KR101881090B1 - Method for multi-stage purification of biogas using composite hollow fiber membrane modules - Google Patents
Method for multi-stage purification of biogas using composite hollow fiber membrane modules Download PDFInfo
- Publication number
- KR101881090B1 KR101881090B1 KR1020150181440A KR20150181440A KR101881090B1 KR 101881090 B1 KR101881090 B1 KR 101881090B1 KR 1020150181440 A KR1020150181440 A KR 1020150181440A KR 20150181440 A KR20150181440 A KR 20150181440A KR 101881090 B1 KR101881090 B1 KR 101881090B1
- Authority
- KR
- South Korea
- Prior art keywords
- hollow fiber
- composite membrane
- membrane module
- fiber composite
- biogas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 102
- 239000002131 composite material Substances 0.000 title claims abstract description 84
- 239000012510 hollow fiber Substances 0.000 title claims abstract description 79
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000000746 purification Methods 0.000 title claims abstract description 21
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 78
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 39
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 39
- 239000012466 permeate Substances 0.000 claims abstract description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 46
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 30
- 238000000926 separation method Methods 0.000 claims description 22
- 229920001223 polyethylene glycol Polymers 0.000 claims description 15
- 239000002202 Polyethylene glycol Substances 0.000 claims description 14
- 230000035699 permeability Effects 0.000 claims description 14
- -1 polyethylene Polymers 0.000 claims description 12
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical compound [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims description 10
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 claims description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 7
- 229920000573 polyethylene Polymers 0.000 claims description 7
- 229920001296 polysiloxane Polymers 0.000 claims description 6
- 239000004697 Polyetherimide Substances 0.000 claims description 4
- 229920002492 poly(sulfone) Polymers 0.000 claims description 4
- 229920001601 polyetherimide Polymers 0.000 claims description 4
- KRPRVQWGKLEFKN-UHFFFAOYSA-N 3-(3-aminopropoxy)propan-1-amine Chemical compound NCCCOCCCN KRPRVQWGKLEFKN-UHFFFAOYSA-N 0.000 claims description 3
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 claims description 3
- 239000004952 Polyamide Substances 0.000 claims description 3
- 239000004695 Polyether sulfone Substances 0.000 claims description 3
- 239000004642 Polyimide Substances 0.000 claims description 3
- 229920002301 cellulose acetate Polymers 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 3
- 229920002647 polyamide Polymers 0.000 claims description 3
- 229920000515 polycarbonate Polymers 0.000 claims description 3
- 239000004417 polycarbonate Substances 0.000 claims description 3
- 229920006393 polyether sulfone Polymers 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 1
- 238000007599 discharging Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 40
- 238000005516 engineering process Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000005201 scrubbing Methods 0.000 description 3
- 125000000656 azaniumyl group Chemical group [H][N+]([H])([H])[*] 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 2
- SNMVRZFUUCLYTO-UHFFFAOYSA-N n-propyl chloride Chemical compound CCCCl SNMVRZFUUCLYTO-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000010794 food waste Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- NMJORVOYSJLJGU-UHFFFAOYSA-N methane clathrate Chemical compound C.C.C.C.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O NMJORVOYSJLJGU-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/02—Hollow fibre modules
- B01D63/04—Hollow fibre modules comprising multiple hollow fibre assemblies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/228—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0006—Organic membrane manufacture by chemical reactions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/02—Biological treatment
- C02F11/04—Anaerobic treatment; Production of methane by such processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2317/00—Membrane module arrangements within a plant or an apparatus
- B01D2317/04—Elements in parallel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/20—Specific permeability or cut-off range
-
- Y02C10/10—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/20—Capture or disposal of greenhouse gases of methane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/20—Sludge processing
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
본 발명은, I) 바이오가스를 3차 중공사 복합막 모듈의 정제가스와 함께 1차 중공사 복합막 모듈로 공급하는 단계; II) 상기 공급가스를 1차 중공사 복합막 모듈의 투과가스와 혼합한 후 배출하여 바이오가스 압축기로 공급하는 단계; III) 상기 압축된 바이오가스를 2차 중공사 복합막 모듈로 공급하여 이산화탄소 농축가스를 분리배출하고 정제가스를 1차 중공사 복합막 모듈로 공급하는 단계; 및 IV) 상기 1차 중공사 복합막 모듈의 정제가스로부터 바이오메탄을 수득하는 단계;를 포함하는 중공사 복합막 모듈을 이용한 다단 바이오가스 정제방법에 관한 것으로, 메탄의 손실을 최소화함으로써 고순도로 바이오가스를 정제할 수 있다.The present invention relates to a method for preparing a hollow fiber composite membrane module, comprising the steps of: I) supplying a biogas to a first hollow fiber composite membrane module together with purified gas of a third hollow fiber composite membrane module; II) mixing the feed gas with the permeate gas of the first hollow fiber composite membrane module, discharging it, and supplying the mixed gas to the biogas compressor; III) supplying the compressed biogas to the second hollow fiber composite membrane module to separate and discharge the carbon dioxide concentrated gas and supply the purified gas to the first hollow fiber composite membrane module; And IV) obtaining biomethane from the purified gas of the first hollow fiber composite membrane module. The present invention relates to a multi-stage biogas purification method using a hollow composite membrane module, The gas can be purified.
