slit light and has a pixel value greater than or equal to a predetermined value from the image irradiated to the device. By designating the position of the maximum height measured by the slit light irradiation as the position of the apex of the protrusion, there is an advantage that the reliability and vision inspection speed can be remarkably improved by repeating the vision inspection.

도 1은, 본 발명에 따른 비전검사방법을 수행하기 위한 비전검사모듈의 일예를 보여주는 개념도이다.
도 2는, 도 1의 비전검사모듈의 배치를 보여주는 평면도이다.
도 3a는, 도 1의 비전검사모듈의 변형예를 보여주는 개념도이다.
도 3b는, 도 3a의 비전검사모듈의 배치를 보여주는 평면도이다.
도 3c는, 도 3a의 비전검사모듈의 변형예를 보여주는 개념도이다.
도 4a 내지 도 6b는, 본 발명에 따른 비전검사방법을 수행하는 과정으로서 돌출부의 위치에 따라서 슬릿광의 변화를 보여주는 개념도들로서, 도 4a 및 도 4b는, 돌출부의 정점을 지나기 전, 도 5a 및 도 5b는, 돌출부의 정점, 도 6a 및 도 6b는 돌출부의 정점을 지난 후의 슬릿광의 조사패턴을 보여주는 도면들이다.
도 7은, 본 발명에 따른 비전검사방법을 수행하는 과정에서 측정된 돌출부의 높이 및 실제 돌출부의 높이의 관계를 보여주는 그래프이다.
1 is a conceptual diagram showing an example of a vision inspection module for performing a vision inspection method according to the present invention.
2 is a plan view showing the arrangement of the vision inspection module of FIG.
3A is a conceptual diagram illustrating a modification of the vision inspection module of FIG. 1.
3B is a plan view showing the arrangement of the vision inspection module of FIG. 3A.
3C is a conceptual diagram illustrating a modification of the vision inspection module of FIG. 3A.
4A to 6B are conceptual views showing a change in slit light according to the position of the protrusion as a process of performing the vision inspection method according to the present invention. FIGS. 4A and 4B are views of FIGS. 5B shows peaks of the projections, and FIGS. 6A and 6B show the irradiation patterns of the slit light after passing the peaks of the projections.
7 is a graph showing the relationship between the height of the protrusion and the height of the actual protrusion measured in the process of performing the vision inspection method according to the present invention.

이하, 본 발명에 따른 비전검사방법에 관하여 첨부된 도면을 참조하여 설명하면 다음과 같다.Hereinafter, described with reference to the accompanying drawings with respect to the vision inspection method according to the present invention.

본 발명에 따른 비전검사방법은, 소자(1)의 표면 등에 대한 외관을 카메라, 스캐너 등을 이용하여 이미지를 획득하는 비전검사모듈(410)에 의하여 수행된다.The vision inspection method according to the present invention is performed by the vision inspection module 410 for acquiring an image of the surface of the device 1 by using a camera, a scanner, or the like.

여기서 소자(1)는, WL-CSP (Wafer level chip scale pacake), SD램, 플래쉬램, CPU 등 반도체 공정을 마친 소자들로서 표면에 볼그리드 등 돌출부(1a)가 형성된 소자이면 모두 그 대상이 될 수 있다.Here, the device 1 is a device that has completed semiconductor processes such as WL-CSP (Wafer level chip scale pacake), SD RAM, flash RAM, and CPU, and if the protrusion 1a such as a ball grid is formed on the surface, all of them will be the targets. Can be.

상기 비전검사모듈(410)는, 소자(1)에 대한 비전검사를 수행하는 구성으로서 다양한 구성이 가능하다.The vision inspection module 410 may be configured in various ways as a configuration for performing vision inspection on the device 1.

예로서, 상기 비전검사모듈(410)는, 소자(1)의 표면에 대한 외관을 카메라, 스캐너 등을 이용하여 이미지를 획득하는 구성으로서 다양한 구성이 가능하다.For example, the vision inspection module 410 may be configured to obtain an image of the appearance of the surface of the device 1 by using a camera, a scanner, or the like.

