[go: up one dir, main page]

KR101934719B1 - On Board Charger for Controlling Output Voltage and Charging Method Threrof - Google Patents

On Board Charger for Controlling Output Voltage and Charging Method Threrof Download PDF

Info

Publication number
KR101934719B1
KR101934719B1 KR1020160103621A KR20160103621A KR101934719B1 KR 101934719 B1 KR101934719 B1 KR 101934719B1 KR 1020160103621 A KR1020160103621 A KR 1020160103621A KR 20160103621 A KR20160103621 A KR 20160103621A KR 101934719 B1 KR101934719 B1 KR 101934719B1
Authority
KR
South Korea
Prior art keywords
stage
voltage
psfb
battery
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020160103621A
Other languages
Korean (ko)
Other versions
KR20180019364A (en
Inventor
이정문
우수완
김연수
Original Assignee
영화테크(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영화테크(주) filed Critical 영화테크(주)
Priority to KR1020160103621A priority Critical patent/KR101934719B1/en
Publication of KR20180019364A publication Critical patent/KR20180019364A/en
Application granted granted Critical
Publication of KR101934719B1 publication Critical patent/KR101934719B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/53Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • Y02T10/7216
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명은 출력 전압 가변형 온보드 충전장치 및 그 충전 방법에 관한 것으로, 자연 공냉 구조를 가지며, 효율적 충전을 하기 위한 출력 전압 가변제어 특성을 갖도록 하는 데 그 목적이 있다.
이를 위하여 본 발명에 따른 출력 전압 가변형 온보드 충전장치는, 정류회로로부터 출력되는 높은 AC 전압을 DC 고전압으로 상승시켜줌으로써 역률(Power Factor)을 상승시키는 PFC(Power Factor Correction) 단, 상기 PFC 단으로부터 출력된 고전압으로 상승된 DC를 배터리 충전을 위해 다시 절연을 거쳐 다시 배터리의 정격에 맞는 DC 전압으로 변환하는 PSFB(Phase Shift Full Bridge) 단; 및 상기 PFC 단과 상기 PSFB 단을 제어하고, 전기 차량 내부의 배터리 관리 시스템과 통신하여 전기 차량에 적용되는 배터리의 정격에 맞게 상기 PSFB 단의 PWM(Pulse Width Modulation) 듀티비(Duty Ratio)를 조절하는 MCU(Micro Controller Unit)를 포함하는 것을 특징으로 한다.
The present invention relates to an output voltage variable type onboard charging device and a charging method thereof, and has an object of providing an output voltage variable control characteristic having a natural air cooling structure for efficient charging.
To this end, the output voltage variable type on-board charging apparatus according to the present invention includes a PFC (Power Factor Correction) for raising a power factor by raising a high AC voltage output from a rectifying circuit to a DC high voltage, A phase shift full bridge (PSFB) stage that converts the boosted DC into a DC voltage that is re-isolated for charging the battery and then regulated to the rated voltage of the battery; And controlling the PFC stage and the PSFB stage and communicating with a battery management system in the electric vehicle to adjust a PWM (Pulse Width Modulation) duty ratio of the PSFB stage according to the rating of a battery applied to the electric vehicle And an MCU (Micro Controller Unit).

Figure R1020160103621
Figure R1020160103621

Description

출력 전압 가변형 온보드 충전장치 및 그 충전방법{On Board Charger for Controlling Output Voltage and Charging Method Threrof}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to an on-

본 발명은 전기자동차의 출력 전압 가변형 온보드 충전장치 및 그 충전 방법에 관한 것으로, 더욱 상세하게는, 자연 공냉 구조를 가지며, 효율적 충전을 하기 위한 출력 전압 가변제어 특성을 갖는 출력 전압 가변형 온보드 충전장치 및 그 충전방법에 관한 것이다. The present invention relates to an output voltage variable type onboard charging device for an electric vehicle and, more particularly, to an output voltage variable type onboard charging device having a natural air cooling structure and having an output voltage variable control characteristic for efficient charging, And a charging method thereof.

근래에 휘발유 등의 화석연료 대신에 전기에너지를 동력원으로 하여 운행하는 전기자동차(EV:Electric Vehicle)에 대한 관심이 높아지고 있다.In recent years, interest in electric vehicles (EVs), which use electric energy as a power source instead of fossil fuels such as gasoline, is increasing.

상기 전기자동차(EV)는, 그 주행속도에 따라서 FSEV(Full Speed Electric Vehicle)와 NEV(Neighborhood Electric Vehicle)로 구분할 수 있다.The electric vehicle EV can be divided into FSEV (Full Speed Electric Vehicle) and NEV (Neighborhood Electric Vehicle) according to the traveling speed.

상기 FSEV는 화석연료를 사용하는 일반 자동차와 같은 속도를 낼 수 있는 고속 전기자동차를 의미하고, NEV는 시속 60㎞ 미만으로 운행되는 저속 전기자동차를 의미한다.The FSEV means a high-speed electric vehicle capable of achieving the same speed as a general car using fossil fuels, and the NEV means a low-speed electric vehicle traveling at less than 60 km / h.

이러한 전기자동차는 내연기관 자동차의 엔진을 전기 모터로 대체한 것으로서, 에너지 공급원인 배터리의 경량화, 소형화 및 급속 충전이 핵심적인 기술을 이루고 있다. Such an electric vehicle replaces the engine of an internal combustion engine with an electric motor, and is a key technology for weight reduction, miniaturization and rapid charging of a battery as an energy supply source.

전기자동차의 배터리를 충전하는 종래의 충전장치로는, 전력 변환 장치 또는 충전기의 경우, 고가의 DSP(Digital Signal Processer) 등을 사용하여 AC 전력을 전기 자동차의 충전 배터리 전압에 맞추어 변환시킴으로써 배터리의 사양을 충족시키고 있다.As a conventional charging apparatus for charging a battery of an electric vehicle, in the case of a power conversion apparatus or a charger, an expensive DSP (Digital Signal Processor) is used to convert AC power to the charged battery voltage of the electric vehicle, .

