[go: up one dir, main page]

KR101903043B1 - Advanced oxidation, adsoption system for control of micropollutants in wastewater - Google Patents

Advanced oxidation, adsoption system for control of micropollutants in wastewater Download PDF

Info

Publication number
KR101903043B1
KR101903043B1 KR1020180048828A KR20180048828A KR101903043B1 KR 101903043 B1 KR101903043 B1 KR 101903043B1 KR 1020180048828 A KR1020180048828 A KR 1020180048828A KR 20180048828 A KR20180048828 A KR 20180048828A KR 101903043 B1 KR101903043 B1 KR 101903043B1
Authority
KR
South Korea
Prior art keywords
tank
harmful substances
wastewater
treatment tank
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020180048828A
Other languages
Korean (ko)
Inventor
이미란
김용환
오승배
Original Assignee
주식회사 대성그린테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대성그린테크 filed Critical 주식회사 대성그린테크
Priority to KR1020180048828A priority Critical patent/KR101903043B1/en
Application granted granted Critical
Publication of KR101903043B1 publication Critical patent/KR101903043B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/109Characterized by the shape
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1215Combinations of activated sludge treatment with precipitation, flocculation, coagulation and separation of phosphates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Water Treatments (AREA)

Abstract

An advanced oxidation and adsorption system of the present invention comprises: a biofilm treatment tank for removing trace harmful substances contained in a wastewater by oxidizing and decomposing a biofilm formed by microorganisms; an advanced oxidation treatment tank having a composite configuration of O_3/H_2O_2/UV; an adsorption tank having a multilayer structure of expanded graphite, iron oxide, and magnesite; and a disinfection tank using chlorine. By the above configuration, the present invention relates to an advanced oxidation and adsorption system for treating trace harmful substances in the wastewater which can effectively remove trace harmful substances contained in the wastewater by biological, chemical, and physical decomposition reaction independently or depending on complex processes.

Description

하·폐수 내 미량유해물질 처리를 위한 고도산화, 흡착시스템{ADVANCED OXIDATION, ADSOPTION SYSTEM FOR CONTROL OF MICROPOLLUTANTS IN WASTEWATER}TECHNICAL FIELD [0001] The present invention relates to an advanced oxidation and adsorption system for treating trace amounts of harmful substances in a wastewater,

본 발명은 고도산화, 흡착시스템은 미생물에 의해 형성되는 생물막(biofilm)의 산화·분해 작용을 통해 하·폐수 내에 포함되어 있는 미량유해물질을 제거하는 생물막처리조와, O3/H2O2/UV의 복합구성에 의한 고도산화처리조와, 팽창흑연, 산화철, 마그네사이트의 다층 구조에 의한 흡착조와, 염소를 사용하는 소독조의 구성을 통해 생물학적, 화학적, 물리적 분해반응이 독립적 또는 복합적인 과정 거침에 따라 하·폐수 내에 포함되어 있는 미량유해물질을 효과적으로 제거할 수 있는 하·폐수 내 미량유해물질 처리를 위한 고도산화, 흡착시스템에 관한 것이다.The present invention is advanced oxidation, adsorption system, biofilm treatment tank and to remove the trace amount of hazardous substances contained in and waste water through the oxidation and disintegration of biofilms (biofilm) which is formed by microbes, O 3 / H 2 O 2 / The biological, chemical, and physical decomposition reactions are carried out independently or in a complex process through the combination of the advanced oxidation treatment tank with the UV composition, the adsorption tank by the multilayer structure of expanded graphite, iron oxide, and magnesite, and the disinfection tank using chlorine The present invention relates to a high oxidation and adsorption system for treating trace amounts of harmful substances in wastewater, which can effectively remove trace harmful substances contained in wastewater.

현대 사회의 급속한 산업의 발달과 경제성장은 인간 생활환경 수준의 향상을 가져왔고, 도시화로 인한 인구집중은 다량의 하수발생을 초래하게 되어 주변 수질에 대한 오염부하량의 증가 및 축적으로 환경생태계에 영향을 주고 있다.Rapid industrial development and economic growth in modern society have brought about improvement in the level of human living environment. Population concentration due to urbanization causes a large amount of sewage generation, resulting in increase and accumulation of pollutant loads on the surrounding water quality, .

각 가정이나 동물사육, 양식장 등에서 사용되고 있는 항생제, 진통소염제 등의 의약물질, 미용물질과 과불화화합물은 기존의 하수처리과정이나 고도처리과정으로는 효과적인 제거가 어려워 상당량이 환경중으로 배출되고 있다. 하천 등으로 유입되는 이들 미량유해물질들에 의해 안정적인 수질 유지에 어려움이 따르고 있다. 미량만으로도 유해성이 있으며, 잔류성, 생물농축성이 있는 것으로 나타나 지속적, 만성적으로 노출시 생태계 및 인간의 건강에 심각한 영향을 끼칠 우려가 있다.Medicinal substances, cosmetic substances and perfluorinated compounds such as antibiotics, antiinflammatory agents, etc., which are used in households, animal breeding farms and farms, are difficult to be effectively removed by conventional sewage treatment or advanced treatment process, And it is difficult to maintain stable water quality due to these trace harmful substances introduced into rivers and the like. Substance alone is harmful, has persistence and bioaccumulation, and it is likely to have serious effects on ecosystem and human health when exposed continuously or chronically.

상기 의약물질에는 자기공명영상(MRI) 촬영이나 컴퓨터단층(CT) 촬영과 같은 방사선 검사시에 조직이나 혈관을 잘 볼 수 있도록 각 조직의 X선 흡수차를 인위적으로 크게 함으로써 영상의 대조도를 크게 해주는 약품의 조영제, 염증을 완화시키는 소염작용과 통증을 완화시키는 진통작용을 모두 갖는 약물인 소염진통제, 미생물에 의해 생성되어 다른 세포의 발육 또는 기능을 저지하는 물질인 항생제가 미량오염물질의 주를 이루고 있다.The medicinal substance is artificially increased in X-ray absorption difference of each tissue so that the tissue or blood vessels can be seen well during radiographic examination such as magnetic resonance imaging (MRI) imaging or computerized tomography (CT) imaging, Antibiotics, which is a drug that has both anti-inflammatory and analgesic actions that alleviate inflammation and analgesic action that alleviates inflammation, anti-inflammatory analgesics, and substances that are produced by microorganisms and inhibit the development or function of other cells, .

PPCP는 pharmaceuticals and personal care products의 약자로써 처방전 없이 우리가 쉽게 구할 수 있는 두통약이나 진통제 등과 개인의 건강이나 미용 증진, 가축의 건강이나 성장 촉진하는 의약품과 또는 마약성분이 포함되어 있는 물질이 수중에 함유되어 인체에 영향을 미치는 것을 말한다.PPCP is an abbreviation of pharmaceuticals and personal care products. It is a product that can be easily obtained without a prescription, such as a headache medicine or analgesic, a personal health or beauty enhancement, a livestock health or growth promoting medicine, And it affects the human body.

PPCP는 폐의약품 등이 하수로 유입되거나 또는 산업체나 병원 등에서 방출되어 하수도로 유입될 경우, 폐수처리 설비공정을 거쳐 다시 상수나 산업, 농업 용수로 공급되는 순환과정에서 사람에게 까지 영향을 미치게 된다.PPCP is influenced by the circulation process of waste medicine, sewage, industrial waste, industrial waste, and sewerage.