여기서 상기 비전검사모듈(410)에 의하여 획득된 이미지는, 프로그램 등을 이용하여 이미지 분석 후 불량여부 등의 비점검사에 활용된다.Here, the image acquired by the vision inspection module 410 is used for non-point inspection, such as whether the defect after image analysis using a program or the like.

한편 상기 비전검사모듈(410)는, 비전검사의 종류에 따라서 다양한 구성이 가능하며, 특히 2차원비전검사 및 3차원비전검사를 모두 수행하도록 구성됨이 바람직하다.Meanwhile, the vision inspection module 410 may be configured in various ways according to the type of vision inspection. In particular, the vision inspection module 410 may be configured to perform both two-dimensional vision inspection and three-dimensional vision inspection.

예로서, 상기 비전검사모듈(410)는, 2차원비전검사를 위하여 소자(1)의 표면에 대한 이미지를 획득하는 제1이미지획득부(712)와, 제1이미지획득부(712)의 이미지획득을 위하여 소자(1)의 표면에 광을 조사하는 제1광원부(711)를 포함하는 2차원비전검사부(710)와; 3차원비전검사를 위하여 소자(1)의 표면에 대한 이미지를 획득하는 제2이미지획득부(722)와, 제2이미지획득부(722)의 이미지획득을 위하여 소자(1)의 표면에 광을 조사하는 제2광원부(721)를 포함하는 3차원비전검사부(720)를 포함할 수 있다.For example, the vision inspection module 410 may include a first image acquisition unit 712 and an image of the first image acquisition unit 712 for acquiring an image of the surface of the device 1 for two-dimensional vision inspection. A two-dimensional vision inspection unit 710 including a first light source unit 711 for irradiating light onto the surface of the device 1 for acquisition; The second image acquisition unit 722 for acquiring an image of the surface of the device 1 for three-dimensional vision inspection and the light on the surface of the device 1 for the image acquisition of the second image acquisition unit 722. It may include a three-dimensional vision inspection unit 720 including a second light source unit 721 to irradiate.

특히 상기 비전검사모듈(410)는, 2차원비전검사부(710) 및 3차원비전검사부(720)의 구성 및 배치에 따라서 다양한 구성이 가능하다.In particular, the vision inspection module 410 may be configured in various ways according to the configuration and arrangement of the two-dimensional vision inspection unit 710 and the three-dimensional vision inspection unit 720.

먼저, 상기 비전검사모듈(410)는, 한국 공개특허공보 제10-2010-0122140호에 그 실시예 및 도 2a 및 도 2b에 도시된 바와 같이 구성될 수 있다First, the vision inspection module 410 may be configured as shown in FIGS. 2A and 2B and its embodiment in Korean Laid-Open Patent Publication No. 10-2010-0122140.

여기서 상기 3차원비전검사부(720)의 제2광원부(721)는, 다양한 구성이 가능하며 레이저와 같은 단색광, 백색광 등이 사용될 수 있다.Here, the second light source unit 721 of the 3D vision inspection unit 720 may be configured in various ways, and monochromatic light such as a laser, white light, or the like may be used.

특히 측정대상인 3차원형상이 미세한 경우 레이저광의 경우 난반사가 커 그 측정이 곤란한바 난반사가 적은 백색광의 사용이 바람직하다.In particular, when the three-dimensional shape to be measured is fine, in the case of laser light, the diffuse reflection is large, so that it is difficult to measure the use of white light having less diffuse reflection.

그리고, 상기 3차원비전검사부(720)의 제2광원부(721)는, 소자(1)의 표면에 슬릿형태, 즉 슬릿광로 조사함이 바람직하며, 광원으로부터 광을 전달하는 광파이버와, 상기 광파이버와 연결되어 슬릿형상의 광을 소자(1)의 표면에 조사하는 슬릿부를 포함하여 구성될 수 있다.The second light source unit 721 of the three-dimensional vision inspection unit 720 is preferably a slit type, that is, irradiated with a slit light on the surface of the device 1, an optical fiber for transmitting light from a light source, and the optical fiber It may be configured to include a slit that is connected to the slit-shaped light to irradiate the surface of the device (1).

