[go: up one dir, main page]

KR101867507B1 - Acid-resistant catalyst for decomposing perfluorinated compounds and use thereof - Google Patents

Acid-resistant catalyst for decomposing perfluorinated compounds and use thereof Download PDF

Info

Publication number
KR101867507B1
KR101867507B1 KR1020170025748A KR20170025748A KR101867507B1 KR 101867507 B1 KR101867507 B1 KR 101867507B1 KR 1020170025748 A KR1020170025748 A KR 1020170025748A KR 20170025748 A KR20170025748 A KR 20170025748A KR 101867507 B1 KR101867507 B1 KR 101867507B1
Authority
KR
South Korea
Prior art keywords
catalyst
perfluorinated
alumina
perfluorinated compound
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020170025748A
Other languages
Korean (ko)
Other versions
KR20170101160A (en
Inventor
최상현
박광희
김민지
민준석
조성종
윤성진
이동채
Original Assignee
주식회사 에코프로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코프로 filed Critical 주식회사 에코프로
Publication of KR20170101160A publication Critical patent/KR20170101160A/en
Application granted granted Critical
Publication of KR101867507B1 publication Critical patent/KR101867507B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J32/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 트리하이드록사이드(aluminum trihydroxide), 보에마이트(boehmite) 및 의보에마이트(pseudo-boehmite)로 구성된 군에서 선택된 원료와, 지르코니아(ZrO2) 또는 지르코니아 졸을 물 함유 용매에서 혼합, 건조 및 소성하여 제조한, 알루미나 및 지르코니아 혼합 촉매 지지체를 포함하되, 바람직하게는 알루미나 및 지르코니아 혼합 촉매 지지체에 활성금속으로 아연(Zn)이 담지된 것이 특징인 과불화 화합물 분해용 촉매를 제공한다. 본 발명에 따른 과불화 화합물 분해용 촉매는 내산성 촉매로서, 과불화 화합물에 포함된 할로겐족 산성가스 또는 과불화합물이 분해하여 생성된 불소에 대해 내구성을 가지며, 반응활성도 증진시킬 수 있다. 따라서, 반도체 제조공정 및 디스플레이 제조공정에서 사용되는 과불화 화합물의 세정제 및 에칭제를 분해하는 목적으로 사용이 가능하고, 특히 F2, Cl2, Br2 등과 같은 할로겐 산성가스를 사용하는 공정에서 배출되는 과불화 화합물을 분해하는 촉매로 유용하게 사용할 수 있다.The present invention relates to a process for the preparation of zirconia (ZrO 2 ) or zirconia sol from raw materials selected from the group consisting of aluminum trihydroxide, boehmite and pseudo-boehmite, (Zn) supported on an alumina and zirconia mixed catalyst support, comprising an alumina and zirconia mixed catalyst support prepared by drying and firing an alumina and zirconia mixed catalyst support. The catalyst for decomposing a perfluorinated compound according to the present invention is an acid-resistant catalyst having durability against fluorine generated by decomposition of a halogen acid gas or a perfluorinated compound contained in a perfluorinated compound, and can increase the reaction activity. Therefore, for the purpose of decomposition of the semiconductor manufacturing processes and cleaning agents and etchants in the perfluorinated compounds to be used in display manufacturing process used is possible, in particular, F 2, Cl 2, discharged from the process using a halogen acid gas, such as Br 2 Which can be used as a catalyst for decomposing perfluorinated compounds.

Description

과불화 화합물 분해용 내산성 촉매 및 이의 용도 {Acid-resistant catalyst for decomposing perfluorinated compounds and use thereof}Acid-resistant catalysts for decomposing perfluorinated compounds and their use {Acid-resistant catalysts for decomposing perfluorinated compounds and use thereof}

본 발명은 과불화 화합물을 분해할 수 있는 내산성 촉매 및 이의 제조방법 및 용도에 관한 것이다.The present invention relates to an acid-resistant catalyst capable of decomposing a perfluorinated compound, and a production method and use thereof.

반도체 제조공정에서 배출되는 유해 폐가스는 각 공정에 따라 매우 다양한 종류가 배출되고 있으며, 대부분 휘발성이 강하며 인체에 유해하거나 지구온난화 지수가 높은 성분들로 구성되어 있어 제거가 요구되고 있다. 그중 반도체 공정의 식각(etching) 및 증착(CVD) 공정에서 주로 배출되는 과불화 화합물인 PFC (perfluorocompound)는 매우 안정하여 제거가 용이하지 않다. PFC 들은 냉매로 사용하는 CFC (chlorofluorocompound) 보다도 안정하며, 지구온난화지수가 클 뿐만 아니라, 분해시간도 매우 길기 때문에 방출될 경우 대기 중에 축적되는 문제점을 갖고 있다. 반도체 공정에서 배출되는 PFC는 해마다 높은 증가율로 증가하고 있다. 따라서 PFC 발생이 지구온난화에 미치는 영향이 증가하고 있기 때문에, 각국에서는 PFC에 대한 규제를 점진적으로 강화하고 있다.The harmful waste gas emitted from the semiconductor manufacturing process is discharged in a very wide variety depending on each process. Most of the harmful waste gas is volatile and is harmful to the human body or has a high global warming index. Among them, perfluorocompound (PFC), which is a perfluorocompound which is mainly discharged in the etching and CVD (chemical vapor deposition) process of a semiconductor process, is very stable and is not easy to remove. PFCs are more stable than CFCs (chlorofluorocompounds) used as refrigerants, and have a problem of not only being large in global warming index but also having a very long decomposition time and accumulating in the atmosphere when they are released. PFC emissions from semiconductor processes are increasing at an increasing rate each year. As the impact of PFC on global warming is increasing, countries are gradually strengthening regulations on PFC.