Description
본 발명은 중공사 복합막 모듈을 이용한 다단 바이오가스 정제방법에 관한 것으로, 보다 상세하게는 이산화탄소의 투과도가 높은 이산화탄소/메탄 분리용 중공사 복합막 모듈을 이용하여 3단계의 다단 분리공정으로 바이오가스를 고순도로 정제하는 방법에 관한 것이다.
The present invention relates to a multi-stage biogas purification method using a hollow fiber composite membrane module, and more particularly, to a multi-stage biogas purification method using a hollow fiber composite membrane module for carbon dioxide / methane separation having high permeability to carbon dioxide, To a high purity.
바이오가스는 슬러지류 및 음식물쓰레기, 가축분뇨 등의 유기성 폐자원이 미생물에 의해 분해하면서 생성되는 메탄과 이산화탄소 등을 포함하는 기체 상태의 연료를 일컫고, 이러한 바이오가스 중에서 이산화탄소 및 일부 다른 가스가 제거된 메탄가스를 바이오메탄이라고 하는데, 최근에는 천연가스와 같이 청정연료로 사용될 수 있어 에너지원으로 각광받고 있다.Biogas refers to a gaseous fuel including methane and carbon dioxide produced by decomposition of organic waste resources such as sludge, food waste, and livestock manure by microorganisms. In the biogas, carbon dioxide and some other gases are removed Methane gas is called biomethane, and recently it can be used as a clean fuel like natural gas, and is attracting attention as an energy source.
그러나 바이오가스에 함유된 메탄 조성은 약 50~70% 수준으로 열량(5,000kcal/m3 이하)이 작아 운송용 연료나 도시가스로는 사용이 어려우며 천연가스와 비슷한 열량을 맞추기 위해서는 바이오가스 중의 메탄 함량을 95%이상으로 향상시켜야 하는 과제를 안고 있다. 따라서 바이오가스 중의 대부분을 차지하고 있는 이산화탄소/메탄 혼합기체를 분리하는 공정이 적용되어 고질화를 통해 원거리 공급이 가능해야 비로소 발전, 보일러, 공장 및 자동차 연료 또는 도시가스 등으로 사용이 가능하게 되는 것이다.However, the methane contained in the biogas composition is to about 50 to 70% of calories (5,000kcal / m 3 or less) is small transporting fuel or town gas is difficult to use the methane content of the biogas to qualify a similar amount of heat and gas 95% or more. Therefore, the process of separating carbon dioxide / methane mixed gas, which accounts for most of the biogas, is applied and it can be used for power generation, boiler, factory, automobile fuel, city gas or the like.
현재까지 알려진 바이오가스 중의 이산화탄소 정제기술로는 흡착법(pressure swing adsorption), 흡수법(water scrubbing, methanol scrubbing, polyethylene glycol scrubbing 등), 막분리법(membrane separation), 초저온 액화기술, 가스하이드레이트 기술 등이 있다.Currently known carbon dioxide purification technologies in biogas include pressure swing adsorption, water scrubbing, methanol scrubbing, polyethylene glycol scrubbing, membrane separation, cryogenic liquefaction technology, and gas hydrate technology .