한편, 측정대상인 소자(1)의 크기가 큰 경우 하나의 카메라(스캐너)에 의하여 소자(1)의 표면 상의 볼단자, 범프 등 돌출부분의 높이 등 3차원 측정이 어려운 경우가 있다.On the other hand, when the size of the element 1 to be measured is large, three-dimensional measurement such as the height of the protruding portions such as ball terminals and bumps on the surface of the element 1 may be difficult by one camera (scanner).

이에, 상기 3차원비전검사부(720)는, 2개 이상의 제2이미지획득부(722)를 포함할 수 있다.Thus, the 3D vision inspection unit 720 may include two or more second image acquisition units 722.

이때 상기 3차원비전검사부(720)는, 제2이미지획득부(722) 각각에 대응되는 광원부(721)를 포함할 수 있으며, 도 3a 및 도 3b에 도시된 바와 같이, 하나의 광원부(721)와, 광원부(721)를 중심을 기준으로 점대칭으로 배치되는 한 쌍의 제2이미지획득부(722)를 포함할 수 있다.At this time, the three-dimensional vision inspection unit 720 may include a light source unit 721 corresponding to each of the second image acquisition unit 722, as shown in Figs. 3a and 3b, one light source unit 721 And a pair of second image acquisition units 722 arranged in point symmetry with respect to the light source unit 721 as a center.

아울러, 상기 비전검사모듈(410)는, 3차원비전검사부(720) 및 2차원비전검사부(710)의 배치에 있어서, 소자(1)의 이동방향을 기준으로, 도 1 및 도 2에 도시된 바와 같이, 서로 중첩되어 구성되거나, 도 3a 내지 도 3c에 도시된 바와 같이, 2차원비전검사부(710) 및 3차원비전검사부(720)가 순차적으로 배치될 수 있다.In addition, the vision inspection module 410, in the arrangement of the three-dimensional vision inspection unit 720 and the two-dimensional vision inspection unit 710, based on the moving direction of the device 1, shown in Figures 1 and 2 As shown in FIG. 3A to FIG. 3C, the two-dimensional vision inspection unit 710 and the three-dimensional vision inspection unit 720 may be sequentially disposed.

특히 상기 비전검사모듈(410)은, 2차원비전검사부(710) 및 3차원비전검사부(720)가 순차적으로 배치된 경우, 도 3b에 도시된 바와 같이, 3차원비전검사부(720)에서 소자(1)의 이동방향을 따라서 한 쌍의 제2이미지획득부(722) 배치되고 한 쌍의 제2이미지획득부(722) 사이에 광원부(721)가 배치될 수 있다.In particular, when the 2D vision inspection unit 710 and the 3D vision inspection unit 720 are sequentially arranged, the vision inspection module 410 may include a device (3) in the 3D vision inspection unit 720 as shown in FIG. 3B. A pair of second image acquisition units 722 may be disposed along the moving direction of 1), and a light source unit 721 may be disposed between the pair of second image acquisition units 722.

또한 상기 비전검사모듈(410)는, 2차원비전검사부(710) 및 3차원비전검사부(720)가 순차적으로 배치된 경우, 도 3c에 도시된 바와 같이, 3차원비전검사부(720)에서 소자(1)의 이동방향을 따라서 제2이미지획득부(722) 및 광원부(721)가 순차적으로 배치될 수 있다.In addition, when the 2D vision inspection unit 710 and the 3D vision inspection unit 720 are sequentially arranged, the vision inspection module 410 may include a device (3) in the 3D vision inspection unit 720 as shown in FIG. 3C. The second image acquisition unit 722 and the light source unit 721 may be sequentially disposed along the moving direction of 1).