PFC 배출량을 감축하기 위하여 새로운 대체가스를 개발하려는 시도가 있어 왔으나, 아직까지 반도체 제조공정 중 실리콘기판 식각에 사용하는 가스로서 CF4 보다 효율이 높고 제품성이 뛰어난 대체가스는 제시되지 않았다. 이에 따라 대부분의 반도체 제조공정에 CF4가 사용 중이다.There has been an attempt to develop a new alternative gas to reduce PFC emissions, but there has been no alternative gas that is more efficient and more productive than CF 4 as a gas used to etch silicon substrates during the semiconductor manufacturing process. As a result, CF 4 is being used in most semiconductor manufacturing processes.

PFC들, 특히 탄소계 PFC들을 제거하기 위한 여러 기술들이 개발 중에 있는데, PSA 및 분리막을 이용한 분리회수분야와 플라즈마, 연소 또는 촉매를 이용한 분해제거 분야로 나누어 볼 수 있다.Several technologies for removing PFCs, especially carbon-based PFCs, are being developed, including PSA and membrane separation and recovery, and decomposition and removal using plasma, combustion, or catalysis.

촉매적 분해법은 난분해성인 PFC를 촉매 및 수증기를 사용하여 800℃ 이하의 낮은 온도에서 분해하는 기술로서, 촉매적 방법을 사용하면 분해온도를 현격하게 낮출 수 있으므로, 많은 장점을 가져오게 된다. 예컨대, 800℃ 이하의 낮은 온도에서 분해를 하게 되면, 연속 운전에 따르는 운전비 감소 및 시스템의 내구성 확보가 용이해진다는 장점과 배가스 중에 존재하는 N2로부터 기인되는 열적(thermal) NOx의 발생을 억제하고 장치 부식을 크게 낮출 수 있다는 장점을 갖고 있다. 한편, 촉매의 반응활성을 높임으로 인하여 스크러버의 크기를 크게 줄여, 소형화 할 수 있는 장점이 있다. Catalytic cracking is a technique to decompose poorly decomposing PFC at a low temperature of 800 ° C or lower using catalyst and water vapor. Catalytic cracking can significantly lower the decomposition temperature, resulting in many advantages. For example, decomposition at a temperature as low as 800 ° C or less suppresses the advantages of easy operation cost reduction and system durability, and the generation of thermal NO x due to N 2 present in the exhaust gas And has the advantage of significantly reducing device corrosion. On the other hand, since the reaction activity of the catalyst is increased, the size of the scrubber can be largely reduced and the size can be reduced.

그러나, 촉매적 분해법은 반응 후에 생성되는 HF, F2 등의 할로겐 화합물들이 촉매의 성능을 급격히 저하시키기 때문에 촉매를 주기적으로 교체해야 하는 문제점이 있고, 이러한 문제점을 해결하기 위하여 할로겐 화합물에 의하여 비활성화된 촉매를 수증기와 접촉시켜 원래의 촉매상태로 되돌리거나, 촉매 표면에 피막을 형성시키는 등 다양한 연구가 진행되었다.However, in the catalytic cracking method, since halogen compounds such as HF and F 2 produced after the reaction rapidly degrade the performance of the catalyst, there is a problem that the catalyst must be periodically replaced. In order to solve this problem, Various studies have been carried out, such as bringing the catalyst into contact with water vapor and returning it to the original catalyst state, or forming a film on the catalyst surface.

