[go: up one dir, main page]

KR102048405B1 - Sodium-base battery operated at intermediate temperature and method for preparing the same - Google Patents

Sodium-base battery operated at intermediate temperature and method for preparing the same Download PDF

Info

Publication number
KR102048405B1
KR102048405B1 KR1020190008854A KR20190008854A KR102048405B1 KR 102048405 B1 KR102048405 B1 KR 102048405B1 KR 1020190008854 A KR1020190008854 A KR 1020190008854A KR 20190008854 A KR20190008854 A KR 20190008854A KR 102048405 B1 KR102048405 B1 KR 102048405B1
Authority
KR
South Korea
Prior art keywords
cathode
solid electrolyte
sodium
container
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020190008854A
Other languages
Korean (ko)
Other versions
KR20190010891A (en
Inventor
정기영
박윤철
오상록
이상락
조남웅
김현우
김고운
손소리
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020190008854A priority Critical patent/KR102048405B1/en
Publication of KR20190010891A publication Critical patent/KR20190010891A/en
Application granted granted Critical
Publication of KR102048405B1 publication Critical patent/KR102048405B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • H01M2/08
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/12
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/54

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 나트륨을 수용하는 음극용기; 양극 활물질 및 양극 이차전해질을 수용하는 양극용기; 상기 음극용기 및 상기 양극용기 사이에 위치하고 나트륨 이온을 선택적으로 이동시키는 고체전해질; 및 상기 고체전해질의 가장자리를 따라 형성되며, 상기 고체전해질과 상기 음극용기 및 양극용기 사이에 위치하는 고분자 실링층;을 포함하는 나트륨 이차 전지에 관한 것이다. 본 발명의 나트륨 이차 전지는 고분자 실링층을 이용하여, 고가의 접합공정 및 고가의 접합 설비가 불필요하고 단전지 부품수를 감소시키며, 전지 제조공정을 단순화시킬 수 있다.The present invention is a negative electrode container for receiving sodium; A cathode container accommodating a cathode active material and a cathode secondary electrolyte; A solid electrolyte positioned between the cathode vessel and the anode vessel to selectively move sodium ions; And a polymer sealing layer formed along an edge of the solid electrolyte and positioned between the solid electrolyte and the negative electrode container and the positive electrode container. In the sodium secondary battery of the present invention, an expensive bonding process and an expensive bonding facility are unnecessary by using the polymer sealing layer, the number of unit cell parts is reduced, and the battery manufacturing process can be simplified.

Description

중저온 구동 나트륨 이차 전지 및 그의 제조 방법{SODIUM-BASE BATTERY OPERATED AT INTERMEDIATE TEMPERATURE AND METHOD FOR PREPARING THE SAME}Mid-low temperature driving sodium secondary battery and a manufacturing method therefor {SODIUM-BASE BATTERY OPERATED AT INTERMEDIATE TEMPERATURE AND METHOD FOR PREPARING THE SAME}

본 발명은 중저온 구동 나트륨 전지에 관한 것이다.The present invention relates to a low temperature driving sodium battery.

일반적으로, 고온에서 동작하는 나트륨계 전지(나트륨-황 전지, ZEBRA 전지)는 에너지 밀도 및 충방전 효율이 높고 자가 방전이 없으며, 장기간의 운전에도 성능의 저하가 없는 특성에 의해 저가의 전력 저장용 전지로 개발되고 있다.In general, sodium-based batteries (sodium-sulfur batteries, ZEBRA batteries) operating at high temperatures have high energy density, high charge and discharge efficiency, no self-discharge, and low performance for long-term operation. It is developed as a battery.

고온 나트륨계 전지는 음극 활물질로 나트륨(Na)을, 양극 활물질로 황(S) 또는 금속 할라이드(NiCl2, FeCl2)를 배치하고, 양쪽을 나트륨 이온에 대한 전도성을 가지는 베타-알루미나 세라믹 고체 전해질로 격리하고, 외부는 Al, Ni 또는 Fe계 합금 부재에 의해 밀봉되어, 280~350℃의 온도에서 구동되는 이차전지이다. 그러나, 280~350℃ 구동에서의 장기 밀봉 특성을 부여하기 위해서는 고체전해질 세라믹과 외부 금속 부재의 이종 접합이 필요하고, 이를 위해 세라믹과 금속 부재 사이에 Al계 또는 Mo계 filler를 사용하여 550~1500℃ 사이에서 열 압착하는 Thermal compression bonding법을 사용하고 있다. The high temperature sodium battery is a beta-alumina ceramic solid electrolyte having sodium (Na) as a negative electrode active material and sulfur (S) or metal halide (NiCl 2 , FeCl 2 ) as a positive electrode active material, and both having conductivity to sodium ions. The secondary battery is sealed by an Al, Ni, or Fe-based alloy member and driven at a temperature of 280 to 350 ° C. However, in order to impart long-term sealing characteristics at 280 to 350 ° C., heterogeneous bonding between the solid electrolyte ceramic and the external metal member is required, and for this purpose, 550 to 1500 using Al or Mo fillers between the ceramic and the metal member. Thermal compression bonding is used, which is thermally pressed between ℃.