본 발명에 따른 비전검사방법은, 도 4a 내지 도 6b에 도시된 바와 같이, 표면에서 다수의 구형 형상의 돌출부(1a)들이 형성된 소자(1)에 대하여 다수의 돌출부(1a)에 대한 비전검사를 수행하는 것을 특징으로 한다.In the vision inspection method according to the present invention, as shown in FIGS. 4A to 6B, the vision inspection of the plurality of protrusions 1a is performed on the device 1 having the plurality of spherical protrusions 1a formed on the surface thereof. It is characterized by performing.

그리고 본 발명에 따른 비전검사방법은, 소자(1)의 표면에 대하여 상대이동시키면서 소자(1)의 표면에 대한 광의 입사각이 0°보다 크고 90°보다 작은 제1입사각을 가지는 슬릿광을 소자(1)의 표면에 조사하면서, 소자(1)의 표면 상의 높이를 광삼각법에 의하여 측정하는 동시에 슬릿광이 조사된 소자(1)의 표면에 대한 제1이미지를 획득하는 이미지획득단계와; 이미지획득단계에서 획득된 제1이미지에서 픽셀단위로 픽셀 값이 미리 설정된 값 이상의 영역 내에서 이미지획득단계에서 측정된 높이가 최대인 위치를 상기 돌출부(1a)의 정점의 위치로 지정하는 슬릿광분석단계를 포함한다.In addition, the vision inspection method according to the present invention includes a slit light having a first incidence angle of greater than 0 ° and smaller than 90 ° while moving relative to the surface of the device 1. An image acquiring step of measuring the height on the surface of the element 1 by phototriangulation while acquiring the first image of the surface of the element 1 to which the slit light is irradiated while irradiating the surface of 1); Slit light analysis that designates the position of the vertex of the protrusion 1a as the position where the height measured in the image acquisition step is the maximum within the area of the pixel value of the first image obtained in the image acquisition step in units of pixels or more. Steps.

상기 이미지획득단계는, 소자(1)의 표면에 대하여 상대이동시키면서 소자(1)의 표면에 대한 광의 입사각이 0°보다 크고 90°보다 작은 제1입사각을 가지는 슬릿광을 소자(1)의 표면에 조사하면서, 소자(1)의 표면 상의 높이를 광삼각법에 의하여 측정하는 동시에 슬릿광이 조사된 소자(1)의 표면에 대한 제1이미지를 획득하는 단계로서 다양한 방법에 의하여 수행될 수 있다.The image acquiring step may include slit light having a first incident angle greater than 0 ° and smaller than 90 ° while the light is incident on the surface of the device 1 while moving relative to the surface of the device 1. While irradiating on, the height on the surface of the element 1 is measured by the optical triangulation method and at the same time a first image of the surface of the element 1 to which the slit light is irradiated can be performed by various methods.

여기서 상기 슬릿광은, 조도값으로 판별이 가능한바 단색광, 예를 들면 백색광으로 조사되는 것이 바람직하다.In this case, the slit light is irradiated with monochromatic light, for example, white light, which can be distinguished by an illuminance value.

그리고 상기 소자(1)의 표면 상의 높이, 즉 소자(1)의 표면에 형성된 볼단자, 범프 등의 돌출부(1a)의 높이는, 조사된 슬릿광을 이용하여 광삼각법에 의하여 측정된다.The height on the surface of the device 1, that is, the height of protrusions 1a such as ball terminals and bumps formed on the surface of the device 1, is measured by the phototriangulation method using the irradiated slit light.

그런데 상기 돌출부(1a)의 높이는, 도 7에 도시된 바와 같이, 그 정점이 높음에도 불구하고 슬릿광의 왜곡에 의하여 돌출부(1a)의 정점을 지난 위치에서 최대값을 가진다.However, as shown in FIG. 7, the height of the protrusion 1a has a maximum value at a position past the apex of the protrusion 1a due to the distortion of the slit light despite its high peak.