종래 일본특허공개 평11-70332 및 평10-46824에서는 알루미늄 산화물 내부에 Zn, Ni, Ti, Fe 등과 같은 여러 가지 전이금속을 적어도 한 가지 이상 포함하는 금속성분과 알루미늄의 복합 산화물 형태로 촉매를 제조하여 과불화 화합물을 분해할 수 있음을 개시하고 있고, 미국특허 제6,023,007호 및 제6,162,957호에서는 다양한 종류의 금속포스페이트 촉매가 과불화 화합물을 분해하는 촉매로 사용될 수 있음을 개시하고 있다. 그러나, 상기와 같이 금속 성분이 별도로 첨가된 다성분 복합산화물 형태의 알루미늄포스페이트는 제조 과정이 복잡할 뿐만 아니라 경제성 면에서도 불리하며 장기간의 사용 가능성도 불투명하여, 오랜시간 촉매 활성이 유지될 수 있는 내구성을 지닌 촉매를 간단하고, 경제적으로 제조할 수 있는 방법의 개발이 여전히 요구되고 있는 상황이다.Japanese Unexamined Patent Application, First Publication No. Hei 11-70332 and Hei 10-46824 disclose a process for producing a catalyst in the form of a composite oxide of a metal component containing aluminum and at least one transition metal such as Zn, Ni, Ti, Fe, Disclose that perfluorinated compounds can be decomposed, and U.S. Patent Nos. 6,023,007 and 6,162,957 disclose that various types of metal phosphate catalysts can be used as catalysts for decomposing perfluorinated compounds. However, as described above, the aluminum phosphate in the form of a multi-component complex oxide in which a metal component is separately added is not only complicated but also disadvantageous in terms of economy and durability for a long period of time. Thus, durability There is a continuing need to develop a method capable of easily and economically producing a catalyst having a high catalytic activity.

본 발명은 반도체 제조 공정 또는 LCD와 같은 디스플레이 제조 공정에서 사용된 후 부산물로 산성 기체인 할로겐 화합물이 포함된 과불화 화합물을 완전히 분해할 수 있고 내구성이 우수하여 오랜시간 촉매 활성이 유지될 수 있는 과불화 화합물 분해용 촉매를 제공하고자 한다. The present invention relates to a process for producing a halogen-containing compound capable of completely decomposing a perfluorinated compound containing a halogen compound, which is an acid gas, as a by-product after being used in a semiconductor manufacturing process or a display manufacturing process such as an LCD, And to provide a catalyst for decomposing a compound.

본 발명의 제1양태는 알루미늄 트리하이드록사이드(aluminum trihydroxide), 보에마이트(boehmite) 및 의보에마이트(pseudo-boehmite)로 구성된 군에서 선택된 원료와, 지르코니아(ZrO2) 또는 지르코니아 졸을 물 함유 용매에서 혼합, 건조 및 소성하여 제조한, Al : Zr (질량) = 100 : 0.01 ~ 50인 알루미나 및 지르코니아 혼합 촉매 지지체를 포함하는 과불화 화합물 분해용 촉매를 제공한다.A first aspect of the present invention is aluminum tri hydroxide (aluminum trihydroxide), boehmite (boehmite) and uibo boehmite water to the selected raw material and a zirconia (ZrO 2) or zirconia sol from the group consisting of (pseudo-boehmite) in the There is provided a catalyst for decomposing a perfluorinated compound comprising an alumina and zirconia mixed catalyst support comprising Al: Zr (mass) = 100: 0.01 to 50, which is prepared by mixing, drying and firing in a solvent containing an alumina and a zirconia.

본 발명의 제2양태는 지르코니아 또는 지르코니아 졸을 녹인 수용액을, 알루미늄 트리하이드록사이드(aluminum trihydroxide), 보에마이트(boehmite) 및 의보에마이트(pseudo-boehmite)로 구성된 군에서 선택된 알루미나 전구체와 혼합하는 단계(단계 1); 및 건조 및 소성하여 Al : Zr (질량) = 100 : 0.01 ~ 50인 Zr-알루미나 산화물을 제조하는 단계(단계 2)를 포함하는, 제1항에 기재된 과불화 화합물 분해용 촉매의 제조방법을 제공한다.A second aspect of the present invention is a process for producing a zirconium-zirconium-zirconium-zirconium-zirconium-zirconium-zirconium-zirconium-zirconium-zirconium-zirconium-zirconium-zirconium-zirconium-zirconium-zirconium-zirconium-zirconium- (Step 1); And a step (step 2) of producing a Zr-alumina oxide having Al: Zr (mass) = 100: 0.01 to 50 by drying and firing do.

본 발명의 제3양태는 제1양태의 과불화 화합물 분해용 촉매를 사용하여, 과불화 화합물 함유 가스에서 과불화 화합물을 분해하는 단계를 포함하는 것이 특징인 과불화 화합물 처리 방법을 제공한다.A third aspect of the present invention provides a method for treating a perfluorinated compound, which comprises decomposing a perfluorinated compound in a gas containing a perfluorinated compound, using the catalyst for decomposing the perfluorinated compound of the first aspect.

본 발명의 제4양태는 제1양태의 과불화 화합물 분해용 촉매를 사용하여, 과불화 화합물 함유 가스에서 과불화 화합물을 분해하는 단계를 포함하는 것이 특징인 반도체 제조공정 또는 디스플레이 제조공정 을 제공한다.A fourth aspect of the present invention provides a semiconductor manufacturing process or a display manufacturing process characterized by comprising decomposing a perfluorinated compound in a gas containing a perfluorinated compound using the catalyst for decomposing the perfluorinated compound of the first aspect .

