[go: up one dir, main page]

KR102029256B1 - Polymerizable composition for plastic lens - Google Patents

Polymerizable composition for plastic lens Download PDF

Info

Publication number
KR102029256B1
KR102029256B1 KR1020170126227A KR20170126227A KR102029256B1 KR 102029256 B1 KR102029256 B1 KR 102029256B1 KR 1020170126227 A KR1020170126227 A KR 1020170126227A KR 20170126227 A KR20170126227 A KR 20170126227A KR 102029256 B1 KR102029256 B1 KR 102029256B1
Authority
KR
South Korea
Prior art keywords
compound
molecular weight
polyisocyanate compound
lens
polythiol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020170126227A
Other languages
Korean (ko)
Other versions
KR20190036837A (en
Inventor
신정환
명정환
한혁희
심종민
Original Assignee
에스케이씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨 주식회사 filed Critical 에스케이씨 주식회사
Priority to KR1020170126227A priority Critical patent/KR102029256B1/en
Publication of KR20190036837A publication Critical patent/KR20190036837A/en
Application granted granted Critical
Publication of KR102029256B1 publication Critical patent/KR102029256B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3876Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing mercapto groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/775Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur sulfur
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

실시예는 플라스틱 렌즈용 중합성 조성물에 관한 것으로, 실시예에 따른 플라스틱 렌즈용 중합성 조성물은 조성물 내 황 함량을 최적화하여 보다 우수한 굴절률을 달성할 수 있고, 폴리티올 화합물과 폴리이소시아네이트 화합물의 관능기 수와 가교점 사이의 분자량을 조절하여 기계적 물성, 내충격성, 내열성 등을 우수하게 유지할 수 있으므로, 안경렌즈, 카메라 렌즈 등 각종 플라스틱 광학렌즈의 제조에 유용하게 사용될 수 있다.The embodiment relates to a polymerizable composition for a plastic lens, and the polymerizable composition for a plastic lens according to the embodiment can achieve better refractive index by optimizing the sulfur content in the composition, and the number of functional groups of the polythiol compound and the polyisocyanate compound. By controlling the molecular weight between and the crosslinking point it can maintain excellent mechanical properties, impact resistance, heat resistance and the like, it can be usefully used in the production of various plastic optical lenses such as spectacle lenses, camera lenses.

Description

플라스틱 렌즈용 중합성 조성물{POLYMERIZABLE COMPOSITION FOR PLASTIC LENS}Polymerizable composition for plastic lenses {POLYMERIZABLE COMPOSITION FOR PLASTIC LENS}

실시예는 플라스틱 렌즈용 중합성 조성물 및 이로부터 얻은 폴리티오우레탄계 플라스틱 렌즈에 관한 것이다. The embodiment relates to a polymerizable composition for plastic lenses and a polythiourethane-based plastic lens obtained therefrom.

플라스틱 광학 재료는 유리와 같은 무기 재료로 이루어지는 광학 재료에 비해 경량이면서 쉽게 깨지지 않으며 염색성이 우수하기 때문에, 다양한 수지의 플라스틱 재료들이 안경 렌즈, 카메라 렌즈 등의 광학 재료로 널리 이용되고 있다.Since the plastic optical material is lighter than the optical material made of an inorganic material such as glass and is not easily broken and has excellent dyeability, plastic materials of various resins are widely used as optical materials such as spectacle lenses and camera lenses.

폴리티오우레탄계 화합물은 다른 플라스틱계 소재들에 비해 굴절률이 높고, 원하는 굴절률에 맞추어 설계가 가능하므로 광학 재료의 원료로서 많이 사용되는 소재이다. 그러나, 상기 폴리티오우레탄계 화합물은 굴절률을 과도하게 높이면 광학 렌즈로서 가져야하는 기타 물성들, 예컨대, 내충격성, 강도 등의 기계적 물성, 내열성 등이 저하되는 단점이 있다. 따라서, 플라스틱 렌즈의 원료로 사용되는 폴리티오우레탄계 화합물은 굴절률과 동시에 기계적 물성 및 내열성을 만족하는 것이 중요하다. Polythiourethane-based compounds have a higher refractive index than other plastic-based materials, and can be designed according to the desired refractive index, and thus are widely used as raw materials for optical materials. However, the polythiourethane-based compound has a disadvantage in that when the refractive index is excessively increased, other physical properties, such as impact resistance, strength, mechanical properties, heat resistance, and the like, which should be present as an optical lens, are lowered. Therefore, it is important that the polythiourethane-based compound used as a raw material of the plastic lens satisfies the mechanical properties and the heat resistance at the same time as the refractive index.

폴리티오우레탄계 화합물로부터 제조된 렌즈의 물성, 예컨대, 굴절률, 내열성, 기계적 강도, 내충격성 등을 결정하는 가장 중요한 요인으로는 황(S) 함량, 가교밀도 등을 꼽을 수 있다. 구체적으로, 폴리티오우레탄계 화합물은 폴리티올 화합물과 폴리이소시아네이트 화합물을 포함하는 중합성 조성물을 몰드 중에 주입하여 가열 경화시키는 주형 중합에 의해 제조할 수 있다. 이때, 상기 폴리티오우레탄계 화합물의 물성은 중합성 조성물 내 황의 함량과, 폴리티올 화합물 및 폴리이소시아네이트 화합물의 관능기 수, 가교점 사이의 분자량 등에 영향을 받는다. Sulfur (S) content, crosslinking density, etc. may be mentioned as the most important factors for determining physical properties of the lens prepared from the polythiourethane-based compound, such as refractive index, heat resistance, mechanical strength, impact resistance, and the like. Specifically, the polythiourethane-based compound may be prepared by a mold polymerization in which a polymerizable composition comprising a polythiol compound and a polyisocyanate compound is injected into a mold and heat cured. In this case, the physical properties of the polythiourethane-based compound is affected by the content of sulfur in the polymerizable composition, the number of functional groups of the polythiol compound and the polyisocyanate compound, the molecular weight between the crosslinking point, and the like.

일례로, 대한민국 등록특허 제10-1594407호 및 대한민국 등록특허 제10-0180926호는 다수의 황을 포함하는 폴리티올 화합물을 개시하고 있지만, 이 폴리티올 화합물은 지방족 화합물로 관능기 수, 가교밀도 등을 높이는데 한계가 있다. 또한, 대한민국 등록특허 제10-1074450호는 페닐기를 포함하는 방향족 폴리티올 화합물을 개시하고 있지만, 황의 함량이 적어 폴리티오우레탄계 광학 재료 합성 시 충분한 굴절률을 확보하지 못한다는 단점이 있다. For example, although Korean Patent Nos. 10-1594407 and Korean Patent No. 10-0180926 disclose polythiol compounds including a plurality of sulfur, the polythiol compounds are aliphatic compounds, and the number of functional groups, crosslinking densities, etc. There is a limit to increase. In addition, although the Republic of Korea Patent No. 10-1074450 discloses an aromatic polythiol compound containing a phenyl group, there is a disadvantage in that it does not secure sufficient refractive index when synthesizing a polythiourethane-based optical material due to the low content of sulfur.

대한민국 등록특허 제10-1594407호Republic of Korea Patent No. 10-1594407 대한민국 등록특허 제10-0180926호Republic of Korea Patent No. 10-0180926 대한민국 등록특허 제10-1074450호Republic of Korea Patent No. 10-1074450

따라서, 실시예는 폴리티올 화합물 및 폴리이소시아네이트 화합물의 관능기 수, 가교밀도, 황 함량 등을 최적화하여 굴절률, 내열성, 강도, 내충격성 등의 물성이 우수한 광학 재료용 폴리티오우레탄계 화합물을 제공하고자 한다.Accordingly, the embodiment is to provide a polythiourethane-based compound for an optical material excellent in physical properties such as refractive index, heat resistance, strength, impact resistance by optimizing the number of functional groups, crosslinking density, sulfur content and the like of the polythiol compound and the polyisocyanate compound.