이러한 공정을 적용하기 위해서는 복잡한 구조를 가진 고가의 장비가 필요하며, 열팽창계수 차이에 의한 열 응력 문제로 인하여 통상 고체전해질의 직경이 작은 원통형으로 제작한다. In order to apply such a process, expensive equipment having a complicated structure is required, and due to thermal stress caused by a difference in thermal expansion coefficient, a solid electrolyte is usually manufactured in a small diameter cylinder.

기존 Na/NiCl2 전지의 구동온도 구간(~300℃)에서 전지를 구동하기 위해서는 활물질 및 산소등의 분위기와의 반응을 억제하기 위해 10-3~10- 10mbar·L/sec의 기밀성이 요구되며, 기존의 제조업체들은 TCB(Thermal compression bonding), 유리밀봉(glass sealing), 전자빔 용접(electron beam welding), 레이져 용접(laser welding) 등 고온, 고압, 고진공이 요구되는 고가의 접합방법을 이용하여 단전지를 제조하고 있다. The confidentiality of 10 mbar · L / sec required-existing Na / NiCl 10 -3 ~ 10 in order to drive the cell at a drive temperature range (~ 300 ℃) of the second cell in order to suppress the reaction between the active material and the atmosphere, such as oxygen Existing manufacturers use expensive joining methods that require high temperature, high pressure, and high vacuum, such as thermal compression bonding (TCB), glass sealing, electron beam welding, and laser welding. It manufactures a unit cell.

이에, 본 발명은 200℃ 이하 중저온에서 구동되며, 고분자 소재를 활용한 금속-금속, 세라믹-세라믹, 세라믹-금속 간을 접합함으로써 부품수가 대폭 축소되며, 전지 제조공정이 대폭 단순화된 나트륨 전지의 설계 및 제조를 목적으로 한다.Accordingly, the present invention is operated at a low or medium temperature below 200 ℃, by greatly bonding the metal-metal, ceramic-ceramic, ceramic-metal using a polymer material, the number of parts is greatly reduced, the battery manufacturing process of the sodium battery greatly simplified For design and manufacture purposes.

본 발명의 일 측면에 따르면, 나트륨을 수용하는 음극용기; 양극활물질 및 양극 이차전해질(catholyte)을 수용하는 양극용기; 상기 음극용기 및 상기 양극용기 사이에 위치하고 나트륨 이온을 선택적으로 이동시키는 고체전해질; 및 상기 고체전해질의 가장자리를 따라 형성되며, 상기 고체전해질과 상기 음극용기 및 양극용기 사이에 위치하는 고분자 실링층;을 포함하는 나트륨 이차 전지가 제공된다.According to an aspect of the invention, the negative electrode container for receiving sodium; A cathode container accommodating a cathode active material and a cathode secondary electrolyte; A solid electrolyte positioned between the cathode vessel and the anode vessel to selectively move sodium ions; And a polymer sealing layer formed along an edge of the solid electrolyte and positioned between the solid electrolyte and the negative electrode container and the positive electrode container.

상기 고분자 실링층은 폴리에틸렌(polyethylene), 고분자량 폴리에틸렌(high molecular polyethylene), 폴리이미드(polyimide), 열가소성 폴리이미드(thermoplastic polyimide), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 폴리테트라플루오로에틸렌(polytetrafluoroethylene), 퍼플루오로알콕시알케인(perfluoroalkoxy alkane), 폴리에테르에테르케톤(polyetheretherKetone) 및 플루오르화에틸렌프로필렌(fluorinated ethylene propylene) 중에서 선택된 1종 이상을 포함할 수 있다.The polymer sealing layer is polyethylene, high molecular polyethylene, high molecular polyethylene, polyimide, thermoplastic polyimide, polyvinylidene fluoride, polytetrafluoroethylene ), Perfluoroalkoxy alkane, polyetheretherketone, and one or more selected from fluorinated ethylene propylene.

상기 고체전해질은 베타-알루미나, NaSiCon 중에서 선택된 1종 이상을 포함할 수 있다. The solid electrolyte may include at least one selected from beta-alumina and NaSiCon.

상기 고체전해질의 두께는 100um 내지 3mm일 수 있다.The thickness of the solid electrolyte may be 100um to 3mm.

상기 양극 활물질은 Ni, Fe Cu 및 Zn 중에서 선택된 1종 이상, Al, NaI, NaF, S 및 FeS 중에서 선택된 1종 이상 및 NaCl을 포함할 수 있다. The cathode active material may include at least one selected from Ni, Fe Cu, and Zn, at least one selected from Al, NaI, NaF, S, and FeS, and NaCl.

상기 양극 이차전해질은 NaAlCl4, NaAlCl4-NaAlBr4, NaAlCl4-LiCl 및 NaAlCl4-LiBr 중에서 선택된 1종 이상을 포함할 수 있다. The cathode secondary electrolyte may include at least one selected from NaAlCl 4 , NaAlCl 4 -NaAlBr 4 , NaAlCl 4 -LiCl, and NaAlCl 4 -LiBr.