이하, 본 발명을 자세히 설명한다.Hereinafter, the present invention will be described in detail.

"과불화 화합물(Perfluoro compound : PFC)"에는 불소(F)를 2개 이상 함유하는 탄소함유 PFC(carbon-containing perfluoro compound), 질소함유 PFC(nitrogen-containing perfluoro compound), 황함유 PFC(sulfur-containing perfluoro compound)이 포함될 수 있다. 탄소함유 PFC에는 CF4, CHF3, CH2F2, C2F4, C2F6, C3F6, C3F8, C4F8, C4F10 등과 같은 포화 및 불포화 지방족(aliphatic) 성분들뿐만 아니라 사이클형 지방족 및 방향족(aromatic) 과불소탄소가 포함될 수 있다. 질소함유 PFC에는 NF3 가 대표적으로 포함될 수 있으며, 황함유 PFC에는 SF4, SF6 등이 포함될 수 있다. 그러나, 본 명세서에서 과불화 화합물(PFC)은 촉매에 의해 분해되어 HF와 같은 가스상의 생성물을 형성할 수 있는 화합물까지 확장될 수 있으며, 이 역시 본 발명의 범주에 속한다.The term "perfluoro compound" (PFC) includes carbon-containing perfluoro compounds (PFCs) containing two or more fluorine (F), nitrogen-containing perfluoro compounds (PFC) containing perfluoro compound. The carbon-containing PFC include CF 4, CHF 3, CH 2 F 2, C 2 F 4, C 2 F 6, C 3 F 6, C 3 F 8, C 4 F 8, saturated and unsaturated aliphatic, such as C 4 F 10 aliphatic components as well as cyclic aliphatic and aromatic perfluorocarbons. Nitrogen-containing PFCs may include NF 3 , and sulfur-containing PFCs may include SF 4 , SF 6, and the like. However, the perfluorinated compounds (PFC) herein can be extended to compounds capable of decomposing by a catalyst to form gaseous products such as HF, which also falls within the scope of the present invention.

산성가스는 물과 접촉하게 되면 산성을 띠는 가스로서, 이의 비제한적인 예로는 할로겐, 할로겐화수소, 질소산화물(NOx), 황산화물(Sox), 아세트산, 승화수은, 황화수소, 이산화탄소 등이 있다. 산성가스는 부식을 야기할 뿐만 아니라, 촉매의 활성을 저하시킬 수 있다.The acid gas is an acidic gas when it comes into contact with water, and examples thereof include halogen, hydrogen halide, NOx, sulfur oxides, acetic acid, hydrogen sulfide, hydrogen sulfide, and carbon dioxide. The acid gas not only causes corrosion but also can reduce the activity of the catalyst.

PFC와 수분 사이에 진행되는 가수분해 반응은 흡열반응으로써 고온일수록 분해가 용이한 자발적 반응을 유도할 수 있으므로 PFC 분해가 빠르게 진행된다. 그러나, 고온은 촉매의 열적 안정성을 저하시킨다.The hydrolysis reaction between PFC and moisture is an endothermic reaction, and PFC decomposition proceeds rapidly because higher temperatures can induce spontaneous reactions that are easier to decompose. However, high temperatures degrade the thermal stability of the catalyst.

즉, 500~800℃의 운전조건은 촉매가 물리적 또는 화학적인 변화 없이 장시간 활성을 유지하기에는 높은 온도조건으로서 촉매의 내구성 확보가 가장 큰 걸림돌이다. 특히, 부산물로 생성되는 HF와 수증기가 동시에 존재하는 500~800℃의 반응 분위기 하에서 지속적으로 내구성을 갖는 촉매개발이 상업화의 관건이 되고 있다.That is, the operation conditions of 500 to 800 ° C are the highest obstacle to maintaining the durability of the catalyst as a high temperature condition for maintaining the catalyst for a long time without physical or chemical change. In particular, the development of a catalyst having durability in a reaction atmosphere of 500 to 800 ° C. in which HF and water vapor generated as by-products are present at the same time is the key to commercialization.

한편, 담지 촉매의 제법의 일종인 함침법은 담체를 활성 성분이 있는 수용액에 침적시켜 담체 표면에 활성 성분을 담지시키는 방법이다. 활성촉매를 담체에 분산시키면, 활성촉매의 소결현상을 방지하여 촉매를 안정시킬 수 있다.On the other hand, the impregnation method, which is a kind of a supported catalyst production method, is a method in which a carrier is immersed in an aqueous solution containing an active ingredient to support the active ingredient on the carrier surface. When the active catalyst is dispersed in the carrier, the catalyst can be stabilized by preventing sintering of the active catalyst.

