[go: up one dir, main page]

KR101998772B1 - The method for manufacturing multi-layer sheet of polylactic acid having an excellent shock and heat resistance - Google Patents

The method for manufacturing multi-layer sheet of polylactic acid having an excellent shock and heat resistance Download PDF

Info

Publication number
KR101998772B1
KR101998772B1 KR1020120150555A KR20120150555A KR101998772B1 KR 101998772 B1 KR101998772 B1 KR 101998772B1 KR 1020120150555 A KR1020120150555 A KR 1020120150555A KR 20120150555 A KR20120150555 A KR 20120150555A KR 101998772 B1 KR101998772 B1 KR 101998772B1
Authority
KR
South Korea
Prior art keywords
sheet
pla
raw material
resin
heat resistance
Prior art date
Application number
KR1020120150555A
Other languages
Korean (ko)
Other versions
KR20140081985A (en
Inventor
서기봉
유배근
박양호
Original Assignee
도레이첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도레이첨단소재 주식회사 filed Critical 도레이첨단소재 주식회사
Priority to KR1020120150555A priority Critical patent/KR101998772B1/en
Publication of KR20140081985A publication Critical patent/KR20140081985A/en
Application granted granted Critical
Publication of KR101998772B1 publication Critical patent/KR101998772B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2333/00Polymers of unsaturated acids or derivatives thereof
    • B32B2333/04Polymers of esters
    • B32B2333/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles

Landscapes

  • Laminated Bodies (AREA)

Abstract

본 발명은 내충격성과 내열성이 요구되는 일반 식품 및 산업용 포장 케이스 및 블리스터 등에 사용되는 시트로서 식물자원에서 유래된 폴리유산(PLA) 원료를 주원료로 하고 여기에 회수 원료 및 PMMA계 원료와 아크릴계 원료를 사용하여 내열성과 내충격성을 우수하게 한 폴리유산 다층시트의 제조방법에 관한 것으로, 상기한 본 발명의 회수 원료를 이용한 내열성과 내충격성이 우수한 폴리유산 다층시트는 시트의 내층(A)은 폴리유산과 회수원료로 이루어지며, 시트의 외층(B)은 폴리유산과 폴리메틸메타크릴레이트계(PMMA) 단독중합체 혹은 공중합체로 선택된 하나 이상의 폴리메틸메타크릴레이트와 아크릴계 수지가 혼합물로 구성되는 3층(B/A/B) 구조의 PLA계 다층시트로 구성됨을 특징으로 한다.
상기한 바와 같이 구성되는 본 발명의 회수 원료를 이용한 내열성과 내충격성이 우수한 폴리유산 다층시트 및 그 제조방법은 회수원료를 사용하면서도 일반 상업용도에 적합한 시트의 내열성, 내충격성, 투명성을 가지는 시트를, 회수원료를 효과적으로 이용함으로 보다 낮은 가격으로 제공하는 다층시트로 우수한 상업적 가치를 가진다.
The present invention relates to a polylactic acid (PLA) raw material derived from plant resources as a sheet used for general food and industrial packaging cases and blisters which are required to have impact resistance and heat resistance, and which contains recovered raw materials, PMMA raw materials and acrylic raw materials A polylactic acid multilayer sheet excellent in heat resistance and impact resistance using the recovered raw material of the present invention is characterized in that the inner layer (A) of the sheet is a polylactic acid And the outer layer (B) of the sheet is composed of a three-layered structure composed of a mixture of poly (methyl methacrylate) (PMMA) homopolymer or copolymer and at least one polymethyl methacrylate and acrylic resin And a PLA-based multilayer sheet having a (B / A / B) structure.
The polylactic acid multilayer sheet having excellent heat resistance and impact resistance using the recovered raw material of the present invention constituted as described above and a method for producing the same can provide a sheet having heat resistance, impact resistance and transparency of a sheet suitable for general commercial use, , And has excellent commercial value as a multilayer sheet which provides a lower price by effectively utilizing the raw materials for recovery.

Description

회수 원료를 이용한 내열성과 내충격성이 우수한 폴리유산 다층시트의 제조방법{The method for manufacturing multi-layer sheet of polylactic acid having an excellent shock and heat resistance}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polylactic acid multilayer sheet having excellent heat resistance and impact resistance,

본 발명은 회수 원료를 이용한 내열성과 내충격성이 우수한 폴리유산 다층시트의 제조방법에 관한 것으로, 보다 자세하게는 내충격성과 내열성이 요구되는 일반 식품 및 산업용 포장 케이스 및 블리스터(BLISTER) 등에 사용되는 시트로서 식물자원에서 유래된 폴리유산(PLA) 원료를 주원료로 하고 여기에 회수 원료 및 PMMA계 원료와 아크릴계 원료를 사용하여 내열성과 내충격성을 우수하게 한 폴리유산 다층시트의 제조방법에 관한 것이다. The present invention relates to a method for producing a poly (lactic acid) multilayer sheet excellent in heat resistance and impact resistance using a recovered raw material, and more particularly, to a sheet for use in general food and industrial packaging cases and blisters requiring impact resistance and heat resistance The present invention relates to a polylactic acid multilayer sheet produced by using a polylactic acid (PLA) raw material derived from plant resources as a main raw material, and using the raw materials for recovery, the PMMA raw materials and the acrylic raw materials to improve heat resistance and impact resistance.