또한 종래의 배터리 충전장치는, 반도체 및 자성소자의 방열을 위해 케이스 구조에 수냉 방식을 적용하고 있다. In addition, in the conventional battery charging apparatus, a water-cooling system is applied to the casing structure for heat dissipation of semiconductor and magnetic elements.

따라서 종래의 NEC용 충전기는, 저 용량임에도 불구하고 부품 가격의 상승으로 인해 제품 단가가 높아지는 문제가 있다. Therefore, the conventional NEC charger has a problem that the unit price of the product is increased due to an increase in the component price even though the capacity is low.

또한 종래의 전력 변환장치인 충전기는, 전력 효율의 향상에 초점을 맞추고 있기 때문에 고가의 전자 부품들이 다수 장착되어야 하고, 충전 효율의 증대를 위해서는 사이즈가 커질 수밖에 없다는 문제점이 있다.In addition, since the charger, which is a conventional power conversion device, focuses on improvement of power efficiency, there are problems in that a large number of expensive electronic parts must be mounted, and in order to increase the charging efficiency, the size must be increased.

한편, 충전기의 사이즈를 축소하려면 충전기의 조립 구조가 복잡해져 생산성이 저하된다는 문제가 있다. On the other hand, in order to reduce the size of the charger, the assembling structure of the charger is complicated and the productivity is lowered.

또한 상기 NEV용 배터리는, EV 차량보다 낮은 전압 용량 및 전류 용량을 갖고 있으며, 차량 특성에 따라 42V, 72V, 115V 등의 다양한 전압 레벨을 충전시킬 수 있어야 한다. Further, the NEV battery has lower voltage capacity and current capacity than the EV vehicle, and it is required to be able to charge various voltage levels such as 42V, 72V, and 115V depending on the vehicle characteristics.

그런데 종래의 저가형 전력 변환장치에 의하면, 42V 또는 72V와 같이 한 가지 전압을 고정적으로 출력하고 있어 과충전 또는 충전 부족이 발생하기 쉽고, NEV의 다양한 충전 전압에 호환성 있게 대응할 수 없다는 문제점이 있다.However, according to the conventional low-cost power conversion apparatus, one voltage such as 42V or 72V is fixedly output, so that overcharging or insufficiency of charge is likely to occur, and there is a problem that it can not be compatible with various charging voltages of NEV.

본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위한 것으로서, 자연 공냉 구조를 가지며, 효율적 충전을 하기 위한 출력 전압 가변제어 특성을 갖는 출력 전압 가변형 온보드 충전장치 및 그 충전방법을 제공하는 데 그 목적이 있다. SUMMARY OF THE INVENTION The present invention provides an output voltage variable type onboard charging device having a natural air cooling structure and having an output voltage variable control characteristic for efficient charging and a charging method thereof .

본 발명의 다른 목적은, 종래의 전력변환 장치 또는 온보드 충전 장치와 같이 DSP 등의 고가 부품을 사용하지 않고 전용 컨트롤러와 저가형 MCU(Micro Controller Unit)를 사용함으로써 제품 단가를 낮추는 데 있다.Another object of the present invention is to lower the product cost by using a dedicated controller and a low-cost MCU (Micro Controller Unit) without using high-priced parts such as a DSP, such as a conventional power conversion device or an onboard charging device.

본 발명의 또 다른 목적은, 공냉식의 냉각 구조를 적용함으로써, 수냉식 냉각 구조에서 발생할 수 있는 구조적인 문제를 해결하는 데 있다. It is a further object of the present invention to solve the structural problems that may occur in a water-cooled cooling structure by applying an air-cooled cooling structure.

본 발명의 또 다른 목적은, MCU에 의한 궤환 전압제어를 통해 다양한 NEV 배터리의 용량에 맞는 전압을 출력할 수 있도록 하는 데 있다. It is still another object of the present invention to enable output of a voltage according to the capacity of various NEV batteries through feedback voltage control by an MCU.

상기 목적을 달성하기 위하여 본 발명에 따른 출력 전압 가변형 온보드 충전장치는, 출력 전압 가변형 온보드 충전장치로서, 정류회로로부터 출력되는 높은 AC 전압을 DC 고전압으로 상승시켜줌으로써 역률(Power Factor)을 상승시키는 PFC(Power Factor Correction) 단, 상기 PFC 단으로부터 출력된 고전압으로 상승된 DC를 배터리 충전을 위해 다시 절연을 거쳐 다시 배터리의 정격에 맞는 DC 전압으로 변환하는 PSFB(Phase Shift Full Bridge) 단; 및 상기 PFC 단과 상기 PSFB 단을 제어하고, 전기 차량 내부의 배터리 관리 시스템과 통신하며 전기 차량에 적용되는 배터리의 정격에 맞게 상기 PSFB 단의 PWM(Pulse Width Modulation) 듀티비(Duty Ratio)를 조절하는 MCU(Microcontroller Unit)를 포함하는 것을 특징으로 한다. In order to achieve the above object, the present invention provides an output voltage variable type onboard charging device, comprising: an output voltage variable type onboard charging device that boosts a high AC voltage output from a rectifying circuit to a DC high voltage to increase a power factor, (Power Factor Correction) In this case, a PSFB (Phase Shift Full Bridge) stage in which the DC raised to the high voltage output from the PFC stage is re-insulated for charging the battery and then converted to a DC voltage corresponding to the rating of the battery; And controlling the PFC stage and the PSFB stage, communicating with a battery management system in the electric vehicle, and adjusting a duty ratio of PWM (Pulse Width Modulation) of the PSFB stage in accordance with the rating of a battery applied to the electric vehicle And an MCU (Microcontroller Unit).