할로겐족 산성가스에 대한 저항성을 높이기 위해 활성 성분을 고분산시키는 것이 바람직하나, 활성 성분의 고분산 기술이 용이하지 않아 결과적으로 분해 활성이 낮아지는 문제점이 있다. 따라서, 이러한 문제점을 해결하기 위해, 본 발명에 따른 과불화 화합물 분해용 촉매는, 알루미나에 Zr 및/또는 그외 활성금속이 공침법으로 담지된 것이 아니라, Al : Zr (질량) = 100 : 0.01 ~ 50이 되도록 알루미나와 지르코니아를 균일하게 혼합한 다공성 촉매 지지체를 제조하는 것이 하나의 특징이고, 상기 알루미나 및 지르코니아 혼합 촉매 지지체를 먼저 제조한 후 그외 아연(Zn)과 같은 활성금속을 담지하는 것이 다른 특징이다. 이때, 촉매 지지체 제조시 지르코니아 또는 지르코니아 졸을 녹인 수용액을, 알루미늄 트리하이드록사이드(aluminum trihydroxide), 보에마이트(boehmite) 및 의보에마이트(pseudo-boehmite)로 구성된 군에서 선택된 알루미나 전구체와 혼합하는 것이 바람직하다.It is preferable to highly disperse the active ingredient in order to increase the resistance to a halogen acid gas, but the technique of highly dispersing the active ingredient is not easy, and as a result, the degradation activity is lowered. Therefore, in order to solve such problems, the catalyst for decomposing perfluorinated compounds according to the present invention is not limited to Zr and / or other active metals supported on alumina by the coprecipitation method, but may contain Al: Zr (mass) 50, and it is a feature of the present invention that a porous catalyst support having alumina and zirconia uniformly mixed therein is prepared so as to have a specific surface area of 50 to 50, and an active metal such as zinc (Zn) to be. At this time, an aqueous solution in which zirconia or zirconia sol is dissolved in preparing the catalyst support is mixed with an alumina precursor selected from the group consisting of aluminum trihydroxide, boehmite and pseudo-boehmite .

따라서, 본 발명에 따른 과불화 화합물 분해용 촉매는 알루미늄 트리하이드록사이드(aluminum trihydroxide), 보에마이트(boehmite) 및 의보에마이트(pseudo-boehmite)로 구성된 군에서 선택된 원료와, 지르코니아(ZrO2) 또는 지르코니아 졸을 물 함유 용매에서 혼합, 건조 및 소성하여 제조한, Al : Zr (질량) = 100 : 0.01 ~ 50인 알루미나 및 지르코니아 혼합 촉매 지지체를 포함하는 것이 특징이다. Accordingly, the catalyst for decomposing perfluorinated compounds according to the present invention is a catalyst for decomposing perfluorinated compounds, which comprises a raw material selected from the group consisting of aluminum trihydroxide, boehmite and pseudo-boehmite, zirconia (ZrO 2 Zirconia mixed catalyst support having Al: Zr (mass) = 100: 0.01 to 50, which is prepared by mixing, drying and firing a zirconia sol or a zirconia sol in a water-containing solvent.

과불화 화합물의 촉매분해 반응에서 적용 가능한 촉매는 대부분 고체산 촉매이며, 이 중에서도 Al2O3 촉매가 가장 많이 이용되고 있다. 따라서, 본 발명에 따른 과불화 화합물 분해용 촉매에서, 알루미나는 활성금속 담지 대상인 지지체 역할 뿐만아니라, 과불화 화합물 분해활성이 있는 주촉매 역할을 한다. 촉매 활성면에서 α, γ, δ - 알루미나 중 γ-알루미나가 바람직하다. 또한, γ-알루미나의 α상으로의 전이를 억제할 수 있으면, PFC에 대한 높은 분해능을 장시간 유지시킬 수 있다. Most of the catalysts applicable in catalytic cracking of perfluorinated compounds are solid acid catalysts, among which Al 2 O 3 catalysts are the most widely used. Therefore, in the catalyst for decomposing perfluorinated compounds according to the present invention, alumina serves not only as a support to be supported on an active metal but also as a main catalyst having a perfluorinated compound decomposing activity. From the viewpoint of catalytic activity, γ-alumina in α, γ, δ-alumina is preferable. Further, if the transfer of? -Alumina to the? -Phase can be suppressed, a high resolution for PFC can be maintained for a long time.

촉매 지지체 제조시 알루미늄 트리하이드록사이드(aluminum trihydroxide), 보에마이트(boehmite) 및 의보에마이트(pseudo-boehmite)로 구성된 군에서 선택된 알루미나 전구체를 사용하는 것이 바람직하다. It is preferred to use alumina precursors selected from the group consisting of aluminum trihydroxide, boehmite and pseudo-boehmite in the preparation of the catalyst support.

알루미나 및 지르코니아 함유 촉매 지지체는 비표면적이 20 m2 /g 이상인 것을 사용하는 것이 높은 분해활성을 유지하는데 바람직하다.It is preferable that the alumina and zirconia-containing catalyst supports have a specific surface area of 20 m 2 / g or more to maintain a high decomposition activity.