특히 엑스레이 조영제로 사용되는 iopromide의 PPCP가 가장 많은 농도로 검출되고 있다. 또한 항 염증제로 사용되고 있는 ibuprofen, 해열제로 사용되고 있는 acetaminophen 등 많은 PPCP 물질들이 분해되지 않고 그대로 하천에 방류되고 있는 실정이다.Especially, PPCP of iopromide used as an x-ray contrast agent is detected at the highest concentration. In addition, many PPCP substances such as ibuprofen, which is used as an anti-inflammatory agent, and acetaminophen, which is used as an antipyretic, are being released into the river without being decomposed.

한강, 영산강, 낙동강에서 검출되는 PPCP로는 Erythromycin, Sulfamethoxazole, TCEP, DEET, Oxybenzone, Estrone, Androstenedione, Iopromide, Hydrocodone, Acetaminophen, Trimethoprim, Pentoxifylline, Meprobamate, Naproxen, Ibuprofen, Diclofenac, Carbamazepine, Caffeine, Gemfibrizi이다.PPCP detected in Han River, Youngsan River and Nakdong River are Erythromycin, Sulfamethoxazole, TCEP, DEET, Oxybenzone, Estrone, Androstenedione, Iopromide, Hydrocodone, Acetaminophen, Trimethoprim, Pentoxifylline, Meprobamate, Naproxen, Ibuprofen, Diclofenac, Carbamazepine, Caffeine and Gemfibrizi.

상기 과불화화합물(PFCs)은 소수성(hydrophobic) 및 소유성(lipophobic)을 가지는 특성으로 인해 산업적으로 매우 다양한 용도로 사용되고 있는 물질로 중합체 첨가물, 방화제, 방오제, 반도체 세척용제, 계면활성제, 살충제, 윤활제, 페인트, 광택제, 식품포장재, 난연성 보온재, 부식억제제, 필름 등의 감광코팅제, 샴푸 및 개인위생용품 등 그 용도는 헤아릴 수 없을 만큼 다양하다.Since the perfluorinated compounds (PFCs) have hydrophobic and lipophobic properties, they are used in a wide variety of industrial applications. They are used as polymer additives, fire retardants, antifouling agents, semiconductor cleaning solvents, surfactants, pesticides, Applications such as lubricants, paints, polishes, food packaging materials, flame retardant insulating materials, corrosion inhibitors, photosensitive coatings such as films, shampoos and personal hygiene products are incomprehensible.

상기 과불화화합물(PFCs)은 물에 대한 용해도가 매우 높아서 다른 과불화화합물에 비해 폐수, 지표수, 지하수, 수돗물 및 빗물에서 비교적 높은 농도로 검출된다. The perfluorinated compounds (PFCs) are highly soluble in water and are detected at relatively high concentrations in wastewater, surface water, ground water, tap water and rainwater compared to other perfluorinated compounds.

이와 같은 난분해성으로 환경에 장기간 머물며 생물축적(bioaccumulation) 및 생물확대(biomagnification)의 원인이 되기 때문에 인간과 동물들에게 심각한 피해를 유발한다.Such degradation causes serious damage to humans and animals due to long-term stay in the environment and bioaccumulation and biomagnification.

본 발명은 이와 같은 난분해성의 미량유해물질을 제거하기 위하여, 생물막(biofilm)의 산화·분해 작용을 통해 하·폐수 내에 포함되어 있는 미량유해물질을 제거하는 생물막처리조와, O3/H2O2/UV의 복합구성에 의한 고도산화처리조와, 팽창흑연, 산화철, 마그네사이트의 다층 구조에 의한 흡착조와, 염소를 사용하는 소독조로 구성되는 고도산화, 흡착시스템을 제시하고자 한다.The present invention relates to a biofilm treatment tank for removing minute harmful substances contained in a wastewater by oxidizing and decomposing a biofilm and a biofilm treatment tank for removing trace detrimental harmful substances such as O 3 / H 2 O 2 / UV, an adsorption tank using expanded graphite, iron oxide, and magnesite, and a disinfection tank using chlorine.

대한민국 등록특허 10-0367219(등록일자 2002년12월23일)Korean Registered Patent No. 10-0367219 (registered on December 23, 2002) 대한민국 등록특허 10-0355196(등록일자 2002년09월23일)Korean Registered Patent No. 10-0355196 (registered on September 23, 2002) 대한민국 등록특허 10-1765889(등록일자 2017년08월01일)Korean Registered Patent No. 10-1765889 (registered on August 01, 2017)

본 발명은 고도산화, 흡착시스템은 미생물에 의해 형성되는 생물막(biofilm)의 산화·분해 작용을 통해 하·폐수 내에 포함되어 있는 미량유해물질을 제거하는 생물막처리조와, O3/H2O2/UV의 복합구성에 의한 고도산화처리조와, 팽창흑연, 산화철, 마그네사이트의 다층 구조에 의한 흡착조와, 염소를 사용하는 소독조의 구성을 통해 생물학적, 화학적, 물리적 분해반응이 독립적 또는 복합적인 과정 거침에 따라 하·폐수 내에 포함되어 있는 미량유해물질을 효과적으로 제거할 수 있는 하·폐수 내 미량유해물질 처리를 위한 고도산화, 흡착시스템을 제공하고자 하는 것을 발명의 목적으로 한다.The present invention is advanced oxidation, adsorption system, biofilm treatment tank and to remove the trace amount of hazardous substances contained in and waste water through the oxidation and disintegration of biofilms (biofilm) which is formed by microbes, O 3 / H 2 O 2 / The biological, chemical, and physical decomposition reactions are carried out independently or in a complex process through the combination of the advanced oxidation treatment tank with the UV composition, the adsorption tank by the multilayer structure of expanded graphite, iron oxide, and magnesite, and the disinfection tank using chlorine It is an object of the present invention to provide a highly oxidizing and adsorbing system for treating trace amounts of harmful substances in wastewater that can effectively remove trace harmful substances contained in wastewater.

상기 목적을 달성하기 위하여,In order to achieve the above object,

본 발명은 유입되는 하·폐수 중의 슬러지를 침전시켜 제거하는 침전조와,The present invention relates to a sedimentation tank for sedimenting and removing sludge in inflow wastewater,

폴리에틸렌 담체를 처리조 전체 체적의 35 ~ 55 vol%로 채워, 상기 침전조로 부터 유입되는 하·폐수 내의 미량유해물질을 미생물에 의해 형성되는 생물막에 의해 산화·분해처리하는 생물막처리조와,A biofilm treatment tank for filling the polyethylene carrier with 35 to 55 vol% of the total volume of the treatment tank and oxidizing and decomposing the trace harmful substances in the wastewater flowing into the settling tank by the biofilm formed by the microorganisms;