기존의 포장용기 및 블리스터에 사용되는 시트의 재료는 석유에서 유래된 합성플라스틱을 사용하고 있다. 이 합성 플라스틱은 뛰어난 물성과 함께 값싸고 가벼운 특성으로 인하여 전 세계에서 다양한 용도로 사용되고 있다. 그러나, 합성 플라스틱의 장점이자 단점인 분해가 잘 되지 않는 문제로 인하여 최근 각국에서 이에 대한 해결책을 찾으려 관심을 모으고 있다. 그동안은 매립, 소각 및 재생이라는 방법을 주로 활용해 왔으나, 이들 방법으로는 환경오염 문제를 완전히 해결할 수가 없다. 따라서, 사용이 완료된 플라스틱이 스스로 분해가 가능하도록 만드는 소위 분해성 플라스틱 개발에 관심이 집중되고 있다. 분해성 플라스틱과 관련된 기술을 세분하면 생분해 기술, 광분해 기술 그리고 이들 두 기술을 조합한 생·광분해 기술로 나뉘어 진다. 생분해성 플라스틱으로는 PHB(Poly-hydroxybutylate) 등과 같은 미생물 생산 고분자, 미생물 생산 바이오케미칼(Biochemical)을 합성원료로 한 고분자, 화학적으로 합성된 지방족 폴리에스테르, 키틴(chitin) 등의 천연고분자 및 전분 등을 첨가한 플라스틱 등 여러 형태가 있다. 하지만, 이들 플라스틱은 기존 플라스틱에 비해 기계적 물성이 떨어지며, 가격이 비싼 까닭으로 값싼 전분 등을 혼합해야 하는 까닭에 투명성 및 기계적 물성이 저하되는 문제가 발생한다. 근래에 들어 폴리유산(Polylactic acid; 이하, 'PLA'라 함)은 L-유산의 발효법 개발에 의해 대량 또한 값싸게 제조되고 있으며, 퇴비화 조건에서 분해속도가 빠르고, 곰팡이에 대한 저항성, 식품에 대한 내착취성 등 우수한 특징을 보유해 그 이용 분야의 범위가 확대되고 있다. 그렇지만, 폴리유산은 깨어지기 쉬운(BRITTLE) 특성을 가져 필름이나 시트 등의 유연성이 요구되는 용도에는 적절한 수지라 보기 어렵다. 따라서, 폴리유산을 용도에 맞게 사용하기 위해서는 폴리유산 이외의 물질을 이용하여 물성을 개질하는 것이 요구된다. 일반적으로 수지를 연질화하는 기술로는 가소제 첨가, 코폴리머화, 연질폴리머의 블랜드화 등의 방법이 있다. 가소제나 코폴리머법은 유연성을 충분히 부여할 수는 있지만, 수지 조성물의 유리전이온도를 떨어뜨리고, 가소제의 브리드 발생 문제 등의 이유로 실용화하기에는 문제점이 있다. 한편, 블랜드화 방법은 실용화하기에 간단하며 폴리유산의 특성을 크게 손상시키지 않으므로 적합하다. 폴리유산에 적합한 블랜드 수지로는 생분해성을 고려한다면 지방족 폴리에스테르나, 방향족-지방족 폴리에스테르가 적합하며 이들의 블랜드 적용에 따른 종래의 기술로는 일본 미쯔이사의 PLA와 폴리부틸렌석시네이트(PBS), 전분, 가소제로 이루어진 조성물 특허(일본국 특허공개공보 1999-241008), 일본 미쯔비시사의 PLA와 지방족 폴리에스테르로 이루어진 조성물 특허(일본국 특허공개공보 1999-124495), 일본 유니티카사의 PLA와 방향족-지방족 폴리에스테르, 가소제 등으로 이루어진 필름특허(일본국 특허공개공보 2002-327107), 일본 시세이도사의 PLA와 PBS로 이루어진 용기특허(일본국 특허공개공보 2001-039426), 이래화학의 PLA와 지방족 폴리에스테르, 방향족-지방족 폴리에스테르로 이루어진 조성물 특허(대한민국 특허등록 0428687) 및 PLA와 지방족 폴리에스테르로 이루어진 조성물특허(대한민국 특허공개공보 2001-0045677), 유럽 NOVAMONT사의 PLA와 지방족 폴리에스테르, 방향족-지방족 폴리에스테르로 이루어진 조성물 특허(EP 1227129) 및 PLA와 지방족 폴리에스테르, 폴리카프로락톤(PCL)로 이루어진 조성물 특허(EP 1227130) 등이 있다. 이들 기술은 단순히 PLA와 지방족 폴리에스테르 및 방향족-지방족 폴리에스테르를 블랜드 시키는 것 이외에도 부족한 물성을 강화하기 위해 기타 가소제, 무기 충진제, 전분 등을 혼합하였으며, 어떤 경우에는 PLA의 함량보다 지방족 폴리에스테르 및 방향족-지방족 폴리에스테르의 함량이 더 높게 되어 있어 PLA의 고유 특성 특히, 투명성을 유지하기가 어려운 문제가 있다. 또한, 폴리유산 단독으로 성형을 할 경우 폴리유산의 깨어지기 쉬운 특성으로 인해 성형체가 쉽게 부서지는 현상이 발생하고, 시트를 통한 변형(Thermoforming) 작업 시에도 시트 이송, 절단(CUTTING) 등에서 시트가 깨지는 등의 문제가 발생한다. The materials used in conventional packaging containers and blisters are made from synthetic plastics derived from petroleum. These synthetic plastics are used in various applications all over the world because of their excellent properties and low cost and light characteristics. However, due to the problem of the disadvantages of synthetic plastic and its disadvantages, it is getting attention from the countries in recent years to find a solution to this problem. In the meantime, reclamation, incineration and reclamation have been mainly used, but these methods can not completely solve the environmental pollution problem. Therefore, there is a growing interest in the development of so-called degradable plastics, which enable the decomposition of used plastics by themselves. Biodegradation technology, photolysis technology, and bio-photolysis technology, which combine these two technologies, are divided into technologies related to degradable plastics. Biodegradable plastics include microbial production polymers such as PHB (poly-hydroxybutylate), microbial production polymers such as biochemical synthetic materials, chemically synthesized aliphatic polyesters, natural polymers such as chitin, starch And plastics to which there are added. However, these plastics have lower mechanical properties than conventional plastics, and because they are expensive, there is a problem that transparency and mechanical properties are deteriorated due to mixing of cheap starch. In recent years, polylactic acid (hereinafter referred to as PLA) has been produced in large quantities and inexpensively by the development of L-lactic acid fermentation method, and has been rapidly produced at composting conditions, resistant to fungi, And exploitability, and the range of applications thereof is expanding. However, poly (lactic acid) has a brittle property and is not suitable for applications requiring flexibility such as films and sheets. Therefore, in order to use polylactic acid according to the application, it is required to modify the physical properties by using a substance other than polylactic acid. Generally, techniques for softening a resin include plasticizer addition, copolymerization, and blending of a soft polymer. Although the plasticizer or copolymer method can sufficiently impart flexibility, there is a problem in lowering the glass transition temperature of the resin composition and putting it into practical use due to the problem of bleeding of the plasticizer or the like. On the other hand, the blending method is suitable for practical use because it does not significantly impair the properties of polylactic acid. Considering biodegradability, aliphatic polyesters and aromatic-aliphatic polyesters are suitable as blends suitable for poly (lactic acid). As a conventional technique for blending, PLA and polybutylene stearate (PBS ), A composition comprising a starch and a plasticizer (Japanese Patent Laid-Open No. 1999-241008), a composition patent comprising PLA and an aliphatic polyester of Mitsubishi, Japan (Japanese Patent Laid-Open Publication No. 1999-124495) (Japanese Patent Application Laid-Open No. 2002-327107) made of aliphatic polyester and plasticizer, a container patent made of PLA and PBS manufactured by Shiseido of Japan (Japanese Patent Laid-Open Publication No. 2001-039426) Esters, aromatic-aliphatic polyesters (Korean Patent Registration No. 0428687), PLA and aliphatic polyesters (Korean Patent Laid-Open Publication No. 2001-0045677), composition patent (EP 1227129) composed of PLA and aliphatic polyester, aromatic-aliphatic polyester of NOVAMONT of Europe, and PLA and aliphatic polyester, polycaprolactone (PCL) A composition patent (EP 1227130) and the like. In addition to blending the PLA with the aliphatic polyester and the aromatic-aliphatic polyester, these techniques merely mixed other plasticizers, inorganic fillers, starch and the like in order to enhance the deficient physical properties. In some cases, the content of the aliphatic polyester and the aromatic - the content of the aliphatic polyester is higher, and there is a problem that it is difficult to maintain the inherent characteristics of PLA, in particular, transparency. In addition, when the polylactic acid is molded alone, the molded article easily breaks due to the fragile nature of the polylactic acid, and even when the sheet is deformed through the sheet (thermoforming), the sheet is cracked And the like.

또한, 폴리유산의 경우 낮은 내열성으로 인해 용도에 제한이 있다. 특히, 일반 포장용 트레이(TRAY)의 경우 상온 이상의 온도에서는 트레이의 변형이 발생되는 문제점이 있다. 일반적으로 PLA의 내열성을 향상시키는 기술로는 무기필러나 결정핵제를 첨가시켜 내열성을 향상시키는 방법과 지방족 폴리에스테르를 혼합시키는 방법, 결정화도를 향상시켜 내열성을 부여한 방법 등이 있다. 이와 같은 기술들의 예는 일본 미쯔비시가스화학사의 PHB와 PLA의 블랜드 시 무기필러로 탄산칼슘, 결정핵제로 질화붕소를 혼합시켜 내열성을 향상시킨 특허(일본국 특허공개공보 2000-239508), 미쯔이사의 PLA에 내열성을 부여하기 위해 융점이 80~250℃를 가지는 지방족 폴리에스테르수지를 조성물 중에서 10~50wt%와 더불어 유연성을 부여하기 위해 가소제를 첨가시킨 특허(일본국 특허공개공보 1999-241008), 시세이도사의 PLA에 폴리부틸렌석시네이트계 수지를 10~90% 함량으로 첨가시켜 내열성을 향상시킨 특허(일본국 특허공개공보 2001-039426), 대일본잉크사의 PLA 필름, 시트 제조 시 결정화도를 증가시켜 내열성을 부여한 기술에 대한 특허(일본국 특허공개공보 1996-073628) 등이 있다. 그러나, 이들 기술은 내열성 향상이 명확하지 않거나, PLA에 첨가되는 다른 폴리머의 열적 특징에 의존하거나, 제조과정에서 어닐링 처리나 연신배향 등의 과정이 요구되는 현실이다.
In addition, polylactic acid has a limited use due to its low heat resistance. Particularly, in the case of a general packing tray, deformation of the tray occurs at a temperature higher than room temperature. Generally, techniques for improving the heat resistance of PLA include a method of improving the heat resistance by adding an inorganic filler or a nucleating agent, a method of mixing the aliphatic polyester, and a method of improving the crystallinity and imparting heat resistance. Examples of such techniques include a patent (Japanese Patent Application Laid-Open No. 2000-239508) in which calcium carbonate as an inorganic filler at the blend of PHB and PLA of Japan Mitsubishi Gas Chemical Co. and boron nitride as a crystal nucleus are mixed to improve heat resistance In order to impart heat resistance to PLA, an aliphatic polyester resin having a melting point of 80 to 250 DEG C is added to the composition in an amount of 10 to 50 wt% in the composition (Japanese Patent Laid-Open Publication No. 1999-241008) (Japanese Patent Application Laid-Open No. 2001-039426) in which a polybutylene stincinate resin is added in an amount of 10 to 90% to the PLA of the company (Japanese Patent Application Laid-Open No. 2001-039426) (Japanese Patent Application Laid-Open No. 1996-073628). However, these techniques are not clear to improve the heat resistance, or depend on the thermal characteristics of other polymers added to PLA, or require a process such as annealing treatment or stretching orientation in the production process.