이는, 돌출부(1a)에 슬릿광이 조사될 때 광의 왜곡에 기인하며, 이러한 광의 왜곡에 의하여 돌출부(1a)의 정점의 위치를 측정하는데 있어서 오차요인으로 작용하며 비전검사의 반복시 검사의 신뢰성을 저하시키는 문제점이 있다.This is due to the distortion of the light when the slit light is irradiated to the protrusion 1a, and acts as an error factor in measuring the position of the apex of the protrusion 1a by the distortion of the light, and the reliability of the test is repeated when the vision inspection is repeated. There is a problem of deterioration.

특히, 볼단자와 같은 돌출부(1a)의 이상적 형상은 구의 일부형상을 이루는데 표면의 일부가 손상이 있는 경우 광의 왜곡현상은 극대화되며 비전검사시 돌출부(1a)의 정점의 위치의 오차의 발생원인 및 반복 수행시 검사의 신뢰성을 크게 저하시킨다.In particular, the ideal shape of the protrusion 1a, such as the ball terminal, forms a part of the sphere, and when a part of the surface is damaged, the distortion of light is maximized and causes of error in the position of the apex of the protrusion 1a during vision inspection. And it greatly lowers the reliability of the test when repeatedly performed.

이에, 본 발명은, 슬릿광의 조사에 의하여 광삼각법에 의하여 소자(1)의 표면 상의 높이를 측정함과 아울러 슬릿광이 조사된 소자(1)에 대한 이미지를 이용하여 비전검사에 따른 측정오차를 최소화함과 아울러 비전검사의 반복 수행에도 불구하고 그 검사결과의 신뢰성을 향상시켰다.Accordingly, the present invention, by measuring the height on the surface of the device 1 by the optical triangulation method by the slit light irradiation, and using the image of the device (1) irradiated with the slit light measurement measurement error according to vision inspection In addition to minimizing and repeating the vision test, the reliability of the test result was improved.

이에 상기 이미지획득단계는, 소자(1)의 표면에 대하여 상대이동시키면서 소자(1)의 표면에 대한 광의 입사각이 0°보다 크고 90°보다 작은 제1입사각을 가지는 슬릿광을 소자(1)의 표면에 조사하면서, 소자(1)의 표면 상의 높이를 광삼각법에 의하여 측정하는 동시에 슬릿광이 조사된 소자(1)의 표면에 대한 제1이미지를 획득한다.Accordingly, in the image acquisition step, the slit light having a first incidence angle greater than 0 ° and smaller than 90 ° with respect to the surface of the device 1 while moving relative to the surface of the device 1 While irradiating the surface, the height on the surface of the element 1 is measured by the optical triangulation method while at the same time obtaining a first image of the surface of the element 1 to which the slit light is irradiated.

여기서 상기 소자(1)의 표면 상의 높이는, 소자(1)의 표면에 대한 제1이미지의 하나 이상의 픽셀에 대응되는 위치로 맵핑시켜 측정함이 바람직하다.The height on the surface of the device 1 is preferably measured by mapping it to a position corresponding to one or more pixels of the first image relative to the surface of the device 1.

상기 슬릿광분석단계는, 이미지획득단계에서 획득된 제1이미지에서 픽셀단위로 픽셀 값이 미리 설정된 값 이상의 영역 내에서 이미지획득단계에서 측정된 높이가 최대인 위치를 돌출부(1a)의 정점의 위치로 지정하는 단계로서 다양한 방법에 의하여 수행될 수 있다.In the slit light analysis step, the position of the apex of the protrusion 1a is a position where the height measured in the image acquisition step is the maximum in a region in which the pixel value is greater than or equal to a preset value in pixels in the first image acquired in the image acquisition step. It may be performed by various methods as a step to specify.

구체적으로, 앞서 이미지획득단계에서 획득된 제1이미지에서 픽셀단위로 픽셀 값이 미리 설정된 값 이상의 유효영역을 설정한다.In detail, an effective area of a pixel value of a pixel value is set in units of pixels in the first image acquired in the image acquisition step.

