KR101872380B1 - 미세유체 감지 장치 - Google Patents
미세유체 감지 장치 Download PDFInfo
- Publication number
- KR101872380B1 KR101872380B1 KR1020167020446A KR20167020446A KR101872380B1 KR 101872380 B1 KR101872380 B1 KR 101872380B1 KR 1020167020446 A KR1020167020446 A KR 1020167020446A KR 20167020446 A KR20167020446 A KR 20167020446A KR 101872380 B1 KR101872380 B1 KR 101872380B1
- Authority
- KR
- South Korea
- Prior art keywords
- channel
- electrode
- electric field
- impedance
- ground
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1484—Optical investigation techniques, e.g. flow cytometry microstructural devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502715—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0266—Investigating particle size or size distribution with electrical classification
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/1031—Investigating individual particles by measuring electrical or magnetic effects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/1031—Investigating individual particles by measuring electrical or magnetic effects
- G01N15/12—Investigating individual particles by measuring electrical or magnetic effects by observing changes in resistance or impedance across apertures when traversed by individual particles, e.g. by using the Coulter principle
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/06—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/10—Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/14—Process control and prevention of errors
- B01L2200/143—Quality control, feedback systems
- B01L2200/147—Employing temperature sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0627—Sensor or part of a sensor is integrated
- B01L2300/0645—Electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/18—Means for temperature control
- B01L2300/1805—Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
- B01L2300/1827—Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using resistive heater
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0442—Moving fluids with specific forces or mechanical means specific forces thermal energy, e.g. vaporisation, bubble jet
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N2015/1006—Investigating individual particles for cytology
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N2015/1493—Particle size
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
도 2는 다른 예시적인 미세유체 감지 시스템의 상면도이다.
도 3은 도 1의 시스템 또는 도 2의 시스템에 의해서 실행될 수 있는 예시적인 방법의 흐름도이다.
도 4는 다른 예시적인 미세유체 감지 시스템의 상면도이다.
도 5는 다른 예시적인 미세유체 감지 시스템의 상면도이다.
도 6은 도 5의 미세유체 감지 시스템의 사시도이다.
도 7은 다른 예시적인 미세유체 감지 시스템의 상면도이다.
도 8은 다른 예시적인 미세유체 감지 시스템의 상면도이다.
도 9는 다른 예시적인 미세유체 감지 시스템의 상면도이다.
도 10는 다른 예시적인 미세유체 감지 시스템의 상면도이다.
도 11은 다른 예시적인 미세유체 감지 시스템의 상면도이다.
도 12는 다른 예시적인 미세유체 감지 시스템의 상면도이다.
도 13은 다른 예시적인 미세유체 감지 시스템의 상면도이다.
도 14는 다른 예시적인 미세유체 감지 시스템의 상면도이다.
도 15는 다른 예시적인 미세유체 감지 시스템의 사시도이다.
도 16은 도 15의 미세유체 감지 시스템의 측면도이다.
도 17은, 입자를 통한 전기장 영역의 차단(obstruction)을 도시한, 도 15의 미세유체 감지 시스템의 측면도이다.
도 18은 도 15의 미세유체 감지 시스템에 걸친 입자의 통과 중의 시간에 걸친 임피던스의 그래프이다.
도 19는 도 2, 도 5, 도 8, 도 9, 도 12, 도 13 및 도 14의 미세유체 감지 시스템에 대한 임피던스 대 B 변위의 그래프이다.
도 20은 다른 예시적인 미세유체 감지 시스템의 상면도이다.
도 21은 다른 예시적인 미세유체 감지 시스템의 상면도이다.
도 22는 다른 예시적인 미세유체 감지 시스템의 상면도이다.
도 23은 다른 예시적인 미세유체 감지 시스템의 상면도이다.