실시예는 2관능 이상의 폴리티올 화합물 및 2관능 이상의 폴리이소시아네이트 화합물을 포함하는 중합성 조성물에 있어서, 상기 중합성 조성물은 하기 수학식 1에 따른 평균 관능기 수(Favg)가 2.2개 이상이고, 하기 수학식 2에 따른 황 함량이 7% 이상이며, 하기 수학식 3에 따른 가교점 사이의 평균 분자량(EQavg)이 260g/몰 미만인 플라스틱 렌즈용 중합성 조성물을 제공한다:Examples are polymerizable compositions comprising a bifunctional or higher polythiol compound and a bifunctional or higher polyisocyanate compound, wherein the polymerizable composition has an average number of functional groups (F avg ) of 2.2 or more according to Equation 1 below, It provides a polymerizable composition for plastic lenses having a sulfur content of at least 7% and an average molecular weight (EQ avg ) between crosslinking points according to equation (3) below 260 g / mol:

[수학식 1][Equation 1]

평균 관능기 수(Favg) = [(폴리티올 화합물의 관능기 수 ⅹ 폴리티올 화합물의 몰수) + (폴리이소시아네이트 화합물의 관능기 수 ⅹ 폴리이소시아네이트 화합물의 몰수) ] / (폴리티올 화합물의 몰수 + 폴리이소시아네이트 화합물의 몰수)Average number of functional groups (F avg ) = [(the number of functional groups of the polythiol compound 티 the number of moles of the polythiol compound) + (the number of functional groups of the polyisocyanate compound 몰 the number of moles of the polyisocyanate compound)] / (the number of moles of the polythiol compound + polyisocyanate compound) Forfeiture)

[수학식 2][Equation 2]

황 함량(%) = [{(폴리티올 화합물 내 황 원자 수 + 폴리이소시아네이트 화합물 내 황 원자 수) ⅹ 32} / (폴리티올 화합물의 분자량 + 폴리이소시아네이트 화합물의 분자량)] ⅹ 100 Sulfur content (%) = [{(number of sulfur atoms in polythiol compound + number of sulfur atoms in polyisocyanate compound) ⅹ 32} / (molecular weight of polythiol compound + molecular weight of polyisocyanate compound)] ⅹ 100

[수학식 3][Equation 3]

가교점 사이의 평균 분자량(EQavg) = (폴리티올 화합물의 분자량/폴리티올 화합물의 관능기 수) + (폴리이소시아네이트 화합물의 분자량/폴리이소시아네이트 화합물의 관능기 수).Average molecular weight (EQ avg ) between crosslinking points = (molecular weight of polythiol compound / function number of polythiol compound) + (molecular weight of polyisocyanate compound / function number of polyisocyanate compound).

나아가, 실시예는 상기 중합성 조성물을 금형에서 가열 경화시켜 제조된 폴리티오우레탄계 플라스틱 렌즈를 제공한다. Furthermore, the embodiment provides a polythiourethane-based plastic lens prepared by heat curing the polymerizable composition in a mold.

실시예에 따른 플라스틱 렌즈용 중합성 조성물은 조성물 내 황 함량을 최적화하여 보다 우수한 굴절률을 달성할 수 있고, 폴리티올 화합물과 폴리이소시아네이트 화합물의 관능기 수와 가교점 사이의 분자량을 조절하여 기계적 물성, 내충격성, 내열성 등을 우수하게 유지할 수 있으므로, 안경렌즈, 카메라 렌즈 등 각종 플라스틱 광학렌즈의 제조에 유용하게 사용될 수 있다.The polymerizable composition for plastic lenses according to the embodiment may achieve better refractive index by optimizing the sulfur content in the composition, and by controlling the molecular weight between the number of functional groups and the crosslinking point of the polythiol compound and the polyisocyanate compound, Since the impact resistance, heat resistance and the like can be excellently maintained, it can be usefully used for the production of various plastic optical lenses such as spectacle lenses and camera lenses.

실시예는 2관능 이상의 폴리티올 화합물 및 2관능 이상의 폴리이소시아네이트 화합물을 포함하는 중합성 조성물에 있어서, 상기 중합성 조성물은 하기 수학식 1에 따른 평균 관능기 수(Favg)가 2.2개 이상이고, 하기 수학식 2에 따른 황(S) 함량이 7% 이상이며, 하기 수학식 3에 따른 가교점 사이의 분자량(EQavg)이 260g/몰 미만인 플라스틱 렌즈용 중합성 조성물을 제공한다:Examples are polymerizable compositions comprising a bifunctional or higher polythiol compound and a bifunctional or higher polyisocyanate compound, wherein the polymerizable composition has an average number of functional groups (F avg ) of 2.2 or more according to Equation 1 below, It provides a polymerizable composition for plastic lenses having a sulfur (S) content of 7% or more and a molecular weight (EQ avg ) between crosslinking points according to Equation 3 below 260 g / mol:

[수학식 1][Equation 1]

평균 관능기 수(Favg) = [(폴리티올 화합물의 관능기 수 ⅹ 폴리티올 화합물의 몰수) + (폴리이소시아네이트 화합물의 관능기 수 ⅹ 폴리이소시아네이트 화합물의 몰수) ] / (폴리티올 화합물의 몰수 + 폴리이소시아네이트 화합물의 몰수)Average number of functional groups (F avg ) = [(the number of functional groups of the polythiol compound 티 the number of moles of the polythiol compound) + (the number of functional groups of the polyisocyanate compound 몰 the number of moles of the polyisocyanate compound)] / (the number of moles of the polythiol compound + polyisocyanate compound) Forfeiture)

[수학식 2][Equation 2]

황 함량(%) = [{(폴리티올 화합물 내 황 원자 수 + 폴리이소시아네이트 화합물 내 황 원자 수) ⅹ 32} / (폴리티올 화합물의 분자량 + 폴리이소시아네이트 화합물의 분자량)] ⅹ 100 Sulfur content (%) = [{(number of sulfur atoms in polythiol compound + number of sulfur atoms in polyisocyanate compound) ⅹ 32} / (molecular weight of polythiol compound + molecular weight of polyisocyanate compound)] ⅹ 100

[수학식 3][Equation 3]

가교점 사이의 평균 분자량(EQavg) = (폴리티올 화합물의 분자량/폴리티올 화합물의 관능기 수) + (폴리이소시아네이트 화합물의 분자량/폴리이소시아네이트 화합물의 관능기 수).Average molecular weight (EQ avg ) between crosslinking points = (molecular weight of polythiol compound / function number of polythiol compound) + (molecular weight of polyisocyanate compound / function number of polyisocyanate compound).

구체적으로, 상기 중합성 조성물은 상기 수학식 1에 따른 평균 관능기 수(Favg)가 2.2개 이상, 2.2 내지 3.5개, 2.2 내지 2.9개 또는 2.2 내지 2.7개일 수 있다. 상기 평균 관능기 수에 비례하여 인장강도가 향상될 수 있으며, 특히, 평균 관능기 수가 상기 범위일 경우 제조된 렌즈의 인장강도가 적정 수준으로 유지될 수 있다. Specifically, the polymerizable composition may have an average number of functional groups (F avg ) according to Equation 1 of 2.2 or more, 2.2 to 3.5, 2.2 to 2.9 or 2.2 to 2.7. The tensile strength may be improved in proportion to the average number of functional groups, and in particular, when the average number of functional groups is in the above range, the tensile strength of the manufactured lens may be maintained at an appropriate level.

또한, 상기 중합성 조성물은 상기 수학식 2에 따른 황 함량이 7% 이상, 10 내지 40%, 또는 14 내지 35%일 수 있다. 상기 범위 내일 때, 상기 조성물로부터 제조된 렌즈의 굴절률이 보다 우수하여 얇고 내충격성이 강한 렌즈를 제조할 수 있다.In addition, the polymerizable composition may have a sulfur content according to Equation 2 of 7% or more, 10 to 40%, or 14 to 35%. When in the above range, the refractive index of the lens produced from the composition is more excellent, it is possible to produce a thin, strong impact resistance lens.