특히, 막분리법은 분리막을 사용하여 특정 성분을 선택적으로 투과하여 기체를 분리하는 방법으로서, 분리막을 이용한 기체분리는 용해 및 확산 과정을 거쳐 기체를 분리하며 상변화를 동반하지 않아 에너지 소모가 적고, 설치면적이 작아 유지 보수가 용이하다는 장점이 있어 근래에 기체분리 및 정제기술로 주목받고 있다. 이러한 막분리법을 이용한 바이오가스 중의 이산화탄소 제거에는 주로 고분자 소재의 중공사 복합막이 사용되고 있다.Particularly, the membrane separation method is a method of separating a gas by selectively permeating a specific component using a separation membrane. The gas separation using a separation membrane separates the gas through a dissolution and diffusion process, does not involve a phase change, Since it has a small installation area and is easy to maintain, it has been attracting attention as gas separation and purification technology in recent years. A hollow fiber composite membrane made of a polymer material is mainly used for removing carbon dioxide from the biogas by such a membrane separation method.
그러나 종래 중공사 복합막은 이산화탄소의 투과도가 대개 100 GPU 미만으로 낮고, 단순한 분리공정을 적용함으로써 바이오가스 정제과정에서 메탄의 회수 손실이 발생하는 문제점이 있다(특허문헌 1, 2).
However, the conventional hollow fiber composite membrane has a problem that the recovery of methane is generated in the biogas purification process by applying a simple separation process because the permeability of carbon dioxide is usually as low as less than 100 GPU (Patent Literatures 1 and 2).
따라서 본 발명에서는 이산화탄소의 투과도가 100 GPU 이상으로 높은 이산화탄소/메탄 분리용 중공사 복합막 모듈을 이용하고, 메탄을 다량으로 함유하는 1차 분리막 투과가스와 3차 분리막 정제가스를 바이오가스와 혼합하여 분리공정에 공급하는 3단계 이상의 다단 분리공정을 적용하면 바이오가스 정제과정에서 메탄의 손실을 최소화 할 수 있음에 착안하여 본 발명을 완성하였다.
Accordingly, in the present invention, a hollow composite membrane module for separating carbon dioxide / methane having a high permeability of carbon dioxide of 100 GPU or more is used, and a primary separation membrane permeation gas and a tertiary separation membrane purification gas containing a large amount of methane are mixed with a biogas The present invention has been completed based on the fact that the loss of methane in the biogas purification process can be minimized by applying a multi-stage separation process of three or more stages to the separation process.
본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은 이산화탄소의 투과도가 높은 중공사 복합막 모듈을 이용한 다단 바이오가스 정제공정으로 메탄의 손실을 최소화함으로써 고순도로 바이오가스를 정제할 수 있는 방법을 제공하고자 하는 것이다.
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is an object of the present invention to provide a multi-stage biogas purification process using a hollow fiber composite membrane module having a high permeability to carbon dioxide to minimize the loss of methane, It is intended to provide a way to be able to.
상기한 바와 같은 목적을 달성하기 위한 본 발명은, I) 바이오가스를 3차 중공사 복합막 모듈의 정제가스와 함께 1차 중공사 복합막 모듈로 공급하는 단계; II) 1차 중공사 복합막 모듈의 투과가스를 바이오가스 압축기로 공급하는 단계; III) 상기 압축된 바이오가스를 2차 중공사 복합막 모듈로 공급하여 이산화탄소 농축가스를 분리배출하고 정제가스를 1차 중공사 복합막 모듈로 공급하는 단계; 및 IV) 상기 1차 중공사 복합막 모듈의 정제가스로부터 바이오메탄을 수득하는 단계;를 포함하는 중공사 복합막 모듈을 이용한 다단 바이오가스 정제방법을 제공한다.According to an aspect of the present invention, there is provided a method for manufacturing a hollow fiber composite membrane module, comprising: i) supplying biogas to a first hollow fiber composite membrane module together with purified gas of a third hollow fiber composite membrane module; II) feeding the permeate gas of the first hollow fiber composite membrane module to a biogas compressor; III) supplying the compressed biogas to the second hollow fiber composite membrane module to separate and discharge the carbon dioxide concentrated gas and supply the purified gas to the first hollow fiber composite membrane module; And IV) obtaining biomethane from the purified gas of the first hollow fiber composite membrane module. The present invention also provides a multi-stage biogas purification method using the hollow fiber composite membrane module.