또한, 상기 충전장치는 일면에 부착된 히트 싱크를 위한 공기 순환식의 방열 구조를 갖는 방열판을 구비하는 것을 특징으로 한다. The charging device may further include a heat radiating plate having an air circulating heat radiating structure for a heat sink attached to one surface of the heat sink.

또한, 상기 PFC 단은 상기 PSFB 단으로 출력되는 DC 전압의 역률을 조정하기 위한 PFC 제어부를 포함하고, 상기 MCU는 상기 PSFB 단으로 출력되는 전압 및 전류값을 감지하고, 차량의 배터리로부터 수신된 배터리의 정격과 비교하여 상기 PSFB단의 DC-DC 변환전압을 조절하기 위한 궤환신호를 상기 PSFB 단으로 출력하는 것을 특징으로 한다. The PFC stage includes a PFC controller for adjusting a power factor of a DC voltage output to the PSFB stage. The MCU senses voltage and current values output from the PSFB stage, And outputs a feedback signal for adjusting the DC-DC conversion voltage of the PSFB stage to the PSFB stage.

본 발명의 다른 실시예에 있어서, 상기 PSFB 단은 DC-DC 변환을 위한 트랜스포머; 상기 트랜스포머에 절연 게이트 신호를 출력하기 위한 절연 게이트 드라이브회로; 및 상기 MCU로부터 궤환신호를 수신하여 상기 절연 게이트 드라이브 회로에 시프트된 레벨의 전압 제어신호를 출력하는 PSFB 제어부를 더 포함한다. In another embodiment of the present invention, the PSFB stage includes a transformer for DC-DC conversion; An insulated gate drive circuit for outputting an insulated gate signal to said transformer; And a PSFB control unit for receiving a feedback signal from the MCU and outputting a voltage control signal of a shifted level to the insulated gate drive circuit.

또한, 상기 MCU는, 입력되는 신호의 증폭을 위한 제1 OP 앰프, 상기 제1 OP 앰프로부터 출력되는 신호에서 저역 성분만을 걸러내기 위한 저역 필터, 상기 필터링된 신호를 다시 증폭하기 위한 제2 오피앰프 및 상기 제2 오피앰프로부터 출력된 신호를 전압 분배하는 전압 분배회로를 포함하는 것을 특징으로 한다. The MCU includes a first OP amplifier for amplifying an input signal, a low-pass filter for filtering only low-frequency components from a signal output from the first OP amplifier, a second operational amplifier for amplifying the filtered signal again, And a voltage distribution circuit for distributing the voltage output from the second operational amplifier.

또한, 본 발명에 따른 출력 전압 가변형 온보드 충전장치의 충전 방법은, 상기 MCU 기능을 초기화한 후 CAN(Controller Area Network) 통신을 통해 NEV 차량의 배터리 충전상태, 배터리 충전 전압을 체크하고, 배터리 관리 시스템의 릴레이 준비상태를 확인한 후 DC-DC 변환을 위해 PSFB 단을 온시켜 배터리의 충전을 시작하고, 배터리를 CV(Constant Voltage;정전압)와 CC(Constant Current;정전류) 모드로 제어하여 충전을 완료하는 것을 특징으로 한다.The charging method of the output voltage variable type on-board charging device according to the present invention is characterized in that after the MCU function is initialized, the battery charging state and the battery charging voltage of the NEV vehicle are checked through CAN (Controller Area Network) And then the battery is charged by controlling the battery in CV (Constant Voltage) and CC (Constant Current) mode to complete the charging. .

본 발명에 의하면, 자연 공냉 구조를 가지며, 효율적 충전을 하기 위한 출력 전압 가변제어 특성을 갖는 출력 전압 가변형 온보드 충전장치 및 그 충전방법을 제공할 수 있는 효과가 있다.According to the present invention, there is provided an output voltage variable type onboard charging device having a natural air cooling structure and having an output voltage variable control characteristic for efficient charging, and a charging method thereof.

또한, DSP와 같은 고가의 부품을 사용하지 않고 전용 컨트롤러와 저가형 MCU(Micro Controller Unit)를 사용함으로써 제품 단가를 낮출 수 있는 효과가 있다.In addition, by using a dedicated controller and a low-cost MCU (Micro Controller Unit) without using expensive parts such as DSP, the product cost can be lowered.

또한, 공냉식의 냉각 구조를 적용함으로써, 수냉식 냉각 구조에서 발생할 수 있는 구조적인 문제를 해결할 수 있는 효과가 있다. Further, by applying the air cooling type cooling structure, it is possible to solve the structural problem that may occur in the water cooling type cooling structure.

또한, MCU에 의한 궤환 전압제어를 통해 다양한 NEV 배터리의 용량에 맞는 전압을 출력할 수 있는 효과가 있다. In addition, the feedback voltage control by the MCU enables the output of a voltage corresponding to the capacity of various NEV batteries.