상기 나트륨 이차전지의 구동 온도는 95내지 250℃일 수 있다. The driving temperature of the sodium secondary battery may be 95 to 250 ° C.

본 발명의 다른 하나의 측면에 따르면, 나트륨을 수용하는 음극용기; 양극 활물질 및 양극 이차전해질을 수용하는 양극용기; 상기 음극용기 및 상기 양극용기 사이에 위치하고 나트륨 이온을 선택적으로 이동시키는 고체전해질; 및 상기 고체전해질의 가장자리를 따라 형성되며, 상기 고체전해질과 상기 음극용기 및 양극용기 사이에 위치하는 고분자 실링층; 을 포함하며 상기 상기 고분자 실링층은 열압착 공정으로 실링되는 것인, 나트륨 이차 전지의 제조 방법이 제공된다.According to another aspect of the invention, the cathode container containing sodium; A cathode container accommodating a cathode active material and a cathode secondary electrolyte; A solid electrolyte positioned between the cathode vessel and the anode vessel to selectively move sodium ions; And a polymer sealing layer formed along an edge of the solid electrolyte and positioned between the solid electrolyte and the negative electrode container and the positive electrode container. It includes and the polymer sealing layer is to be sealed by a thermocompression process, there is provided a method for producing a sodium secondary battery.

상기 열압착은 100 내지 400℃에서 수행될 수 있다.The thermocompression may be performed at 100 to 400 ° C.

본 발명의 나트륨 이차 전지는, 고분자 실링층을 이용하여, 고가의 접합 공정 및 고가의 접합 설비가 불필요하고 단전지 부품수를 감소시키며, 전지 제조공정을 단순화 시킬 수 있다.In the sodium secondary battery of the present invention, an expensive bonding process and an expensive bonding facility are unnecessary by using the polymer sealing layer, the number of unit cell parts can be reduced, and the battery manufacturing process can be simplified.

또한, 본 발명의 나트륨 이차 전지는 구동 온도가 낮춰짐에 따라 양극재의 열화 속도가 크게 감소할 수 있다. In addition, in the sodium secondary battery of the present invention, as the driving temperature is lowered, the deterioration rate of the cathode material may be greatly reduced.

도 1은 본 발명의 나트륨 이차 전지의 개념을 개략적으로 나타낸 개략도이다.
도 2는 본 발명의 실시예 1에 따른 나트륨 이차 전지의 충방전 시험 결과를 나타낸 것이다.
1 is a schematic diagram schematically showing a concept of a sodium secondary battery of the present invention.
Figure 2 shows the charge and discharge test results of the sodium secondary battery according to Example 1 of the present invention.

이하, 다양한 실시예를 참조하여 본 발명의 바람직한 실시 형태를 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described with reference to various examples. However, embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below.

이하 본 발명의 나트륨 이차 전지에 대해 상세히 설명하도록 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.Hereinafter, the sodium secondary battery of the present invention will be described in detail. However, this is presented as an example, by which the present invention is not limited and the present invention is defined only by the scope of the claims to be described later.

본 발명의 나트륨 이차 전지(7)는 도 1에 나타낸 바와 같이, 음극용기(1), 양극용기(2) 및 고체 전해질(3)을 포함한다. 상기 음극 용기(1)과 양극 용기(2)는 상기 고체 전해질(3)을 사이에 두고 나트륨 전지의 외측에 배치되어 외형을 이루며, 내용물을 내부에 수용한다.As shown in FIG. 1, the sodium secondary battery 7 of the present invention includes a negative electrode container 1, a positive electrode container 2, and a solid electrolyte 3. The negative electrode container 1 and the positive electrode container 2 are disposed outside the sodium battery with the solid electrolyte 3 interposed therebetween to form an appearance, and accommodate the contents therein.

상기 음극용기(1)는 내부에 나트륨을 수용하며, 알루미늄, 스테인리스 스틸 등의 금속 소재로 이루어질 수 있다. 상기 음극용기(1)의 표면에는 크롬, 몰리브덴 등을 주성분으로 하는 내식층이 코팅될 수 있다. 상기 음극용기(1)는 음극의 외부 단자의 역할도 수행한다.The cathode container 1 accommodates sodium therein and may be made of a metal material such as aluminum or stainless steel. The surface of the cathode container 1 may be coated with a corrosion resistant layer containing chromium, molybdenum and the like as a main component. The negative electrode container 1 also serves as an external terminal of the negative electrode.

상기 양극용기(2)는 내부에 양극활물질 및 양극 이차전해질을 수용하며, 상기 고체 전해질의 일측에 형성되어 상기 음극용기와 마주한다. 상기 양극용기(2)는 상기 음극용기(1)과 마찬가지로 알루미늄, 스테인리스 스틸 등의 금속 소재로 이루어질 수 있으며, 또한 그 표면에도 음극용기(1)와 동일하게 크롬, 몰리브덴 등을 주성분으로 하는 내식층이 코팅될 수 있다. 또한, 상기 양극용기(2)는 양극의 외부 단자의 역할도 수행한다.The cathode container 2 accommodates a cathode active material and a cathode secondary electrolyte therein and is formed on one side of the solid electrolyte to face the cathode container. Like the cathode container 1, the cathode container 2 may be made of a metal material, such as aluminum or stainless steel, and a corrosion resistant layer mainly composed of chromium, molybdenum, etc. on the surface thereof, similarly to the cathode container 1 This can be coated. In addition, the positive electrode container 2 also serves as an external terminal of the positive electrode.