상기 III) 단계의 2차 중공사 복합막 모듈로부터 분리배출된 이산화탄소 농축가스를 3차 중공사 복합막 모듈로 공급하여 이산화탄소 농축가스는 분리배출하고, 정제가스는 바이오가스와 함께 1차 중공사 복합막 모듈로 다시 공급하는 것을 특징으로 한다. The carbon dioxide concentrated gas separated and discharged from the second hollow fiber composite membrane module of the step III) is supplied to the third hollow fiber composite membrane module to separate and discharge the carbon dioxide concentrated gas. The purified gas is mixed with the first gas And then supplied again to the membrane module.
상기 중공사 복합막은 이산화탄소의 투과도가 100 GPU 이상인 이산화탄소/메탄 분리용인 것을 특징으로 한다.The hollow fiber composite membrane is characterized in that the permeability of carbon dioxide is at least 100 GPU for carbon dioxide / methane separation.
상기 중공사 복합막의 소재는 폴리술폰, 폴리에테르술폰, 폴리이미드, 폴리에테르이미드, 폴리아미드, 폴리카보네이트, 폴리아크릴로니트릴 및 셀룰로오즈아세테이트로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The material of the hollow fiber composite membrane is any one selected from the group consisting of polysulfone, polyethersulfone, polyimide, polyetherimide, polyamide, polycarbonate, polyacrylonitrile and cellulose acetate.
상기 중공사 복합막은 중공사막의 표면에 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체로 코팅된 것을 특징으로 한다.The hollow composite membrane is characterized in that the surface of the hollow fiber membrane is coated with an organopolysiloxane copolymer having a repeating unit grafted with polyethylene glycol or polyethylene / propylene glycol.
상기 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체는 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) 메틸 에테르, 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌/프로필렌 글리콜) 메틸 에테르, 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜), 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌/프로필렌 글리콜), 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) 3-아미노프로필 에테르 또는 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) 3-(트리메틸암모니오)프로필 클로라이드로 이루어진 군으로부터 선택된 어느 하나 또는 이들의 혼합물인 것을 특징으로 한다.
The organopolysiloxane copolymer in which the repeating unit grafted with polyethylene glycol or polyethylene / propylene glycol is grafted is poly [dimethylsiloxane-co-methyl (3-hydroxypropyl) siloxane] -graft-poly (ethylene glycol) , Poly [dimethylsiloxane-co-methyl (3-hydroxypropyl) siloxane] -graft-poly (ethylene / propylene glycol) methyl ether, poly [dimethylsiloxane- (Ethylene / propylene glycol), poly [dimethylsiloxane-co-methyl (3-hydroxy-3-hydroxypropyl) siloxane] graft-poly (ethylene glycol) (Ethylene glycol) 3- (trimethylsiloxane) -graft-poly (ethylene glycol) 3- aminopropyl ether or poly [dimethylsiloxane-co-methyl (3- hydroxypropyl) siloxane] Ammonio) propyl chloride. And in either or wherein a mixture thereof selected from the group eojin.
본 발명에 따르면, 이산화탄소의 투과도가 높은 중공사 복합막 모듈을 이용한 다단 바이오가스 정제공정으로 메탄의 손실을 최소화함으로써 고순도로 바이오가스를 정제할 수 있다.
According to the present invention, it is possible to purify biogas with high purity by minimizing the loss of methane by a multi-stage biogas purification process using a hollow fiber composite membrane module having high permeability to carbon dioxide.
도 1은 본 발명의 일 실시예에 따른 중공사 복합막 모듈을 이용한 다단 바이오가스 정제공정도.1 is a multi-stage biogas purification process using a hollow composite membrane module according to an embodiment of the present invention.
이하에서는 본 발명에 따른 이산화탄소의 투과도가 높은 이산화탄소/메탄 분리용 중공사 복합막 모듈을 이용하여 3단계의 다단 분리공정으로 바이오가스를 고순도로 정제하는 방법에 관하여 상세히 설명하기로 한다.Hereinafter, a method for purifying biogas in high purity by a three-stage multi-stage separation process using a hollow fiber composite membrane module for separating carbon dioxide / methane with high permeability of carbon dioxide according to the present invention will be described in detail.