나아가, 상기 중합성 조성물은 상기 수학식 3에 따른 가교점 사이의 평균 분자량(EQavg)이 260g/몰 미만, 140 이상 260g/몰 미만, 150 이상 260g/몰 미만, 또는 160 이상 260g/몰 미만일 수 있다. 상기 범위 내일 때, 상기 조성물로부터 제조된 렌즈의 기계적 물성, 예컨대, 강도, 신율 등이 우수하게 유지되면서 내충격성 및 내열성을 향상시킬 수 있다. Furthermore, the polymerizable composition may have an average molecular weight (EQavg) between the crosslinking points according to Equation 3 below 260g / mol, 140 or more and less than 260g / mol, 150 or more and less than 260g / mol, or 160 or more and less than 260g / mol. have. When in the above range, the mechanical properties, such as strength, elongation, etc. of the lens produced from the composition can be maintained while maintaining excellent impact resistance and heat resistance.

구체적으로, 상기 조성물의 평균 관능기 수, 황 함량 및 가교점 사이의 평균 분자량은 적절한 범위 내에서 조절 및 조합되어야하며, 이는 폴리티오우레탄계 플라스틱 렌즈의 광학적 특성, 물리기계적 특성을 제어하는데 핵심적인 요소로 작용한다. Specifically, the average number of functional groups, the sulfur content and the average molecular weight between the crosslinking points of the composition should be adjusted and combined within an appropriate range, which is a key factor in controlling the optical and physico-mechanical properties of the polythiourethane-based plastic lens. Works.

보다 구체적으로, 황 함량이 상기 범위보다 낮은 경우 굴절률이 저하되어 렌즈의 두께가 두꺼워지고, 황 함량이 상기 범위보다 높은 경우 제조 비용이 증가할 뿐만 아니라 렌즈의 기계물성 또한 저하되는 등의 문제가 발생한다. 또한, 가교점 사이의 분자량이 상기 범위보다 작은 경우 렌즈의 유연성이 떨어져 내충격성이 저하될 수 있고, 가교점 사이의 분자량이 상기 범위보다 큰 경우에는 내충격성은 다소 향상될 수 있으나 내열성 및 경도가 낮아진다는 문제점이 있다. 나아가, 조성물 내의 평균 관능기수가 상기 범위보다 작은 경우 가교밀도가 충분하지 않아 강도경도 및 내열성이 저하될 수 있고, 상기 조성물 내의 평균 관능기수가 상기 범위보다 큰 경우 가교밀도가 너무 커서 렌즈의 유연성이 부족하여 내충격성이 저하될 수 있다. More specifically, when the sulfur content is lower than the above range, the refractive index is lowered to increase the thickness of the lens, and when the sulfur content is higher than the above range, not only the manufacturing cost increases but also the mechanical properties of the lens also decrease. do. In addition, when the molecular weight between the crosslinking points is smaller than the above range, the flexibility of the lens may be lowered, and impact resistance may be lowered. When the molecular weight between the crosslinking points is larger than the above range, the impact resistance may be slightly improved, but heat resistance and hardness are low. Has a problem. Furthermore, when the average number of functional groups in the composition is smaller than the above range, the crosslinking density may not be sufficient, and thus the hardness and heat resistance may be reduced. When the average number of functional groups in the composition is larger than the above range, the crosslinking density is too large and the flexibility of the lens is insufficient. Impact resistance may be lowered.

상기 폴리티올 화합물은 다수의 황을 포함할 수 있고, 구체적으로 2관능 이상의 폴리티올일 수 있다. 상기 폴리티올 화합물은 200 내지 1,500g/몰, 220 내지 1,400g/몰의 중량평균분자량을 가질 수 있다. 상기 범위 내일 때, 가교점 사이의 분자량, 즉 가교밀도를 필요한 범위 내에서 조절할 수 있고, 렌즈 캐스팅 시 적정 수준의 점도를 갖게되어 작업성이 용이해지므로 렌즈 제조시 수율을 향상시킬 수 있다. The polythiol compound may include a plurality of sulfur, and specifically, may be a bifunctional or higher polythiol. The polythiol compound may have a weight average molecular weight of 200 to 1,500 g / mol and 220 to 1,400 g / mol. When in the above range, the molecular weight between the crosslinking point, that is, the crosslinking density can be adjusted within the required range, and has an appropriate level of viscosity during lens casting to facilitate workability, thereby improving the yield in manufacturing the lens.

상기 폴리티올은 공지의 방법에 의해 제조하여 사용할 수 있고, 시판되는 것을 구매하여 사용할 수 있다. The polythiol may be prepared and used by a known method, and commercially available ones may be purchased and used.

상기 폴리티올 화합물의 예를 들면, 1,9-디메르캅토-3,7-디티아노난(1,9-dimercapto-3,7-dithianonane), 1,13-디메르캅토-3,7,11-트리티아트리데칸(1,13-dimercapto-3,7,11-trithiatridecane), 글리콜 디(3-메르캅토프로피오네이트)(glycol di(3-mercaptopropionate)), 1,4-디티안-2,5-디일메탄티올(1,4-dithiane-2,5-diyldimethanethiol), 4-메르캅토메틸-1,8-디메르캅토-3,6-디티아옥탄(4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane), 2-메르캅토메틸-1,5-디메르캅토-3-티아펜탄(2-mercaptomethyl-1,5-dimercapto-3-thiapentane), 트리메틸올프로판 트리(3-메르캅토프로피오네이트)(trimethylolpropane tri(3-mercaptopropionate)), 4,8-디(메르캅토메틸)-1,11-디메르캅토-3,6,9-트리티아운데칸(4,8-di(mercaptomethyl)-1,11-dimercapto-3,6,9-trithiaundecane), 5,9-디(메르캅토에틸티오)-1,13-디메르캅토-3,7,11-트리티아트리데칸(5,9-di(mercaptoethylthio)-1,13-dimercapto-3,7,11-trithiatridecane), 펜타에리트리톨 테트라(3-메르캅토프로피오네이트)(pentaerythritol tetra(3-mercaptopropionate)), 펜타에리트리톨 테트라(메르캅토아세테이트)(pentaerythritol tetra(mercaptoacetate)),

Figure 112019503727110-pat00001
(n은 9 내지 12의 유리수) 및
Figure 112019503727110-pat00002
(x, y 및 z는 각각 독립적으로 1 내지 10의 정수이고, x+y+z=20)으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.Examples of the polythiol compound include 1,9-dimercapto-3,7-dithianonane, 1,13-dimercapto-3,7, 11-trithiatridecane (1,13-dimercapto-3,7,11-trithiatridecane), glycol di (3-mercaptopropionate), 1,4-dithiane- 1,4-dithiane-2,5-diyldimethanethiol, 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane (4-mercaptomethyl-1,8 -dimercapto-3,6-dithiaoctane), 2-mercaptomethyl-1,5-dimercapto-3-thiapentane, trimethylolpropane tri (3 Trimethylolpropane tri (3-mercaptopropionate), 4,8-di (mercaptomethyl) -1,11-dimercapto-3,6,9-trithiaoundecan (4,8) -di (mercaptomethyl) -1,11-dimercapto-3,6,9-trithiaundecane), 5,9-di (mercaptoethylthio) -1,13-dimercapto-3,7,11-trithiatri Decane (5,9-di (mercaptoethylthio) -1,13-dimercapto-3,7,11-trithiatridecan e), pentaerythritol tetra (3-mercaptopropionate), pentaerythritol tetra (mercaptoacetate),
Figure 112019503727110-pat00001
(n is a rational number of 9 to 12) and
Figure 112019503727110-pat00002
(x, y and z are each independently an integer of 1 to 10, and may be one or more selected from the group consisting of x + y + z = 20).