오존(O3)을 공급하는 오존공급부; 과산화수소(H2O2)를 공급하는 과산화수소공급부; 처리조의 중심부에 설치되어 있는 UV램프를 통해 UV를 발생시키는 UV조사부;를 포함하는 O3/H2O2/UV의 복합구성을 이루어, 하이드록실 라디칼(Hydroxyl radical)을 형성·촉진하여 상기 생물막처리조로부터 유입되는 하·폐수 내의 미량유해물질을 분해처리하는 고도산화처리조와,An ozone supply unit for supplying ozone (O 3 ); A hydrogen peroxide supply unit for supplying hydrogen peroxide (H 2 O 2 ); UV irradiation unit for generating the UV through a UV lamp installed in the central treatment tank; place the O 3 / H 2 O complex configuration of the 2 / UV including the hydroxyl radical (Hydroxyl radical) in the formation, promotion to the biofilm A high-level oxidation treatment tank for decomposing and treating the trace harmful substances in the wastewater discharged from the treatment tank,

팽창흑연이 채워진 상부층과, 산화철이 채워진 중간층과, 마그네사이트가 채워진 하부층이 적층 구조를 이루어 상기 상부층에서부터 하부층에 이르는 흡착작용에 의해, 상기 고도산화처리조로부터 유입되는 하·폐수 내의 미량유해물질을 분해처리하는 흡착조와,An upper layer filled with expanded graphite, an intermediate layer filled with iron oxide, and a lower layer filled with magnesite have a laminated structure, and by the action of adsorption from the upper layer to the lower layer, the harmful substances in the lower and wastewater flowing in from the above- An adsorption tank for treatment,

상기 흡착조를 거쳐 유입되는 유입수를 기준으로 5 ~ 20 mg/L의 염소를 주입하여 미량유해물질을 제거하는 소독조를 포함하여 이루어지는 것임을 특징으로 하는 하·폐수 내 미량유해물질 처리를 위한 고도산화, 흡착시스템을 제공한다.And a sterilizing tank for removing trace harmful substances by injecting chlorine of 5 to 20 mg / L based on the influent water flowing through the adsorption tank. Thereby providing an adsorption system.

본 발명에 따른 하·폐수 내 미량유해물질 처리를 위한 고도산화, 흡착시스템은 침전조; 미생물에 의해 형성되는 미생물막에 의해 산화·분해처리하는 생물막처리조; O3/H2O2/UV의 복합구성을 통해 미량유해물질을 분해처리하는 고도산화처리조; 팽창흑연, 산화철 및 마그네사이트의 적층 구성을 이루는 흡착조: 염소를 주입하여 미량유해물질을 제거하는 소독조;를 포함하여 구성되어, 생물학적, 화학적, 물리적 분해반응이 독립적 또는 복합적인 과정을 통해 하·폐수 내에 포함되어 있는 미량유해물질을 효과적으로 제거할 수 있다.The present invention relates to a high oxidation and adsorption system for treating trace amounts of harmful substances in wastewater, comprising: a settling tank; A biofilm treatment tank for oxidizing and decomposing by a microorganism membrane formed by a microorganism; O 3 / H 2 O 2 / UV to decompose the trace harmful substances; And a disinfection tank for removing trace harmful substances by injecting chlorine, wherein the biological, chemical, and physical decomposition reactions are carried out independently or in a composite process, It is possible to effectively remove trace harmful substances contained in the water.

구체적인 예로서, 원수에 포함되어 있던 acetaminophen, ibuprofen, caffeine 성분을 기준으로 살펴볼 때, 최종 처리수 내 acetaminophen의 제거율 93.7%, ibuprofen의 제거율 98.6%, caffeine의 제거율 98.2%로서 상당 부분 제거되는 효과를 확인할 수 있었다.As a specific example, the acetaminophen, ibuprofen, and caffeine components contained in the raw water were found to be substantially eliminated by removing 93.7% of acetaminophen, 98.6% of ibuprofen, and 98.2% of caffeine in the final treated water I could.

도 1은 본 발명에 따른 하·폐수 내 미량유해물질 처리를 위한 고도산화, 흡착시스템의 전체 구성도.
도 2는 본 발명의 고도산화, 흡착시스템을 구성하는 생물막처리조의 폴리에틸렌 담체를 도시한 사시도.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a general view of a highly oxidizing and adsorbing system for treating trace harmful substances in a wastewater according to the present invention; FIG.
2 is a perspective view showing a polyethylene carrier of a biofilm treatment tank constituting a high oxidation and adsorption system of the present invention.

이하, 본 발명에 따른 기술 구성을 도면과 함께 구체적으로 살펴보도록 한다.Hereinafter, the technical construction according to the present invention will be described in detail with reference to the drawings.

도 1에 도시된 바와 같이,As shown in Figure 1,

본 발명에 따른 하·폐수 내 미량유해물질 처리를 위한 고도산화, 흡착시스템은 유입되는 하·폐수 중의 슬러지를 침전시켜 제거하는 침전조(10)와,The high oxidation and adsorption system for treatment of trace harmful substances in the wastewater according to the present invention comprises a sedimentation tank 10 for precipitating and removing sludge in incoming wastewater,

폴리에틸렌 담체(201)를 처리조 전체 체적의 35 ~ 55 vol%로 채워, 상기 침전조(10)로 부터 유입되는 하·폐수 내의 미량유해물질을 미생물에 의해 형성되는 생물막에 의해 산화·분해처리하는 생물막처리조(20)와,The biofilm for filling the polyethylene carrier 201 with 35 to 55 vol% of the total volume of the treatment tank and oxidizing and decomposing the trace harmful substances in the wastewater discharged from the settling tank 10 by the biofilm formed by the microorganisms A treatment tank 20,

오존(O3)을 공급하는 오존공급부(31); 과산화수소(H2O2)를 공급하는 과산화수소공급부(32); 처리조의 중심부에 설치되어 있는 UV램프(331)를 통해 UV를 발생시키는 UV조사부(33);를 포함하는 O3/H2O2/UV의 복합구성을 이루어, 하이드록실 라디칼(Hydroxyl radical)을 형성·촉진하여 상기 생물막처리조(20)로부터 유입되는 하·폐수 내의 미량유해물질을 분해처리하는 고도산화처리조(30)와,An ozone supply unit 31 for supplying ozone (O 3 ); A hydrogen peroxide supply part 32 for supplying hydrogen peroxide (H 2 O 2 ); And a UV irradiating unit 33 for generating UV through a UV lamp 331 installed at the center of the treatment tank to form a complex structure of O 3 / H 2 O 2 / UV, thereby forming a hydroxyl radical A high-level oxidation treatment tank 30 for decomposing and treating the trace harmful substances in the wastewater discharged from the biofilm treatment tank 20,

팽창흑연이 채워진 상부층(41)과, 산화철이 채워진 중간층(42)과, 마그네사이트가 채워진 하부층(43)이 적층 구조를 이루어 상기 상부층(41)에서부터 하부층(43)에 이르는 흡착작용에 의해, 상기 고도산화처리조(30)로부터 유입되는 하·폐수 내의 미량유해물질을 분해처리하는 흡착조(40)와,The upper layer 41 filled with expanded graphite, the intermediate layer 42 filled with iron oxide and the lower layer 43 filled with magnesite have a laminated structure and are adsorbed from the upper layer 41 to the lower layer 43, An adsorption tank 40 for decomposing and treating the trace harmful substances in the wastewater discharged from the oxidation treatment tank 30,

상기 흡착조(40)를 거쳐 유입되는 유입수를 기준으로 5 ~ 20 mg/L의 염소를 주입하여 미량유해물질을 제거하는 소독조(50)를 포함하여 이루어진다.And a disinfection unit 50 for removing trace harmful substances by injecting chlorine of 5 to 20 mg / L based on the inflow water flowing through the adsorption tank 40.