지르코니아는 알루미나를 안정화시킬 수 있다. 표 2에 나타난 바와 같이, PFC 촉매분해 반응시 발생하는 HF에 대한 촉매 내구성 측면에서, 알루미나 전구체로부터 소성에 의해 알루미나 촉매 지지체 제조시 알루미나 전구체 함유 수용액에 지르코니아가 혼합되는 것이 바람직하고(실시예 1~3, 비교예 1, 비교예 2), 아연(Zn)은 알루미나 촉매 지지체 제조시 혼합되는 것 보다 제조된 지르코니아/알루미나 촉매 지지체 상에 함침에 의해 담지되는 것이 바람직하다(실시예 1~3, 비교예 2). Zr, Zn 동시 적용 시 alpha phase 상 변이는 나타나지 않았으나 반응 후 촉매 결정화도가 증가됨에 따라 내구성이 저하되었다. 반면, 실시예 3과 같이 Zr-알루미나 산화물에 Zn와 같은 금속 물질을 적용하였을 경우 Zr, Zn를 동시 적용하여 적용한 금속산화물 촉매(실시예 2)와 비교하여 반응 전 후 촉매의 결정화도 변화가 적음을 알 수 있다(실시예 2~3, 도 1). Zirconia can stabilize alumina. As shown in Table 2, it is preferable that zirconia is mixed in the alumina precursor-containing aqueous solution during the production of the alumina catalyst support by calcination from the alumina precursor in view of the catalyst durability against HF generated during the PFC catalytic cracking reaction (Examples 1 - 3, Comparative Example 1, and Comparative Example 2), it is preferable that zinc (Zn) be supported by impregnation on a zirconia / alumina catalyst support prepared rather than being mixed in preparing the alumina catalyst support (Examples 1 to 3 Example 2). When Zr and Zn were applied simultaneously, the alpha phase did not change, but the durability decreased as the catalyst crystallinity increased. On the other hand, when the metal material such as Zn was applied to the Zr-alumina oxide as in Example 3, the change in crystallinity of the post-reaction catalyst was small compared to the metal oxide catalyst (Example 2) (Examples 2 to 3, Fig. 1).

한편, 본 발명에 따른 과불화 화합물 분해용 촉매의 제조 방법은 Meanwhile, the process for producing a catalyst for decomposing a perfluorinated compound according to the present invention comprises

지르코니아 또는 지르코니아 졸을 녹인 수용액을, 알루미늄 트리하이드록사이드(aluminum trihydroxide), 보에마이트(boehmite) 및 의보에마이트(pseudo-boehmite)로 구성된 군에서 선택된 알루미나 전구체와 혼합하는 단계(단계 1);Zirconia or zirconia sol with an alumina precursor selected from the group consisting of aluminum trihydroxide, boehmite and pseudo-boehmite (step 1);

여과 후 건조 및 소성하여 Al : Zr (질량) = 100 : 0.01 ~ 50인 Zr-알루미나 산화물을 제조하는 단계(단계 2) 를 포함할 수 있다.(Step 2) of preparing a Zr-alumina oxide having Al: Zr (mass) = 100: 0.01 to 50 by filtration, followed by drying and firing.

또한, 활성금속 함유 수용액으로 Zr-알루미나 산화물 지지체를 습윤함침하고 건조 및 소성하는 단계(단계 3)를 더 포함할 수 있다.Further, the method may further include wet impregnation, drying and calcination of the Zr-alumina oxide support with an active metal-containing aqueous solution (step 3).

활성금속은 zinc, gallium, Cerium, Phosphorus, Ruthenium, 및 cobalt로 구성된 군에서 하나 이상 선택될 수 있으며, 촉매 지지체 100 중량부 대비 활성금속을 0.01 ~ 20중량부로 포함할 수 있다.The active metal may be selected from the group consisting of zinc, gallium, cerium, phosphorus, ruthenium, and cobalt. The active metal may include 0.01 to 20 parts by weight of active metal per 100 parts by weight of the catalyst support.

활성금속으로서 아연(Zn)이 담지되면, PFC 촉매분해 반응시 발생하는 HF에 대한 촉매 효율향상 측면에서 바람직한 결과를 부여할 수 있다. If zinc (Zn) is supported as an active metal, favorable results can be given in terms of improvement of catalytic efficiency with respect to HF generated in the PFC catalytic cracking reaction.

활성금속으로서 루테늄(Ru)이 담지되면, 할로겐족 산성가스에 대한 저항성을 높일 수 있다.When ruthenium (Ru) is supported as an active metal, the resistance to halogen acid gas can be increased.