본 발명은 I) 바이오가스를 3차 중공사 복합막 모듈의 정제가스와 함께 1차 중공사 복합막 모듈로 공급하는 단계; II) 1차 중공사 복합막 모듈의 투과가스를 바이오가스 압축기로 공급하는 단계; III) 상기 압축된 바이오가스를 2차 중공사 복합막 모듈로 공급하여 이산화탄소 농축가스를 분리배출하고 정제가스를 1차 중공사 복합막 모듈로 공급하는 단계; 및 IV) 상기 1차 중공사 복합막 모듈의 정제가스로부터 바이오메탄을 수득하는 단계;를 포함하는 중공사 복합막 모듈을 이용한 다단 바이오가스 정제방법을 제공한다.
The present invention relates to a method for preparing a hollow fiber composite membrane module, comprising the steps of: I) supplying a biogas to a first hollow fiber composite membrane module together with purified gas of a third hollow fiber composite membrane module; II) feeding the permeate gas of the first hollow fiber composite membrane module to a biogas compressor; III) supplying the compressed biogas to the second hollow fiber composite membrane module to separate and discharge the carbon dioxide concentrated gas and supply the purified gas to the first hollow fiber composite membrane module; And IV) obtaining biomethane from the purified gas of the first hollow fiber composite membrane module. The present invention also provides a multi-stage biogas purification method using the hollow fiber composite membrane module.
도 1에는 본 발명의 일 실시예에 따른 중공사 복합막 모듈을 이용하여 3단계의 다단 분리공정으로 바이오가스를 고순도로 정제하는 공정도를 나타내었는바, 먼저 바이오가스(1000)를 3차 중공사 복합막 모듈(400)의 정제부(403)로부터 정제가스와 함께 1차 중공사 복합막 모듈(100)의 측면공급부(101)로 공급한다.FIG. 1 shows a process for purifying biogas in a high purity by a three-stage multi-stage separation process using a hollow composite membrane module according to an embodiment of the present invention. First, a
이어서 1차 중공사 복합막 모듈(100)의 투과가스를 바이오가스 압축기(200)로 공급한다.Then, the permeated gas of the first hollow fiber
다음으로, 상기 바이오가스 압축기(200)에서 압축되어 승압된 바이오가스를 2차 중공사 복합막 모듈(300)의 공급부(301)로 공급하여 배출부(302)로 이산화탄소 농축가스를 분리배출하고 정제부(303)로부터 정제가스를 1차 중공사 복합막 모듈(100)의 공급부(103)로 공급한다.Next, the biogas compressed and boosted by the
상기 1차 중공사 복합막 모듈(100)에서 투과된 가스는 측면공급부(101)로 유입된 가스와 함께 배출부(102)로 배출되고 정제된 바이오메탄(2000)은 정제부(104)로부터 수득된다.
The gas permeated from the first hollow fiber
이때, 상기 III) 단계의 2차 중공사 복합막 모듈(300)의 배출부(302)로부터 분리배출된 이산화탄소 농축가스를 3차 중공사 복합막 모듈(400)의 공급부(401)로 공급하여 이산화탄소 농축가스(3000)는 배출부(402)로 분리배출하고, 정제가스는 정제부(403)로부터 유출되어 바이오가스(1000)와 함께 1차 중공사 복합막 모듈(100)의 측면공급부(101)로 다시 공급하는 공정을 수행한다.
At this time, the carbon dioxide-enriched gas separated and discharged from the
즉, 본 발명의 중공사 복합막 모듈을 이용한 3단계의 다단 분리공정을 통하여, 메탄을 다량 함유하는 1차 중공사 복합막 모듈(100)의 투과가스와 3차 중공사 복합막 모듈(400)의 정제가스를 바이오가스와 혼합하여 다단 분리공정에 공급함으로써 메탄 손실을 최소화할 수 있다.
That is, through the three-stage multi-stage separation process using the hollow fiber composite membrane module of the present invention, the permeation gas of the first hollow fiber
또한, 상기 중공사 복합막은 이산화탄소의 투과도가 100 GPU 이상인 이산화탄소/메탄 분리용인 것이 바람직한데, 이산화탄소의 투과도가 100 GPU 이상으로 높은 이산화탄소/메탄 분리용 중공사 복합막을 사용함으로써 고순도 바이오메탄의 유체 흐름을 낮은 압력으로 수득할 수 있어, 고압 용기 사용에 따른 비용 증가를 줄일 수 있는 장점이 있다.
In addition, it is preferable that the hollow fiber composite membrane is for separation of carbon dioxide / methane having a permeability of carbon dioxide of 100 GPU or more. By using a hollow composite membrane for carbon dioxide / methane separation having a carbon dioxide permeability higher than 100 GPU, fluid flow of high purity biomethane It can be obtained at a low pressure, and there is an advantage that an increase in cost due to the use of a high-pressure vessel can be reduced.