상기 양극용기에 수용되는 양극 활물질은 Ni, Fe Cu 및 Zn 중에서 선택된 1종 이상, Al, NaI, NaF, S 및 FeS 중에서 선택된 1종 이상 및 NaCl을 포함할 수 있다. The cathode active material accommodated in the cathode container may include at least one selected from Ni, Fe Cu, and Zn, at least one selected from Al, NaI, NaF, S, and FeS, and NaCl.

또한, 상기 양극용기에 양극활물질과 함께 수용되는 상기 양극 이차전해질은 NaAlCl4, NaAlCl4-NaAlBr4, NaAlCl4-LiCl 및 NaAlCl4-LiBr등이 가능하며 바람직하게는 NaAlCl4일 수 있다.In addition, the cathode secondary electrolyte accommodated with the cathode active material in the cathode container may be NaAlCl 4 , NaAlCl 4 -NaAlBr 4 , NaAlCl 4 -LiCl and NaAlCl 4 -LiBr, and preferably NaAlCl 4 .

본 발명에 따른 나트륨 이차 전지는 충전상태 기준으로 음극 활물질로서 액상 나트륨 (Na), 양극 활물질로서 NiCl2를 사용한다. 전지 조립시 방전상태로 조립되기 때문에 양극재로서는 니켈(Ni)과 소금(NaCl) 분말을 사용하며, 양극부 이차전해질(또는 액체전해질)로서 NaAlCl4(sodium alumino tetra-chloride)를 사용하며, 충전에 따라 NaCl과 NaAlCl4에 함유된 나트륨 이온(Na+)이 음극부로 이동하여 환원되면 Na(l)을 형성함과 동시에, 양극부에는 활성도가 높아진 Cl-가 Ni 분말과 반응하여 NiCl2를 형성시킨다.The sodium secondary battery according to the present invention uses liquid sodium (Na) as a negative electrode active material and NiCl 2 as a positive electrode active material as a state of charge. Since the batteries are assembled in a discharged state, nickel (Ni) and salt (NaCl) powders are used as the cathode material, and NaAlCl 4 (sodium alumino tetra-chloride) is used as the anode secondary electrolyte (or liquid electrolyte). As the sodium ions (Na + ) contained in NaCl and NaAlCl 4 move to the cathode part and are reduced, Na (l) is formed, and Cl −, which has high activity, reacts with Ni powder to form NiCl 2 at the anode part. Let's do it.

이때, 고체 전해질(3)은 상기 음극용기(1)와 양극용기(2) 사이에서 서로 맞닿아 상기 액상 나트륨과 양극활물질 및 양극 이차전해질을 분리하는데, 상기 고체 전해질(3)은 음극활물질과 양극활물질 양극재 나트륨 이온만을 선택적으로 투과시키며, 양극용기(1)와 음극용기(2)간을 절연시킨다. At this time, the solid electrolyte 3 is in contact with each other between the negative electrode container 1 and the positive electrode container 2 to separate the liquid sodium, the positive electrode active material and the positive electrode secondary electrolyte, the solid electrolyte 3 is the negative electrode active material and the positive electrode Only the active material positive electrode material sodium ions are selectively transmitted, and the positive electrode container 1 and the negative electrode container 2 are insulated from each other.

상기 고체 전해질은 반드시 이에 한정하는 것은 아니며, 나트륨 이차전지에서 적용될 수 있는 것이라면 본 발명에서도 적합하게 사용될 수 있다. 예를들면, 상기 고체 전해질은 분리판으로서, 베타-알루미나(BASE, β/β”-Al2O3, beta-alumina solid electrolyte)), NaSiCon 등이 가능하며 바람직하게는 베타-알루미나일 수 있다.The solid electrolyte is not necessarily limited thereto, and may be suitably used in the present invention as long as it can be applied in a sodium secondary battery. For example, the solid electrolyte may be beta-alumina (BASE, β / β ”-Al 2 O 3 , beta-alumina solid electrolyte), NaSiCon, or the like, and preferably beta-alumina. .

전지 성능을 극대화하기 위해서는 고체전해질의 Na 이온 전도도를 높게 유지하는 것이 유리하며, 이를 위해서는 고체 전해질의 두께가 얇아질수록, 그리고 전지의 구동 온도가 높아질수록 고체전해질의 면적저항은 낮아져 바람직하다. 따라서, 본 발명에서는 특별히 한정하지 않으나, 고체 전해질의 두께는 약 100um 내지 2mm 의 범위일 수 있다. In order to maximize battery performance, it is advantageous to maintain high Na ion conductivity of the solid electrolyte. For this purpose, the thinner the solid electrolyte and the higher the driving temperature of the battery, the lower the area resistance of the solid electrolyte. Therefore, the present invention is not particularly limited, but the thickness of the solid electrolyte may range from about 100 μm to 2 mm.