특허문헌 1: 일본국 특허공개공보 1999-241008Patent Document 1: Japanese Patent Application Laid-Open No. 1999-241008 특허문헌 2: 일본국 특허공개공보 1999-124495Patent Document 2: Japanese Patent Application Laid-Open No. 1999-124495 특허문헌 3: 일본국 특허공개공보 2002-327107Patent Document 3: Japanese Patent Application Laid-Open No. 2002-327107 특허문헌 4: 일본국 특허공개공보 2001-039426Patent Document 4: Japanese Patent Application Laid-Open No. 2001-039426 특허문헌 5: 대한민국 특허등록 0428687Patent Document 5: Korean Patent Registration 0428687 특허문헌 6: 대한민국 특허공개공보 2001-0045677Patent Document 6: Korean Patent Laid-Open Publication No. 2001-0045677 특허문헌 7: EP 1227129Patent Document 7: EP 1227129 특허문헌 8: EP 1227130Patent Document 8: EP 1227130 특허문헌 9: 일본국 특허공개공보 2000-239508Patent Document 9: Japanese Patent Application Laid-Open No. 2000-239508 특허문헌 10: 일본국 특허공개공보 1999-241008Patent Document 10: JP-A-1999-241008 특허문헌 11: 일본국 특허공개공보 2001-039426Patent Document 11: Japanese Patent Application Laid-Open No. 2001-039426 특허문헌 12: 일본국 특허공개공보 1996-073628Patent Document 12: Japanese Patent Application Laid-Open No. 1996-073628

따라서, 본 발명은 상기한 종래 기술에 있어서의 기술적 문제점을 감안하여 된 것으로, 본 발명의 주목적은 종래 PLA계 단층시트의 낮은 내충격성과 내열성을 해결하기 위해 시트의 외층에 PMMA계 수지와 아크릴계 수지를 복합 적용하여 내충격성과 내열성을 향상시키고, PLA시트의 장점인 투명성을 크게 저하시키지 않는 PLA계 다층시트를 제공하는 것을 그 목적으로 한 것이다. DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned technical problems in the prior art, and a main object of the present invention is to provide a PLA mono-layer sheet, which has a low impact resistance and heat resistance, It is an object of the present invention to provide a PLA-based multilayer sheet which improves impact resistance and heat resistance by combined use and does not significantly deteriorate transparency, which is an advantage of PLA sheet.

본 발명의 다른 목적은 PMMA계 수지, 아크릴계 수지 및 PLA수지를 복합 적용하여 시트의 외층(B)을 이루게 하고, 시트의 내층(A)은 PLA수지와 PMMA계 수지, 아크릴계 수지 및 PLA수지가 포함된 회수원료로 이루게 한 B/A/B구조의 PLA계 다층시트 조성물로 일반 상업용도에 적합한 시트의 내열성, 내충격성, 투명성을 가지는 시트를 제공할 수 있도록 하여, 회수원료를 효과적으로 이용함으로 보다 낮은 가격의 다층시트를 제공하기 위한 것이다.Another object of the present invention is to provide an outer layer (B) of a sheet by a combination of a PMMA resin, an acrylic resin and a PLA resin, wherein the inner layer (A) of the sheet contains PLA resin, PMMA resin, acrylic resin and PLA resin A PLA-based multilayer sheet composition having a B / A / B structure made of a raw material for recovery, which can provide a sheet having heat resistance, impact resistance and transparency suitable for general commercial use, Layer sheet of the present invention.

본 발명의 또 다른 목적은 상기한 우수한 특성을 가지는 폴리유산 다층시트의 보다 용이한 제조방법을 제공하기 위한 것이다.It is still another object of the present invention to provide a method for manufacturing a poly (lactic acid) multilayer sheet having excellent properties as described above.

본 발명은 또한 상기한 명확한 목적 이외에 본 명세서의 전반적인 기술로부터 이 분야의 통상인에 의해 용이하게 도출될 수 있는 다른 목적을 달성함을 그 목적으로 할 수 있다.
The present invention may also be directed to accomplishing other objects that can be easily derived by those skilled in the art from the overall description of the present specification, other than the above-described and obvious objects.

상기 목적을 달성하기 위한 본 발명의 회수 원료를 이용한 내열성과 내충격성이 우수한 폴리유산 다층시트는;The polylactic acid multilayer sheet having excellent heat resistance and impact resistance using the recovered raw material of the present invention for achieving the above object comprises;

시트의 내층(A)은 폴리유산과 회수원료로 이루어지며, 시트의 외층(B)은 폴리유산과 폴리메틸메타크릴레이트계(PMMA) 단독중합체 혹은 공중합체로 선택된 하나 이상의 폴리메틸메타크릴레이트와 아크릴계 수지가 혼합물로 구성되는 3층(B/A/B) 구조의 PLA계 다층시트로 구성됨을 특징으로 한다.The inner layer (A) of the sheet is made of polylactic acid and the raw material for recovery, and the outer layer (B) of the sheet is made of at least one polymethyl methacrylate selected from a polylactic acid and a polymethyl methacrylate (PMMA) homopolymer or copolymer And a PLA-based multilayer sheet having a three-layer (B / A / B) structure in which an acrylic resin is composed of a mixture.

본 발명의 다른 구성에 따르면, 상기 내층(A)의 전체 함량 중에서 폴리유산의 함량은 99.0 내지 50.0중량부이며, 회수원료의 함량은 1.0 내지 50.0중량부인 것을 특징으로 한다.According to another aspect of the present invention, the content of polylactic acid in the total content of the inner layer (A) is 99.0 to 50.0 parts by weight, and the content of the recovered starting material is 1.0 to 50.0 parts by weight.

본 발명의 또 다른 구성에 따르면, 상기 외층(B)의 전체 함량 중에서 폴리유산의 함량은 10.0 내지 25.0중량부, 폴리메틸메타크릴레이트계(PMMA) 단독중합체 혹은 공중합체로 선택된 하나 이상의 폴리메틸메타크릴레이트의 함량이 50.0 내지 80.0중량부, 아크릴계 수지의 함량은 10.0 내지 25.0중량부인 것을 특징으로 한다.According to another embodiment of the present invention, the content of the polylactic acid in the total content of the outer layer (B) is 10.0 to 25.0 parts by weight, the content of one or more polymethylmethacrylate (PMMA) homopolymers or copolymers selected from polymethyl methacrylate The content of acrylate is 50.0 to 80.0 parts by weight, and the content of acrylic resin is 10.0 to 25.0 parts by weight.

본 발명의 또 다른 구성에 따르면, 상기 3층(B/A/B)구조의 층비는 0.5/9.0/0.5 내지 2.0/6.0/2.0인 것을 특징으로 한다.According to another embodiment of the present invention, the layer ratio of the three-layer (B / A / B) structure is 0.5 / 9.0 / 0.5 to 2.0 / 6.0 / 2.0.

본 발명의 또 다른 구성에 따르면, 상기 폴리유산이 L-락트산, D-락트산 또는 L,D-락트산으로 구성되며, 수평균분자량은 10,000 이상인 것으로, 이들이 단독 혹은 복합으로 사용된 것을 특징으로 한다.According to another embodiment of the present invention, the poly (lactic acid) is composed of L-lactic acid, D-lactic acid or L, D-lactic acid and has a number average molecular weight of 10,000 or more.

본 발명의 또 다른 구성에 따르면, 상기 폴리메틸메타크릴레이트계(PMMA) 단독중합체 혹은 공중합체로 선택된 하나 이상의 폴리메틸메타크릴레이트 수지는 용융 지수(M.I.) 값이 4.0 내지 8.0g/10min(at 190℃/2.16K)인 메틸메타크릴레이트 단독중합체 혹은 메틸메타크릴레이트와 메틸아크릴레이트, 에틸(메타)아크릴레이트, 부틸 (메타)아크릴레이트, 스티렌에서 선택되는 어느 하나 이상의 공단량체의 공중합체인 것을 특징으로 한다.According to another embodiment of the present invention, at least one polymethyl methacrylate resin selected from the polymethyl methacrylate (PMMA) homopolymer or copolymer has a melt index (MI) value of 4.0 to 8.0 g / 10 min (at 190 占 폚 / 2.16K) or a copolymer of methyl methacrylate and at least one comonomer selected from methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate and styrene .

본 발명의 또 다른 구성에 따르면, 상기 아크릴계 수지는 알킬 메타크릴레이트 화합물 및 알킬 아크릴레이트 화합물로 이루어진 군으로부터 선택되는 1종 이상의 화합물에 스타일렌계 또는 부타디엔계 고무성분을 함유하는 단독 또는 공중합체인 것을 특징으로 한다.According to another embodiment of the present invention, the acrylic resin is a single or a copolymer containing at least one compound selected from the group consisting of an alkyl methacrylate compound and an alkyl acrylate compound and containing a styrenic or butadiene rubber component .

본 발명의 또 다른 구성에 따르면, 상기 회수원료는 중량기준으로 폴리유산(PLA) 수지가 95.0 내지 60.0중량부, PMMA계 수지가 5.0 내지 32,0중량부, 아크릴계 수지가 1.0 내지 10.0중량부로 이루어진 것을 특징으로 한다.According to another embodiment of the present invention, the recovered raw material comprises 95.0 to 60.0 parts by weight of a polylactic acid (PLA) resin, 5.0 to 32.0 parts by weight of a PMMA resin, and 1.0 to 10.0 parts by weight of an acrylic resin, .