구체적으로, 상기 폴리티올 화합물은 1,4-디티안-2,5-디일메탄티올, 4-메르캅토메틸-1,8-디메르캅토-3,6-디티아옥탄, 2-메르캅토메틸-1,5-디메르캅토-3-티아펜탄, 4,8-디(메르캅토메틸)-1,11-디메르캅토-3,6,9-트리티아운데칸, 펜타에리트리톨 테트라(3-메르캅토프로피오네이트), 펜타에리트리톨 테트라(메르캅토아세테이트),

Figure 112017095301033-pat00003
(n은 9 내지 12의 유리수),
Figure 112017095301033-pat00004
(x, y 및 z는 각각 독립적으로 1 내지 10의 정수이고, x+y+z=20) 및 이들의 혼합물일 수 있다. Specifically, the polythiol compound is 1,4-dithiane-2,5-diylmethanethiol, 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 2-mercaptomethyl -1,5-dimercapto-3-thiapentane, 4,8-di (mercaptomethyl) -1,11-dimercapto-3,6,9-trithiaundane, pentaerythritol tetra (3 Mercaptopropionate), pentaerythritol tetra (mercaptoacetate),
Figure 112017095301033-pat00003
(n is a rational number of 9 to 12),
Figure 112017095301033-pat00004
(x, y and z are each independently an integer from 1 to 10, and x + y + z = 20) and mixtures thereof.

상기 폴리이소시아네이트 화합물은 이소포론 디이소시아네이트(isophorone diisocyanate), 1,6-디이소시아나토헥산(1,6-diisocyanatohexane), 1,3-비스(이소시아나토메틸)사이클로헥산(1,3-bis(isocyanatomethyl)cyclohexane), 비스(4-이소시아나토사이클로헥실)메탄(bis(4-isocyanatocyclohexyl)methane), m-자일렌 디이소시아네이트(m-xylene diisocyanate), 1,3,5-트리스(6-이소시아나토헥실)-1,3,5-트리아진-2,4,6-트리온(1,3,5-tris(6-isocyanatohexyl)-1,3,5-triazinane-2,4,6-trione)으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.The polyisocyanate compound is isophorone diisocyanate, 1,6-diisocyanatohexane, 1,3-bis (isocyanatomethyl) cyclohexane (1,3-bis ( isocyanatomethyl) cyclohexane), bis (4-isocyanatocyclohexyl) methane, m-xylene diisocyanate, 1,3,5-tris (6-iso) Cyanatohexyl) -1,3,5-triazine-2,4,6-trione (1,3,5-tris (6-isocyanatohexyl) -1,3,5-triazinane-2,4,6- trione) may be one or more selected from the group consisting of.

상기 폴리이소시아네이트 화합물은 150 내지 510g/몰, 또는 160 내지 500g/몰의 중량평균분자량을 가질 수 있다. 상기 범위 내일 때, 가교밀도 및 점도를 적정 수준으로 조절가능하여 렌즈 제조 수율을 향상시킬 수 있다.The polyisocyanate compound may have a weight average molecular weight of 150 to 510g / mol, or 160 to 500g / mol. When in the above range, the crosslinking density and viscosity can be adjusted to an appropriate level to improve the lens manufacturing yield.

상기 중합성 조성물은 목적에 따라 내부 이형제, 열안정제, 반응촉매, 자외선 흡수제, 블루잉제(blueing agent) 등의 첨가제를 더 포함할 수 있다. The polymerizable composition may further include additives such as an internal mold release agent, a heat stabilizer, a reaction catalyst, an ultraviolet absorber, and a blueing agent according to the purpose.

상기 자외선 흡수제로는 벤조페논계, 벤조트라이아졸계, 살리실레이트계, 시아노아크릴레이트계, 옥사닐라이드계 등이 사용될 수 있다. As the ultraviolet absorber, benzophenone-based, benzotriazole-based, salicylate-based, cyanoacrylate-based, oxanilide-based, and the like may be used.

상기 내부 이형제로는 퍼플루오르알킬기, 히드록시알킬기 또는 인산에스테르기를 지닌 불소계 비이온 계면활성제; 디메틸폴리실록산기, 히드록시알킬기 또는 인산에스테르기를 가진 실리콘계 비이온 계면활성제; 트리메틸세틸 암모늄염, 트리메틸스테아릴, 디메틸에틸세틸 암모늄염, 트리에틸도데실 암모늄염, 트리옥틸메틸 암모늄염, 디에틸시클로헥사도데실 암모늄염 등과 같은 알킬계 4급 암모늄염; 및 산성 인산에스테르 중에서 선택된 성분이 단독으로 혹은 2종 이상 함께 사용될 수 있다. The internal mold release agent includes a fluorine-based nonionic surfactant having a perfluoroalkyl group, a hydroxyalkyl group or a phosphate ester group; Silicone-based nonionic surfactants having a dimethylpolysiloxane group, a hydroxyalkyl group or a phosphate ester group; Alkyl quaternary ammonium salts such as trimethylcetyl ammonium salt, trimethylstearyl, dimethylethylcetyl ammonium salt, triethyldodecyl ammonium salt, trioctylmethyl ammonium salt, diethylcyclohexadodecyl ammonium salt and the like; And components selected from acidic phosphate esters may be used alone or in combination of two or more thereof.

상기 반응촉매로는 폴리티오우레탄계 수지의 제조에 사용되는 공지의 반응촉매를 적절히 첨가할 수 있다. 예를 들면, 디부틸주석디클로라이드, 디메틸주석디클로라이드 등의 디알킬주석할로겐화물계; 디메틸주석디아세테이트, 디부틸주석디옥타노에이트, 디부틸주석디라우레이트 등의 디알킬주석디카르복실레이트계; 디부틸주석디부톡사이드, 디옥틸주석디부톡사이드 등의 디알킬주석디알콕사이드계; 디부틸주석디(티오부톡사이드) 등의 디알킬주석디티오알콕사이드계; 디(2-에틸헥실)주석옥사이드, 디옥틸주석옥사이드, 비스(부톡시디부틸주석)옥사이드 등의 디알킬주석산화물계; 디부틸주석술피드 등의 디알킬주석황화물계로 이루어진 군에서 선택될 수 있다. 구체적으로는, 디부틸주석디클로라이드, 디메틸주석디클로라이드 등의 디알킬주석할로겐화물계로 이루어진 군에서 선택될 수 있다.As said reaction catalyst, the well-known reaction catalyst used for manufacture of a polythiourethane type resin can be added suitably. For example, Dialkyl tin halide system, such as dibutyl tin dichloride and dimethyl tin dichloride; Dialkyl tin dicarboxylates such as dimethyl tin diacetate, dibutyl tin dioctanoate and dibutyl tin dilaurate; Dialkyl tin dialkoxides such as dibutyl tin dibutoxide and dioctyl tin dibutoxide; Dialkyl tin dithio alkoxides such as dibutyl tin di (thiobutoxide); Dialkyl tin oxides such as di (2-ethylhexyl) tin oxide, dioctyltin oxide and bis (butoxydibutyltin) oxide; It may be selected from the group consisting of dialkyl tin sulfides such as dibutyl tin sulfide. Specifically, it may be selected from the group consisting of dialkyl tin halides such as dibutyltin dichloride and dimethyltin dichloride.

상기 열안정제로는 금속 지방산염계, 인계, 납계, 유기주석계 등이 1종 또는 2종 이상 사용될 수 있다.The thermal stabilizer may be used one or two or more metal fatty acid salts, phosphorus, lead, organotin.