Claims (15)
- 미세유체 감지 장치로서:
채널;
상기 채널 내의 임피던스 센서; 및
상기 임피던스 센서 하류에 상기 채널 내의 제2 임피던스 센서를 포함하고,
상기 임피던스 센서가:
상기 채널 내의 국소적인 접지; 및
상기 채널 내의 전극을 포함하고,
상기 국소적인 접지 및 상기 전극이, 상기 채널을 따라서 연신되는 전기장 영역을 형성하며,
상기 임피던스 센서와 상기 제2 임피던스 센서는, 상기 임피던스 센서와 상기 제2 임피던스 센서에 의해 생성되는 차이 신호들의 비교 및 통계적 분석에 기초하여 유체 내에 함유된 입자의 특성이 식별되도록, 상이한 크기의 전기장 영역들을 가지고,
상기 미세유체 감지 장치는,
임피던스 센서의 전극 및 국소적인 접지를 이용하여 전기장 영역을 생성하기 위한 회로;
상기 채널을 통해 유체 및 입자를 이동시키기 위한 열적 잉크젯(TIJ) 저항기; 및
열 센서
를 더 포함하는, 미세유체 감지 장치. - 제1항에 있어서,
상기 전극이 상기 채널을 따르는 방향으로 상기 국소적인 접지로부터 이격되는, 미세유체 감지 장치. - 제1항에 있어서,
상기 전극 및 상기 국소적인 접지 중 적어도 하나가 상기 채널을 따라서 주요 치수(major dimension)를 가지는, 미세유체 감지 장치. - 제1항에 있어서,
상기 전극이 상기 채널에 대해서 비스듬하게 대면하는, 미세유체 감지 장치. - 삭제
- 제1항에 있어서,
상기 제2 임피던스 센서가 제2 전극 및 상기 국소적인 접지를 포함하는, 미세유체 감지 장치. - 제6항에 있어서,
상기 전극이 제1 거리 만큼 상기 국소적인 접지로부터 이격되고, 상기 제2 전극이 상기 제1 거리와 상이한 제2 거리 만큼 상기 국소적인 접지로부터 이격되는, 미세유체 감지 장치. - 삭제
- 제1항에 있어서,
상기 채널이 상기 전극을 포함하는 제1 부분, 상기 국소적인 접지를 포함하는 제2 부분, 및 상기 제1 부분과 상기 제2 부분을 연결하는 굽힘부를 포함하고, 상기 굽힘부가 상기 국소적인 접지를 포함하는, 미세유체 감지 장치. - 제1항에 있어서,
상기 채널 내의 상기 임피던스 센서에 대해서 횡방향으로 위치된 추가의 임피던스 센서를 더 포함하는, 미세유체 감지 장치. - 제1항에 있어서,
상기 미세유체 감지 장치는 상기 채널 그리고 임피던스 센서의 전극 및 국소적인 접지를 지지하는 플랫폼을 더 포함하고,
상기 회로는 상기 플랫폼 상에서 지지되며,
상기 열적 잉크젯(TIJ) 저항기는 상기 임피던스 센서로부터 5 mm 이내에서 상기 플랫폼 상에서 지지되고,
상기 열 센서는 상기 TIJ 저항기 및 상기 임피던스 센서로부터 5 mm 이내에서 상기 플랫폼 상에서 지지되는, 미세유체 감지 장치. - 제1항에 있어서,
상기 전극 및 상기 국소적인 접지가 상기 채널에 걸친 크기 변화 갭에 의해서 분리되는, 미세유체 감지 장치. - 미세유체 감지 방법으로서:
기포 제트 펌프(bubble jet pump)를 이용하여 감지 장치의 채널 내에서 입자 함유 유체를 이동시키는 단계;
상기 채널 내에서 제1 전기장 영역을 형성하는 단계;
상기 채널 내에서 제2 전기장 영역을 형성하는 단계로서, 상기 제1 전기장 영역과 상기 제2 전기장 영역은 상이한 크기들을 가지는, 제2 전기장 영역 형성 단계;
상기 채널 내의 입자 함유 유체의 유동 중에, 상기 제1 전기장 영역 및 상기 제2 전기장 영역 내의 임피던스 변화를 감지하는 단계; 및
감지된 임피던스 변화, 및 상기 제1 전기장 영역과 상기 제2 전기장 영역 사이의 차이 신호들의 비교 및 통계적 분석에 기초하여 입자 특성을 식별하는 단계를 포함하는, 미세유체 감지 방법. - 삭제
- 삭제
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2014/013748 WO2015116083A1 (en) | 2014-01-30 | 2014-01-30 | Microfluidic sensing device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20160104024A KR20160104024A (ko) | 2016-09-02 |
KR101872380B1 true KR101872380B1 (ko) | 2018-06-28 |
Family
ID=53757493
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020167020446A Expired - Fee Related KR101872380B1 (ko) | 2014-01-30 | 2014-01-30 | 미세유체 감지 장치 |
KR1020167020980A Expired - Fee Related KR101876360B1 (ko) | 2014-01-30 | 2015-01-30 | 교류 주파수를 제어하는 임피던스 테스팅 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020167020980A Expired - Fee Related KR101876360B1 (ko) | 2014-01-30 | 2015-01-30 | 교류 주파수를 제어하는 임피던스 테스팅 |
Country Status (7)
Country | Link |
---|---|
US (3) | US10241066B2 (ko) |
EP (4) | EP3100036B1 (ko) |
KR (2) | KR101872380B1 (ko) |
CN (2) | CN105992946B (ko) |
BR (1) | BR112016017466B1 (ko) |
TW (1) | TWI571630B (ko) |
WO (3) | WO2015116083A1 (ko) |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105992946B (zh) | 2014-01-30 | 2021-07-13 | 惠普发展公司,有限责任合伙企业 | 微流体感测装置 |
EP3234594B1 (en) * | 2015-01-30 | 2019-12-11 | Hewlett-Packard Development Company, L.P. | Fluid testing chip and cassette |