아울러 본 발명에 따른 중공사 복합막의 소재는 유리상 고분자를 사용하는바, 폴리술폰, 폴리에테르술폰, 폴리이미드, 폴리에테르이미드, 폴리아미드, 폴리카보네이트, 폴리아크릴로니트릴 및 셀룰로오즈아세테이트로 이루어진 군으로부터 선택된 어느 하나의 것을 사용할 수 있고, 폴리술폰 또는 폴리에테르이미드가 더욱 바람직하다. 일반적으로 기체를 분리하는 경우에는 투과도는 낮지만 상대적으로 높은 선택도를 기대할 수 있다는 점에서 고분자 사슬간의 인력이 높은 유리상의 고분자를 기재로 이용한다.
The material of the hollow fiber composite membrane according to the present invention may be selected from the group consisting of polysulfone, polyethersulfone, polyimide, polyetherimide, polyamide, polycarbonate, polyacrylonitrile, and cellulose acetate Any one can be used, and polysulfone or polyetherimide is more preferable. Generally, when a gas is separated, a glassy polymer having a high attraction between polymer chains is used as a substrate in that a relatively high selectivity can be expected although the permeability is low.
또한, 본 발명에 따른 중공사 복합막은 중공사막의 표면에 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체로 코팅된 것이 바람직하다.The hollow composite membrane according to the present invention is preferably coated on the surface of the hollow fiber membrane with an organopolysiloxane copolymer having a repeating unit grafted with polyethylene glycol or polyethylene / propylene glycol.
상기 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체는 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) 메틸 에테르, 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌/프로필렌 글리콜) 메틸 에테르, 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜), 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌/프로필렌 글리콜), 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) 3-아미노프로필 에테르 또는 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) 3-(트리메틸암모니오)프로필 클로라이드로 이루어진 군으로부터 선택된 어느 하나 또는 이들의 혼합물을 사용한다. 종래 대부분의 중공사 복합막이 중공사막 표면에 단지 폴리디메틸실록산만을 코팅한 것과는 달리 본 발명에 따라 중공사막의 표면에 다양한 코팅제로서 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체를 코팅함으로써 이산화탄소의 용해도가 크게 증가하여 이산화탄소/메탄의 혼합기체로부터 이산화탄소의 투과도가 현저하게 향상되는 것이다.
The organopolysiloxane copolymer in which the repeating unit grafted with polyethylene glycol or polyethylene / propylene glycol is grafted is poly [dimethylsiloxane-co-methyl (3-hydroxypropyl) siloxane] -graft-poly (ethylene glycol) , Poly [dimethylsiloxane-co-methyl (3-hydroxypropyl) siloxane] -graft-poly (ethylene / propylene glycol) methyl ether, poly [dimethylsiloxane- (Ethylene / propylene glycol), poly [dimethylsiloxane-co-methyl (3-hydroxy-3-hydroxypropyl) siloxane] graft-poly (ethylene glycol) (Ethylene glycol) 3- (trimethylsiloxane) -graft-poly (ethylene glycol) 3- aminopropyl ether or poly [dimethylsiloxane-co-methyl (3- hydroxypropyl) siloxane] Ammonio) propyl chloride. It uses any one or combinations thereof selected from the group eojin. Unlike conventional hollow fiber composite membranes coated with only polydimethylsiloxane on the surface of the hollow fiber membrane according to the present invention, a variety of coating agents, such as polyethylene glycol or polyethylene / propylene glycol-grafted repeating units, By coating the copolymer, the solubility of carbon dioxide is greatly increased and the permeability of carbon dioxide from the mixed gas of carbon dioxide / methane is remarkably improved.
또한, 본 발명의 중공사 복합막 모듈은, 막 모듈의 하우징 내에 1,000~150,000 가닥의 중공사 다발이 삽입되고, 막 모듈의 양 말단은 포팅제에 의해 차단된다. 상기 막 모듈의 하우징은 알루미늄, 탄소강 또는 스테인레스 소재로 제작한다.
Also, in the hollow fiber composite membrane module of the present invention, 1,000 to 150,000 hollow fiber bundles are inserted into the housing of the membrane module, and both ends of the membrane module are blocked by the potting agent. The housing of the membrane module is made of aluminum, carbon steel or stainless steel.