도 1a는 본 발명의 일 실시예에 따른 출력 전압 가변형 온보드 충전장치에 대한 개략적인 블록 사시도.
도 1b는 도 1a의 출력 전압 가변형 온보드 충전장치의 배면에 대한 개략적인 사시도.
도 2는 본 발명의 일 실시예에 따른 출력 전압 가변형 온보드 충전장치의 전체 시스템에 대한 개략도.
도 3은 본 발명의 전압 가변형 온보드 충전장치의 충전 방법의 충전 흐름을 나타낸 도면.
도 4는 본 발명의 일 실시예에 따른 출력 전압 가변형 온보드 충전장치의 PFC와 PSFB의 상세회로도.
도 5는 본 발명의 일 실시예에 따른 전압 감지 회로의 세부 구성을 나타내는 회로도.
도 6은 본 발명의 출력 전압 가변형 온보드 충전장치의 반도체 및 PCB 접촉면의 구조를 도시한 도면.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a schematic block perspective view of an output voltage variable onboard charging device in accordance with one embodiment of the present invention. FIG.
FIG. 1B is a schematic perspective view of the rear side of the output voltage-variable on-board charging device of FIG. 1A; FIG.
2 is a schematic diagram of an overall system of an output voltage variable onboard charging device in accordance with an embodiment of the present invention.
3 shows a charge flow of the charging method of the voltage variable on-board charging device of the present invention.
FIG. 4 is a detailed circuit diagram of a PFC and a PSFB of an output voltage-variable on-board charging apparatus according to an embodiment of the present invention; FIG.
5 is a circuit diagram showing a detailed configuration of a voltage sensing circuit according to an embodiment of the present invention;
6 illustrates the structure of a semiconductor and PCB contact surface of an output voltage variable onboard charging device of the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1a는 본 발명의 일 실시예에 따른 출력 전압 가변형 온보드 충전장치에 대한 개략적인 블록 사시도이고, 도 1b는 상기도 1a의 출력 전압 가변형 온보드 충전장치의 배면에 대한 개략적인 사시도이다. FIG. 1A is a schematic block perspective view of an output voltage variable type onboard charging device according to one embodiment of the present invention, and FIG. 1B is a schematic perspective view of a rear surface of the output voltage variable type onboard charging device of FIG. 1A.

본 발명의 출력 전압 가변형 온보드 충전장치(1000)는, 도 1a 및 1b에 도시된 바와 같이, 그 일면에 부착된 히트 싱크를 위한 방열판(1100)을 구비한다.The output voltage variable onboard charging apparatus 1000 of the present invention has a heat sink 1100 for a heat sink attached to one surface thereof, as shown in FIGS. 1A and 1B.

상기 방열판(1100)은 공기 순환식의 방열 구조를 가지므로 종래의 수냉식 방열구조에 비해 구조가 간단해진다.Since the heat dissipation plate 1100 has an air circulation type heat dissipation structure, the structure is simplified compared to a conventional water-cooling type heat dissipation structure.

도 2는 본 발명의 일 실시예에 따른 출력 전압 가변형 온보드 충전장치의 전체 시스템에 대한 개략도를 도시한 것이다. Figure 2 shows a schematic diagram of an overall system of an output voltage variable onboard charging device in accordance with an embodiment of the present invention.

본 발명의 충전장치는, 도 2에 도시된 바와 같이, 충전 장치의 각 구성요소를 전체적으로 제어하는 MCU(200), 통상 AC 220V의 상용 교류 전압을 수신하여 교류전압에 포함된 노이즈(Noise) 성분을 필터링하는 필터부(100), 상기 필터부(100)로부터 출력되는 노이즈 필터링된 교류 전압에 포함된 돌입전류를 차단하는 돌입전류 차단 릴레이 단(300), 상기 돌입 전류 릴레이 단(300)으로부터 입력되는 교류 전압을 전파정류를 통해 1차 정류한 후 인버팅하여 높은 AC 전력을 출력하는 브리지(Bridge) 단(400), 상기 브리지 단(400)으로부터 출력되는 높은 AC 전압을 DC 고전압으로 상승시켜줌으로써 역률(Power Factor)을 상승시키는 PFC(Power Factor Correction) 단(500), 및 상기 PFC 단(500)으로부터 출력된 고전압으로 상승된 DC를 배터리 충전을 위해 다시 절연을 거쳐 다시 배터리의 정격에 맞는 DC 전압으로 변환하는 PSFB(Phase Shift Full Bridge) 단(600)을 포함한다. As shown in FIG. 2, the charging apparatus of the present invention includes an MCU 200 for controlling all the components of the charging apparatus as a whole, a noise component (noise component) included in an AC voltage by receiving a commercial AC voltage, An inrush current cutoff relay stage 300 for blocking the inrush current contained in the noise filtered AC voltage output from the filter unit 100 and an inrush current cutoff relay stage 300 for inputting the inrush current from the inrush current relay stage 300, A bridge stage 400 for rectifying and rectifying the alternating voltage through a full-wave rectification and outputting a high AC power by inverting the AC voltage, a high AC voltage output from the bridge stage 400 to a DC high voltage A PFC (Power Factor Correction) stage 500 that raises the power factor and a DC that is raised to a high voltage output from the PFC stage 500 are re-isolated for charging the battery, Include (Phase Shift Full Bridge) PSFB stage 600 to be converted to a DC voltage.

또한, 본 발명의 전압 가변형 온보드 충전장치는, 도 2에 도시된 바와 같이, 상기 PSFB 단(600)으로부터 출력되는 가변 출력 전압을 수신하는 배터리 관리 시스템(710) 및 상기 배터리 관리 시스템(710)의 제어하에 배터리(도시 생략)로부터 DC 전압을 공급받아 동작하는 차량 전원 수신부(720)를 포함하는 전기 자동차부(700)를 구비한다. 2, the voltage variable on-board charging apparatus of the present invention includes a battery management system 710 that receives a variable output voltage output from the PSFB stage 600, And a vehicle power receiving unit 720 that operates under the control of a DC voltage supplied from a battery (not shown).

여기서 상기 MCU(200)는, 충전 장치의 각부 즉, 돌입전류 릴레이 단(300), 브리지단(400), PFC 단(500) 및 PSFB 단(600)에 온 또는 오프 신호를 출력하고, 차량의 배터리 관리 시스템(710)으로부터 입수한 배터리 정격에 따라 상기 PSFB 단(600)로부터 출력되는 DC 전압 및 전류를 가변적으로 제어한다.The MCU 200 outputs an ON or OFF signal to each part of the charging apparatus, that is, the inrush current relay stage 300, the bridge stage 400, the PFC stage 500 and the PSFB stage 600, And variably controls the DC voltage and current output from the PSFB stage 600 according to the battery rating obtained from the battery management system 710.