EP3237112B1 (en) | 2015-01-30 | 2021-05-26 | Hewlett-Packard Development Company, L.P. | Vented microfluidic reservoirs |
EP3250504B1 (en) | 2015-01-30 | 2019-09-11 | Hewlett-Packard Development Company, L.P. | Microfluidic chip for coagulation sensing |
EP3250910B1 (en) | 2015-01-30 | 2021-03-03 | Hewlett-Packard Development Company, L.P. | Diagnostic chip |
CN107001026A (zh) | 2015-01-30 | 2017-08-01 | 惠普发展公司,有限责任合伙企业 | 微流体感测系统 |
WO2016122630A1 (en) * | 2015-01-30 | 2016-08-04 | Hewlett-Packard Development Company, L.P. | Signal transmission bandwidth allocation on a microfluidic chip |
SG11201703246VA (en) * | 2015-01-30 | 2017-05-30 | Hewlett Packard Development Co | Fluid pumping and temperature regulation |
JP2018503829A (ja) | 2015-01-30 | 2018-02-08 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. | マイクロ流体制御 |
CN107209198B (zh) * | 2015-04-30 | 2019-07-19 | 惠普发展公司,有限责任合伙企业 | 目标成分定位和排出 |
WO2016209735A1 (en) | 2015-06-22 | 2016-12-29 | Fluxergy, Llc | Camera imaging system for a fluid sample assay and method of using same |
US10214772B2 (en) | 2015-06-22 | 2019-02-26 | Fluxergy, Llc | Test card for assay and method of manufacturing same |
WO2016209734A1 (en) | 2015-06-22 | 2016-12-29 | Fluxergy, Llc | Device for analyzing a fluid sample and use of test card with same |
EP3338062B1 (en) * | 2016-01-22 | 2019-11-20 | Hewlett-Packard Development Company, L.P. | Fluid sensing with control of particle aggregation in sensing zone |
US20180221870A1 (en) * | 2016-01-22 | 2018-08-09 | Hewlett-Packard Development Company, L.P. | Microfluidic sensing with sequential fluid driver |
US20180285153A1 (en) * | 2016-02-04 | 2018-10-04 | Hewlett-Packard Development Company, L.P. | Managing a microfluidic device |
WO2018022026A1 (en) | 2016-07-26 | 2018-02-01 | Hewlett-Packard Development Company, L.P. | Microfluidic apparatuses for fluid movement control |
TWI604193B (zh) * | 2016-08-19 | 2017-11-01 | 光合聲科技股份有限公司 | 電子式生物感測器與微流體裝置的整合結構 |
EP3396355A1 (en) * | 2017-04-27 | 2018-10-31 | Pharmafluidics NV | Lateral detection of fluid properties |
US10942110B2 (en) * | 2017-06-15 | 2021-03-09 | United Arab Emirates University | System and method for detecting abnormalities in cells |
WO2019094022A1 (en) | 2017-11-10 | 2019-05-16 | Hewlett-Packard Development Company, L.P. | Fluidic cartridges |
WO2019094020A1 (en) * | 2017-11-10 | 2019-05-16 | Hewlett-Packard Development Company, L.P. | Substrates and lids with overflow channels |
WO2019103743A1 (en) * | 2017-11-22 | 2019-05-31 | Hewlett-Packard Development Company, L.P. | Microfluidic devices for blood coagulation |
KR20200086703A (ko) * | 2017-12-11 | 2020-07-17 | 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. | 유체 입자 농도의 검출 |
WO2019117847A1 (en) | 2017-12-11 | 2019-06-20 | Hewlett-Packard Development Company, L.P. | Fluid reservoir impedance sensors |
CN111433039B (zh) * | 2017-12-11 | 2022-02-01 | 惠普发展公司,有限责任合伙企业 | 射流片、射流喷射设备以及检测流体颗粒浓度的方法 |