본 발명의 또 다른 구성에 따르면, 상기 시트의 두께는 0.15 내지 1.20mm인 것을 특징으로 한다.
According to another embodiment of the present invention, the thickness of the sheet is 0.15 to 1.20 mm.

상기한 바와 같이 구성되는 본 발명의 회수 원료를 이용한 내열성과 내충격성이 우수한 폴리유산 다층시트 및 그 제조방법은 회수원료를 사용하면서도 일반 상업용도에 적합한 시트의 내열성, 내충격성, 투명성을 가지는 시트를, 회수원료를 효과적으로 이용함으로 보다 낮은 가격으로 제공하는 다층시트로 우수한 상업적 가치를 가진다.
The polylactic acid multilayer sheet having excellent heat resistance and impact resistance using the recovered raw material of the present invention constituted as described above and a method for producing the same can provide a sheet having heat resistance, impact resistance and transparency of a sheet suitable for general commercial use, , And has excellent commercial value as a multilayer sheet which provides a lower price by effectively utilizing the raw materials for recovery.

이하, 본 발명을 바람직한 실시형태에 의해 보다 자세하게 설명하지만, 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention as defined by the appended claims. will be.

상기와 같이 구성되는 본 발명의 바람직한 실시형태에 따라 사용되는 폴리유산(PLA)은 락틱산(lactic acid)을 중합시켜 얻어지는 것으로, 본 발명에 사용되는 폴리유산(PLA)의 경우 L-락트산, D-락트산 또는 L,D-락트산으로 구성되며, 수평균분자량은 10,000 이상인 것이 바람직하다. 이들 폴리유산은 단독 혹은 복합으로 사용될 수 있다.Polylactic acid (PLA) used according to a preferred embodiment of the present invention is obtained by polymerizing lactic acid. In the case of polylactic acid (PLA) used in the present invention, L-lactic acid and D -Lactic acid or L, D-lactic acid, and the number average molecular weight is preferably 10,000 or more. These polylactic acid may be used alone or in combination.

본 발명에 따른 PMMA계 수지는 메틸메타크릴레이트 단독중합체 혹은 메틸메타크릴레이트와 메틸아크릴레이트, 에틸(메타)아크릴레이트, 부틸 (메타)아크릴레이트, 스티렌에서 선택되는 어느 하나 이상의 공단량체의 공중합체가 사용될 수 있다.The PMMA resin according to the present invention is a copolymer of methyl methacrylate homopolymer or copolymer of methyl methacrylate and at least one comonomer selected from methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate and styrene Can be used.

본 발명의 바람직한 실시형태에 따르면, 본 발명에 따라 사용되는 아크릴계 내충격제는 알킬 메타크릴레이트 화합물 및 알킬 아크릴레이트 화합물로 이루어진 군으로부터 선택되는 1종 이상의 화합물에 스타일렌계 또는 부타디엔계 고무성분을 함유하는 단독 또는 공중합체가 사용될 수 있다.According to a preferred embodiment of the present invention, the acrylic impactproofing agent to be used in accordance with the present invention comprises at least one compound selected from the group consisting of an alkyl methacrylate compound and an alkyl acrylate compound and a styrenic or butadiene- Alone or copolymers may be used.

또한, 본 발명에 따른 회수원료는 폴리유산(PLA)과 PMMA계 수지, 아크릴계 내충격제 등으로 이루어지는 것으로 사용할 수 있다. The recovered raw material according to the present invention can be used as a material comprising polylactic acid (PLA), a PMMA resin, an acrylic impactproofing agent, and the like.

이외에도 차폐성을 주기 위해 산화규소, 산화티탄, 탄화칼슘, 카올린, 카올리나이트, 클레이, 탈크, 알루미나, 알루미나졸, 제올라이트, 그라파이트, 지르코늄졸, 장석, 이황화 몰리브덴, 카본블랙, 바륨염, 황산바륨, 산화안티몬졸, 칼슘실리게이트, 알루미늄실리게이트, 칼슘스테어레이트 등의 무기입자가 사용될 있으며, 용도에 따라 자외선 방지제, 항균/항취제, 열안정제, 광안정제, 난연제, 대전 방지제, 산화방지제, 등의 물질을 첨가물로 사용할 수 있다.In addition, in order to impart shielding property, it is preferable to use a metal oxide such as silicon oxide, titanium oxide, calcium carbide, kaolin, kaolinite, clay, talc, alumina, alumina sol, zeolite, graphite, zirconium sol, feldspar, molybdenum disulfide, carbon black, barium salt, Inorganic particles such as sol, calcium silicate, aluminum silicate and calcium stearate are used. Depending on the application, materials such as ultraviolet ray inhibitor, antibacterial / antiperspirant, heat stabilizer, light stabilizer, flame retardant, antistatic agent, antioxidant Can be used as additives.

본 발명에서 제시한 내충격성과 내열성이 우수한 PLA계 다층시트는 외층/내층/외층(B/A/B)구조로 이루어진다. 이때 외층/내층/외층의 층비는 0.5/9.0/0.5 내지 2.0/6.0/2.0으로 이루어질 수 있다. 이때, 충분한 내충격성과 내열성을 발휘하기 위해서는 시트 외층의 두께도 중요한 요소이며, 외층(B) 두께가 10㎛ 이상은 유지되어야 하며, 좋기로는 30㎛수준이 적당하다. 일반적으로 사용되는 시트의 경우 두께가 300㎛ 수준임을 감안한다면 시트의 층비를 외층/내층/외층이 1.0/8.0/1.0로 설계하여야 외층(B) 두께가 30㎛로 이루어지게 된다. 외층(B) 두께는 높을수록 내충격성과 내열성이 강화되지만, 외층(B)의 두께가 50㎛이상에서는 더 이상 두께를 올려도 현저한 내충격성과 내열성 상승효과는 없다. 본 발명에서의 PLA계 다층시트의 두께는 300㎛로 층비를 0.5/9.0/0.5 내지 2.0/6.0/2.0로 할 경우 외층(B)의 두께는 15 내지 60㎛ 수준이다. 외층(B)에 적용되는 원료의 구성은 시트의 외층(B)에서의 중량기준으로 볼 때 내열성을 강화시켜주는 PMMA계 수지가 50.0 내지 80.0중량부이며, 내충격성을 강화시켜주는 아크릴계 수지가 10.0 내지 25.0중량부, PLA수지가 10.0 내지 25.0중량부로 이루어져야 한다. PMMA계 수지를 80.0중량부 이상 투입될 경우에는 아크릴계수지와 PLA수지의 함량이 줄어들어 내충격성이 나빠지며, 50.0중량부 이하로 투입되면 내열성 강화효과가 없어지게 된다. 특히, 압출기 내에서 PMMA계 수지와 아크릴계 수지, PLA수지가 혼련되는 과정에서 PMMA계 수지의 함량이 줄어들게 되어 PMMA계 수지의 내열성 강화 효과가 현저히 떨어짐을 확인할 수 있었다. 아크릴계 수지의 경우에도 25.0중량부 이상에서는 시트의 투명성이 급격히 나빠져 투명성이 요구되는 분야로의 적용이 어렵게 되며, 10.0중량부 이하로 투입되면 내충격성 강화의 효과를 볼 수 없다. 일반적으로 시트의 외층에 투입되는 PMMA계 수지, 아크릴계 수지, PLA수지는 각각의 원료로 압출기에 투입되어도 상관없으나, 아크릴계 수지의 분산성을 높이기 위해 본 발명에서는 먼저 PLA와 아크릴계수지를 1:1로 혼합(COMPOUND)하여 압출기에 투입하였다. 또한, 본 PLA계 다층시트에 사용되는 PMMA수지의 M.I.(Melt Index, at 190℃/2.16K)가 중요하며 4 내지 8 g/10min이 되어야 한다. PMMA수지의 M.I. 값이 이 범위를 벗어날 경우 PLA와 PMMA의 압출온도 조건에 차이가 많아지게 되고, 시트 성형시 시트 표면에 줄무늬가 발생될 수 있다. 시트의 내층(A)의 경우 시트 내층(A) 중량기준으로 PLA수지가 99.0 내지 50.0중량부, 회수원료가 1.0 내지 50.0중량부로 이루어져 있다. 회수원료의 경우 회수원료의 중량기준으로 PLA수지가 95.0 내지 60.0중량부, PMMA계 수지가 5.0 내지 32,0중량부, 아크릴계 수지가 1.0 내지 10.0중량부로 이루어져 있다. 회수원료는 통상 시트 생산 중 발생되는 엣지 절단(EDGE CUTTING)부나 시트 제품 두께, 폭 등의 변경 중에 발생되는 웨이스트 롤(WASTE ROLL)을 분쇄하여 재사용할 수 있게 만든 것을 말한다. The PLA-based multilayer sheet excellent in impact resistance and heat resistance proposed in the present invention has an outer layer / inner layer / outer layer (B / A / B) structure. At this time, the layer ratio of the outer layer / inner layer / outer layer may be 0.5 / 9.0 / 0.5 to 2.0 / 6.0 / 2.0. At this time, in order to exhibit sufficient impact resistance and heat resistance, the thickness of the outer layer of the sheet is also an important factor. The thickness of the outer layer (B) should be maintained at 10 μm or more. Considering that the thickness of a commonly used sheet is 300 μm, the thickness of the outer layer (B) is 30 μm when the outer layer / inner layer / outer layer is designed to be 1.0 / 8.0 / 1.0. The higher the thickness of the outer layer (B), the more the impact resistance and heat resistance are enhanced. However, when the thickness of the outer layer (B) is 50 탆 or more, there is no remarkable increase in impact resistance and heat resistance even if the thickness is further increased. The thickness of the outer layer (B) is in the range of 15 to 60 占 퐉 when the thickness of the PLA-system multilayer sheet in the present invention is 300 占 퐉 and the layer ratio is 0.5 / 9.0 / 0.5 to 2.0 / 6.0 / 2.0. The composition of the raw material to be applied to the outer layer (B) is 50.0 to 80.0 parts by weight of a PMMA-based resin for enhancing heat resistance based on the weight of the outer layer (B) of the sheet, and the acrylic resin for enhancing impact resistance is 10.0 To 25.0 parts by weight, and the PLA resin should be 10.0 to 25.0 parts by weight. When 80.0 parts by weight or more of the PMMA-based resin is added, the content of the acrylic resin and the PLA resin is reduced to deteriorate the impact resistance. If the amount is less than 50.0 parts by weight, the effect of enhancing the heat resistance is lost. Particularly, in the extruder, the content of the PMMA-based resin is reduced in the process of mixing the PMMA-based resin, the acrylic-based resin and the PLA-based resin, and the heat resistance enhancement effect of the PMMA-based resin is remarkably decreased. In the case of the acrylic resin, too, the transparency of the sheet sharply deteriorates at 25.0 parts by weight or more, making it difficult to apply it to a field where transparency is required. When the amount is less than 10.0 parts by weight, the effect of reinforcing the impact resistance can not be obtained. Generally, the PMMA resin, the acrylic resin and the PLA resin which are put into the outer layer of the sheet may be put into the extruder as respective raw materials. However, in order to improve the dispersibility of the acrylic resin, the PLA and the acrylic resin are first mixed The mixture was compounded and put into an extruder. In addition, the MI index (at 190 占 폚 / 2.16K) of the PMMA resin used in this PLA-based multilayer sheet is important and should be 4 to 8 g / 10 min. M.I. If the value is out of this range, the extrusion temperature condition of PLA and PMMA becomes large, and streaks may be generated on the sheet surface during sheet molding. In the inner layer (A) of the sheet, 99.0 to 50.0 parts by weight of the PLA resin and 1.0 to 50.0 parts by weight of the recovered raw material are contained based on the weight of the sheet inner layer (A). In the case of the recovered raw material, 95.0 to 60.0 parts by weight of the PLA resin, 5.0 to 32.0 parts by weight of the PMMA resin, and 1.0 to 10.0 parts by weight of the acrylic resin are contained based on the weight of the recovered raw material. The recovered raw material refers to a product which is capable of pulverizing and reusing a waist roll generated during the change of the edge cutting or seat product thickness and width generated during the production of the sheet.