활성금속으로서 인(P)은 촉매 열안정성을 높일 수 있고 가수분해 반응을 촉진시킬 수 있으나 과량 사용되거나 고분산되지 아니하면, 촉매 활성을 떨어드린다. 촉매 표면에 존재하는 P 성분에 의해 생성된 -OH 기와 촉매 표면에서 형성된 Cat.-F가 서로 반응하여 HF가 발생하여 배출됨으로써 촉매에 F가 축적되지 않는다.Phosphorus (P) as the active metal can increase the thermal stability of the catalyst and promote the hydrolysis reaction, but if not used excessively or highly dispersed, the catalyst activity is reduced. The -OH group generated by the P component existing on the surface of the catalyst and the Cat.-F formed on the catalyst surface react with each other to generate and discharge HF, so that F is not accumulated in the catalyst.

Cat. + HF → Cat.-FCat. + HF Cat.-F

Cat.-F + H2O → Cat. + HFCat.-F + H 2 O Cat. + HF

(Cat. = PFC 분해촉매)(Cat. = PFC decomposition catalyst)

활성금속으로서 코발트(Co)가 담지되면, 촉매 활성면에서 바람직한 결과를 부여할 수 있다.If cobalt (Co) is supported as an active metal, favorable results can be given in terms of catalytic activity.

활성금속으로서 갈륨이 담지되면, PFC 가스 분해효율 증가시킬 수 있다.If gallium is supported as the active metal, the decomposition efficiency of PFC gas can be increased.

활성금속은 습윤 함침법(wet-incipient method)으로 상기 촉매 지지체에 담지될 수 있다. The active metal may be supported on the catalyst support by a wet-incipient method.

활성금속 함유 수용액 중 활성금속 전구체는 인의 경우 디암모늄하이드로포스페이트((NH4)2HPO4), 암모늄디하이드로포스페이트(NH4H2PO4), 인산(H3PO4) 또는 이의 혼합물일 수 있으며, 인 이외의 활성 금속의 전구체는 해당 금속의 아세틸아세테이트, 염화물, 클로요오드화물, 나이트로실나이트레이트, 산화물, 또는 이의 혼합물일 수 있다.The active metal precursor in the active metal-containing aqueous solution may be di-ammonium hydroxide ((NH 4 ) 2 HPO 4 ), ammonium dihydrophosphate (NH 4 H 2 PO 4 ), phosphoric acid (H 3 PO 4 ) And the precursor of the active metal other than phosphorus may be an acetylacetate, a chloride, a croiodide, a nitrosylnitrate, an oxide, or a mixture thereof of the metal.

단계 2 및 단계 3에서 각각 독립적으로 건조 및 소성은 40℃의 항온 항습조에서 1차 건조, 100 ℃이상에서 2차 건조 및 400 ~ 800 ℃ 공기 분위기 하에서 소성하여 3차 건조시켜 수행할 수 있다.Drying and firing can be carried out independently in steps 2 and 3 by primary drying in a constant temperature and humidity bath at 40 ° C, secondary drying at 100 ° C or higher, and firing in an air atmosphere at 400 to 800 ° C, followed by tertiary drying.

촉매의 최종 형상은 구, 펠릿, 링과 같은 입상일 수도 있고, 벌집형상 등으로 성형할 수도 있다. 촉매 성형법으로서는 압출 성형법, 타정 성형법, 전동 조립법 등의 임의의 방법을 사용할 수 있다. 또한, 세라믹제 또는 금속제의 벌집형 또는 판에 본 발명의 촉매를 코팅하여 사용할 수도 있다.The final shape of the catalyst may be a granule such as a sphere, pellet or ring, or may be formed into a honeycomb shape or the like. As the catalyst forming method, an arbitrary method such as an extrusion molding method, a tablet molding method, and a power assembling method can be used. The catalyst of the present invention may be coated on a honeycomb or plate made of ceramic or metal.

본 발명에 따른 과불화 화합물 분해용 촉매는 할로겐족 산성가스를 함유하는 과불화 화합물을 분해 제거함에 있어 우수한 분해 효과 및 내구성을 나타내므로, 할로겐족 산성가스가 함유된 공정, 특히, 반도체 제조 산업에서부터 LCD 공정 현장에 이르기까지 사용되는 세정제, 에칭제 및 용매 등에 있는 과불화 화합물을 분해하는 목적으로 사용될 수 있고, 또한, F2, Cl2, Br2 등과 같은 할로겐족 산성 가스를 사용하는 공정에서 배출되는 과불화 화합물을 분해 제거하는데 유용하게 사용될 수 있다.Since the catalyst for decomposing perfluorinated compounds according to the present invention exhibits excellent decomposing effect and durability in decomposing and removing perfluorinated compounds containing halogen acid acid gas, it is possible to use a process containing a halogen acid gas, It can be used for decomposing a perfluorinated compound in a cleaning agent, an etching agent and a solvent used up to the site, and can be used for decomposing perfluorinated compounds discharged from a process using a halogen acidic gas such as F 2 , Cl 2 , Br 2 , And can be usefully used to decompose and remove compounds.