US11467116B2 (en) * | 2018-01-24 | 2022-10-11 | Hewlett-Packard Development Company, L.P. | Fluidic property determination from fluid impedances |
US11554377B2 (en) | 2018-01-29 | 2023-01-17 | Hewlett-Packard Development Company, L.P. | Object separating |
JP6992193B2 (ja) | 2018-03-12 | 2022-01-13 | ヒューレット-パッカード デベロップメント カンパニー エル.ピー. | 核無生成時の流体アクチュエータの測定 |
WO2020032956A1 (en) * | 2018-08-09 | 2020-02-13 | Hewlett-Packard Development Company, L.P. | Microfluidic devices with impedance setting to set backpressure |
US20210404937A1 (en) * | 2018-11-09 | 2021-12-30 | Georgia Tech Research Corporation | Code-multiplexed sensor networks for microfluidic impedance spectroscopy |
KR102006469B1 (ko) * | 2019-01-22 | 2019-08-01 | 주식회사 씨티에이 | 프로브 타입의 누액 감지센서를 이용한 액상 화학물질 모니터링 장치 시스템 |
US12145149B2 (en) | 2019-03-08 | 2024-11-19 | Hewlett-Packard Development Company, L.P. | Disposable microfluidic cassettes |
US12019040B2 (en) | 2019-09-30 | 2024-06-25 | Cornell University | System and devices for monitoring cell-containing materials and methods of their use |
GB2588422A (en) * | 2019-10-23 | 2021-04-28 | Univ Loughborough | Shape analysis device |
US20230174908A1 (en) * | 2020-04-30 | 2023-06-08 | Hewlett-Packard Development Company, L.P. | Reagent injections into cells |
US11684920B2 (en) | 2020-07-07 | 2023-06-27 | International Business Machines Corporation | Electrical tracking of a multiphase microfluidic flow |
EP3940377A1 (en) | 2020-07-16 | 2022-01-19 | 3M Innovative Properties Company | Method, data set and sensor to sense a property of a liquid |
US11493514B2 (en) | 2020-07-20 | 2022-11-08 | United Arab Emirates University | Method and system for virus and protein-antibody interactions detection and monitoring based on optical light intensity and electrical parameters |
US11619589B2 (en) | 2020-07-20 | 2023-04-04 | United Arab Emirates University | Method and system for detection, quantification and/or identification of an analyte in a specimen based on electrical and/or optical response to an electric field |
EP4298238A4 (en) * | 2021-02-26 | 2024-04-24 | Hewlett-Packard Development Company, L.P. | MICROFLUIDIC CHANNEL INCLUDING A FLUIDIC PUMP FOR DIRECTING A CELL THROUGH A REGION OF CONSTRICTION |
DE102021117119A1 (de) * | 2021-07-02 | 2023-01-05 | Inmox Gmbh | Sensoreinrichtung und Verfahren zur Charakterisierung eines Metallspans |
EP4479742A1 (en) * | 2022-02-18 | 2024-12-25 | National University of Ireland Galway | A system for in-vitro determination of a parameter of a sample |
JP2023136130A (ja) * | 2022-03-16 | 2023-09-29 | 株式会社アドバンテスト | 温度調整装置、電子部品ハンドリング装置、及び、電子部品試験装置 |
GB2622574A (en) * | 2022-09-08 | 2024-03-27 | Univ Newcastle | Microfluidic cell |
US20240210299A1 (en) * | 2022-12-15 | 2024-06-27 | Tdk Corporation | Method and Classification System for Single Cell Analysis |
WO2024253747A1 (en) * | 2023-06-09 | 2024-12-12 | University Of Puerto Rico | Impedance-based classification of biological cells or other particles via machine learning |