즉, 상기 PSFB 단(600)은, 차량 특성에 따라 42V, 72V, 115V 등의 DC 전압을 출력하나, 이에 한정하는 것은 아니다.That is, the PSFB stage 600 outputs a DC voltage of 42V, 72V, 115V or the like according to vehicle characteristics, but is not limited thereto.

또한, 출력되는 전력은 1.5kW가 일반적이지만 이에 한정하는 것은 아니다.The output power is generally 1.5 kW, but is not limited thereto.

도 3은 본 발명의 전압 가변형 온보드 충전 장치의 충전 방법의 충전 흐름을 나타낸 것이다. 3 shows a charging flow of the charging method of the voltage variable on-board charging device of the present invention.

본 발명에 따른 충전 장치의 충전 방법은, 도 2와 도 3에 도시된 바와 같이, 상용 교류 전원으로부터 AC 전원이 접속되는 단계(S10), 보조입력단자 즉, 외부 입력단자를 온시키는 단계(S20), 충전장치의 MCU(200)를 온시키는 단계(S30), 상기 MCU(200)를 온시키는 단계(S30)를 포함한다.As shown in FIGS. 2 and 3, the charging method of the charging apparatus according to the present invention includes a step (S10) of connecting an AC power source from a commercial AC power source, a step of turning on an auxiliary input terminal, , Turning on the MCU 200 of the charging device (S30), and turning on the MCU 200 (S30).

더욱 상세하게는, MCU(200) 기능을 초기화한 후 CAN(Controller Area Network) 통신을 통해 NEV 차량의 배터리 충전상태, 배터리 충전 전압을 체크하고, 배터리 관리 시스템(710)의 릴레이 준비상태를 확인한 후 상기 릴레이의 온을 확인하여(S31, S32, S33), PFC(500)를 온시키고(S40), PSFB 단(600)을 온시키기 위해 차량의 메인 릴레이(도시 생략)를 온시킨 다음, DC-DC 변환을 위해 PSFB 단(600)을 온시킨다(S50, S60). More specifically, after initializing the function of the MCU 200, the battery charging state and the battery charging voltage of the NEV vehicle are checked through CAN (Controller Area Network) communication, the relay preparation state of the battery management system 710 is checked The main relays (not shown) of the vehicle are turned on to turn on the PSFB stage 600, and then the DC- The PSFB stage 600 is turned on for DC conversion (S50, S60).

이어서, 배터리의 충전을 시작하고, 배터리를 CV(Constant Voltage;정전압)/CC(Constant Current;정전류) 모드로 제어하고 충전을 완료한다(S80, S90).Subsequently, the charging of the battery is started and the battery is controlled in the CV (Constant Voltage) / CC (Constant Current) mode and charging is completed (S80, S90).

상기 단계 S50 내지 S90의 단계의 수행에 있어서, 인터럽트 루틴(Interrupt Routine)으로서 과전압 보호회로, 부족전압 보호회로, 과전류 보호회로, 과온 보호회로 및, 저온 보호회로를 체크한다.In performing the steps S50 to S90, an overvoltage protection circuit, an overvoltage protection circuit, an overcurrent protection circuit, and a low temperature protection circuit are checked as an interrupt routine.

또한, 에러 여부를 확인하여 에러가 있는 경우, 에러 모드 시퀀스를 가동하여(S210, S220, S230) 충전을 정지하고 오프시킨다(S240). If there is an error, the error mode sequence is operated (S210, S220, S230) to stop charging and turn off the charging (S240).

도 4는 본 발명의 일 실시예에 따른 출력 전압 가변형 온보드 충전장치의 PFC와 PSFB의 상세회로도를 도시한 것이다. 4 shows a detailed circuit diagram of a PFC and a PSFB of an output voltage variable type onboard charging apparatus according to an embodiment of the present invention.

본 발명에 따른 충전장치의 PFC(500)는, 도 2에 도시된 전단의 브리지 단(400)을 통해 승압하여 입력되는 높은 AC 전압을 전파정류 회로(510)를 통해 정류하여 후단의 DC 승압 회로(520)로 출력한다. The PFC 500 of the charging apparatus according to the present invention rectifies the high AC voltage inputted through the bridge stage 400 at the front end shown in FIG. 2 through the full-wave rectifying circuit 510, (520).

상기 전파전류 회로(510)는 다이오드(D1-D4)로 구성되고, 상기 DC 승압 회로(520)는 인덕터(L1, L2)와 다이오드(D5, D6)로 구성된다. The propagating current circuit 510 is composed of diodes D1 to D4 and the DC boosting circuit 520 is composed of inductors L1 and L2 and diodes D5 and D6.

PFC 전용 제어기로 구성된 PFC 제어부(550)는 다이오드(D5, D6)의 온/오프를 제어하여 후단의 PSFB 단(600)으로 출력되는 DC 전압의 역률을 조정한다. The PFC controller 550 including the PFC controller controls ON / OFF of the diodes D5 and D6 to adjust the power factor of the DC voltage output to the PSFB stage 600 at the subsequent stage.

다이오드(D5, D6)의 온/오프는 스위칭 FET 트랜지스터(Q1, Q2)를 통해 수행하고, 스위칭부(530)는 상기 PFC 제어부(550)의 출력에 따라 다이오드 D5, D6를 온시킨다. The on / off of the diodes D5 and D6 is performed through the switching FET transistors Q1 and Q2 and the switching unit 530 turns on the diodes D5 and D6 according to the output of the PFC controller 550. [

도 4에 있어서 후단의 커패시터(C1, C2, C3)를 포함하는 보호회로(540)는 전압 리플을 제거하는 소자이다. In Fig. 4, the protection circuit 540 including the capacitors C1, C2, and C3 at the subsequent stage is an element for removing voltage ripple.