상기 블루잉제는 가시광 영역 중 오렌지색으로부터 황색의 파장역에 흡수대를 가지며, 수지로 이루어지는 광학 재료의 색상을 조정하는 기능을 가진다. 상기 블루잉제는, 구체적으로, 청색으로부터 보라색을 나타내는 물질을 포함할 수 있으나, 특별히 한정되는 것은 아니다. 또한, 상기 블루잉제의 예로는 염료, 형광증백제, 형광 안료, 무기 안료 등을 들 수 있으나, 제조되는 광학 부품에 요구되는 물성이나 수지 색상 등에 맞추어 적절히 선택될 수 있다. 상기 블루잉제는 각각 단독 또는 2 종 이상의 조합을 사용할 수 있다. 중합성 조성물에 대한 용해성 및 얻어지는 광학 재료의 투명성의 측면에서, 상기 블루잉제로서 염료가 바람직하다. 흡수 파장의 관점에서, 상기 염료는 구체적으로, 극대 흡수 파장 520 내지 600nm의 염료일 수 있으며, 보다 구체적으로, 극대 흡수 파장 540 내지 580nm의 염료일 수 있다. 또한, 화합물의 구조의 관점에서, 상기 염료로는 안트라퀴논계 염료가 바람직하다. 블루잉제의 첨가 방법은 특별히 한정되지 않으며, 미리 모노머계에 첨가할 수 있다. 구체적으로, 상기 블루잉제의 첨가 방법은 모노머에 용해시켜 두는 방법, 또는 고농도의 블루잉제를 함유하는 마스터 용액을 조제해 두고, 상기 마스터 용액을 사용하는 모노머나 다른 첨가제로 희석하여 첨가하는 방법 등 여러 가지의 방법을 사용할 수 있다.The bluing agent has an absorption band in the wavelength range of orange to yellow in the visible light region, and has a function of adjusting the color of the optical material made of resin. The bluing agent may include, but is not particularly limited to, a substance which shows, specifically, “blue to purple”. In addition, examples of the bluing agent may include dyes, fluorescent whitening agents, fluorescent pigments, inorganic pigments, and the like, and may be appropriately selected according to physical properties, resin colors, and the like required for optical components to be manufactured. The bluing agent may be used alone, or a combination of two or more species. In view of solubility in the polymerizable composition and transparency of the resulting optical material, a dye is preferred as the bluing agent. In view of the absorption wavelength, the dye may specifically be a dye having a maximum absorption wavelength of 520 to 600 nm, and more specifically a dye having a maximum absorption wavelength of 540 to 580 nm. From the viewpoint of the structure of the compound, an anthraquinone dye is preferable as the dye. The addition method of a bluing agent is not specifically limited, It can add to the preliminary monomer type. Specifically, the method of adding the bluing agent may be dissolved in a monomer, or a master solution containing a high concentration of bluing agent is prepared, and the method of dilution with a monomer or another additive using the master solution is used. There are three ways to do this.

실시예는 상술한 바와 같은 중합성 조성물을 금형에서 가열 경화시켜 폴리티오우레탄계 플라스틱 렌즈를 제조하는 방법을 제공한다. 나아가, 실시예는 상기 제조방법으로 얻어진 폴리티오우레탄계 플라스틱 렌즈를 제공한다. The embodiment provides a method of manufacturing a polythiourethane-based plastic lens by heat curing the polymerizable composition as described above in a mold. Furthermore, the Example provides the polythiourethane-type plastic lens obtained by the said manufacturing method.

구체적으로, 상기 중합성 조성물을 감압하에 탈기(degassing)한 후, 렌즈 성형용 몰드에 주입한다. 이와 같은 탈기 및 몰드 주입은 예를 들어 20 내지 40℃의 온도 범위에서 수행될 수 있다. 몰드에 주입한 후에는 통상 저온으로부터 고온으로 서서히 가열하여 중합을 수행한다.Specifically, the polymerizable composition is degassed under reduced pressure and then injected into a lens molding mold. Such degassing and mold injection can be carried out, for example, in a temperature range of 20 to 40 ° C. After injection into the mold, polymerization is usually carried out by gradually heating from a low temperature to a high temperature.

상기 중합 반응의 온도는 예를 들어 20 내지 150℃일 수 있고, 구체적으로 25 내지 120℃일 수 있다. The temperature of the polymerization reaction may be, for example, 20 to 150 ℃, specifically may be 25 to 120 ℃.

이후 폴리티오우레탄계 플라스틱 렌즈를 몰드로부터 분리한다.The polythiourethane-based plastic lens is then separated from the mold.

상기 폴리티오우레탄계 플라스틱 렌즈는 제조시 사용하는 주형의 몰드를 바꾸는 것에 의해 여러가지 형상으로 제조될 수 있다. 구체적으로, 안경렌즈, 카메라 렌즈 등의 형태일 수 있다. The polythiourethane-based plastic lens can be manufactured in various shapes by changing the mold of the mold used in manufacturing. Specifically, the lens may be in the form of an eyeglass lens, a camera lens, or the like.

상기 중합 반응에서 상기 폴리티올 화합물 및 이소시아네이트 화합물의 반응 몰비는 0.5 내지 1.2 :1, 또는 0.5 내지 1.1 :1일 수 있다. The reaction molar ratio of the polythiol compound and the isocyanate compound in the polymerization reaction may be 0.5 to 1.2: 1, or 0.5 to 1.1: 1.

상기 폴리티오우레탄계 플라스틱 렌즈는 필요에 따라 반사 방지, 고경도 부여, 내마모성 향상, 내약품성 향상, 방운성(anti-fogging) 부여 또는 패션성 부여를 위해 표면연마, 대전 방지 처리, 하드 코트 처리, 무반사 코트 처리, 염색 처리, 조광(調光)처리 등의 물리적, 화학적 처리를 실시하여 개량할 수 있다. The polythiourethane-based plastic lens may be subjected to surface polishing, antistatic treatment, hard coat treatment, anti-reflection for antireflection, high hardness, abrasion resistance, chemical resistance, anti-fogging, or fashion, as necessary. Physical and chemical treatments such as a coat treatment, a dyeing treatment, and a dimming treatment can be performed to improve the coating.

상기 폴리티오우레탄계 플라스틱 렌즈는 1.55 내지 1.70, 1.55 내지 1.68, 또는 1.56 내지 1.68의 굴절률을 가질 수 있다. 나아가, 상기 플라스틱 렌즈는 75 내지 120℃, 78 내지 110℃ 또는 80 내지 110℃의 열변형온도를 가질 수 있다. The polythiourethane-based plastic lens may have a refractive index of 1.55 to 1.70, 1.55 to 1.68, or 1.56 to 1.68. Further, the plastic lens may have a heat deformation temperature of 75 to 120 ℃, 78 to 110 ℃ or 80 to 110 ℃.

또한, 상기 플라스틱 렌즈는 40 내지 120kgf, 50 내지 120kgf, 또는 40 내지 110kgf의 인장강도와 3 내지 20%, 5 내지 20%, 또는 3 내지 15%의 신율을 가질 수 있다. 상기 인장강도는 앞서 설명한 바와 같이, 중합성 조성물의 관능기 수에 비례하여 증가할 수 있으나, 이에 한정하는 것은 아니며, 가교점 사이의 평균 분자량에 의해 향상 또는 저하될 수 있다.In addition, the plastic lens may have a tensile strength of 40 to 120kgf, 50 to 120kgf, or 40 to 110kgf and an elongation of 3 to 20%, 5 to 20%, or 3 to 15%. As described above, the tensile strength may increase in proportion to the number of functional groups in the polymerizable composition, but is not limited thereto. The tensile strength may be improved or decreased by the average molecular weight between the crosslinking points.

나아가, 상기 플라스틱 렌즈는 30 내지 46, 30 내지 45, 30 내지 44, 또는 31 내지 44의 아베수를 가질 수 있다. 나아가, 상기 플라스틱 렌즈는 127cm의 높이에서 16g의 쇠공(steel ball)을 떨어뜨렸을 때에도 깨짐, 균열 등의 파손이 일어나지 않아 우수한 내충격성을 가질 수 있다(실험예 (1) 내지 (5) 참조). Furthermore, the plastic lens may have an Abbe number of 30 to 46, 30 to 45, 30 to 44, or 31 to 44. Furthermore, the plastic lens may have excellent impact resistance because breakage, cracking, or the like does not occur even when a 16g steel ball is dropped at a height of 127 cm (see Experimental Examples (1) to (5)).