US12270777B2 (en) * | 2023-06-28 | 2025-04-08 | International Business Machines Corporation | 2D microfluidic structure |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040227529A1 (en) * | 2001-11-13 | 2004-11-18 | Caliper Life Sciences, Inc. | Method and apparatus for controllably effecting samples using two signals |
US20100025246A1 (en) * | 2006-07-18 | 2010-02-04 | Cho Young-Ho | Apparatus and method for detecting motion characteristics of particles in flow channel |
Family Cites Families (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4404636A (en) | 1981-04-08 | 1983-09-13 | Wilcom Products, Inc. | Phasor impedance measuring test set |
US4420720A (en) | 1981-06-29 | 1983-12-13 | Coulter Electronics, Inc. | Field focused particle sensing zone |
US5965410A (en) | 1997-09-02 | 1999-10-12 | Caliper Technologies Corp. | Electrical current for controlling fluid parameters in microchannels |
US6122599A (en) * | 1998-02-13 | 2000-09-19 | Mehta; Shailesh | Apparatus and method for analyzing particles |
US6437551B1 (en) | 1999-11-02 | 2002-08-20 | The Regents Of The University Of California | Microfabricated AC impedance sensor |
US20020081228A1 (en) | 1999-12-21 | 2002-06-27 | Hui Henry K. | Monitoring sterilant concentration in diffusion-restricted regions as a basis for parametric release |
JP4520061B2 (ja) * | 2001-03-08 | 2010-08-04 | 富士通オプティカルコンポーネンツ株式会社 | ルビジウム原子発振器 |
US6845327B2 (en) | 2001-06-08 | 2005-01-18 | Epocal Inc. | Point-of-care in-vitro blood analysis system |
US8440093B1 (en) * | 2001-10-26 | 2013-05-14 | Fuidigm Corporation | Methods and devices for electronic and magnetic sensing of the contents of microfluidic flow channels |
WO2003047684A2 (en) | 2001-12-04 | 2003-06-12 | University Of Southern California | Method for intracellular modifications within living cells using pulsed electric fields |
EP1528387A3 (en) * | 2003-10-27 | 2006-05-24 | Leister Process Technologies | Method for discrimination of particles in a flow cytometer |
US20050118705A1 (en) | 2003-11-07 | 2005-06-02 | Rabbitt Richard D. | Electrical detectors for microanalysis |
US20050266571A1 (en) | 2004-03-26 | 2005-12-01 | Phil Stout | Method for feedback control of a microfluidic system |
EP1984723B1 (en) | 2006-02-01 | 2019-05-15 | Ecole Polytechnique Federale de Lausanne (EPFL) | Impedance measurement device for characterizing particles in a micro channel |
US8616048B2 (en) | 2006-02-02 | 2013-12-31 | E I Spectra, LLC | Reusable thin film particle sensor |
WO2008112635A1 (en) | 2007-03-09 | 2008-09-18 | Dxtech, Llc | Multi-channel lock-in amplifier system and method |
CN101038284B (zh) | 2007-04-25 | 2011-04-27 | 博奥生物有限公司 | 一种提高电阻抗检测装置的电阻抗检测灵敏度的方法 |
US8390304B2 (en) | 2008-02-22 | 2013-03-05 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Electrical resonance detection of particles and analytes in microfluidic channels |
US8158082B2 (en) * | 2008-08-29 | 2012-04-17 | Incube Labs, Llc | Micro-fluidic device |