상기 음극용기(1)에 수용된 액체 나트륨이나 양극용기(2)에 수용된 양극 이차전해질이 누액되면 전지의 안전성을 저해하게 된다. 이에, 상기 고체전해질(3)과 음극용기(1) 및 양극용기(2)는 실링층에 의해 밀봉하여 각 용기로부터의 누액을 방지하고 있다. When liquid sodium contained in the negative electrode container 1 or positive electrode secondary electrolyte contained in the positive electrode container 2 leaks, the safety of the battery is impaired. Thus, the solid electrolyte 3, the negative electrode container 1, and the positive electrode container 2 are sealed by a sealing layer to prevent leakage from each container.

종래에는 이러한 금속-세라믹 접합부의 누액 방지를 위하여 알루미늄 등의 삽입 금속재를 이용한 열압착 접착법을 이용하여 밀봉하였다. 그러나 나트륨 전지의 장기 밀봉 특성을 부여하기 위해서는 고체전해질 세라믹과 외부 금속 부재의 이종 접합이 필요하고, 이를 위해 세라믹과 금속 부재 사이에 Al계 또는 Mo계 필러(filler)를 사용하여 550~1500℃ 사이의 고온 열압착 공정이 요구되는 등의 문제가 있다.Conventionally, in order to prevent leakage of such metal-ceramic joints, sealing is performed using a thermocompression bonding method using an insert metal material such as aluminum. However, in order to impart long-term sealing characteristics of sodium batteries, heterojunction between the solid electrolyte ceramic and the external metal member is required, and for this purpose, an Al or Mo filler is used between the ceramic and the metal member to 550 to 1500 ° C. There is a problem that a high temperature thermocompression bonding step is required.

이에, 본 발명은 상기 실링층으로서, 고분자 재질의 실링층(4)을 사용한다. 본 발명에서 제안하는 바와 같이 고분자 실링층(4)을 이용하는 경우에는 고가의 열압착 공정 없이 저가이고 단순한 제조공정 설계가 가능하며, 구동온도를 저가의 접합공정이 적용 가능한 온도로 낮출 수 있다. 또한, 200℃ 이하에서도 구동 가능하다. Accordingly, the present invention uses a sealing layer 4 made of a polymer material as the sealing layer. In the case of using the polymer sealing layer 4 as proposed in the present invention, it is possible to design a low-cost and simple manufacturing process without an expensive thermocompression process, and to lower the driving temperature to a temperature at which a low-cost bonding process is applicable. Moreover, it can drive even 200 degrees C or less.

상기 고분자 실링층은 내열성이 우수하여 구동온도에서 사용 가능한 고분자소재라면 적합하게 사용할 수 있는것으로서, 예를 들면, 폴리에틸렌(polyethylene), 고분자량 폴리에틸렌(high molecular polyethylene), 폴리이미드(polyimide), 열가소성 폴리이미드(thermoplastic polyimide), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 폴리테트라플루오로에틸렌(polytetrafluoroethylene), 퍼플루오로알콕시알케인(perfluoroalkoxy alkane), 폴리에테르에테르케톤(polyetheretherKetone) 및 플루오르화에틸렌프로필렌(fluorinated ethylene propylene)등이 가능하며, 바람직하게는 고분자량 폴리에틸렌 일 수 있다.The polymer sealing layer may be suitably used as long as the polymer material has excellent heat resistance and can be used at a driving temperature. For example, polyethylene, high molecular polyethylene, polyimide, and thermoplastic poly Thermoplastic polyimide, polyvinylidene fluoride, polytetrafluoroethylene, perfluoroalkoxy alkane, polyetheretherketone and fluorinated ethylene propylene ethylene propylene) and the like, preferably high molecular weight polyethylene.

고온용 고분자가 지속 사용 가능한 온도는 통상 220℃이나, 그 이상의 온도에서 지속 사용 가능한 소재가 있다면 더 높은 온도에서도 본 발명이 적용 가능하다.The temperature at which the polymer for high temperature can be used continuously is usually 220 ° C., but if there is a material that can be used continuously at a higher temperature, the present invention can be applied even at a higher temperature.

상기 나트륨 이차전지의 구동 온도는 사용되는 실링층의 재질에 따라 조절 가능한 것으로서, 예를 들면, 95 내지 250℃일 수 있으며, 바람직하게는 160 내지 210℃일 수 있다.The driving temperature of the sodium secondary battery is adjustable according to the material of the sealing layer used, for example, may be 95 to 250 ℃, preferably 160 to 210 ℃.