한편, PSFB(600)는, 4개의 FET(Q3 내지 Q6)로 구성된 DC-DC 컨버터(610)와 1차코일과 2차 코일로 구성된 트랜스포머(Trnasformer)(620)가 DC-DC 전압 컨버팅을 수행하는데, 상기 DC-DC 컨버터(610)에 포함되는 다이오드들은 기생 다이오드들로서 역전류를 차단하는 소자이다. The PSFB 600 includes a DC-DC converter 610 composed of four FETs Q3 to Q6 and a transformer 620 composed of a primary coil and a secondary coil to perform DC-DC voltage conversion The diodes included in the DC-DC converter 610 are parasitic diodes that block reverse current.

상기 트랜스포머(620)는, 절연 게이트 드라이브 회로(660)에 의해 트랜스포머1 차 코일과 2차 코일의 절연을 유지한다. The transformer 620 maintains insulation between the transformer primary coil and the secondary coil by an insulated gate drive circuit 660.

MCU(200)는, DC-DC 컨버터(610)와 트랜스포머(620)를 거쳐 출력되는 전압 및 전류값을 감지하고, 차량의 배터리로부터 수신된 배터리의 정격과 비교하여 상기 DC-DC 컨버터(610)로 DC-DC 컨버터의 PWM(Pulse Width Modulation) 듀티비(Duty Ratio)를 조절하기 위한 시프팅된 신호를 피드백시켜 PSFB 제어부(650)로 출력한다. The MCU 200 senses the voltage and current values output from the DC-DC converter 610 and the transformer 620 and compares the voltage and current values output from the DC-DC converter 610 with the rating of the battery received from the battery of the vehicle. And feeds back the shifted signal for adjusting the PWM (Pulse Width Modulation) duty ratio of the DC-DC converter to the PSFB controller 650.

PSFB 제어부(650)가 절연 게이트 드라이브 회로(660)에 수신한 피드백 신호를 출력하면, DC-DC 컨버터(610)와 트랜스포머(620)는 시프팅된 DC 전압을 출력한다.When the PSFB control unit 650 outputs the received feedback signal to the insulated gate drive circuit 660, the DC-DC converter 610 and the transformer 620 output the shifted DC voltage.

상기 PSFB 제어부(650)는 FET(Q7, Q8)를 포함하는 스위칭부(630)에 구동신호를 출력하여 전압 가변된 DC 전압이 출력단을 통해 출력되도록 한다.The PSFB control unit 650 outputs a driving signal to the switching unit 630 including the FETs Q7 and Q8 so that the voltage-variable DC voltage is output through the output terminal.

도 4에 있어서, L3와 C4로 구성된 필터(640)는, DC-DC 컨버터로부터 출력되는 파형의 신호 손실을 줄이기 위한 보호회로이다. In Fig. 4, the filter 640 composed of L3 and C4 is a protection circuit for reducing the signal loss of the waveform output from the DC-DC converter.

도 5는 본 발명의 일 실시예에 따른 전압 감지 회로의 세부 구성을 나타내는 회로도이다. 5 is a circuit diagram showing a detailed configuration of a voltage sensing circuit according to an embodiment of the present invention.

도 5를 참조하면, MCU(200)는, 입력 분배저항(R1, R2, R3)을 포함하는 입력부(210), 입력되는 신호의 증폭을 위한 제1 OP 앰프(220), 상기 제1 OP 앰프(220)로부터 출력되는 신호에서 저역 성분만을 걸러내기 위한 저역 필터(230), 필터링된 신호를 다시 증폭하기 위한 제2 오피앰프(240) 및 상기 제2 오피앰프(240)로부터 출력된 신호를 전압 분배하는 전압 분배회로(250)를 포함하여 구성된다. 5, the MCU 200 includes an input unit 210 including input distribution resistors R1, R2, and R3, a first OP amplifier 220 for amplifying an input signal, A second operational amplifier 240 for amplifying the filtered signal again and a second operational amplifier 240 for filtering the signal output from the second operational amplifier 240 by a voltage And a voltage distributing circuit 250 for distributing the voltage.

도 5에서 MCU 전압감지 지점(A)은, MCU(200)가 PSFB(600)의 DC-DC 컨버터의 전압 및 전류를 감지하는 부분이고, MCU 궤환 제어지점(C)은, 상기 전압 분배된 신호를 MCU(200)가 궤환하는 부분이며, DC-DC 변환기 제어부 궤환지점(B)은, 상기 MCU(200)로부터의 궤환 제어신호에 따라 DC-DC 컨버터의 PWM 듀티비를 조절하는 부분이다. 5, the MCU voltage detection point A is a portion where the MCU 200 senses the voltage and current of the DC-DC converter of the PSFB 600, and the MCU feedback control point C is a voltage- And the feedback point B of the DC-DC converter control part controls the PWM duty ratio of the DC-DC converter in accordance with the feedback control signal from the MCU 200. [

여기서, 상기 저역 필터(230)에서 상단의 C2, R6의 필터부와 비반전 입력부의 C1, R4, R5로 구성되는 입력 리플 제거 부분은, 공지되어 있는 구성이므로 이에 대한 상세한 설명은 생략하기로 한다. Here, since the input ripple removing part composed of the filter part of the upper part C2 and the upper part R6 of the low-pass filter 230 and the C1, R4 and R5 of the non-inverting input part is a well-known structure, a detailed description thereof will be omitted .

본 발명에 의한 충전 장치는 공냉식 방열판(1100)을 채용하고, 표준형 규격 부품 적용에 좋은 호환성을 가질 수 있어 범용성을 가질 수 있다. The charging apparatus according to the present invention employs the air-cooling heat sink 1100, and can have compatibility with the standard type standard components, thus having versatility.

이상 기술한 바와 같은 본 발명에 의하면, 자연 공냉 구조를 갖는 출력 전압 가변형 충전기를 구현함으로써 다양한 NEV 배터리 정격과 양호한 호환성을 가질 수 있도록 할 수 있다.As described above, according to the present invention, the output voltage variable charger having a natural air cooling structure can be implemented to have good compatibility with various NEV battery ratings.