US20100088039A1 (en) | 2008-10-07 | 2010-04-08 | Mengsu Yang | Piezoelectric ceramic sensor and sensor array for detection of molecular makers |
EP2211164A1 (en) | 2009-01-27 | 2010-07-28 | Koninklijke Philips Electronics N.V. | Fingered electrodes for microfluidic single particle analysis |
EP2216095A1 (en) | 2009-01-27 | 2010-08-11 | Koninklijke Philips Electronics N.V. | Microfluidic device for full blood count |
EP2259045A1 (en) * | 2009-06-05 | 2010-12-08 | Koninklijke Philips Electronics N.V. | Multi-frequency impedance method and apparatus for discriminating and counting particles expressing a specific marker |
EP2440910A4 (en) | 2009-06-08 | 2013-05-08 | S E A Medical Systems Inc | SYSTEMS AND METHOD FOR IDENTIFYING COMPOUNDS IN MEDICINAL LIQUIDS USING ADMITTANCE SPECTROSCOPY |
EP2465007A4 (en) * | 2009-08-14 | 2017-01-11 | University of Cincinnati | Display pixels, displays, and methods of operating display pixels |
JP2011078443A (ja) * | 2009-10-02 | 2011-04-21 | Tanita Corp | 生体測定装置 |
GB2482658A (en) * | 2010-07-08 | 2012-02-15 | Univ Dublin | Non-linear magnetophoresis system |
CA2805814C (en) | 2010-08-06 | 2016-04-26 | Dna Electronics Ltd. | Method and apparatus for sensing a property of a fluid |
US9170138B2 (en) | 2010-10-01 | 2015-10-27 | The Board Of Trustees Of The Leland Stanford Junior University | Enhanced microfluidic electromagnetic measurements |
US9999855B2 (en) | 2010-10-28 | 2018-06-19 | Yale University | Microfluidic processing of target species in ferrofluids |
JP5617530B2 (ja) | 2010-10-29 | 2014-11-05 | ソニー株式会社 | 細胞分取装置及び細胞分取方法 |
WO2012064878A2 (en) | 2010-11-09 | 2012-05-18 | The General Hospital Corporation | Counting particles using an electrical differential counter |
EP2490020A1 (en) | 2011-02-18 | 2012-08-22 | Koninklijke Philips Electronics N.V. | Measurement chip, microfluidic device and method of measurement chip manufacture |
US8614087B2 (en) * | 2011-05-02 | 2013-12-24 | Ibis Biosciences, Inc. | Multiple-analyte assay device and system |
JP5944118B2 (ja) | 2011-07-06 | 2016-07-05 | シャープ株式会社 | 粒子測定装置 |
ES2759824T3 (es) | 2011-07-25 | 2020-05-12 | Qvella Corp | Métodos y dispositivos para preparación de muestra eléctrica |
CN102360025A (zh) | 2011-09-07 | 2012-02-22 | 浙江大学 | 一种小通道流体流速流量测量装置及方法 |
US9417210B2 (en) | 2011-09-30 | 2016-08-16 | Pandora Genomics, LLC | System, apparatus and method for evaluating samples or analytes using a point-of-care device |
US9030215B2 (en) | 2011-10-04 | 2015-05-12 | The Regents Of The University Of California Corporation | Real-time, label-free detection of nucleic acid amplification in droplets using impedance spectroscopy and solid-phase substrate |
TWI456199B (zh) | 2011-12-29 | 2014-10-11 | Univ Nat Chiao Tung | 生物檢測裝置及檢測方法 |
WO2013117233A1 (en) | 2012-02-10 | 2013-08-15 | Alere Switzerland Gmbh | Assay and method for determining insulin-resistance |
US8804105B2 (en) | 2012-03-27 | 2014-08-12 | E. I. Spectra, Llc | Combined optical imaging and electrical detection to characterize particles carried in a fluid |