그리고 상기 유효영역 내에서 이미지획득단계에서 측정된 높이가 최대인 위치를 돌출부(1a)의 정점의 위치로 지정한다.In addition, the position of the maximum height measured in the image acquisition step within the effective area is designated as the position of the vertex of the protrusion 1a.

여기서 슬릿광이 돌출부(1a)의 정점을 지난 상태에서 광삼각법에 의한 측정높이(H)는 더 증가하나 슬릿광의 소자(1)의 표면 상에 조사된 슬릿광에 대응되는 픽셀값(조도)는 상대적으로 작은 값을 가지게 된다.Here, in the state where the slit light passes the apex of the protrusion 1a, the measurement height H by the optical triangular method increases further, but the pixel value (illuminance) corresponding to the slit light irradiated on the surface of the element 1 of the slit light It will have a relatively small value.

이러한 점을 고려하여 상기 슬릿광분석단계는, 이미지획득단계에서 획득된 제1이미지에서 미리 설정된 값 이상의 픽셀값을 계산하여 소자(1)의 표면 상에 조사된 슬릿광의 폭을 계산하고 계산된 슬릿광의 폭이 최대인 위치를 돌출부(1a)의 정점의 위치로 지정한다.In consideration of this point, the slit light analysis step calculates the width of the slit light irradiated on the surface of the device 1 by calculating pixel values equal to or greater than a predetermined value in the first image acquired in the image acquisition step, and calculates the calculated slit. The position where the width of light is maximum is designated as the position of the apex of the protrusion 1a.

한편 상기 슬릿광분석단계는, 이미지획득단계에서 획득된 제1이미지와 소자(1)의 크기 및 제1이미지의 픽셀크기를 맵핑시킨다.Meanwhile, the slit light analysis step maps the size of the first image and the size of the device 1 and the pixel size of the first image obtained in the image acquisition step.

그리고, 상기 소자(1) 상의 실제위치와 제1이미지의 픽셀위치를 대응시키면, 계산된 슬릿광의 폭이 최대인 위치의 픽셀의 위치로부터 소자(1) 상의 실제위치를 계산할 수 있다.If the actual position on the device 1 and the pixel position of the first image correspond, the actual position on the device 1 can be calculated from the position of the pixel at the position where the width of the calculated slit light is maximum.

한편 본 발명에 따른 비전검사방법은, 앞서 설명한 3차원비전검사부(720)에 의하여 수행될 수 있으나, 도 1 내지 도 3c에 도시된 비전검사모듈에 수행되는 것에 국한되는 것은 아니며 슬릿광을 이용하여 3차원비전검사를 수행할 수 있는 비전검사모듈이면 어떠한 모듈도 가능하다.Meanwhile, the vision inspection method according to the present invention may be performed by the three-dimensional vision inspection unit 720 described above, but is not limited to that performed by the vision inspection module illustrated in FIGS. Any module can be used as long as it is a vision inspection module that can perform 3D vision inspection.

이상에서는 본 발명의 바람직한 실시예들에 대하여 예시적으로 설명하였으나, 본 발명의 범위는 이와 같은 특정 실시예들에만 한정되는 것이 아니며, 특허청구범위에 기재된 범주 내에서 적절하게 변경될 수 있다.The exemplary embodiments of the present invention have been described above by way of example, but the scope of the present invention is not limited to these specific embodiments, and may be appropriately changed within the scope of the claims.