상술한 바와 같이, 실시예에 따른 플라스틱 렌즈용 중합성 조성물은 조성물 내 황 함량을 최적화하여 보다 우수한 굴절률을 달성할 수 있고, 폴리티올 화합물과 폴리이소시아네이트 화합물의 관능기 수와 가교점 사이의 분자량을 조절하여 기계적 물성, 내충격성, 내열성 등을 우수하게 유지할 수 있으므로, 안경렌즈, 카메라 렌즈 등 각종 플라스틱 광학렌즈의 제조에 유용하게 사용될 수 있다.As described above, the polymerizable composition for plastic lenses according to the embodiment may achieve better refractive index by optimizing the sulfur content in the composition, and controlling the molecular weight between the number of functional groups and the crosslinking point of the polythiol compound and the polyisocyanate compound. Since mechanical properties, impact resistance, heat resistance and the like can be excellently maintained, it can be usefully used for the production of various plastic optical lenses such as spectacle lenses and camera lenses.

이하, 하기 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

[[ 실시예Example ]]

하기 실시예에서 사용한 폴리티올 화합물 및 폴리이소시아네이트 화합물은 하기 표 1 및 2의 화합물을 사용하였다. As the polythiol compound and the polyisocyanate compound used in the following examples, the compounds of Tables 1 and 2 were used.

폴리티올 화합물(Th)Polythiol Compound (Th) 분자량(MW)Molecular Weight (MW) 관능기수(F)Functional Radix (F) 당량(EQ)Equivalent (EQ) 황함량(%)Sulfur content (%) 1One

Figure 112019503727110-pat00005

1,9-디메르캅토-3,7-디티아노난
Figure 112019503727110-pat00005

1,9-dimercapto-3,7-dithianonane 228.5228.5 22 114.3114.3 56.056.0 22
Figure 112019503727110-pat00006

1,13-디메르캅토-3,7,11
-트리티아트리데칸
Figure 112019503727110-pat00006

1,13-dimercapto-3,7,11
Tritia tridecane
302.6302.6 22 151.3151.3 52.952.9
33
Figure 112019503727110-pat00007

글리콜 디(3-메르캅토프로피오네이트)
Figure 112019503727110-pat00007

Glycol di (3-mercaptopropionate)
238.3238.3 22 119.2119.2 26.926.9
44
Figure 112019503727110-pat00008
(n=10.3)
Figure 112019503727110-pat00008
(n = 10.3)
800800 22 400.0400.0 8.08.0
55
Figure 112019503727110-pat00009

1,4-디티안-2,5-디일메탄티올
Figure 112019503727110-pat00009

1,4-dithiane-2,5-diylmethanethiol
212212 22 106.0106.0 60.460.4
66
Figure 112019503727110-pat00010

2-메르캅토메틸-1,5-디메르캅토
-3-티아펜탄
Figure 112019503727110-pat00010

2-mercaptomethyl-1,5-dimercapto
-3-thiapentane
200.4200.4 33 66.866.8 63.963.9
77
Figure 112019503727110-pat00011

트리메틸올프로판 트리
(3-메르캅토프로피오네이트)
Figure 112019503727110-pat00011

Trimethylolpropane tree
(3-mercaptopropionate)
398.6398.6 33 132.9132.9 24.124.1
88
Figure 112019503727110-pat00012

(x, y 및 z는 각각 독립적으로 1 내지 10의 정수이고, x+y+z=20)
Figure 112019503727110-pat00012

(x, y and z are each independently an integer from 1 to 10, x + y + z = 20)
13001300 44 325.0325.0 7.47.4
99
Figure 112019503727110-pat00013

5,9-디(메르캅토에틸티오)-1,13-디메르캅토-3,7,11-트리티아트리데칸
Figure 112019503727110-pat00013

5,9-di (mercaptoethylthio) -1,13-dimercapto-3,7,11-trithiatridecane
486486 44 121.5121.5 59.359.3
1010
Figure 112019503727110-pat00014

펜타에리트리톨 테트라
(3-메르캅토프로피오네이트)
Figure 112019503727110-pat00014

Pentaerythritol tetra
(3-mercaptopropionate)
488.7488.7 44 122.2122.2 26.226.2
1111
Figure 112019503727110-pat00015

펜타에리트리톨 테트라
(메르캅토아세테이트)
Figure 112019503727110-pat00015

Pentaerythritol tetra
(Mercapto acetate)
432.6432.6 44 108.2108.2 29.629.6
1212
Figure 112019503727110-pat00016

4-메르캅토메틸-1,8-디메르캅토
-3,6-디티아옥탄
Figure 112019503727110-pat00016

4-mercaptomethyl-1,8-dimercapto
-3,6-dithiaoctane
260260 33 86.786.7 61.561.5
1313
Figure 112019503727110-pat00017

4,8-디(메르캅토메틸)-1,11-디메르캅토
-3,6,9-트리티아운데칸
Figure 112019503727110-pat00017

4,8-di (mercaptomethyl) -1,11-dimercapto
-3,6,9-trithiaoundecan
366366 44 91.591.5 61.261.2

폴리이소시아네이트 화합물(Iso)Polyisocyanate Compound (Iso) 분자량(MW)Molecular Weight (MW) 관능기수(F)Functional Radix (F) 당량(EQ)Equivalent (EQ) 1One

Figure 112019012449082-pat00018

이소포론 디이소시아네이트
Figure 112019012449082-pat00018

Isophorone diisocyanate 222.2222.2 22 111.1111.1 22
Figure 112019012449082-pat00019

1,6-디이소시아나토헥산
Figure 112019012449082-pat00019

1,6-diisocyanatohexane
168.2168.2 22 84.184.1
33
Figure 112019012449082-pat00020

1,3-비스(이소시아나토메틸)사이클로헥산
Figure 112019012449082-pat00020

1,3-bis (isocyanatomethyl) cyclohexane
194.2194.2 22 97.197.1
44
Figure 112019012449082-pat00021

비스(4-이소시아나토사이클로헥실)메탄
Figure 112019012449082-pat00021

Bis (4-isocyanatocyclohexyl) methane
262.4262.4 22 131.2131.2
55
Figure 112019012449082-pat00022

m-자일렌 디이소시아네이트
Figure 112019012449082-pat00022

m-xylene diisocyanate
188.2188.2 22 94.194.1

중합성Polymerizable 조성물의 제조 Preparation of the composition

폴리티올 화합물 및 폴리이소시아네이트 화합물을 하기 표 3 내지 6에 기재된 바와 같은 조성 및 몰비로 균일하게 혼합하였다. 이때, 폴리이소시아네이트 100중량부를 기준으로 몰비에 따라 폴리티올 화합물을 혼합하였다. 여기에 중합촉매로 디부틸틴 디클로라이드 0.01 중량부, 내부이형제로 Zelec® UN 0.1 및 자외선안정제 Seesorb® 709 0.05 중량부를 첨가하고 균일하게 혼합하여 중합성 조성물을 제조하였다. 각각의 샘플(중합성 조성물)에 대하여 평균 관능기 수(Favg), 황 함량 및 가교점 사이의 평균 분자량(EQavg)을 계산하고, 그 결과를 하기 표 3에 나타내었다. The polythiol compound and the polyisocyanate compound were mixed uniformly in the composition and molar ratio as described in Tables 3 to 6 below. At this time, the polythiol compound was mixed according to the molar ratio based on 100 parts by weight of polyisocyanate. 0.01 parts by weight of dibutyltin dichloride was used as a polymerization catalyst, Zelec® UN 0.1 and 0.05 parts by weight of UV stabilizer Seesorb® 709 were added as an internal mold release agent, and a homogeneous mixture was prepared. For each sample (polymerizable composition) the average number of functional groups (F avg ), the sulfur content and the average molecular weight (EQ avg ) between the crosslinking points were calculated and the results are shown in Table 3 below.