US9510772B2 (en) * | 2012-04-10 | 2016-12-06 | Cardionxt, Inc. | System and method for localizing medical instruments during cardiovascular medical procedures |
US9291612B2 (en) * | 2012-07-16 | 2016-03-22 | Micropoint Bioscience, Inc. | Determining blood coagulation characteristics using residual accumulative conductive energy |
US9683253B2 (en) | 2013-03-19 | 2017-06-20 | Imec | Method and device for identifying cells |
SG11201508880TA (en) | 2013-04-30 | 2015-11-27 | Hewlett Packard Development Co | Microfluidic sensing device and system |
CN105992946B (zh) | 2014-01-30 | 2021-07-13 | 惠普发展公司,有限责任合伙企业 | 微流体感测装置 |
-
2014
- 2014-01-30 CN CN201480074478.7A patent/CN105992946B/zh not_active Expired - Fee Related
- 2014-01-30 WO PCT/US2014/013748 patent/WO2015116083A1/en active Application Filing
- 2014-01-30 BR BR112016017466-6A patent/BR112016017466B1/pt not_active IP Right Cessation
- 2014-01-30 EP EP14881085.6A patent/EP3100036B1/en active Active
- 2014-01-30 KR KR1020167020446A patent/KR101872380B1/ko not_active Expired - Fee Related
- 2014-01-30 US US15/112,639 patent/US10241066B2/en active Active
- 2014-12-23 TW TW103144949A patent/TWI571630B/zh not_active IP Right Cessation
-
2015
- 2015-01-30 US US15/112,618 patent/US10495594B2/en active Active
- 2015-01-30 WO PCT/US2015/013825 patent/WO2015116956A1/en active Application Filing
- 2015-01-30 WO PCT/US2015/013854 patent/WO2015116975A1/en active Application Filing
- 2015-01-30 US US15/112,743 patent/US10473605B2/en active Active
- 2015-01-30 EP EP15743151.1A patent/EP3100037A4/en not_active Withdrawn
- 2015-01-30 KR KR1020167020980A patent/KR101876360B1/ko not_active Expired - Fee Related
- 2015-01-30 EP EP15743487.9A patent/EP3100038B1/en not_active Not-in-force
- 2015-01-30 CN CN201580006445.3A patent/CN105940294B/zh not_active Expired - Fee Related
- 2015-01-30 EP EP19165506.7A patent/EP3539663A1/en not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040227529A1 (en) * | 2001-11-13 | 2004-11-18 | Caliper Life Sciences, Inc. | Method and apparatus for controllably effecting samples using two signals |
US20100025246A1 (en) * | 2006-07-18 | 2010-02-04 | Cho Young-Ho | Apparatus and method for detecting motion characteristics of particles in flow channel |
Also Published As
Publication number | Publication date |
---|---|
WO2015116956A1 (en) | 2015-08-06 |
EP3539663A1 (en) | 2019-09-18 |
BR112016017466B1 (pt) | 2021-05-18 |
EP3100037A1 (en) | 2016-12-07 |
TW201531700A (zh) | 2015-08-16 |
US20160377567A1 (en) | 2016-12-29 |
EP3100036A4 (en) | 2017-09-06 |
WO2015116975A1 (en) | 2015-08-06 |
KR101876360B1 (ko) | 2018-08-02 |
US10241066B2 (en) | 2019-03-26 |
EP3100038B1 (en) | 2020-09-16 |
US20160334351A1 (en) | 2016-11-17 |
TWI571630B (zh) | 2017-02-21 |
CN105992946A (zh) | 2016-10-05 |
US10473605B2 (en) | 2019-11-12 |
US20160334323A1 (en) | 2016-11-17 |
EP3100037A4 (en) | 2017-08-30 |
CN105940294A (zh) | 2016-09-14 |
US10495594B2 (en) | 2019-12-03 |
CN105940294B (zh) | 2020-01-21 |
EP3100036B1 (en) | 2021-04-14 |