또한, 종래의 전력변환 장치 또는 온보드 충전 장치와 같이 DSP 등의 고가 부품을 사용하지 않고, 전용 컨트롤러와 저가형 MCU를 사용함으로써 저비용 고효율을 실현할 수 있다. In addition, low cost and high efficiency can be realized by using a dedicated controller and an inexpensive MCU instead of expensive parts such as a DSP, such as a conventional power conversion device or an onboard charging device.

이상에서는 본 발명의 바람직한 실시예를 예시적으로 설명한 것으로서 본 발명의 범위는 상기한 특정 실시예에 한정되지 아니한다. 해당 기술분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상의 범위를 벗어남이 없이 다양한 변경 및 수정이 가능하다는 것을 이해할 수 있을 것이다. While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It will be understood by those skilled in the art that various changes and modifications may be made without departing from the scope of the present invention.

100: 필터부 200: MCU
210: 입력부 220:제1 OP 앰프,
230: 저역 필터 240: 제2 오피앰프
250: 전압 분배회로
300: 돌입전류 차단 릴레이 단 400: 브리지 단
500: PFC 단 510: 전파정류 회로
520: DC 승압회로 530: 스위칭 부
540: 보호회로 550: PFC 제어부
600: PSFB 단 610: DC-DC 컨버터
620: 트랜스포머 630: 스위칭 부
640: 필터 650: PSFB 제어부
660: 절연 게이트 드라이브 회로
700: 전기자동차부 710: 배터리 관리 시스템
720: 차량 전원 수신부
1000: 충전장치 1100: 방열판
100: filter unit 200: MCU
210: input unit 220: first OP amplifier,
230: low pass filter 240: second op amp
250: voltage divider circuit
300: Inrush current cutoff relay stage 400: Bridge stage
500: PFC stage 510: Full wave rectification circuit
520: DC boost circuit 530:
540: Protection circuit 550: PFC controller
600: PSFB stage 610: DC-DC converter
620: Transformer 630:
640: filter 650: PSFB control unit
660: insulated gate drive circuit
700: Electric vehicle part 710: Battery management system
720: vehicle power receiving unit
1000: Charging device 1100: Heat sink

Claims (6)

출력 전압 가변형 온보드 충전장치로서,
정류회로로부터 출력되는 높은 AC 전압을 DC 고전압으로 상승시켜줌으로써 역률(Power Factor)을 상승시키는 PFC(Power Factor Correction) 단(500),
상기 PFC 단(500)으로부터 출력된 고전압으로 상승된 DC를 배터리 충전을 위해 다시 절연을 거쳐 다시 배터리의 정격에 맞는 DC 전압으로 변환하는 PSFB(Phase Shift Full Bridge) 단(600); 및
상기 PFC 단(500)과 상기 PSFB 단(600)을 제어하고, 전기 차량 내부의 배터리 관리 시스템(710)과 통신하여 전기 차량에 적용되는 배터리의 정격에 맞게 상기 PSFB 단(600)의 PWM(Pulse Width Modulation) 듀티비(Duty Ratio)를 조절하는 MCU(Micro Controller Unit)(200)를 포함하고,
상기 충전장치는, 일면에 부착된 히트 싱크를 위한 공기 순환식의 방열 구조를 갖는 방열판(1110)을 더 구비하며,
상기 PSFB 단(600)은,
DC-DC 변환을 위한 트랜스포머(620);
상기 트랜스포머(620)에 절연 게이트 신호를 출력하기 위한 절연 게이트 드라이브회로(660); 및
상기 MCU(200)로부터 궤환신호를 수신하여 상기 절연 게이트 드라이브 회로(660)에 시프트된 레벨의 전압 제어신호를 출력하는 PSFB 제어부(650)를 포함하고,
상기 PFC 단(500)은 상기 PSFB 단(600)으로 출력되는 DC 전압의 역률을 조정하기 위한 PFC 제어부(550)를 포함하며,
상기 MCU(200)는,
입력되는 신호의 증폭을 위한 제1 OP 앰프(220),
상기 제1 OP 앰프(220)로부터 출력되는 신호에서 저역 성분만을 걸러내기 위한 저역 필터(230),
필터링된 신호를 다시 증폭하기 위한 제2 오피앰프(240) 및 상기 제2 오피앰프(240)로부터 출력된 신호를 전압 분배하는 전압 분배회로(250)를 포함하고,
상기 MCU(200)는,
돌입전류 릴레이 단(300), 브리지단(400), PFC 단(500) 및 PSFB 단(600)에 온 또는 오프 신호를 출력하고,
상기 PSFB 단(600)으로 출력되는 전압 및 전류값을 감지하며, 차량의 배터리관리 시스템(710)으로부터 수신된 배터리의 정격과 비교하여 상기 PSFB 단(600)의 DC-DC 변환전압을 조절하기 위한 궤환신호를 상기 PSFB 단(600)으로 출력하는 것을 특징으로 하는 출력 전압 가변형 온보드 충전장치.
Output voltage variable onboard charging device,
A PFC (Power Factor Correction) stage 500 for raising the power factor by raising a high AC voltage output from the rectifier circuit to a DC high voltage,
A Phase Shift Full Bridge (PSFB) stage 600 for converting the DC raised to a high voltage output from the PFC stage 500 to a DC voltage suitable for the rating of the battery again after being insulated for battery charging; And
And controls the PFC stage 500 and the PSFB stage 600 to communicate with the battery management system 710 in the electric vehicle so as to control the PWM of the PSFB stage 600 according to the rating of the battery applied to the electric vehicle. (MCU) 200 for adjusting a duty ratio of a liquid crystal display (LCD)
The charging apparatus further includes a heat sink 1110 having an air circulating heat radiating structure for a heat sink attached to one surface,
In the PSFB stage 600,
A transformer 620 for DC-DC conversion;
An insulated gate drive circuit (660) for outputting an insulated gate signal to the transformer (620); And
And a PSFB control unit (650) for receiving a feedback signal from the MCU (200) and outputting a voltage control signal of a shifted level to the insulated gate drive circuit (660)
The PFC stage 500 includes a PFC controller 550 for adjusting a power factor of a DC voltage output to the PSFB stage 600,
The MCU 200,
A first OP amplifier 220 for amplifying an input signal,
A low-pass filter 230 for filtering only low-frequency components from a signal output from the first OP amplifier 220,
A second operational amplifier 240 for amplifying the filtered signal again, and a voltage distribution circuit 250 for distributing the voltage output from the second operational amplifier 240,
The MCU 200,
Outputs an on or off signal to the inrush current relay stage 300, the bridge stage 400, the PFC stage 500, and the PSFB stage 600,
DC voltage conversion circuit for controlling the DC-DC conversion voltage of the PSFB stage 600 in comparison with the rating of the battery received from the vehicle's battery management system 710, And outputs a feedback signal to the PSFB stage (600).
삭제delete 삭제delete 삭제delete 삭제delete 제1항의 출력 전압 가변형 온보드 충전장치의 충전 방법으로서,
상기 MCU 기능을 초기화한 후 CAN(Controller Area Network) 통신을 통해 NEV 차량의 배터리 충전상태, 배터리 충전 전압을 체크하고,
배터리 관리 시스템의 릴레이 준비상태를 확인한 후 DC-DC 변환을 위해 PSFB 단을 온시키고 배터리의 충전을 시작하며,
배터리를 CV(Constant Voltage;정전압)와 CC(Constant Current;정전류) 모드로 제어하여 충전을 완료하는 것을 특징으로 하는 출력 전압 가변형 온보드 충전장치의 충전 방법.
A charging method for an output voltage variable type onboard charging device according to claim 1,
After initializing the MCU function, the battery charging state and the battery charging voltage of the NEV vehicle are checked through CAN (Controller Area Network) communication,
After checking the relay ready state of the battery management system, the PSFB stage is turned on for DC-DC conversion, charging of the battery is started,
And charging the battery by controlling the battery in CV (Constant Voltage) and CC (Constant Current) modes to complete charging.
KR1020160103621A 2016-08-16 2016-08-16 On Board Charger for Controlling Output Voltage and Charging Method Threrof Active KR101934719B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160103621A KR101934719B1 (en) 2016-08-16 2016-08-16 On Board Charger for Controlling Output Voltage and Charging Method Threrof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160103621A KR101934719B1 (en) 2016-08-16 2016-08-16 On Board Charger for Controlling Output Voltage and Charging Method Threrof