실험예Experimental Example : 물성 확인  : Check property

상기 제조된 중합성 조성물들을 대상으로 하기 기재된 바에 따라 물성을 측정하였으며, 측정 결과를 하기 표 3 내지 6에 나타냈다. The physical properties of the polymerizable compositions prepared above were measured as described below, and the measurement results are shown in Tables 3 to 6 below.

(1) 굴절률(ne) 및 아베수(ve)(1) refractive index (ne) and Abbe's number (ve)

1torr에서 1시간 동안 탈기(degassing)한 후 3 ㎛의 테프론 필터에 여과하였다. 여과된 중합성 조성물을 테이프에 의해 조립된 유리 몰드 주형에 주입하였다. 상기 몰드 주형을 25℃에서 120℃까지 5℃/분의 속도로 승온시키고, 120℃에서 18시간 중합시켰다. 그 다음, 유리 몰드 주형에서 경화된 수지를 130℃에서 4시간 동안 추가 경화한 후 유리 몰드 주형으로부터 성형체(플라스틱 렌즈)를 이형시켰다. 상기 얻어진 광학 재료에 대해 아베 굴절계 DR-M4를 이용하여 20℃에서 굴절률 및 아베수를 얻었다. After degassing for 1 hour at 1 torr, it was filtered through a 3 μm Teflon filter. The filtered polymerizable composition was injected into a glass mold mold assembled by tape. The mold mold was heated at a rate of 5 ° C./min from 25 ° C. to 120 ° C. and polymerized at 120 ° C. for 18 hours. Next, the cured resin in the glass mold mold was further cured at 130 ° C. for 4 hours, and then the molded body (plastic lens) was released from the glass mold mold. The refractive index and Abbe number were obtained at 20 degreeC using the Abbe refractometer DR-M4 about the obtained optical material.

(2) 열변형온도(Tg, ℃)(2) Heat deflection temperature (Tg, ℃)

상기 항목 (1)의 플라스틱 렌즈에 대해, TMA Q400(TA 사)를 이용하여 페네트레이션법(50g 하중, 핀 선 0.5mmф, 승온속도 10℃/min)에서의 유리전이온도(Tg, 열변형온도)를 측정하였다. For the plastic lens of item (1), glass transition temperature (Tg, heat deformation) at the permeation method (50 g load, pin wire 0.5 mmф, heating rate 10 ° C / min) using TMA Q400 (TA) Temperature) was measured.

(3) 인장강도 및 신율(3) tensile strength and elongation

지름 80mm, 두께 2mm 평면형 표준 렌즈 시편을 제조하고, 가장자리에 2개의 구멍을 뚫은 후 만능시험기(Universal Testing Mashine)을 이용하여 측정하였다. 파단시의 강도 및 늘어난 길이를 인장강도 및 신율로 각각 계산하였다. 80 mm diameter, 2 mm thick flat standard lens specimens were prepared, and two holes were punched at the edges, and then measured using a universal testing machine (Universal Testing Mashine). The strength and elongation at break were calculated as tensile strength and elongation, respectively.

(4) 내충격성(4) impact resistance

상기 항목 (1)과 동일하게 제조된 플라스틱 렌즈를 고정시킨 후, 127cm의 높이에서 16g의 쇠공(steel ball)을 낙하시켜 렌즈의 깨짐, 균열 등의 파손 여부를 관찰하였다. 렌즈의 면이 갈라지거나 또는 렌즈가 깨지는 경우는 F(Fail), 깨지지 않고 표면상태가 양호하면 P(Pass)로 평가하였다. After fixing the plastic lens manufactured in the same manner as in item (1), 16g of steel balls were dropped at a height of 127 cm to observe whether the lens was broken or cracked. When the surface of the lens was cracked or the lens was broken, F (Fail) was evaluated. If the surface state was good without being broken, P (Pass) was evaluated.

Figure 112017095301033-pat00024
Figure 112017095301033-pat00024

Figure 112017095301033-pat00025
Figure 112017095301033-pat00025

Figure 112019012449082-pat00026
Figure 112019012449082-pat00026

Figure 112019012449082-pat00027
Figure 112019012449082-pat00027

상기 표 3 내지 6에서 보는 바와 같이, 렌즈의 굴절률은 중합성 조성물의 황 함량에 비례하여 증가하였음을 알 수 있다. 나아가, 대부분의 결과에서 렌즈의 인장강도는 평균 관능기 수(Favg)에 비례하여 증가하는 것으로 보아 가교밀도가 보다 치밀할수록 인장강도가 향상되었음을 알 수 있다. 또한, 평균 관능기 수(Favg), 황 함량 및 가교점 사이의 평균 분자량(EQavg)이 앞서 상술한 바와 같은 범위를 만족하는 중합성 조성물로부터 제조된 렌즈는 그렇지 못한 경우보다 굴절률뿐만 아니라, 아베수와 같은 광학 특성이 우수하고, 열변형온도가 높아 내열성이 우수한 것을 알 수 있다. 또한, 인장강도, 신율 및 내충격성 측면에서도 보다 우수한 수준을 나타내고 있음을 알 수 있다.As shown in Tables 3 to 6, it can be seen that the refractive index of the lens increased in proportion to the sulfur content of the polymerizable composition. Furthermore, in most results, the tensile strength of the lens is increased in proportion to the average number of functional groups (F avg ), so that the denser the crosslinking density, the better the tensile strength. In addition, lenses made from polymerizable compositions in which the average number of functional groups (F avg ), the sulfur content and the average molecular weight (EQ avg ) between the crosslinking points satisfy the above-mentioned ranges are not only refractive indexes, It can be seen that the optical properties such as water are excellent, and the heat deformation temperature is high, so the heat resistance is excellent. In addition, it can be seen that it shows a better level in terms of tensile strength, elongation and impact resistance.