하·폐수에 포함되어 있는 슬러지는 상기 침전조(10)에서의 물리적 침전과정을 통해 제거된다. 침전조(10)를 거친 하·폐수는 상기 생물막처리조(20)로 유입된다.The sludge contained in the wastewater is removed through a physical precipitation process in the sedimentation tank 10. The bottom / wastewater that has passed through the settling tank 10 flows into the biofilm treatment tank 20.

상기 생물막처리조(20)는 폴리에틸렌 담체(201)를 이용하여 생물학적으로 미량유해물질을 제거한다.The biofilm treatment tank 20 biologically removes trace harmful substances using the polyethylene carrier 201.

상기 폴리에틸렌 담체(201)는 생물막처리조(20)의 바닥면으로부터 소정의 간격으로 이격되어 있는 위치에 형성되어 있는 2개의 메쉬구조의 지지판(202) 사이에 탑재되는 것으로서, 생물막처리조(20)의 전체 체적의 35 ~ 55 vol%를 차지하도록 설치된다.The polyethylene carrier 201 is mounted between the support plates 202 of two mesh structures formed at positions spaced apart from the bottom surface of the biofilm treatment tank 20 by a predetermined distance, Of the total volume of the chamber.

상기 폴리에틸렌 담체(201)가 차지하는 체적이 35 vol% 미만인 경우에는 미생물에 의해 형성되는 생물막의 산화·분해 작용에 의한 미량유해물질의 제거율이 떨어질 수 있고, 55 vol%를 초과하게 되는 경우에는 생물막처리조(20)를 통해 처리하고자 하는 하·폐수의 처리양에 영향을 미칠 수 있으므로, 상기 폴리에틸렌 담체(201)가 차지하는 체적은 생물막처리조(20)의 전체 체적의 35 ~ 55 vol%를 유지하는 것이 바람직하다.When the volume occupied by the polyethylene carrier 201 is less than 35 vol%, the removal rate of trace harmful substances due to oxidation and decomposition of the biofilm formed by the microorganisms may be lowered. If the volume exceeds 55 vol%, the biofilm treatment The volume occupied by the polyethylene carrier 201 is maintained at 35 to 55 vol% of the total volume of the biofilm treatment tank 20 because the amount of the treated wastewater to be treated may be affected by the treatment tank 20 .

상기 생물막처리조(20)에 의한 미량유해물질 처리는 고체 표면에 부착한 미생물과 미생물이 분비한 체외분비물질이 결합하여 형성된 생물막(biofilm)의 산화·분해 작용에 의해 이루어진다.The treatment of trace harmful substances by the biofilm treatment tank 20 is performed by oxidizing and decomposing a biofilm formed by binding of a microorganism adhering to a solid surface and an exocrine secretory substance secreted by a microorganism.

상기 폴리에틸렌 담체(201)는 도 2에 도시된 바와 같이, 망형상의 원통구로 형성되어 내면과 외면에는 다수의 미세한 주름이 형성된 주름턱부(201a)를 갖는다.As shown in FIG. 2, the polyethylene carrier 201 has a corrugated prong portion 201a having a plurality of fine corrugations formed on its inner and outer surfaces.

이와 같은 주름턱부(201a)를 통해 미생물의 고착을 용이하게 함으로써 미생물에 의한 미량유해물질 처리 효율을 상승시킬 수 있다.By facilitating the adhesion of the microorganisms through the corrugated jaws 201a, the treatment efficiency of the trace amount of toxic substances by the microorganisms can be increased.

폴리에틸렌 수지의 특성상 성형이 이루어진 상태에서는 표면이 매끄럽게 성형되기 때문에 이와 같은 표면에서는 미생물의 부착 및 번식이 용이하게 이루어질 수 없다. 미세한 주름이 형성되어 있는 망형상의 폴리에틸렌 원통구를 사용함으로써 미생물의 부착 및 번식이 용이하게 이루어진다.The microfibers can not be easily attached and propagated on such a surface because the surface is smoothly formed in the state where the molding is performed due to the characteristics of the polyethylene resin. The use of a mesh-like polyethylene cylinder having fine wrinkles facilitates attachment and propagation of microorganisms.

상기 주름턱부(201a)에 고착되는 미생물에는 광합성 세균, 젖산균 또는 효모 등이다. 바람직하게는 락토바실러스 sp(Lactobacillus sp.), 초산균과(Acetobacteraceae) 및 로도스피릴룸과(Rhodospirillaceae)의 혼합으로 조성된 복합미생물 원액, 당밀 및 배지를 1:1:30의 중량비율로 혼합한 복합미생물을 19 ~ 22 ℃에서 2 ~ 4 일간 활성화한 후 상기 생물막처리조(20)로 공급하여 복합미생물에 의한 미량유해물질 처리 효율을 향상시키도록 한다.The microorganisms fixed to the wrinkle chin 201a include photosynthetic bacteria, lactic acid bacteria, yeast, and the like. Preferably, a complex microorganism mixture consisting of a mixture of Lactobacillus sp., Acetobacteraceae and Rhodospirillaceae, molasses and medium are mixed at a weight ratio of 1: 1: 30 The microorganisms are activated at 19 to 22 ° C for 2 to 4 days and then supplied to the biofilm treatment tank 20 to improve the treatment efficiency of the trace harmful substances by the complex microorganisms.

이때 상기 복합미생물은 락토바실러스 sp(Lactobacillus sp.) 85 ~ 95 wt%, 초산균과(Acetobacteraceae) 4.5 ~ 15 wt%, 로도스피릴룸과(Rhodospirillaceae) 0.5 ~ 2.5 wt%의 혼합으로 조성된 것임을 특징으로 한다.Wherein the complex microorganism is composed of 85 to 95 wt% of Lactobacillus sp., 4.5 to 15 wt% of Acetobacteraceae, and 0.5 to 2.5 wt% of Rhodospirillaceae, do.

상기 생물막처리조(20)를 통해 1차 처리된 하·폐수는 후단의 고도산화처리조(30)로 유입된다.Wastewater subjected to the primary treatment through the biofilm treatment tank 20 flows into the advanced oxidation treatment tank 30 at the downstream stage.

상기 고도산화처리조(30)는 도 1에 도시된 바와 같이, 오존(O3)을 공급하는 오존공급부(31); 과산화수소(H2O2)를 공급하는 과산화수소공급부(32); 처리조의 중심부에 설치되어 있는 UV램프(331)를 통해 UV를 발생시키는 UV조사부(33);를 포함하는 O3/H2O2/UV의 복합구성을 이룬다.As shown in FIG. 1, the advanced oxidation treatment tank 30 includes an ozone supply unit 31 for supplying ozone (O 3 ); A hydrogen peroxide supply part 32 for supplying hydrogen peroxide (H 2 O 2 ); Form the composite structure of the O 3 / H 2 O 2 / UV containing; UV irradiation section 33 for generating the UV through a UV lamp (331) installed in the heart treatment tank.

이와 같은 O3/H2O2/UV의 복합구성을 통해 하이드록실 라디칼(Hydroxyl radical)의 형성 및 촉진 과정을 통해 미량유해물질의 효과적인 처리가 이루어진다.This complex composition of O 3 / H 2 O 2 / UV effectively treats trace harmful substances through formation and promotion of hydroxyl radicals.