나트륨 이차 전지의 구동온도를 낮춤으로써 기존 TCB (Thermal compression bonding), 유리밀봉 (glass sealing), 전자빔 용접 (electron beam welding), 레이져 용접 (laser welding) 등 고온, 고압, 고진공이 요구되는 고가의 접합방법을 고분자 접합 등 저가의 단순 접합방법으로 대체가 가능하다.By lowering the operating temperature of sodium secondary batteries, expensive joints requiring high temperature, high pressure, and high vacuum such as TCB (thermal compression bonding), glass sealing, electron beam welding, and laser welding are required. The method can be replaced by a simple low-cost bonding method such as polymer bonding.

상기 고분자 실링층은 대기 중에서 실시되는 열압착 공정으로 형성할 수 있다.The polymer sealing layer may be formed by a thermocompression process performed in the air.

상기 고분자 실링층은 특별히 한정하지 않으나, 열압착 공정으로 인접한 부품 간을 접합하여 나트륨 이차 전지를 실링하는 것이 비용이 저렴하고 공정이 용이한 장점이 있으므로, 바람직하다.Although the polymer sealing layer is not particularly limited, sealing the sodium secondary battery by joining adjacent parts by a thermocompression process is preferable because it is inexpensive and easy to process.

상기 열압착은 사용되는 실링층의 재질에 따라 다르지만, 예를 들면, 100 내지 400℃ 에서 수행될 수 있으며, 바람직하게는 200 내지 350℃에서 수행될 수 있다.The thermal compression may vary depending on the material of the sealing layer used, for example, it may be carried out at 100 to 400 ℃, preferably at 200 to 350 ℃.

본 발명을 평판형 설계를 적용할 경우, 필요 부품을 차례로 적층한 후 1회의 가열-상하 방향 가압공정을 통해 셀이 완성될 수 있다. 동일한 개념이 튜브형 등 다른 형상을 가진 셀 설계에도 적용될 수 있음은 물론이다.When the present invention is applied to a flat design, the cells can be completed through one heating-up and down pressing process after laminating necessary parts one by one. Of course, the same concept can be applied to cell designs having other shapes such as tubular shapes.

[[ 실시예Example ] ]

이하, 본 발명을 실시예를 들어 보다 구체적으로 설명한다. 이하의 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 이에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, an Example is given and this invention is demonstrated more concretely. The following examples are intended to illustrate the present invention in more detail, and the present invention is not limited thereto.

실시예Example 1 One

양극부에는 니켈 분말과 소금(NaCl)을 중량비로 1.2:1~2:1로 혼합하고, Al, NaI, NaF, S 및 FeSx 등의 첨가물을 0.5~3wt%로 첨가하여 혼합하였다. 이에 의해 얻어진 혼합물을 압착 및 분쇄를 통하여 평균 직경 400㎛ ~ 1.5mm 범위의 조대 입자(granule)화하여 양극 활물질을 얻었다. Nickel powder and salt (NaCl) were mixed in the positive portion at a weight ratio of 1.2: 1 to 2: 1, and additives such as Al, NaI, NaF, S, and FeS x were added at 0.5 to 3 wt% and mixed. Thus obtained mixture was compressed and pulverized into coarse particles (granule) having an average diameter in the range of 400 μm to 1.5 mm to obtain a positive electrode active material.

이어서, 상기 양극활물질 및 99% 이상의 고순도 NaCl과 AlCl3 무수화물을 1:1 비율로 혼합한 후 소량의 알루미늄을 첨가하고, 불활성 분위기에서 300까지 승온하여 NaAlCl4 양극 전해질을 제조하여 양극 용기 내부에 장입하였다.Subsequently, the positive electrode active material, 99% or more of high purity NaCl, and AlCl 3 anhydride are mixed at a 1: 1 ratio, and then a small amount of aluminum is added, and the temperature is raised to 300 in an inert atmosphere to prepare a NaAlCl 4 cathode electrolyte. Charged.

음극부에는 음극 활물질로 나트륨을 사용하고, 상기 나트륨이 베타-알루미나 고체전해질 계면에 잘 웨팅(wetting)될 수 있게 하기 위해 금속 wick이 고체전해질과 접촉되도록 삽입하였다. 음극부의 금속 wick은 전자가 음극 용기를 통하여 고체전해질의 계면까지 잘 흐를 수 있도록 스폿(spot) 용접하였다.In the negative electrode portion, sodium was used as the negative electrode active material, and the metal wick was inserted in contact with the solid electrolyte so that the sodium could be well wetted at the beta-alumina solid electrolyte interface. The metal wick of the cathode portion was spot welded so that electrons could flow well through the cathode vessel to the interface of the solid electrolyte.

상기 양극 용기와 음극 용기는 Fe계열의 금속판을 형상 가공하여 사용하였고, 상기 양극 용기 및 음극 용기 사이에 베타-알루미나 고체 전해질을 위치시켰다.The positive electrode container and the negative electrode container were formed by processing a Fe-based metal plate, and a beta-alumina solid electrolyte was placed between the positive electrode container and the negative electrode container.

고분자 실링층으로 high molecular PE를 사용하였으며, 200℃에서 열 가압으로 밀봉하여 전지를 제조하였다.A high molecular PE was used as the polymer sealing layer, and a battery was manufactured by sealing with thermal pressure at 200 ° C.