(( 실시예Example ))
중공사 복합막 및 막 모듈은 본 발명자 등의 선등록특허인 특허 제10-1461199호에 개시된 방법에 따라 제작하였다(이산화탄소의 투과도는 200 GPU).The hollow composite membrane and membrane module were fabricated according to the method disclosed in Japanese Patent No. 10-1461199 (200 GPU of carbon dioxide permeability), which is a registered trademark of the present inventors.
도 1에 나타낸 바와 같이 장치를 구성하여 3단계의 다단 분리공정으로 바이오가스 정제공정을 수행하였으며, 각 단계별 공정에 따른 바이오가스(1000), 1차 중공사 복합막 모듈의 측면공급부(101), 배출부(102), 2차 중공사 복합막 모듈의 공급부(301), 배출부(302), 정제부(303), 3차 중공사 복합막 모듈의 정제부(403), 1차 중공사 복합막 모듈의 정제부(104), 바이오메탄(2000), 3차 중공사 복합막 모듈의 배출부(402) 및 이산화탄소 농축가스(3000) 각각의 유량 및 메탄(CH4), 이산화탄소(CO2) 농도는 아래 표 1과 같았다.
As shown in FIG. 1, the apparatus is constituted to perform a biogas purification process in three stages of multi-stage separation process. The
(LPM)flux
(LPM)
(mol.%)CH 4
(mol.%)
(mol.%)CO 2
(mol.%)
상기 표 1로부터 확인할 수 있는 바와 같이, 본 발명에 따르면, 이산화탄소의 투과도가 높은 중공사 복합막 모듈을 이용한 다단 바이오가스 정제공정으로 메탄의 손실을 최소화함으로써 고순도로 바이오가스를 정제할 수 있다.
As can be seen from the above Table 1, according to the present invention, it is possible to purify the biogas with high purity by minimizing methane loss by a multi-stage biogas purification process using a hollow fiber composite membrane module having high permeability of carbon dioxide.
1000 : 바이오가스 2000 : 바이오메탄 3000 : 이산화탄소 농축가스
100 : 1차 중공사 복합막 모듈 101 : 측면 공급부 102 : 배출부 103 : 공급부
104 : 정제부
200 : 바이오가스 압축기
300 : 2차 중공사 복합막 모듈 301 : 공급부 302 : 배출부 303 : 정제부
400 : 3차 중공사 복합막 모듈 401 : 공급부 402 : 배출부 403 : 정제부1000: Biogas 2000: Biomethane 3000: Carbon dioxide Concentrated gas
100: primary hollow fiber composite membrane module 101: side supply part 102: discharge part 103:
104:
200: Biogas compressor
300: Secondary hollow fiber composite membrane module 301: Supply part 302: Discharge part 303: Purification part
400: Third hollow fiber composite membrane module 401: Supply part 402: Discharge part 403:
Claims (6)
II) 1차 중공사 복합막 모듈의 투과가스를 바이오가스 압축기로 공급하는 단계;
III) 상기 압축된 바이오가스를 2차 중공사 복합막 모듈로 공급하여 이산화탄소 농축가스를 분리배출하고 정제가스를 1차 중공사 복합막 모듈로 공급하는 단계; 및
IV) 상기 1차 중공사 복합막 모듈의 정제가스로부터 바이오메탄을 수득하는 단계;를 포함하는 중공사 복합막 모듈을 이용한 다단 바이오가스 정제방법.I) supplying the biogas to the first hollow fiber composite membrane module together with the purified gas of the third hollow fiber composite membrane module;
II) feeding the permeate gas of the first hollow fiber composite membrane module to a biogas compressor;
III) supplying the compressed biogas to the second hollow fiber composite membrane module to separate and discharge the carbon dioxide concentrated gas and supply the purified gas to the first hollow fiber composite membrane module; And
IV) a step of obtaining biomethane from the purified gas of the first hollow fiber composite membrane module.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150181440A KR101881090B1 (en) | 2015-12-18 | 2015-12-18 | Method for multi-stage purification of biogas using composite hollow fiber membrane modules |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150181440A KR101881090B1 (en) | 2015-12-18 | 2015-12-18 | Method for multi-stage purification of biogas using composite hollow fiber membrane modules |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170073049A KR20170073049A (en) | 2017-06-28 |
KR101881090B1 true KR101881090B1 (en) | 2018-08-24 |
Family
ID=59280871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150181440A Active KR101881090B1 (en) | 2015-12-18 | 2015-12-18 | Method for multi-stage purification of biogas using composite hollow fiber membrane modules |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101881090B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020218653A1 (en) * | 2019-04-26 | 2020-10-29 | (주)에어레인 | Method for producing nitrogen-enriched air by using exhaust flue gas |
KR20220033812A (en) | 2020-09-10 | 2022-03-17 | 한국지역난방공사 | Purification and recycling system and method for improving the efficiency of methane recovery in biogas |