특히 상기 O3/H2O2/UV의 복합구성은 오존, 과산화수소 및 UV를 복합사용하되, O3과 H2O2의 주입량의 비를 1: 0.3 ~ 0.7로 하여 03/H2O2/UV의 복합 구성을 이룸으로써, 오존, 과산화수소 및 UV를 각각 단독 사용시보다 OH라디칼 생성을 2.0 ~ 3.0 배 향상시키도록 구성된다.In particular, the O 3 / H 2 O 2 /, but the composite structure of the UV are combined using ozone, hydrogen peroxide and UV, O 3 and the injection amount of the ratio of H 2 O 2 1: and to 0.3 ~ 0.7 0 3 / H 2 O 2 / UV, it is configured to improve OH radical generation 2.0 to 3.0 times more than ozone, hydrogen peroxide, and UV when used singly.

오존(O3)은 대기 중의 산소, 또는 순수한 산소를 이용하여 자외선이나 고압 방전에 의하여 가스상태로 발생시키는데 오존을 수처리에 사용할 경우 오존을 물에 용해시켜 반응을 시켜야 한다. 하지만 오존은 물에 대한 용해도가 낮아서 매우 적은 양만이 물 속에 용해된다. 물 속에 용해된 오존은 매우 불안정하여 매우 빠르게 자체 분해된다. 오존은 수산화기(OH-)와 반응하여 분해되므로 오존의 분해속도는 pH에 크게 영향을 받다. 오존은 산성에서는 비교적 안정하나 염기성으로 갈수록 수산화기에 의하여 분해속도가 빨라진다.Ozone (O 3) is generated in the gas state by ultraviolet ray or high pressure discharge using oxygen in the atmosphere or pure oxygen. When ozone is used for water treatment, ozone should be dissolved in water and reacted. However, ozone is low in solubility in water, so only very small amounts are dissolved in water. Ozone dissolved in water is very unstable and decomposes very quickly. Since ozone decomposes by reacting with hydroxyl group (OH-), the decomposition rate of ozone is greatly influenced by pH. Ozone is relatively stable in acidic form, but decomposition rate is accelerated by hydroxyl group as it goes to basic.

과산화수소의 짝염기인 HO2 -가 수산화기(OH-)보다 훨씬 빠르게 오존을 분해하여 OH· 라디칼을 생성한다. 이러한 현상에 따라 오존에 과산화수소를 첨가하여 OH· 라디칼을 생성한다.HO 2 - , the conjugate base of hydrogen peroxide, decomposes ozone much faster than hydroxyl group (OH - ) to generate OH · radicals. According to this phenomenon, hydrogen peroxide is added to ozone to generate OH · radicals.

자외선 조사는 파장에 따라 특성과 원리가 다르며, 이를 이용하여 살균 및 소독, 유기물 제거 등의 다양한 용도로 사용되어 왔다. 유기물 광자(photon)와 충돌하여 제거되는 광산화 공정은 다음의 2가지 경로로 제거된다.Ultraviolet irradiation differs in characteristics and principles according to wavelength, and has been used for various purposes such as disinfection and disinfection and organic matter removal. The photooxidation process that is removed by collision with organic photons is removed by the following two pathways.

첫번째는 다음의 식 (1) 및 (2)와 같이 유기물이 광자(photon)와 충돌하여 들뜬 상태가된다. 이 들뜬 상태의 유기물이 산소와 반응하여 라디칼 이온을 생성시키면서 유기물이 분해된다.First, the organic matter collides with a photon and becomes excited as shown in the following equations (1) and (2). The organic matter in the excited state reacts with oxygen to generate radical ions, and the organic matter is decomposed.

M + hυ ---> M* -------------- (1)M + h? ---> M * -------------- (1)

M* + O2 ---> M*+ + O2 - · -------------- (2) M * + O 2 ---> M * + + O 2 - · -------------- (2)

두번째는 다음의 식 (3) 및 (4)와 같이 유기물이 자외선에 의하여 분해되어 유기 라디칼을 생성시키고, 이 유기 라디칼이 산소와 결합하여 산화 유기 라디칼을 생성하며 산화에 관여하는 경로이다.The second is a pathway in which organic substances are decomposed by ultraviolet rays to generate organic radicals as shown in the following formulas (3) and (4), and the organic radicals combine with oxygen to generate oxidative organic radicals and participate in oxidation.

MX + hυ ---> M · + X . --------------- (3)MX + hυ ---> M · + X. --------------- (3)

M·+ O2 ---> MO2 · --------------- (4) M · + O 2 ---> MO 2 · --------------- (4)

상기 UV조사부(33)는 TiO2를 5,000 ~ 9,000 Å의 두께로 피막을 형성한 석영관(332) 내부에 자외선 램프(331)를 설치함으로써 구성된다.The UV irradiator 33 is configured by providing an ultraviolet lamp 331 inside a quartz tube 332 in which TiO 2 is coated to a thickness of 5,000 to 9,000 Å.

상기 석영관(332)은 TiO2 타블렛(Tablet)에 일렉트로 빔(Electro beam) 발생기를 이용하여 1,800 ~ 2,200 ℃의 증발 온도이상으로 높여 TiO2를 증발시키고 로내 온도는 310 ℃, 증착율은 2.5 ~ 4.0 Å/sec를 유지하고 내부압력을 2.0 × 10-5 torr의 진공하에서 증착용 석영관을 800 ~ 1,500 rpm으로 회전시키면서 5,000 ~ 9,000 Å의 두께로 피막 형성한 것을 사용한다.The quartz tube 332 is heated to an evaporation temperature of 1,800-2,200 ° C by using an electro beam generator on a TiO 2 tablet to evaporate TiO 2. The temperature in the furnace is 310 ° C and the deposition rate is 2.5-4.0 Sec and a vacuum of 2.0 × 10 -5 torr, the quartz tube is spin-coated at 800~1,500 rpm to form a film with a thickness of 5,000~9,000 Å.

상기 흡착조(40)는 팽창흑연이 채워진 상부층(41)과, 산화철이 채워진 중간층(42)과, 마그네사이트가 채워진 하부층(43)이 적층 구조를 이루어 상기 상부층(41)에서부터 하부층(43)에 이르는 흡착작용에 의해 미량유해물질을 제거한다.The adsorption tank 40 has an upper layer 41 filled with expanded graphite, an intermediate layer 42 filled with iron oxide and a lower layer 43 filled with magnesite having a laminated structure and extending from the upper layer 41 to the lower layer 43 Trace harmful substances are removed by adsorption.

흡착이란 흡착제(adsorbent)를 사용하여 용액으로부터 어떤 기질(substrate)을 제거하는 것을 의미한다. 흡착제 중 활성탄(activated carbon)은 다양한 종류의 유기화합물을 흡착하므로 정수처리와 고차 폐수처리, 그리고 유기산업 폐수의 처리에 광범위하게 사용되는 흡착제이다.Adsorption refers to the removal of a substrate from a solution using an adsorbent. Activated carbon in the adsorbent absorbs various kinds of organic compounds and is widely used in water treatment, high-order wastewater treatment, and organic wastewater treatment.