[[ 시험예Test Example ]]

시험예Test Example 1: 나트륨 이차 전지의 장기  1: long term of sodium secondary battery 싸이클Cycle 특성 characteristic

도 2는 본 발명의 실시예 1에 따른 나트륨 이차 전지의 충방전 시험 결과를 나타낸 것으로 (a)는 방전 시, (b)는 충전 시를 나타낸 것이다. Figure 2 shows the charge and discharge test results of the sodium secondary battery according to Example 1 of the present invention (a) is a discharge, (b) is a charging time.

구체적으로, 방전 전류 밀도는 4.35mA/cm2과 8.7mA/cm2으로 구동하였으며, cut-off 전압은 2.0V로 설정하였다. 충전 전류 밀도는 4.35mA/cm2으로 설정하였으며, cut-off 전압은 2.77V로 설정하였다.Specifically, the discharge current density was driven at 4.35mA / cm 2 and 8.7mA / cm 2 , and the cut-off voltage was set at 2.0V. The charge current density was set to 4.35 mA / cm 2 and the cut-off voltage was set to 2.77 V.

Claims (9)

나트륨을 수용하는 음극용기;
양극 활물질 및 양극 이차전해질을 수용하는 양극용기;
상기 음극용기 및 상기 양극용기 사이에 위치하고 나트륨 이온을 선택적으로 이동시키는 고체전해질; 및
상기 고체전해질의 가장자리를 따라 형성되며, 상기 고체전해질과 상기 음극용기 및 양극용기 사이에 위치하는 고분자 실링층;
을 포함하고,
상기 고분자 실링층은 100 내지 400℃에서 열압착에 의해 형성되고,
상기 고체전해질과 음극용기 및 양극용기는 고분자 실링층에 의해 접합된 것인,
나트륨 이차 전지.
A cathode container containing sodium;
A cathode container accommodating a cathode active material and a cathode secondary electrolyte;
A solid electrolyte positioned between the cathode vessel and the anode vessel to selectively move sodium ions; And
A polymer sealing layer formed along an edge of the solid electrolyte and positioned between the solid electrolyte and the negative electrode container and the positive electrode container;
Including,
The polymer sealing layer is formed by thermocompression at 100 to 400 ° C,
The solid electrolyte and the negative electrode container and the positive electrode container are bonded by a polymer sealing layer,
Sodium secondary battery.
제1항에 있어서,
상기 고분자 실링층이 폴리에틸렌(polyethylene), 고분자량 폴리에틸렌(high molecular polyethylene), 폴리이미드(polyimide), 열가소성 폴리이미드(thermoplastic polyimide), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 폴리테트라플루오로에틸렌(polytetrafluoroethylene), 퍼플루오로알콕시알케인(perfluoroalkoxy alkane), 폴리에테르에테르케톤(polyetheretherKetone) 및 플루오르화에틸렌프로필렌(fluorinated ethylene propylene) 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 나트륨 이차 전지.
The method of claim 1,
The polymer sealing layer is polyethylene, high molecular polyethylene, polyimide, thermoplastic polyimide, polyvinylidene fluoride, polytetrafluoroethylene Sodium secondary battery comprising at least one selected from perfluoroalkoxy alkane, polyetheretherketone and fluorinated ethylene propylene.
제1항에 있어서,
상기 고체전해질이 베타-알루미나, NaSiCon 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 나트륨 이차 전지.
The method of claim 1,
Sodium secondary battery, characterized in that the solid electrolyte comprises at least one selected from beta-alumina, NaSiCon.
제1항에 있어서,
상기 고체전해질의 두께가 100um 내지 3mm인 것을 특징으로 하는 나트륨 이차 전지.
The method of claim 1,
Sodium secondary battery, characterized in that the thickness of the solid electrolyte is 100um to 3mm.
제1항에 있어서,
상기 양극 활물질이 Ni, Fe Cu 및 Zn 중에서 선택된 1종 이상, Al, NaI, NaF, S 및 FeS 중에서 선택된 1종 이상 및 NaCl을 포함하는 것을 특징으로 하는 나트륨 이차 전지.
The method of claim 1,
Sodium secondary battery characterized in that the positive electrode active material comprises at least one selected from Ni, Fe Cu and Zn, at least one selected from Al, NaI, NaF, S and FeS and NaCl.
제1항에 있어서,
상기 양극 이차전해질이 NaAlCl4, NaAlCl4-NaAlBr4, NaAlCl4-LiCl 및 NaAlCl4-LiBr 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 나트륨 이차 전지.
The method of claim 1,
Sodium secondary battery characterized in that the positive electrode comprises at least one selected from NaAlCl 4 , NaAlCl 4 -NaAlBr 4 , NaAlCl 4 -LiCl and NaAlCl 4 -LiBr.
제1항에 있어서,
상기 나트륨 이차전지의 구동 온도가 95 내지 250℃인 것을 특징으로 하는 나트륨 이차전지.
The method of claim 1,
Sodium secondary battery, characterized in that the drive temperature of the sodium secondary battery is 95 to 250 ℃.
나트륨을 수용하는 음극용기;
양극 활물질 및 양극 이차전해질을 수용하는 양극용기;
상기 음극용기 및 상기 양극용기 사이에 위치하고 나트륨 이온을 선택적으로 이동시키는 고체전해질; 및
상기 고체전해질의 가장자리를 따라 형성되며, 상기 고체전해질과 상기 음극용기 및 양극용기 사이에 위치하는 고분자 실링층; 을 포함하며,
상기 고분자 실링층은 100 내지 400℃에서 열압착에 의해 형성되고,
상기 고체전해질과 음극용기 및 양극용기는 고분자 실링층에 의해 접합된 것인, 나트륨 이차 전지의 제조 방법.
A cathode container containing sodium;
A cathode container accommodating a cathode active material and a cathode secondary electrolyte;
A solid electrolyte positioned between the cathode vessel and the anode vessel to selectively move sodium ions; And
A polymer sealing layer formed along an edge of the solid electrolyte and positioned between the solid electrolyte and the negative electrode container and the positive electrode container; Including;
The polymer sealing layer is formed by thermocompression at 100 to 400 ° C,
The solid electrolyte, the negative electrode container and the positive electrode container is bonded by a polymer sealing layer, the method of manufacturing a sodium secondary battery.
삭제delete
KR1020190008854A 2019-01-23 2019-01-23 Sodium-base battery operated at intermediate temperature and method for preparing the same Active KR102048405B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190008854A KR102048405B1 (en) 2019-01-23 2019-01-23 Sodium-base battery operated at intermediate temperature and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190008854A KR102048405B1 (en) 2019-01-23 2019-01-23 Sodium-base battery operated at intermediate temperature and method for preparing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020160156569A Division KR20180057997A (en) 2016-11-23 2016-11-23 Sodium-base battery operated at intermediate temperature and method for preparing the same