상기와 같이 본 발명에 따른 B/A/B구조의 PLA계 다층시트 조성물은 각각의 익스트루더(EXTRUDER)로부터 용융 압출되어 피더블록에서 층이 나뉘어진 뒤 다이(DIE)로 용융 압출되어 형성되며, 이때 가장 중요한 것은 온도조건이며 180 내지 250℃의 온도범위, 바람직하게는 200 내지 230℃의 온도범위에서 가공을 하는 것이 좋다. 이는 수지 조성물의 열분해를 최소로 하여 시트조성물의 물성을 해치지 않는 효과가 있으며, 충분한 용융온도를 유지함으로써 다이에서부터 토출되는 용융 폴리머의 유동제어를 하기에 가장 적합하기 때문이다.
As described above, the PLA-based multilayer sheet composition of the B / A / B structure according to the present invention is formed by melt-extruding from each extruder, dividing the layers in the feeder block, , And most importantly, the temperature is in a temperature range of 180 to 250 ° C, preferably 200 to 230 ° C. This is because the thermal decomposition of the resin composition is minimized and the physical properties of the sheet composition are not impaired, and it is most suitable to control the flow of the molten polymer discharged from the die by maintaining a sufficient melting temperature.

다음의 실시예 및 비교예에 의해 본 발명을 좀 더 상세히 설명하지만, 본 발명의 범주가 이들 실시예에 한정되는 것이 아님은 물론이다. 이하의 실시예 및 비교예에서 제조된 시트가 내열성과 투명성을 충족시킬 수 있는 시트 물성을 갖추었는지를 다음의 방법으로 다양한 조건에서 시험을 실시하였다.
The present invention will be described in more detail by way of the following examples and comparative examples, but it goes without saying that the scope of the present invention is not limited to these examples. Whether the sheets prepared in the following Examples and Comparative Examples had sheet properties capable of satisfying heat resistance and transparency were tested in various conditions by the following method.

(1) 내열성(1) Heat resistance

항온항습기에 온도 60℃, 습도 50%의 조건에서 두께가 0.20mm인 시편을 3일 동안 방치한 후, 변형이 일어나지 않은 것은 ○, 약간의 찌그러지는 변형이 일어나는 것은 △, 극히 심한 변형이 일어난 것은 × 로 표시하였다.A specimen with a thickness of 0.20 mm was allowed to stand for 3 days at a temperature of 60 ° C and a humidity of 50% in a thermo-hygrostat. The specimens were found to have no deformation, a slight deformation occurred and a very severe deformation ×.

(2) 내충격성 (2) Impact resistance

"도요 세이키 제작소(TOYO SEIKI SEISAKU-SHO)" 사의 필름 임팩터 테스터(FILM IMPACT TESTER)기를 통해 내충격성을 측정하였으며 다음과 같은 계산식을 통해 충격강도로 표시하였다.The impact resistance was measured by a film impact tester (manufactured by TOYO SEIKI SEISAKU-SHO), and the impact strength was expressed by the following equation.

충격강도(kN.m/mm) = 시편이 파괴될 때에 소요된 힘(kg.cm) / 시편두께(mm) X 0.09807Impact strength (kN.m / mm) = force required when specimen is broken (kg.cm) / specimen thickness (mm) X 0.09807

(3) 투명성 (3) Transparency

헤이즈 측정기(AUTOMATIC DIGITAL HAZEMETER, 일본 니폰덴소쿠사 제작)에 10cm X 10cm 크기로 샘플링한 시료 1매를 수직으로 놓고, 수직으로 놓여진 시료의 직각 방향으로 400 ~ 700㎚의 파장을 갖는 빛을 투과시켜 나타난 값을 측정하였다.A sample 10 cm x 10 cm in size was placed vertically on a haze meter (AUTOMATIC DIGITAL HAZEMETER, manufactured by Nippon Denshoku Co., Ltd.) and transmitted through a light having a wavelength of 400 to 700 nm in a direction perpendicular to the sample placed vertically Respectively.

이때 헤이즈(Haze) 값은 하기 수학식 1로 산출되었다.At this time, the haze value was calculated by the following equation (1).

[수학식 1] 헤이즈(%) = (1- 산란광의 량/광의 총 투과량) × 100
(1) Haze (%) = (1 - amount of scattered light / total amount of light transmitted) × 100

실시예 1Example 1

PLA수지(N.W LLC사 PLA-2003D) 80kg과 회수원료 10kg을 1번 압출기에 투입하여 용융시킨 후 피더 블럭(FEEDER BLOCK)을 통해 시트(SHEET)의 내층(A)으로 통과시키고, PMMA계 수지 7kg과 PLA 수지와 아크릴계 수지가 1:1로 혼합된 원료 3kg을 2번 압출기에 투입하여 용융시킨 후 피더 블럭을 통해 시트의 외층(B)으로 통과시킨 후 슬립(SLIP)형 다이를 통해 폴리머(POLYMER)를 토출시켜 0.5:9.0:0.5의 B/A/B구조를 가진 300㎛두께의 PLA계 다층시트를 제조하였다. 제조된 PLA계 다층시트를 진공성형을 통해 트레이를 성형하였으며 성형된 트레이를 통해 내열성, 내충격성, 투명성을 측정하였으며 그 결과를 다음 표 1에 나타내었다.
80 kg of PLA resin (NW LLC, PLA-2003D) and 10 kg of the recovered raw material were melted by a single extruder, passed through a feeder block to the inner layer A of the sheet, 3 kg of a raw material mixture of PLA resin and acrylic resin mixed in a ratio of 1: 1 is melted by a second extruder and then passed through a feeder block to the outer layer (B) of the sheet. Then, a polymer (POLYMER ) Was discharged to prepare a 300 mu m-thick PLA-based multilayer sheet having a B / A / B structure of 0.5: 9.0: 0.5. The prepared PLA multilayer sheet was subjected to vacuum forming to form a tray, and heat resistance, impact resistance and transparency were measured through a molded tray. The results are shown in Table 1 below.