KR20230092500A (en) | 2021-12-17 | 2023-06-26 | 한국건설기술연구원 | Hollow fiber gas separation membrane of hydrophilicity for bio-gas purification, and fabrication method for the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101529130B1 (en) | 2014-09-18 | 2015-06-17 | 한국화학연구원 | A multi-stage membrane process and an upgrading apparatus for the production of high purity methane gas using low operation pressure and temperature conditions |
-
2015
- 2015-12-18 KR KR1020150181440A patent/KR101881090B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101529130B1 (en) | 2014-09-18 | 2015-06-17 | 한국화학연구원 | A multi-stage membrane process and an upgrading apparatus for the production of high purity methane gas using low operation pressure and temperature conditions |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020218653A1 (en) * | 2019-04-26 | 2020-10-29 | (주)에어레인 | Method for producing nitrogen-enriched air by using exhaust flue gas |
KR20220033812A (en) | 2020-09-10 | 2022-03-17 | 한국지역난방공사 | Purification and recycling system and method for improving the efficiency of methane recovery in biogas |
KR20230092500A (en) | 2021-12-17 | 2023-06-26 | 한국건설기술연구원 | Hollow fiber gas separation membrane of hydrophilicity for bio-gas purification, and fabrication method for the same |
Also Published As
Publication number | Publication date |
---|---|
KR20170073049A (en) | 2017-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8114191B2 (en) | Energy efficient approach to CO2 capture process | |
US20090156875A1 (en) | Methane separation method, methane separation apparatus, and methane utilization system | |
EP4166217A1 (en) | Biogas upgrading apparatus and process | |
CN103080022A (en) | Method for utilizing internally generated biogas for closed membrane system operation | |
KR101529130B1 (en) | A multi-stage membrane process and an upgrading apparatus for the production of high purity methane gas using low operation pressure and temperature conditions | |
KR101881090B1 (en) | Method for multi-stage purification of biogas using composite hollow fiber membrane modules | |
JP2021159913A (en) | Membrane processes and systems for high recovery of non-permeated gases | |
CN106000016B (en) | Gas separation system and method for producing enriched gas | |
KR101986776B1 (en) | Method for purification of biogas using adsorption-membrane combined process | |
JP7696405B2 (en) | Membrane process and system for high recovery of nonpermeate gas utilizing sweep gas | |
WO2020203994A1 (en) | Gas separation system | |
MX2011004405A (en) | Method for the filtration of a bioreactor liquid from a bioreactor; cross-flow membrane module, and bioreactor membrane system. | |
KR20170098385A (en) | High purity methane gas purification apparatus and method from the biogas | |
EP3267524B1 (en) | Fuel cell system | |
KR20200125851A (en) | Method for producing nitrogen-enriched air using flue gas | |
KR102409244B1 (en) | Purification and recycling system and method for improving the efficiency of methane recovery in biogas | |
JP7468822B1 (en) | Gas separation system and method for producing methane-enriched gas | |
CN217188769U (en) | Device for collecting carbon dioxide in flue gas | |
JPS61178016A (en) | Recovery of methane gas in digestion tank | |
Buonomenna et al. | Membrane operations for industrial applications | |
KR101783429B1 (en) | Apparatus and method for recovery of high permeable gas | |
JP2016187770A (en) | Gas separation system and method for producing enriched gas | |
RU2456061C1 (en) | Method of multistage gas mix processing to parameters of its consumption | |
WO2022118849A1 (en) | Gas separation system, and method for producing gas | |
JP2023004586A (en) | gas separation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20151218 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20170727 Patent event code: PE09021S01D |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20171026 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20180419 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20180717 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20180718 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20210512 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20220530 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20230525 Start annual number: 6 End annual number: 6 |