WO2015116083A1 (en) | 2015-08-06 |
CN105992946B (zh) | 2021-07-13 |
EP3100038A4 (en) | 2017-09-06 |
KR20160105495A (ko) | 2016-09-06 |
EP3100038A1 (en) | 2016-12-07 |
KR20160104024A (ko) | 2016-09-02 |
EP3100036A1 (en) | 2016-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101872380B1 (ko) | 미세유체 감지 장치 | |
EP1521064B1 (en) | Method and system for monitoring fluid flow | |
JP6299609B2 (ja) | 微小粒子分析装置及び微小粒子分析システム | |
Kapishnikov et al. | Continuous particle size separation and size sorting using ultrasound in a microchannel | |
EP2980558B1 (en) | Measurement device and measurement method | |
US11035814B2 (en) | Microfluidics detection | |
Mernier et al. | Characterization of a novel impedance cytometer design and its integration with lateral focusing by dielectrophoresis | |
Kelleci et al. | Towards microwave imaging of cells | |
CN102116755A (zh) | 基于多截面阻抗式长腰内锥及相关测速的多相流测量方法 | |
Riaud et al. | Mechanical characterization of cells and microspheres sorted by acoustophoresis with in-line resistive pulse sensing | |
US10639630B2 (en) | Microfluidic temperature control | |
EP3427035B1 (en) | Microfluidic apparatuses | |
US11237126B2 (en) | Fluid sensor, system for testing a sample and process | |
US11759793B2 (en) | Object separating | |
EP3864170A1 (en) | Cellular analytic systems | |
US11097272B2 (en) | Microfluidic apparatuses for fluid movement control | |
CN108241056A (zh) | 生物检测装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0105 | International application |
Patent event date: 20160726 Patent event code: PA01051R01D Comment text: International Patent Application |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20170830 Patent event code: PE09021S01D |
|
AMND | Amendment | ||
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20180323 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20170830 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |
|
AMND | Amendment | ||
PX0901 | Re-examination |
Patent event code: PX09011S01I Patent event date: 20180323 Comment text: Decision to Refuse Application Patent event code: PX09012R01I Patent event date: 20171030 Comment text: Amendment to Specification, etc. |
|
PX0701 | Decision of registration after re-examination |
Patent event date: 20180518 Comment text: Decision to Grant Registration Patent event code: PX07013S01D Patent event date: 20180424 Comment text: Amendment to Specification, etc. Patent event code: PX07012R01I Patent event date: 20180323 Comment text: Decision to Refuse Application Patent event code: PX07011S01I Patent event date: 20171030 Comment text: Amendment to Specification, etc. Patent event code: PX07012R01I |
|
X701 | Decision to grant (after re-examination) | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20180622 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20180622 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20210525 Start annual number: 4 End annual number: 4 |
|
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20230403 |