실시예 2Example 2

PLA수지(N.W LLC사 PLA-2003D) 70kg과 회수원료 10kg을 1번 압출기에 투입하여 용융시킨 후 피더 블럭을 통해 시트의 내층(A)으로 통과시키고, PMMA계 수지 14kg과 PLA수지와 아크릴계 수지가 1:1로 혼합된 원료 6kg을 2번 압출기에 투입하여 용융시킨 후 피더 블럭을 통해 시트의 외층(B)으로 통과시킨 후 슬립형 다이를 통해 폴리머를 토출시켜 1.0:8.0:1.0의 B/A/B구조를 가진 300㎛두께의 PLA계 다층시트를 제조하였다. 제조된 PLA계 다층시트를 진공성형을 통해 트레이를 성형하였으며 성형된 트레이를 통해 내열성, 내충격성, 투명성을 측정하였으며 그 결과를 다음 표 1에 나타내었다.
70 kg of PLA resin (NW LLC, PLA-2003D) and 10 kg of the recovered raw material were charged into a first extruder, melted and passed through the feeder block to the inner layer (A) of the sheet. 14 kg of PMMA resin, 6 kg of the raw material mixed at a ratio of 1: 1 was put into a second extruder and melted. Then, the mixture was passed through an outer layer (B) of the sheet through a feeder block and the polymer was discharged through a slip die. B structure having a thickness of 300 mu m. The prepared PLA multilayer sheet was subjected to vacuum forming to form a tray, and heat resistance, impact resistance and transparency were measured through a molded tray. The results are shown in Table 1 below.

실시예 3Example 3

PLA수지(N.W LLC사 PLA-2003D) 50kg과 회수원료 10kg을 1번 압출기에 투입하여 용융시킨 후 피더 블럭을 통해 시트의 내층(A)으로 통과시키고, PMMA계 수지 28kg과 PLA수지와 아크릴계 수지가 1:1로 혼합된 원료 12kg을 2번 압출기에 투입하여 용융시킨 후 피더 블럭을 통해 시트의 외층(B)으로 통과시킨 후 슬립형 다이를 통해 폴리머를 토출시켜 2.0:6.0:2.0의 B/A/B구조를 가진 300㎛두께의 PLA계 다층시트를 제조하였다. 제조된 PLA계 다층시트를 진공성형을 통해 트레이를 성형하였으며 성형된 트레이를 통해 내열성, 내충격성, 투명성을 측정하였으며 그 결과를 다음 표 1에 나타내었다.
50 kg of PLA resin (NW LLC, PLA-2003D) and 10 kg of the recovered raw material were charged into a first extruder, melted and passed through the feeder block to the inner layer (A) of the sheet. 28 kg of PMMA resin, 12 kg of the raw material mixed at a ratio of 1: 1 was put into a second extruder and melted. Then, the mixture was passed through a feeder block to the outer layer (B) of the sheet, B structure having a thickness of 300 mu m. The prepared PLA multilayer sheet was subjected to vacuum forming to form a tray, and heat resistance, impact resistance and transparency were measured through a molded tray. The results are shown in Table 1 below.

실시예 4Example 4

PLA수지(N.W LLC사 PLA-2003D) 70kg과 회수원료 10kg을 1번 압출기에 투입하여 용융시킨 후 피더 블럭을 통해 시트의 내층(A)으로 통과시키고, PMMA계 수지 10kg과 PLA수지와 아크릴계 수지가 1:1로 혼합된 원료 10kg을 2번 압출기에 투입하여 용융시킨 후 피더 블럭을 통해 시트의 외층(B)으로 통과시킨 후 슬립형 다이를 통해 폴리머를 토출시켜 1.0:8.0:1.0의 B/A/B구조를 가진 300㎛두께의 PLA계 다층시트를 제조하였다. 제조된 PLA계 다층시트를 진공성형을 통해 트레이를 성형하였으며 성형된 트레이를 통해 내열성, 내충격성, 투명성을 측정하였으며 그 결과를 다음 표 1에 나타내었다.
70 kg of PLA resin (NW LLC, PLA-2003D) and 10 kg of the recovered raw material were charged into a first extruder, melted and passed through the feeder block to the inner layer (A) of the sheet. 10 kg of PMMA resin, 10 kg of the raw material mixed at a ratio of 1: 1 was put into a second extruder and melted. Then, the melt was passed through the feeder block to the outer layer (B) of the sheet, B structure having a thickness of 300 mu m. The prepared PLA multilayer sheet was subjected to vacuum forming to form a tray, and heat resistance, impact resistance and transparency were measured through a molded tray. The results are shown in Table 1 below.

실시예 5Example 5

PLA수지(N.W LLC사 PLA-2003D) 70kg과 회수원료 10kg을 1번 압출기에 투입하여 용융시킨 후 피더 블럭을 통해 시트의 내층(A)으로 통과시키고, PMMA계 수지 16kg과 PLA수지와 아크릴계 수지가 1:1로 혼합된 원료 4kg을 2번 압출기에 투입하여 용융시킨 후 피더 블럭을 통해 시트의 외층(B)으로 통과시킨 후 슬립형 다이를 통해 폴리머를 토출시켜 1.0:8.0:1.0의 B/A/B구조를 가진 300㎛두께의 PLA계 다층시트를 제조하였다. 제조된 PLA계 다층시트를 진공성형을 통해 트레이를 성형하였으며 성형된 트레이를 통해 내열성, 내충격성, 투명성을 측정하였으며 그 결과를 다음 표 1에 나타내었다.
70 kg of PLA resin (NW LLC, PLA-2003D) and 10 kg of the recovered raw material were melted and passed through the first extruder, passed through the feeder block to the inner layer (A) of the sheet, 16 kg of PMMA resin, A B / A / B ratio of 1.0: 8.0: 1.0 was obtained by injecting 4 kg of the raw material mixed at a ratio of 1: 1 into a second extruder to melt the mixture, passing the mixture through the feeder block to the outer layer (B) B structure having a thickness of 300 mu m. The prepared PLA multilayer sheet was subjected to vacuum forming to form a tray, and heat resistance, impact resistance and transparency were measured through a molded tray. The results are shown in Table 1 below.

비교예 1Comparative Example 1

PLA수지(N.W LLC사 PLA-2003D) 70kg과 회수원료 10kg을 1번 압출기에 투입하여 용융시킨 후 피더 블럭을 통해 시트의 내층(A)으로 통과시키고, PLA수지(N.W LLC사 PLA-2003D) 20kg을 2번 압출기에 투입하여 용융시킨 후 피더 블럭을 통해 시트의 외층(B)으로 통과시킨 후 슬립형 다이를 통해 폴리머를 토출시켜 1.0:8.0:1.0의 A/A/A구조를 가진 300㎛두께의 PLA단층시트를 제조하였다. 제조된 PLA단층시트를 진공성형을 통해 트레이를 성형하였으며 성형된 트레이를 통해 내열성과 투명성을 측정하였으며 그 결과를 다음 표 1에 나타내었다.
70 kg of PLA resin (NW LLC, PLA-2003D) and 10 kg of the recovered raw material were charged into a first extruder and melted, passed through the feeder block to the inner layer (A) of the sheet, and 20 kg of PLA resin Was passed through the feeder block to the outer layer (B) of the sheet, and the polymer was discharged through a slip-type die to obtain a 300 占 퐉 -thick layer having an A / A / A ratio of 1.0: 8.0: 1.0 PLA monolayer sheet was prepared. The prepared PLA monolayer sheet was subjected to vacuum forming to form a tray. Heat resistance and transparency were measured through a molded tray. The results are shown in Table 1 below.

비교예 2Comparative Example 2

PLA수지(N.W LLC사 PLA-2003D) 40kg과 회수원료 10kg을 1번 압출기에 투입하여 용융시킨 후 피더 블럭을 통해 시트의 내층(A)으로 통과시키고, PMMA계 수지 35kg과 PLA수지와 아크릴계 수지가 1:1로 혼합된 원료 15kg을 2번 압출기에 투입하여 용융시킨 후 피더 블럭을 통해 시트의 외층(B)으로 통과시킨 후 슬립형 다이를 통해 폴리머를 토출시켜 2.5:5.0:2.5의 B/A/B구조를 가진 300㎛두께의 PLA계 다층시트를 제조하였다. 제조된 PLA계 다층시트를 진공성형을 통해 트레이를 성형하였으며 성형된 트레이를 통해 내열성, 내충격성, 투명성을 측정하였으며 그 결과를 다음 표 1에 나타내었다.
40 kg of PLA resin (NW LLC, PLA-2003D) and 10 kg of the recovered raw material were put into an extruder, melted and passed through the feeder block to the inner layer (A) of the sheet. 35 kg of PMMA resin, 15 kg of the raw material mixed in a ratio of 1: 1 was put into a second extruder and melted. Then, the mixture was passed through the feeder block to the outer layer (B) of the sheet, B structure having a thickness of 300 mu m. The prepared PLA multilayer sheet was subjected to vacuum forming to form a tray, and heat resistance, impact resistance and transparency were measured through a molded tray. The results are shown in Table 1 below.