Claims (11)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 2관능 이상의 폴리티올 화합물; 및
2관능 이상의 폴리이소시아네이트 화합물을 포함하는 중합성 조성물을 금형에서 가열 경화시켜 제조된 폴리티오우레탄계 플라스틱 렌즈에 있어서,
상기 폴리티올 화합물이 2-메르캅토메틸-1,5-디메르캅토-3-티아펜탄 및 5,9-디(메르캅토에틸티오)-1,13-디메르캅토-3,7,11-트리티아트리데칸으로 이루어진 군으로부터 선택되는 1종 이상이고,
상기 폴리이소시아네이트 화합물이 1,3-비스(이소시아나토메틸)사이클로헥산이며,
상기 중합성 조성물은 하기 수학식 1에 따른 평균 관능기 수(Favg)가 2.2개 이상이고, 하기 수학식 2에 따른 황 함량이 7% 이상이며, 하기 수학식 3에 따른 가교점 사이의 분자량(EQavg)이 260 g/몰 미만이며,
상기 폴리티오우레탄계 플라스틱 렌즈가 40 내지 120 kgf의 인장강도와 3 내지 20 %의 신율을 갖는, 폴리티오우레탄계 플라스틱 렌즈:
[수학식 1]
평균 관능기 수(Favg) = [(폴리티올 화합물의 관능기 수 × 폴리티올 화합물의 몰수) + (폴리이소시아네이트 화합물의 관능기 수 × 폴리이소시아네이트 화합물의 몰수) ] / (폴리티올 화합물의 몰수 + 폴리이소시아네이트 화합물의 몰수)
[수학식 2]
황 함량(%) = [{(폴리티올 화합물 내 황 원자 수 + 폴리이소시아네이트 화합물 내 황 원자 수) × 32} / (폴리티올 화합물의 분자량 + 폴리이소시아네이트 화합물의 분자량)] × 100
[수학식 3]
가교점 사이의 평균 분자량(EQavg) = (폴리티올 화합물의 분자량/폴리티올 화합물의 관능기 수) + (폴리이소시아네이트 화합물의 분자량/폴리이소시아네이트 화합물의 관능기 수).
Bifunctional or higher polythiol compounds; And
In the polythiourethane-based plastic lens produced by heating and curing a polymerizable composition comprising a bifunctional or higher polyisocyanate compound in a mold,
The polythiol compound is 2-mercaptomethyl-1,5-dimercapto-3-thiapentane and 5,9-di (mercaptoethylthio) -1,13-dimercapto-3,7,11- At least one selected from the group consisting of trithiatridecane,
The polyisocyanate compound is 1,3-bis (isocyanatomethyl) cyclohexane,
The polymerizable composition has an average number of functional groups (F avg ) according to Equation 1 below 2.2, a sulfur content according to Equation 2 below 7%, and a molecular weight between crosslinking points according to Equation 3 below ( EQ avg ) is less than 260 g / mol,
Wherein the polythiourethane-based plastic lens has a tensile strength of 40 to 120 kgf and an elongation of 3 to 20%.
[Equation 1]
Average number of functional groups (F avg ) = [(number of functional groups of polythiol compound x number of moles of polythiol compound) + (number of functional groups of polyisocyanate compound x number of moles of polyisocyanate compound)] / (moles of polythiol compound + polyisocyanate compound) Forfeiture)
[Equation 2]
Sulfur content (%) = [{(number of sulfur atoms in polythiol compound + number of sulfur atoms in polyisocyanate compound) × 32} / (molecular weight of polythiol compound + molecular weight of polyisocyanate compound)] × 100
[Equation 3]
Average molecular weight (EQ avg ) between crosslinking points = (molecular weight of polythiol compound / function number of polythiol compound) + (molecular weight of polyisocyanate compound / function number of polyisocyanate compound).
제7항에 있어서,
상기 렌즈가 1.55 내지 1.70의 굴절률을 갖는, 폴리티오우레탄계 플라스틱 렌즈.
The method of claim 7, wherein
A polythiourethane-based plastic lens, wherein the lens has a refractive index of 1.55 to 1.70.
제7항에 있어서,
상기 렌즈가 75 내지 120℃의 열변형온도를 갖는, 폴리티오우레탄계 플라스틱 렌즈.
The method of claim 7, wherein
Polythiourethane-based plastic lens, the lens has a heat deflection temperature of 75 to 120 ℃.
삭제delete 제7항에 있어서,
상기 렌즈가 30 내지 46의 아베수를 갖는, 폴리티오우레탄계 플라스틱 렌즈.
The method of claim 7, wherein
A polythiourethane-based plastic lens, wherein the lens has an Abbe number of 30 to 46.
KR1020170126227A 2017-09-28 2017-09-28 Polymerizable composition for plastic lens Active KR102029256B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170126227A KR102029256B1 (en) 2017-09-28 2017-09-28 Polymerizable composition for plastic lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170126227A KR102029256B1 (en) 2017-09-28 2017-09-28 Polymerizable composition for plastic lens

Publications (2)

Publication Number Publication Date
KR20190036837A KR20190036837A (en) 2019-04-05
KR102029256B1 true KR102029256B1 (en) 2019-11-29

Family

ID=66104221

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170126227A Active KR102029256B1 (en) 2017-09-28 2017-09-28 Polymerizable composition for plastic lens

Country Status (1)

Country Link
KR (1) KR102029256B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102150590B1 (en) * 2019-06-20 2020-09-01 에스케이씨 주식회사 Polymerizable composition and optical material using same
JP7273156B2 (en) * 2019-07-17 2023-05-12 三井化学株式会社 Polythiol composition and its application
KR102448166B1 (en) * 2020-09-22 2022-09-27 에스케이씨 주식회사 Polythiol composition and optically polymerizable composition comprising same
KR102391162B1 (en) * 2020-10-05 2022-04-26 에스케이씨 주식회사 Film for bonding and light transmitting layered product comprising of the same
CN114379178B (en) 2020-10-05 2023-05-12 Skc株式会社 Film for glass bonding, method for producing film, and light-transmitting laminate
KR102252498B1 (en) * 2020-10-05 2021-05-13 에스케이씨 주식회사 Film comprising thiourethane layer, composition for manufacturing thiourethane layer and manufacturing method of the same
US20220389147A1 (en) * 2021-05-28 2022-12-08 Skc Co., Ltd. Polymerizable composition and optical material using the same
CN115894918B (en) * 2022-10-10 2024-08-02 大连理工常熟研究院有限公司 Oxidation-resistant self-repairing thiocarbamate material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100222194B1 (en) * 1995-06-30 1999-10-01 사또 아끼오 Sulfur-containing urethane-based resin compositions, resins and optical elements and lenses composed of the resins

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608115A (en) 1994-01-26 1997-03-04 Mitsui Toatsu Chemicals, Inc. Polythiol useful for preparing sulfur-containing urethane-based resin and process for producing the same
WO2004108787A1 (en) * 2003-06-09 2004-12-16 Hoya Corporation Transparent shaped body
KR100994313B1 (en) * 2005-08-18 2010-11-12 미쓰이 가가쿠 가부시키가이샤 Polyurethane / thiourethane-based optical resin and its manufacturing method
KR101074450B1 (en) 2008-12-29 2011-10-17 주식회사 케이오씨솔루션 Resin Composition Using New Thiol Compound for Optical Lens Having Light Weight and High Refractive Index, and the Optical Lens Using It
KR20100102987A (en) * 2009-03-12 2010-09-27 주식회사 케이오씨솔루션 Optical resin composition having impact resistance and heat resistance of multi-layer, the plastic ophthalmic lens and its manufacturing method
KR101594407B1 (en) 2009-08-26 2016-02-17 주식회사 케이오씨솔루션 Method of Preparing Clear and Transparent Polythiol Compound Resin Composition Including the Polythiol Compound for Optical Lens and Preparation Method of the Optical Lens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100222194B1 (en) * 1995-06-30 1999-10-01 사또 아끼오 Sulfur-containing urethane-based resin compositions, resins and optical elements and lenses composed of the resins

Also Published As

Publication number Publication date
KR20190036837A (en) 2019-04-05

Similar Documents

Publication Publication Date Title
KR102029256B1 (en) Polymerizable composition for plastic lens
EP1925629B1 (en) Polythiourethane-based polymerizable composition and optical resin obtained from the same
US9944029B2 (en) Process for producing optical material
JP7394894B2 (en) Polythiourethane plastic lens
KR102006338B1 (en) Polymerizable composition for polythiourethane plastic lens
KR20140134050A (en) Polyurethane compositions for high-refractive index transparent lenses with good heat resistance
KR101961941B1 (en) Polythiourethane plastic lens
KR101893558B1 (en) Polymerizable composition for plastic lens
KR101993972B1 (en) Thiourethane based plastic lens for dispersion of light and the method of preparing it
EP3505547B1 (en) Polymerizable composition for an optical material
KR101922168B1 (en) Polymerizable composition for plastic lens
KR101831889B1 (en) Polythiol composition for plastic lens
KR102077653B1 (en) Polymerizable composition and optical material using same
KR102150590B1 (en) Polymerizable composition and optical material using same
KR101996981B1 (en) Polymerizable composition for plastic lens
KR101580878B1 (en) Polythiourethane polymerization compositions having high impact resistance and preparation method of optical resin using them
KR102035732B1 (en) Plastic tinted lenses and manufacturing method thereof
KR102003056B1 (en) Plastic tinted lenses and manufacturing method thereof
KR20230100162A (en) Optical resin composition having high heat resistance and optical resin using it
KR20220001866A (en) Optical resin composition having high heat resistance and optical resin using it
CN115403737A (en) Polymerizable composition and optical material using same
WO2024203896A1 (en) Optical member and method for manufacturing optical member
KR20240106458A (en) Optical resin composition for wafer-level lenses and optical resin for wafer-level lenses using it
KR20180090721A (en) Polythiol composition for plastic lens
KR20150030571A (en) Thiourethane based plastic lens for dispersion of light and the method of preparing it

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20170928

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20180504

Patent event code: PE09021S01D

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20181102

Patent event code: PE09021S01D

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20190610

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20190923

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20190930

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20191001

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20220718

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20230619

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20240619

Start annual number: 6

End annual number: 6