흡착(adsorption)은 흡착제의 표면으로 기질이 모이는 것인데 반해 흡수(absorption)는 모인 기질이 흡착제 속으로 침투되는 것을 말한다.Adsorption refers to the aggregation of the substrate to the surface of the adsorbent, whereas absorption refers to the penetration of the collected substrate into the adsorbent.

흡착은 통상 물리적 흡착과 화학적 흡착으로 분류한다. 물리적 흡착은 주로 van der waals 힘에 기인하며 가역적으로 발생한다. 용질과 흡착제 사이에서 분자의 인력이 용질과 용매 사이의 인력보다 클 때 용질은 흡착제 표면에 달라붙게 된다. 물리적인 흡착의 예로는 활성탄을 들 수 있다. 활성탄은 탄소입자 내에 수많은 모세관을 가지고 있으며, 흡착할 수 있는 표면으로는 입자의 외부 표면과 더불어 공극내의 표면도 포함된다. 실제로 공극 표면적은 입자의 표면적보다 훨씬 크고 대부분의 흡착은 공극 표면에서 일어나게 된다.Adsorption is usually divided into physical adsorption and chemical adsorption. Physical adsorption is mainly due to van der waals force and occurs reversibly. When the attraction force of the molecules between the solute and the adsorbent is greater than the attraction between the solute and the solvent, the solute sticks to the adsorbent surface. An example of physical adsorption is activated carbon. Activated carbon has numerous capillaries in the carbon particles, and the adsorbable surface includes the surface inside the void as well as the outer surface of the particle. In practice, the pore surface area is much larger than the surface area of the particles and most adsorption occurs at the pore surface.

상기 상부층(41) 팽창흑연에 의해 구성되며, 상기 팽창흑연의 흡착 작용에 의해 미량유해물질 흡착 제거가 이루어진다.The upper layer (41) is constituted by expanded graphite, and a trace amount of harmful substances is adsorbed and removed by the adsorption action of the expanded graphite.

상기 팽창흑연은 천연흑연을 증류수로 세척한 후 80 ~ 90 ℃의 항온 건조기에서 40 ~ 60 시간 동안 건조하고, 건조한 천연흑연을 질소분위기의 튜브 로(tube furnace)에서 15 ℃/min의 승온 속도로 가열하여 800 ~ 1,200 ℃에서 1 ~ 10 분 동안 열처리 후 자연냉각시켜 제조한 것을 사용한다.The expanded graphite is washed with distilled water and dried in a constant temperature drier at 80 to 90 ° C for 40 to 60 hours. The natural graphite is dried in a tube furnace in a nitrogen furnace at a rate of 15 ° C / min Heat-treated at 800 to 1,200 ° C for 1 to 10 minutes, and then naturally cooled.

더욱 구체적으로는, More specifically,

천연흑연을 증류수로 세척한 후 85 ℃의 항온 건조기에서 50 시간 동안 건조하고, 건조한 천연흑연을 질소분위기의 튜브 로(tube furnace)에서 15 ℃/min의 승온 속도로 가열하여 800 ℃에서 1 분 동안 열처리 후 자연냉각시켜 제조한 것을 사용한다.The natural graphite was washed with distilled water and dried in a constant temperature drier at 85 ° C. for 50 hours. The dried natural graphite was heated in a tube furnace at a rate of 15 ° C./min and heated at 800 ° C. for 1 minute After the heat treatment, it is natural cooling.

상기 팽창흑연의 최적 제조 조건은 800 ℃에서 1분간 가열하였을 때 가장 우수한 팽창흑연을 얻을 수 있으며, 팽창흑연의 비표면적은 천연흑연에 비해 90 배 가량 상승한다. 또한 공극 크기의 분포도 활성탄의 공극 크기 분포 보다 큰 공극의 크기가 많다.The optimum conditions for the expanded graphite are obtained by heating at 800 ° C for 1 minute, and the specific surface area of the expanded graphite is increased about 90 times as compared with the natural graphite. The size of pore size is larger than that of activated carbon.

상기 산화철은 내부다공율 22 %, 외부공극률 37 %, 표면적 20 ㎡/g인 것을 사용하고, 상기 마그네사이트(Magnesite)는 내부다공율 75 %, 외부공극률 45 %, 표면적 200 ㎡/g인 것을 사용한다.The iron oxide has an internal porosity of 22%, an external porosity of 37%, and a surface area of 20 m 2 / g, and the magnesite has an internal porosity of 75%, an external porosity of 45%, and a surface area of 200 m 2 / g .

상기 소독조(50)는 단독처리 효과보다는 상기 흡착조(40)를 거친 유입수에 대해 5 ~ 20 mg/L의 염소를 주입함으로써, 추가적인 산화작용 및 소독에 의한 미량유해물질의 제거 효과를 제공한다.The disinfection tank 50 provides an effect of removing trace harmful substances by additional oxidation and disinfection by injecting 5 to 20 mg / L of chlorine into the inflow water that has passed through the adsorption tank 40, rather than a single treatment effect.

즉 미량유해물질이 염소산화에 의해 제거되는 것으로서, 염소 주입량이 흡착조(40)로부터 유입되는 유입수 기준 5 mg/L 미만인 경우에는 염소산화에 의한 미량유해물질의 처리 효과가 미미하고, 20 mg/L를 초과하게 되는 경우에는 처리 효과의 증가 변화가 미미하여 무의미하므로, 상기 염소 주입량은 흡착조(40)로부터 유입되는 유입수 기준 5 ~ 20 mg/L의 범위 내로 한정하는 것이 바람직하다.That is, the trace harmful substance is removed by chlorine oxidation. When the chlorine injection amount is less than 5 mg / L based on the influent water introduced from the adsorption tank 40, the treatment effect of the trace harmful substance by chlorine oxidation is insignificant, L, the amount of chlorine injected is preferably limited to a range of 5 to 20 mg / L on the basis of the influent water flowing from the adsorption tank 40, since the increase of the treatment effect is insignificant because it is insignificant.

본 발명에 따른 하·폐수 내 미량유해물질 처리를 위한 고도산화, 흡착시스템은 침전조; 미생물에 의해 형성되는 미생물막에 의해 산화·분해처리하는 생물막처리조; O3/H2O2/UV의 복합구성을 통해 미량유해물질을 분해처리하는 고도산화처리조; 팽창흑연, 산화철 및 마그네사이트의 적층 구성을 이루는 흡착조: 염소를 주입하여 미량유해물질을 제거하는 소독조;를 포함하여 구성되어, 생물학적, 화학적, 물리적 분해반응이 독립적 또는 복합적인 과정을 통해 하·폐수 내에 포함되어 있는 미량유해물질을 효과적으로 제거할 수 있어 수처리 분야에 있어 산업상 이용가능성이 크다.The present invention relates to a high oxidation and adsorption system for treating trace amounts of harmful substances in wastewater, comprising: a settling tank; A biofilm treatment tank for oxidizing and decomposing by a microorganism membrane formed by a microorganism; O 3 / H 2 O 2 / UV to decompose the trace harmful substances; And a disinfection tank for removing trace harmful substances by injecting chlorine, wherein the biological, chemical, and physical decomposition reactions are carried out independently or in a composite process, It is possible to effectively remove trace harmful substances contained in the water.