비교예 3Comparative Example 3

PLA수지(N.W LLC사 PLA-2003D) 70kg과 회수원료 10kg을 1번 압출기에 투입하여 용융시킨 후 피더 블럭을 통해 시트의 내층(A)으로 통과시키고, PMMA계 수지 8kg과 PLA수지와 아크릴계 수지가 1:1로 혼합된 원료 12kg을 2번 압출기에 투입하여 용융시킨 후 피더 블럭을 통해 시트의 외층(B)으로 통과시킨 후 슬립형 다이를 통해 폴리머를 토출시켜 1.0:8.0:1.0의 B/A/B구조를 가진 300㎛두께의 PLA계 다층시트를 제조하였다. 제조된 PLA계 다층시트를 진공성형을 통해 트레이를 성형하였으며 성형된 트레이를 통해 내열성, 내충격성, 투명성을 측정하였으며 그 결과를 다음 표 1에 나타내었다.
70 kg of PLA resin (NW LLC, PLA-2003D) and 10 kg of the recovered raw material were melted by a single extruder and then passed through the feeder block to the inner layer (A) of the sheet. 8 kg of PMMA resin, 12 kg of the raw material mixed in a ratio of 1: 1 was put into a second extruder and melted. Then, the mixture was passed through a feeder block to the outer layer (B) of the sheet, B structure having a thickness of 300 mu m. The prepared PLA multilayer sheet was subjected to vacuum forming to form a tray, and heat resistance, impact resistance and transparency were measured through a molded tray. The results are shown in Table 1 below.

비교예 4Comparative Example 4

PLA수지(N.W LLC사 PLA-2003D) 70kg과 회수원료 10kg을 1번 압출기에 투입하여 용융시킨 후 피더 블럭을 통해 시트의 내층(A)으로 통과시키고, PMMA계 수지 18kg과 PLA수지와 아크릴계 수지가 1:1로 혼합된 원료 2kg을 2번 압출기에 투입하여 용융시킨 후 피더 블럭을 통해 시트의 외층(B)으로 통과시킨 후 슬립형 다이를 통해 폴리머를 토출시켜 1.0:8.0:1.0의 B/A/B구조를 가진 300㎛두께의 PLA계 다층시트를 제조하였다. 제조된 PLA계 다층시트를 진공성형을 통해 트레이를 성형하였으며 성형된 트레이를 통해 내열성, 내충격성, 투명성을 측정하였으며 그 결과를 다음 표 1에 나타내었다.70 kg of PLA resin (NW LLC, PLA-2003D) and 10 kg of the recovered raw material were melted and passed through the first extruder, passed through the feeder block to the inner layer (A) of the sheet, 18 kg of PMMA resin, 2 kg of the raw material mixed in a ratio of 1: 1 was put into a second extruder and melted. Then, the mixture was passed through a feeder block to the outer layer (B) of the sheet, B structure having a thickness of 300 mu m. The prepared PLA multilayer sheet was subjected to vacuum forming to form a tray, and heat resistance, impact resistance and transparency were measured through a molded tray. The results are shown in Table 1 below.

실시예-1Example-1 실시예-2Example-2 실시예-3Example-3 실시예-4Example-4 실시예-5Example 5 비교예-1Comparative Example 1 비교예-2Comparative Example 2 비교예-3Comparative Example 3 비교예-4Comparative Example 4 조성
Furtherance
내층
(A)
Inner layer
(A)
PLA-2003DPLA-2003D 90kg90kg 80kg80kg 60kg60kg 80kg80kg 80kg80kg 80kg80kg 50kg50kg 80kg80kg 80kg80kg
회수원료Recovered raw material 10kg10kg 10kg10kg 10kg10kg 10kg10kg 10kg10kg 10kg10kg 10kg10kg 10kg10kg 10kg10kg 외층
(B)
Outer layer
(B)
PMM계 수지PMM resin 7kg7kg 14kg14kg 28kg28kg 10kg10kg 16kg16kg -- 35kg35kg 8kg8kg 18kg18kg
아크계 수지Arc-based resin 1.5kg1.5kg 3kg3kg 6kg6kg 5kg5kg 2kg2kg -- 7.5kg7.5kg 6kg6kg 1kg1kg PLA-2003DPLA-2003D 1.5kg1.5kg 3kg3kg 6kg6kg 5kg5kg 2kg2kg 20kg20kg 7.5kg7.5kg 6kg6kg 1kg1kg 층비Layer ratio 외층/내층/외층Outer layer / inner layer / outer layer 0.5/9.0/0.50.5 / 9.0 / 0.5 1.0/8.0/1.01.0 / 8.0 / 1.0 2.0/6.0/2.02.0 / 6.0 / 2.0 1.0/8.0/1.01.0 / 8.0 / 1.0 1.0/8.0/1.01.0 / 8.0 / 1.0 단층fault 2.5/5.0/2.52.5 / 5.0 / 2.5 1.0/8.0/1.01.0 / 8.0 / 1.0 1.0/8.0/1.01.0 / 8.0 / 1.0 물성Properties 내열성Heat resistance ×× ×× 충격강도
(kN.m/mm)
Impact strength
(kN.m / mm)
2.32.3 2.72.7 3.43.4 3.23.2 2.62.6 1.91.9 4.14.1 3.53.5 2.02.0
투명성 (HAZE%)Transparency (HAZE%) 2.22.2 3.53.5 4.54.5 4.14.1 2.52.5 1.61.6 8.88.8 4.04.0 1.91.9


Claims (9)