1 : 소자 1a : 돌출부1 element 1a protrusion

Claims (3)

표면에서 다수의 구형 형상의 돌출부(1a)들이 형성된 소자(1)에 대하여 상기 다수의 돌출부(1a)에 대한 비전검사를 수행하는 비전검사방법에 있어서,
상기 소자(1)의 표면에 대하여 상대이동시키면서 상기 소자(1)의 표면에 대한 광의 입사각이 0°보다 크고 90°보다 작은 제1입사각을 가지는 슬릿광을 상기 소자(1)의 표면에 조사하면서, 상기 소자(1)의 표면 상의 높이를 광삼각법에 의하여 측정하는 동시에 상기 슬릿광이 조사된 상기 소자(1)의 표면에 대한 제1이미지를 획득하는 이미지획득단계와;
상기 이미지획득단계에서 획득된 상기 제1이미지에서 픽셀단위로 픽셀 값이 미리 설정된 값 이상의 영역을 유효영역으로 설정하고, 상기 유효영역 내에서 상기 돌출부(1a)의 정점의 위치를 지정하는 슬릿광분석단계를 포함하며,
상기 슬릿광분석단계는, 상기 소자(1)의 표면 상에 조사된 슬릿광의 폭을 계산하고 계산된 슬릿광의 폭이 최대인 위치를 상기 돌출부(1a)의 정점의 위치로 지정하는 것을 특징으로 하는 비전검사방법.
In the vision inspection method for performing a vision inspection on the plurality of protrusions (1a) with respect to the device (1) formed with a plurality of spherical protrusions (1a) on the surface,
While irradiating the surface of the device 1 with slit light having a first incidence angle greater than 0 ° and smaller than 90 °, the light is incident on the surface of the device 1 while moving relative to the surface of the device 1. An image acquisition step of measuring a height on the surface of the device (1) by a phototriangulation method and at the same time acquiring a first image of the surface of the device (1) to which the slit light is irradiated;
Slit light analysis for setting a region of a pixel value or more preset in pixels in the first image acquired in the image acquisition step as an effective region, and designating a position of a vertex of the protrusion 1a within the effective region. Steps,
In the slit light analysis step, the width of the slit light irradiated on the surface of the device 1 is calculated, and the position where the calculated width of the slit light is maximum is specified as the position of the apex of the protrusion 1a. Vision test method.
청구항 1에 있어서,
상기 돌출부(1a)는, 볼단자인 것을 특징으로 하는 비전검사방법.
The method according to claim 1,
The projection (1a) is a vision inspection method, characterized in that the ball terminal.
청구항 1에 있어서,
상기 슬릿광은, 단색광인 것을 특징으로 하는 비전검사방법.
The method according to claim 1,
And said slit light is monochromatic light.
KR1020150191078A 2015-02-10 2015-12-31 Vision inspection method Active KR102059139B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020150191078A KR102059139B1 (en) 2015-12-31 2015-12-31 Vision inspection method
TW105103261A TWI624660B (en) 2015-02-10 2016-02-02 Device handler, and vision inspection method
PCT/KR2016/001243 WO2016129870A1 (en) 2015-02-10 2016-02-04 Component handler and vision inspection method
CN201680009805.XA CN107209128B (en) 2015-02-10 2016-02-04 Component handler and visual inspection method
SG11201706456WA SG11201706456WA (en) 2015-02-10 2016-02-04 Device and vision inspection method
PCT/KR2016/014188 WO2017116027A1 (en) 2015-12-31 2016-12-05 Visual inspecting method
TW105143889A TWI623739B (en) 2015-12-31 2016-12-29 Vision inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150191078A KR102059139B1 (en) 2015-12-31 2015-12-31 Vision inspection method

Publications (2)

Publication Number Publication Date
KR20170079967A KR20170079967A (en) 2017-07-10
KR102059139B1 true KR102059139B1 (en) 2019-12-24

Family

ID=59224850

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150191078A Active KR102059139B1 (en) 2015-02-10 2015-12-31 Vision inspection method

Country Status (3)

Country Link
KR (1) KR102059139B1 (en)
TW (1) TWI623739B (en)
WO (1) WO2017116027A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102660626B1 (en) 2023-11-07 2024-04-25 주식회사 파인더아이 System and method for vision inspection based on AI that can be verified on site