10 : 침전조 20 : 생물막처리조
30 : 고도산화처리조 31 : 오존공급부
32 : 과산화수소공급부 33 : UV조사부
40 : 흡착조 41 : 상부층
42 : 중간층 43 : 하부층
50 : 소독조 201: 폴리에틸렌 담체
331: UV램프 411: 팽창흑연 421: 산화철 431: 마그네사이트
10: sedimentation tank 20: biofilm treatment tank
30: altitude oxidation treatment tank 31: ozone supply unit
32: hydrogen peroxide supply part 33: UV irradiation part
40: adsorption tank 41: upper layer
42: intermediate layer 43: lower layer
50: Disinfection tank 201: Polyethylene carrier
331: UV lamp 411: Expanded graphite 421: Iron oxide 431: Magnesite

Claims (5)

유입되는 하·폐수 중의 슬러지를 침전시켜 제거하는 침전조(10)와,
폴리에틸렌 담체(201)를 처리조 전체 체적의 35 ~ 55 vol%로 채워, 상기 침전조(10)로 부터 유입되는 하·폐수 내의 미량유해물질을 미생물에 의해 형성되는 생물막에 의해 산화·분해처리하는 생물막처리조(20)와,
오존(O3)을 공급하는 오존공급부(31); 과산화수소(H2O2)를 공급하는 과산화수소공급부(32); 처리조의 중심부에 설치되어 있는 UV램프(331)를 통해 UV를 발생시키는 UV조사부(33);를 포함하는 O3/H2O2/UV의 복합구성을 이루어, 하이드록실 라디칼(Hydroxyl radical)을 형성·촉진하여 상기 생물막처리조(20)로부터 유입되는 하·폐수 내의 미량유해물질을 분해처리하는 고도산화처리조(30)와,
팽창흑연이 채워진 상부층(41)과, 산화철이 채워진 중간층(42)과, 마그네사이트가 채워진 하부층(43)이 적층 구조를 이루어 상기 상부층(41)에서부터 하부층(43)에 이르는 흡착작용에 의해, 상기 고도산화처리조(30)로부터 유입되는 하·폐수 내의 미량유해물질을 분해처리하는 흡착조(40)와,
상기 흡착조(40)를 거쳐 유입되는 유입수를 기준으로 5 ~ 20 mg/L의 염소를 주입하여 미량유해물질을 제거하는 소독조(50)를 포함하여 이루어지는 것임을 특징으로 하는 하·폐수 내 미량유해물질 처리를 위한 고도산화, 흡착시스템.
A sedimentation tank 10 for precipitating and removing sludge in the incoming wastewater,
The biofilm for filling the polyethylene carrier 201 with 35 to 55 vol% of the total volume of the treatment tank and oxidizing and decomposing the trace harmful substances in the wastewater discharged from the settling tank 10 by the biofilm formed by the microorganisms A treatment tank 20,
An ozone supply unit 31 for supplying ozone (O 3 ); A hydrogen peroxide supply part 32 for supplying hydrogen peroxide (H 2 O 2 ); And a UV irradiating unit 33 for generating UV through a UV lamp 331 installed at the center of the treatment tank to form a complex structure of O 3 / H 2 O 2 / UV, thereby forming a hydroxyl radical A high-level oxidation treatment tank 30 for decomposing and treating the trace harmful substances in the wastewater discharged from the biofilm treatment tank 20,
The upper layer 41 filled with expanded graphite, the intermediate layer 42 filled with iron oxide and the lower layer 43 filled with magnesite have a laminated structure and are adsorbed from the upper layer 41 to the lower layer 43, An adsorption tank 40 for decomposing and treating the trace harmful substances in the wastewater discharged from the oxidation treatment tank 30,
And a sterilizing tank (50) for removing trace harmful substances by injecting chlorine of 5 to 20 mg / L based on the influent water flowing through the adsorption tank (40). Advanced oxidation, adsorption system for treatment.
청구항 1에 있어서,
폴리에틸렌 담체(201)는 망형상의 원통구로 형성되어 내면과 외면에는 다수의 미세한 주름이 형성된 주름턱부(201a)를 갖는 것임을 특징으로 하는 하·폐수 내 미량유해물질 처리를 위한 고도산화, 흡착시스템.
The method according to claim 1,
Wherein the polyethylene carrier (201) has a corrugated prong (201a) formed of a mesh-like cylindrical sphere and having a plurality of fine corrugations formed on the inner and outer surfaces thereof.
청구항 1에 있어서,
UV조사부(33)는 TiO2를 5,000 ~ 9,000 Å의 두께로 피막을 형성한 석영관(332) 내부에 자외선 램프(331)를 설치하여 형성된 것으로서,
상기 석영관(332)은 TiO2 타블렛(Tablet)에 일렉트로 빔(Electro beam) 발생기를 이용하여 1,800 ~ 2,200 ℃의 증발 온도이상으로 높여 TiO2를 증발시키고 로내 온도는 310 ℃, 증착율은 2.5 ~ 4.0 Å/sec를 유지하고 내부압력을 2.0 × 10-5 torr의 진공하에서 증착용 석영관을 800 ~ 1,500 rpm으로 회전시키면서 5,000 ~ 9,000 Å의 두께로 피막 형성한 것을 특징으로 하는 하·폐수 내 미량유해물질 처리를 위한 고도산화, 흡착시스템.
The method according to claim 1,
The UV irradiating unit 33 is formed by providing an ultraviolet lamp 331 inside a quartz tube 332 in which TiO 2 is coated to a thickness of 5,000 to 9,000 A,
The quartz tube 332 is heated to an evaporation temperature of 1,800-2,200 ° C by using an electro beam generator on a TiO 2 tablet to evaporate TiO 2. The temperature in the furnace is 310 ° C and the deposition rate is 2.5-4.0 Sec and a film thickness of 5,000 ~ 9,000 Å was formed under a vacuum of 2.0 × 10 -5 torr while rotating the quartz tube at 800~1,500 rpm under a vacuum of 2.0 × 10 -5 torr. Advanced oxidation, adsorption system for material treatment.
삭제delete 청구항 1에 있어서,
팽창흑연(411)은 천연흑연을 증류수로 세척한 후 80 ~ 90 ℃의 항온 건조기에서 40 ~ 60 시간 동안 건조하고, 건조한 천연흑연을 질소분위기의 튜브 로(tube furnace)에서 15 ℃/min의 승온 속도로 가열하여 800 ~ 1,200 ℃에서 1 ~ 10 분 동안 열처리 후 자연냉각시켜 제조한 것임을 특징으로 하는 하·폐수 내 미량유해물질 처리를 위한 고도산화, 흡착시스템.





The method according to claim 1,
The expanded graphite 411 is washed with distilled water and dried in a constant temperature drier at 80 to 90 ° C. for 40 to 60 hours. The natural graphite is dried in a tube furnace in a nitrogen atmosphere at a rate of 15 ° C./min And heating it at a temperature of 800 to 1,200 ° C. for 1 to 10 minutes, followed by natural cooling, thereby producing an advanced oxidation and adsorption system for treating trace amounts of harmful substances in the wastewater.