Publications (2)

Publication Number Publication Date
KR20180019364A KR20180019364A (en) 2018-02-26
KR101934719B1 true KR101934719B1 (en) 2019-03-18

Family

ID=61531196

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160103621A Active KR101934719B1 (en) 2016-08-16 2016-08-16 On Board Charger for Controlling Output Voltage and Charging Method Threrof

Country Status (1)

Country Link
KR (1) KR101934719B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021080054A1 (en) * 2019-10-25 2021-04-29 주식회사 엠디엠 Smart charger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100860712B1 (en) * 2006-12-12 2008-09-29 넥스콘 테크놀러지 주식회사 Battery pack voltage measurement circuit and measurement method for hybrid electric vehicle
KR20150053452A (en) * 2013-11-08 2015-05-18 주식회사 만도 Power Modular On-board Charger for Electric Vehicle or Plug-In Hybrid Electric Vehicle and charging method thereof
KR101601549B1 (en) * 2014-02-27 2016-03-08 단국대학교 산학협력단 Method for battery charging control and apparatus therefor
KR20160046416A (en) * 2014-10-20 2016-04-29 현대자동차주식회사 Noise compensation circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021080054A1 (en) * 2019-10-25 2021-04-29 주식회사 엠디엠 Smart charger

Also Published As

Publication number Publication date
KR20180019364A (en) 2018-02-26

Similar Documents

Publication Publication Date Title
US9873338B2 (en) Electric vehicle
CN100566102C (en) The DC-DC converter
US8901883B2 (en) Charger for electric vehicle
JP2004282828A (en) Bidirectional DC-DC converter
US11518246B2 (en) Electric drive system, powertrain, and electric vehicle
KR101558794B1 (en) Battery charger for an electric vehicle
KR102730545B1 (en) Electric power conversion system and control method therefor
CN111384859A (en) Power conversion device
US20150097528A1 (en) Vehicle battery external loading device including an ac/dc converter having a resonant insulated stage
KR20160122441A (en) Charging device of vehicle
JP2023518581A (en) Bidirectional DC-DC converter
CN114929511A (en) Charger for plug-in electric vehicle
KR20180029713A (en) Apparatus for controlling electric vehicle charger
KR20170093014A (en) A pfc circuit device for high-power, high-power density ev on-board charger
US9744868B2 (en) Electric circuit for charging at least one electrical energy storage unit by means of an electrical network
JP2010172093A (en) Onboard battery charger
KR102008751B1 (en) Vehicle power control device
CN114944759A (en) DC-DC Converters and Vehicles
KR101934719B1 (en) On Board Charger for Controlling Output Voltage and Charging Method Threrof
KR102008752B1 (en) Vehicle power control device
KR102063921B1 (en) Vehicle power control device
KR20190092994A (en) Battery charger for vehicle
KR20190029868A (en) Vehicle power control device
CN110014986B (en) Distributed single-stage vehicle-mounted charging device and method thereof
CN207926446U (en) A kind of DC-DC converter

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20160816

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20180418

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20181029

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20181227

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20181227

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20211208

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20221201

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20231204

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20241202

Start annual number: 7

End annual number: 7