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102142687B1 (en) * 2018-02-06 2020-08-07 (주) 인텍플러스 Apparatus for inspecting exterior of semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074845A (en) * 1998-08-27 2000-03-14 Fujitsu Ltd Bump inspection method and bump inspection device
JP2002296017A (en) * 2001-03-30 2002-10-09 Nec Corp Inspection device and inspecting method for semiconductor integrated circuit
JP2002333308A (en) 2001-05-09 2002-11-22 Ibiden Co Ltd Bump height inspection method and inspection apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262803B1 (en) * 1998-09-10 2001-07-17 Acuity Imaging, Llc System and method for three-dimensional inspection using patterned light projection
JP3341739B2 (en) * 1999-10-28 2002-11-05 日本電気株式会社 Bump apex detection method and bump height measurement method and apparatus using the same
KR20010108632A (en) * 2000-05-30 2001-12-08 한종훈 Apparatus and Method for Inspecting Solder Ball of Semiconductor Device
KR101108672B1 (en) * 2009-05-12 2012-01-25 (주)제이티 Semiconductor device vision inspection device and method
JP5561080B2 (en) * 2010-10-06 2014-07-30 日本電産リード株式会社 Wafer bump height measuring device
KR101273094B1 (en) * 2011-01-28 2013-06-17 한국과학기술원 The measurement method of PCB bump height by using three dimensional shape detector using optical triangulation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074845A (en) * 1998-08-27 2000-03-14 Fujitsu Ltd Bump inspection method and bump inspection device
JP2002296017A (en) * 2001-03-30 2002-10-09 Nec Corp Inspection device and inspecting method for semiconductor integrated circuit
JP2002333308A (en) 2001-05-09 2002-11-22 Ibiden Co Ltd Bump height inspection method and inspection apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102660626B1 (en) 2023-11-07 2024-04-25 주식회사 파인더아이 System and method for vision inspection based on AI that can be verified on site

Also Published As

Publication number Publication date
KR20170079967A (en) 2017-07-10
WO2017116027A1 (en) 2017-07-06
TW201734436A (en) 2017-10-01
TWI623739B (en) 2018-05-11

Similar Documents

Publication Publication Date Title
US7126699B1 (en) Systems and methods for multi-dimensional metrology and/or inspection of a specimen
US11043433B2 (en) Method of inspecting surface and method of manufacturing semiconductor device
US9250071B2 (en) Measurement apparatus and correction method of the same
US20130194569A1 (en) Substrate inspection method
CN108627512B (en) Three-dimensional inspection device and method for three-dimensional inspection
JP6916877B2 (en) Measurement of bonded wafers
US10317344B2 (en) Speed enhancement of chromatic confocal metrology
TWI665425B (en) An apparatus and method for inspecting a semiconductor package
KR102059139B1 (en) Vision inspection method
US20250027766A1 (en) Apparatus and method for determining three-dimensional shape of object
KR20230157543A (en) Defect inspertor system using 3d measuring machine
TW201608231A (en) Light deflection detection module and measurement and calibration method using the same
US20180301385A1 (en) Target Location in Semiconductor Manufacturing
KR101028335B1 (en) Wire inspection device
CN107209128B (en) Component handler and visual inspection method
TWI885268B (en) System and method for processing semiconductor wafer images
JP2003161604A (en) Height measuring method and device thereof
KR101017382B1 (en) Semiconductor device vision inspection device and semiconductor device vision inspection method using the same
KR20080060396A (en) How to set up an inspection area

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20151231

PG1501 Laying open of application
A201 Request for examination
A302 Request for accelerated examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20190711

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20151231

Comment text: Patent Application

PA0302 Request for accelerated examination

Patent event date: 20190711

Patent event code: PA03022R01D

Comment text: Request for Accelerated Examination

Patent event date: 20151231

Patent event code: PA03021R01I

Comment text: Patent Application

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20190918

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20191218

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20191218

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20230202

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20231025

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20241104

Start annual number: 6

End annual number: 6