Publications (2)

Publication Number Publication Date
KR20190010891A KR20190010891A (en) 2019-01-31
KR102048405B1 true KR102048405B1 (en) 2019-11-25

Family

ID=65323398

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190008854A Active KR102048405B1 (en) 2019-01-23 2019-01-23 Sodium-base battery operated at intermediate temperature and method for preparing the same

Country Status (1)

Country Link
KR (1) KR102048405B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160056424A1 (en) * 2014-08-20 2016-02-25 Battelle Memorial Institute Compliant polymer seals for sodium beta energy storage devices and process for sealing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102326627B1 (en) * 2014-09-04 2021-11-16 에스케이이노베이션 주식회사 Na based Secondary Battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160056424A1 (en) * 2014-08-20 2016-02-25 Battelle Memorial Institute Compliant polymer seals for sodium beta energy storage devices and process for sealing same

Also Published As

Publication number Publication date
KR20190010891A (en) 2019-01-31

Similar Documents

Publication Publication Date Title
US8334053B2 (en) Seal structure and associated method
US8034457B2 (en) Seal structure and associated method
US3666560A (en) Electrochemical power-producing cell
US20090011331A1 (en) Seal ring and associated method
JP2002025515A (en) Glass-to-metal seal under unmatched pressure
GB2083686A (en) Electrochemical storage cell
US4419418A (en) Individual rechargeable electric cell
KR102048405B1 (en) Sodium-base battery operated at intermediate temperature and method for preparing the same
WO2012031346A1 (en) Bi-polar electrochemical cell
US3201278A (en) Hermetically sealed fused-electrolyte cell
US4590136A (en) Electrochemical storage cell of the alkali metal and chalcogen type
AU2016430237B2 (en) Medium-low heat driven sodium-based secondary battery and manufacturing method therefor
US9806380B2 (en) High temperature electrochemical cell structures, and methods for making
KR101978954B1 (en) Planar type sodium-metal chloride battery
KR101937806B1 (en) Sodium-base secondary battery operated at intermediate temperature and methdod for preparing the same
US20220231329A1 (en) Coin-type all-solid-state battery and method of manufacturing the same
KR20180057997A (en) Sodium-base battery operated at intermediate temperature and method for preparing the same
KR20230045566A (en) Pouch type secondary battery and sealing device for the same and sealing method for the same
US20140295237A1 (en) Electrochemical cells useful for energy storage devices
KR100593859B1 (en) Anode Tab Attachment for Secondary Battery and Secondary Battery Manufactured Using Same
JP2006032129A (en) Lithium battery
US20240106044A1 (en) Pouch Type Secondary Battery, and Device and Method for Sealing the Same
KR101550353B1 (en) Method of manufacturing solid electrolyte litium ion transmitting membrane and litium-air battery including the same
KR20240094377A (en) Climping method for flat-type sodium-based battery
JPS6366862A (en) Sodium-sulfur battery

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
PA0107 Divisional application

Comment text: Divisional Application of Patent

Patent event date: 20190123

Patent event code: PA01071R01D

Filing date: 20161123

Application number text: 1020160156569

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20190327

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20190918

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20191119

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20191120

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20221026

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20231026

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20241024

Start annual number: 6

End annual number: 6