주원료가 폴리유산이고, 2개의 외층(B)과 1개의 내층(A)의 3층 구조로 이루어진 폴리유산 다층시트의 제조방법에 있어서,
폴리유산(PLA; Poly Lactic Acid) 수지와 회수원료를 1번 압출기에 투입하여 용융시킨 후 피더블럭을 통해 시트의 내층(A)으로 통과시키되, 상기 회수원료는 폴리유산(PLA) 수지가 95.0 내지 60.0중량부, PMMA계 수지가 5.0 내지 32,0중량부, 아크릴계 수지가 1.0 내지 10.0중량부로 구성된 것을 사용하고, 상기 폴리유산(PLA) 수지와 회수원료의 혼합비율은 폴리유산(PLA) 수지가 50.0 내지 99.0중량부, 회수원료는 1.0 내지 50.0중량부가 되는 과정과;
외층(B)을 이루기 위해 폴리유산의 함량은 10.0 내지 25.0중량부, 폴리메틸메타크릴레이트계(PMMA) 수지의 함량은 50.0 내지 80.0중량부, 아크릴계 수지의 함량은 10.0 내지 25.0중량부를 혼합하되, 먼저 폴리유산과 아크릴계 수지를 1:1로 혼합한 다음, 폴리메틸메타크릴레이트계(PMMA) 수지를 혼합하고, 이때 상기 폴리메틸메타크릴레이트계(PMMA) 수지의 용융지수(Melt Index)는 4.0 내지 8.0g/10min(at 190℃)이 되도록 하는 과정과;
상기 혼합된 외층(B) 원료를 2번 압출기에 투입하여 용융시킨 후 피더블럭을 통해 시트의 외층(B)으로 통과시키는 과정과;
슬립형 다이를 통해 폴리머(Polymer)를 토출시켜 상기 3층(B/A/B) 구조의 층비는 0.5/9.0/0.5 내지 2.0/6.0/2.0 가 되고, 외층(B)의 두께는 15 내지 60㎛가 되도록 하되, 이때 180 내지 250℃의 온도로 용융압출되는 과정으로 이루어진 것을 특징으로 하는 회수 원료를 이용한 내열성과 내충격성이 우수한 폴리유산 다층시트의 제조방법.
A method for producing a poly (lactic acid) multilayer sheet comprising a three-layer structure of two outer layers (B) and one inner layer (A), wherein the main raw material is poly (lactic acid)
A polylactic acid (PLA) resin and a recovered raw material are put into an extruder and melted, and then passed through a feeder block to an inner layer (A) of the sheet. The recovered raw material has a polylactic acid (PLA) (PLA) resin and the recovered raw material are mixed so that the ratio of the polylactic acid (PLA) resin to the polylactic acid (PLA) resin is 60.0 parts by weight, the PMMA resin is 5.0 to 32.0 parts by weight and the acrylic resin is 1.0 to 10.0 parts by weight. 50.0 to 99.0 parts by weight, and the recovered raw material is 1.0 to 50.0 parts by weight;
The content of the poly (lactic acid) is 10.0 to 25.0 parts by weight, the content of the polymethyl methacrylate (PMMA) resin is 50.0 to 80.0 parts by weight, and the content of the acrylic resin is 10.0 to 25.0 parts by weight, First, a poly (methyl methacrylate) (PMMA) resin is mixed with poly (lactic acid) and acrylic resin at a ratio of 1: 1, and the melt index of the polymethyl methacrylate (PMMA) To 8.0 g / 10 min (190 DEG C);
Passing the raw material of the mixed outer layer (B) into an extruder (2) to melt it, and passing the molten mixture through an outer layer (B) of the sheet through a feeder block;
The layer ratio of the three-layer (B / A / B) structure is 0.5 / 9.0 / 0.5 to 2.0 / 6.0 / 2.0 and the thickness of the outer layer (B) is 15 to 60 탆 And then melt-extruded at a temperature of from 180 to 250 ° C. The method for producing a poly (lactic acid) multilayer sheet having excellent heat resistance and impact resistance using the recovered raw material.
삭제delete 삭제delete 삭제delete 제 1항에 있어서, 상기 폴리유산이 L-락트산, D-락트산 또는 L,D-락트산으로 구성되며, 수평균분자량은 10,000 이상인 것으로, 이들이 단독 혹은 복합으로 사용된 것을 특징으로 하는 회수 원료를 이용한 내열성과 내충격성이 우수한 폴리유산 다층시트의 제조방법.
The method according to claim 1, wherein the polylactic acid is composed of L-lactic acid, D-lactic acid or L, D-lactic acid and has a number average molecular weight of 10,000 or more, A method for producing a poly (lactic acid) multilayer sheet excellent in heat resistance and impact resistance.
제 1항에 있어서, 상기 폴리메틸메타크릴레이트계(PMMA) 단독중합체 혹은 공중합체로 선택된 하나 이상의 폴리메틸메타크릴레이트 수지는 메틸메타크릴레이트 단독중합체 혹은 메틸메타크릴레이트와 메틸아크릴레이트, 에틸(메타)아크릴레이트, 부틸 (메타)아크릴레이트, 스티렌에서 선택되는 어느 하나 이상의 공단량체의 공중합체인 것을 특징으로 하는 회수 원료를 이용한 내열성과 내충격성이 우수한 폴리유산 다층시트의 제조방법.
The method of claim 1, wherein the polymethylmethacrylate (PMMA) homopolymer or copolymer is selected from the group consisting of methyl methacrylate homopolymer or copolymer of methyl methacrylate and methyl acrylate, ethyl (Meth) acrylate, butyl (meth) acrylate, and styrene. The method of producing a poly (lactic acid) multilayer sheet is excellent in heat resistance and impact resistance using a recovered raw material.
제 1항에 있어서, 상기 아크릴계 수지는 알킬 메타크릴레이트 화합물 및 알킬 아크릴레이트 화합물로 이루어진 군으로부터 선택되는 1종 이상의 화합물에 스타일렌계 또는 부타디엔계 고무성분을 함유하는 단독 또는 공중합체인 것을 특징으로 하는 회수 원료를 이용한 내열성과 내충격성이 우수한 폴리유산 다층시트의 제조방법.
The acrylic resin composition according to claim 1, wherein the acrylic resin is a homopolymer or a copolymer containing a styrenic or butadiene rubber component in at least one compound selected from the group consisting of an alkyl methacrylate compound and an alkyl acrylate compound A method for producing a poly (lactic acid) multilayer sheet excellent in heat resistance and impact resistance using raw materials.
삭제delete 제 1항과, 제 5항 내지 제 7항 중 어느 한 항에 있어서, 상기 시트의 두께는 0.15 내지 1.20mm인 것을 특징으로 하는 회수 원료를 이용한 내열성과 내충격성이 우수한 폴리유산 다층시트의 제조방법.The polylactic acid multilayer sheet according to any one of claims 1 to 7, wherein the sheet has a thickness of 0.15 to 1.20 mm, and is excellent in heat resistance and impact resistance using the recovered raw material .
KR1020120150555A 2012-12-21 2012-12-21 The method for manufacturing multi-layer sheet of polylactic acid having an excellent shock and heat resistance KR101998772B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120150555A KR101998772B1 (en) 2012-12-21 2012-12-21 The method for manufacturing multi-layer sheet of polylactic acid having an excellent shock and heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120150555A KR101998772B1 (en) 2012-12-21 2012-12-21 The method for manufacturing multi-layer sheet of polylactic acid having an excellent shock and heat resistance

Publications (2)

Publication Number Publication Date
KR20140081985A KR20140081985A (en) 2014-07-02
KR101998772B1 true KR101998772B1 (en) 2019-07-11

Family

ID=51733000

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120150555A KR101998772B1 (en) 2012-12-21 2012-12-21 The method for manufacturing multi-layer sheet of polylactic acid having an excellent shock and heat resistance

Country Status (1)

Country Link
KR (1) KR101998772B1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3473714B2 (en) 1994-09-09 2003-12-08 大日本インキ化学工業株式会社 Heat-resistant sheet comprising lactic acid-based polymer and method for producing molded article
JPH11124495A (en) 1997-10-21 1999-05-11 Mitsubishi Plastics Ind Ltd Polylactic acid-based polymer composition and molded product
JPH11241008A (en) 1998-02-26 1999-09-07 Mitsui Chem Inc Polylactate resin composition
JP2000239508A (en) 1999-02-18 2000-09-05 Mitsubishi Gas Chem Co Inc Biodegradable molding compound and its molding
JP2001039426A (en) 1999-07-27 2001-02-13 Shiseido Co Ltd Biodegradavble resin container
KR20010045677A (en) 1999-11-05 2001-06-05 김석태 Composition of biodegradable polyester resin containing lactic acid
ITTO20010060A1 (en) 2001-01-25 2002-07-25 Novamont Spa TERNARTIE MIXTURES OF BIODEGRADABLE ALIPHATIC POLYESTERS AND PRODUCTS OBTAINED FROM THESE.
ITTO20010058A1 (en) 2001-01-25 2002-07-25 Novamont Spa BIODEGRADABLE POLYESTER TERNARY MIXTURES AND PRODUCTS OBTAINED FROM THESE.
JP3510218B2 (en) 2001-05-02 2004-03-22 ユニチカ株式会社 Polylactic acid based film and method for producing the same
KR100428687B1 (en) 2001-09-10 2004-04-30 주식회사 이래화학 Biodegradable polyester resin composition which has superior tear strength
PT2010380E (en) * 2006-04-14 2010-03-01 Biotec Biolog Naturverpack Multilayered film and method for manufacturing same
KR20120082565A (en) * 2011-01-14 2012-07-24 도레이첨단소재 주식회사 Multi-layer sheet of poly lactic acid and a case using the same

Also Published As

Publication number Publication date
KR20140081985A (en) 2014-07-02

Similar Documents

Publication Publication Date Title
US8227060B2 (en) Lactic acid polymer composition, molded article comprising the composition and process for producing the molded article
US8604123B1 (en) Biodegradable polymer composition with calcium carbonate and methods and products using same
US20090162683A1 (en) Biodegradable Polyester Compositions
US20120196950A1 (en) Biodegradable polymer composition with calcium carbonate and methods and products using same
WO2009084391A1 (en) Polypropylene resin composition, molded article produced from the resin composition, and method for production of the molded article
KR20100085157A (en) Propylene resin composition for stretched sheet, and stretched sheet and thermally molded article each comprising the composition
JPWO2005123831A1 (en) Polylactic acid-containing resin composition and molded product obtained therefrom
KR20180032896A (en) Biodegradable resin composition and biodegradable articles prepared therefrom
KR20120039866A (en) Polylactic sheet retaining biodegradability and heat-resistant property and preparing process thereof
JP3862557B2 (en) Transparent impact-resistant polylactic acid-based stretched film or sheet and method for producing the same
JP5606159B2 (en) Resin composition, molded article using this resin composition, film, stretched film, heat-shrinkable film, heat-shrinkable label, and container equipped with the label
KR20070027994A (en) Barrier Biodegradable Polyester Resin Composition
JP3945264B2 (en) Polylactic acid composite material and molded body
US20140287212A1 (en) Biopolyester compositions with good transparency and sliding properties
KR20110127149A (en) Polylactic Acid Laminated Sheet
KR102451506B1 (en) Biodegradable resin composition and molded article
KR102050279B1 (en) The method for manufacturing multi-layer sheet of polylactic acid
KR100428687B1 (en) Biodegradable polyester resin composition which has superior tear strength
KR101998772B1 (en) The method for manufacturing multi-layer sheet of polylactic acid having an excellent shock and heat resistance
KR102460340B1 (en) Biodegradable polyester resin composition
JP2010150385A (en) Polylactic acid resin composition
KR20130049371A (en) Multi-layer sheet of polylactic acid having an excellent heat resistance and impact resistance and preparing method thereof
JP2014156540A (en) Polyester resin composition and film obtained by molding the polyester resin composition
JP2012052058A (en) Resin composition and molded product
KR20120082565A (en) Multi-layer sheet of poly lactic acid and a case using the same

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20121221

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20171201

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20121221

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20190221

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20190621

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20190704

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20190704

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20220621

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20230620

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20240625

Start annual number: 6

End annual number: 6