KR1020180048828A 2018-04-27 2018-04-27 Advanced oxidation, adsoption system for control of micropollutants in wastewater Active KR101903043B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180048828A KR101903043B1 (en) 2018-04-27 2018-04-27 Advanced oxidation, adsoption system for control of micropollutants in wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180048828A KR101903043B1 (en) 2018-04-27 2018-04-27 Advanced oxidation, adsoption system for control of micropollutants in wastewater

Publications (1)

Publication Number Publication Date
KR101903043B1 true KR101903043B1 (en) 2018-10-01

Family

ID=63877754

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180048828A Active KR101903043B1 (en) 2018-04-27 2018-04-27 Advanced oxidation, adsoption system for control of micropollutants in wastewater

Country Status (1)

Country Link
KR (1) KR101903043B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109205892A (en) * 2018-11-21 2019-01-15 山东海普欧环保设备科技有限公司 A kind of medical treatment wastewater processing technique
CN110759611A (en) * 2019-12-30 2020-02-07 鲁东大学 Sterilization treatment device for industrial aquaculture wastewater
CN110872150A (en) * 2019-12-02 2020-03-10 沈阳环境科学研究院 High-molecular modified polyethylene filler and preparation method thereof
CN110981116A (en) * 2019-12-27 2020-04-10 扬州大学 Treatment process of lincomycin antibiotic production wastewater
CN111533242A (en) * 2020-05-12 2020-08-14 上海市政工程设计研究总院(集团)有限公司 Ozone and ultraviolet combined disinfection device for sewage pipeline
KR20200112467A (en) 2019-03-22 2020-10-05 경북대학교 산학협력단 Method for microbial quorum quenching by light irradiation and method for controlling biological pollution
CN112408718A (en) * 2020-11-30 2021-02-26 江西亚太科技发展有限公司 A processing system for pharmacy waste water
CN112777716A (en) * 2020-12-09 2021-05-11 北京理工大学 Method for photocatalytic degradation of trace organic macromolecules in surface water
CN113653134A (en) * 2021-09-16 2021-11-16 王正均 Anti-pollution method for secondary water supply system
CN119858985A (en) * 2025-03-24 2025-04-22 浙江大学 Aquaculture sediment cooperative disinfection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325830B1 (en) 1999-11-24 2002-03-07 강용태 height well water at its purest equipment
KR100446041B1 (en) 2001-12-26 2004-08-30 주식회사환경과생명 Industrial wastewater reusing system using combination biofilter process, AC/ACF/Sand filter process and advanced oxidation process
KR100966633B1 (en) 2009-12-17 2010-06-29 (주)선일 엔바이로 Water treatment apparatus for advanced oxidation process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325830B1 (en) 1999-11-24 2002-03-07 강용태 height well water at its purest equipment
KR100446041B1 (en) 2001-12-26 2004-08-30 주식회사환경과생명 Industrial wastewater reusing system using combination biofilter process, AC/ACF/Sand filter process and advanced oxidation process
KR100966633B1 (en) 2009-12-17 2010-06-29 (주)선일 엔바이로 Water treatment apparatus for advanced oxidation process

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109205892A (en) * 2018-11-21 2019-01-15 山东海普欧环保设备科技有限公司 A kind of medical treatment wastewater processing technique
KR20200112467A (en) 2019-03-22 2020-10-05 경북대학교 산학협력단 Method for microbial quorum quenching by light irradiation and method for controlling biological pollution
CN110872150A (en) * 2019-12-02 2020-03-10 沈阳环境科学研究院 High-molecular modified polyethylene filler and preparation method thereof
CN110981116A (en) * 2019-12-27 2020-04-10 扬州大学 Treatment process of lincomycin antibiotic production wastewater
CN110759611A (en) * 2019-12-30 2020-02-07 鲁东大学 Sterilization treatment device for industrial aquaculture wastewater
CN111533242A (en) * 2020-05-12 2020-08-14 上海市政工程设计研究总院(集团)有限公司 Ozone and ultraviolet combined disinfection device for sewage pipeline
CN112408718A (en) * 2020-11-30 2021-02-26 江西亚太科技发展有限公司 A processing system for pharmacy waste water
CN112777716A (en) * 2020-12-09 2021-05-11 北京理工大学 Method for photocatalytic degradation of trace organic macromolecules in surface water
CN113653134A (en) * 2021-09-16 2021-11-16 王正均 Anti-pollution method for secondary water supply system
CN119858985A (en) * 2025-03-24 2025-04-22 浙江大学 Aquaculture sediment cooperative disinfection method

Similar Documents

Publication Publication Date Title
KR101903043B1 (en) Advanced oxidation, adsoption system for control of micropollutants in wastewater
Yap et al. A comprehensive review on state-of-the-art photo-, sono-, and sonophotocatalytic treatments to degrade emerging contaminants
Soltani et al. Sonocatalytic degradation of tetracycline antibiotic using zinc oxide nanostructures loaded on nano-cellulose from waste straw as nanosonocatalyst
Kim et al. Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar-supported TiO2 photocatalyst
Derakhshan et al. Removal methods of antibiotic compounds from aqueous environments–a review
Liu et al. Intimately coupled photocatalysis and biodegradation for effective simultaneous removal of sulfamethoxazole and COD from synthetic domestic wastewater
Tassalit et al. Photocatalytic deterioration of tylosin in an aqueous suspension using UV/TiO2
Hanafi et al. Electrosynthesis of ZrO2 nanoparticles with enhanced removal of phenolic compound
Kwarciak-Kozłowska Removal of pharmaceuticals and personal care products by ozonation, advance oxidation processes, and membrane separation
Nguyen et al. Functionalization strategies of metal-organic frameworks for biomedical applications and treatment of emerging pollutants: A review
Liu et al. Removal of antibiotics from black water by a membrane filtration-visible light photocatalytic system
US5932111A (en) Photoelectrochemical reactor
KR101930819B1 (en) Effective microorganisms vitalization system for control of micropollutants in wastewater
Davarnejad et al. Metronidazole elimination from wastewater through photo-Fenton process using green-synthesized alginate-based hydrogel coated bimetallic iron‑copper nanocomposite beads as a reusable heterogeneous catalyst
JPH10156349A (en) Method for sterilizing, deodorizing and purifying air and water and device therefor
Patel et al. Removal of antibiotic cefixime from wastewater using UVC/Sodium persulphate system
Taghipour et al. Catalytic processes for removal of emerging water pollutants
Yin et al. Technologies for bHRPs and risk control
Naraginti et al. Sunlight-driven intimately coupled photocatalysis and biodegradation (SDICPB): A sustainable approach for enhanced detoxification of triclosan
Kemacheevakul et al. Photocatalytic remediation of organic pollutants in water
Montemurro et al. Conventional and advanced processes for the removal of pharmaceuticals and their human metabolites from wastewater
EP3749447B1 (en) Methods for treating liquids including contaminant molecules
Khan et al. Photodegradation of real pharmaceutical wastewater with titanium dioxide, zinc oxide, and hydrogen peroxide during UV
Xu et al. Degradation mechanisms and microbial community analysis of cefalexin in the intimately coupled photocatalytic and biodegradation system
Ata et al. Emerging Biotechnologies for Treatment of Antibiotic Residues from Pharmaceutical Waste Waters for Sustainable Environment A Case Study under Visible Light with NFC-doped Titania

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20180427

PA0201 Request for examination
PA0302 Request for accelerated examination

Patent event date: 20180427

Patent event code: PA03022R01D

Comment text: Request for Accelerated Examination

PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20180702

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20180903

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20180920

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20180920

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20210824

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20220831

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20240820

Start annual number: 7

End annual number: 7