본 발명에 따른 과불화 화합물 처리 방법은 본 발명에 따른 과불화 화합물 분해용 촉매를 사용하여, 과불화 화합물 함유 가스에서 과불화 화합물을 분해하는 단계를 포함할 수 있다. The method for treating a perfluorinated compound according to the present invention may include decomposing a perfluorinated compound in a gas containing a perfluorinated compound, using a catalyst for decomposing the perfluorinated compound according to the present invention.

또한, 본 발명에 따른 반도체 제조공정 또는 디스플레이 제조공정은 본 발명에 따른 과불화 화합물 분해용 촉매를 사용하여, 과불화 화합물 함유 가스에서 과불화 화합물을 분해하는 단계를 포함할 수 있다. Further, the semiconductor manufacturing process or the display manufacturing process according to the present invention may include decomposing the perfluorinated compound in the gas containing the perfluorinated compound, using the catalyst for decomposing the perfluorinated compound according to the present invention.

CF4를 분해하는 촉매는 폐가스에 포함된 PFC를 대부분 분해시킬 수 있으며, 과불화 화합물을 이루는 탄소를 CO2 로 전환시킬 수 있어서, 반도체 공정에서 발생된 폐가스 처리에 주로 사용할 수 있지만, 반도체 공정이 아니라도 PFC를 세정제, 에칭제, 용매, 반응원료 등의 목적으로 사용하거나 제조하는 공정이나 작업장에서도 유용하게 사용할 수 있다.The catalyst for decomposing CF 4 can decompose most of the PFC contained in the waste gas and can convert the carbon forming the perfluorinated compound into CO 2 and thus can be used mainly for the waste gas generated in the semiconductor process. , It can be usefully used in a process or a workplace where PFC is used or manufactured for the purpose of a cleaning agent, an etching agent, a solvent, a reaction material, or the like.

일례로 본 발명에 따른 촉매를 사용한 PFC 처리공정은 PFC 수집 덕트(PFC collection duct)에서 배출되는 각종의 가스류를 알칼리 스크러버(Alkali Scrubber)를 거쳐 산성가스들을 처리한 후 RCS(Regenerative Catalytic System)에서 하기 식으로 표현되는 가수분해반응을 거쳐 PFC를 제거할 수 있다.For example, in the PFC treatment process using the catalyst according to the present invention, the various gases discharged from the PFC collection duct are treated with acid gases through an alkali scrubber, and then the RCS (Regenerative Catalytic System) The PFC can be removed through a hydrolysis reaction represented by the following formula.

CF4 + 2H2O → CO2 + 4HFCF 4 + 2H 2 O? CO 2 + 4HF

CHF3 + (1/2)O2 + H2O → CO2 + 3HFCHF 3 + (1/2) O 2 + H 2 O? CO 2 + 3HF

C2F6 + 3H2O + (1/2)O2 → 2CO2 + 6HFC 2 F 6 + 3H 2 O + (1/2) O 2 → 2CO 2 + 6HF

SF6 + 3H2O → SO3 + 6HFSF 6 + 3H 2 O - > SO 3 + 6HF

불산(HF)을 포함한 산성가스들은 산 가스 스크러버(acid gas scrubber)를 거쳐 제거한 후 배출한다. 그러나, 가수분해에서 발생하는 불산은 RCS를 비롯하여 후단 공정에 심각한 부식 문제를 야기할 뿐만 아니라, PFC 분해 촉매의 활성에도 영향을 미친다.Acidic gases including hydrofluoric acid (HF) are removed through an acid gas scrubber and then discharged. However, hydrofluoric acid generated from hydrolysis not only causes serious corrosion problems in the downstream process including RCS, but also affects the activity of the PFC decomposition catalyst.

따라서, 본 발명에 따른 과불화 화합물 분해용 촉매는 할로겐 산성가스에 내구성이 있으므로, 할로겐 산성가스를 함유하는 과불화 화합물 함유 가스를 처리하는데 특히 적합하다.Therefore, the catalyst for decomposing perfluorinated compounds according to the present invention is particularly suitable for treating a gas containing a perchloric compound containing a halogen acid gas, because the catalyst is resistant to halogen acid gases.

본 발명에서 PFC의 촉매 분해반응 시 온도는 500~800 ℃, 바람직하기로 600 내지 750℃, 더욱 바람직하기로 600 내지 700℃이다.In the present invention, the temperature for catalytic cracking of PFC is 500 to 800 ° C, preferably 600 to 750 ° C, and more preferably 600 to 700 ° C.

본 발명에 따른 촉매는, 폐가스 중의 과불화화합물을 분해제거하기 위해 제조된 입자 그대로 또는 구, 펠릿, 링과 같은 형태로 필요한 크기로 성형한 후 촉매 반응기 내부에 층(bed)을 이루게 하여 사용할 수 있다. 촉매 반응기 내부에 형성되는 촉매층은 충진층(또는 고정층)이나 유동층 형태로 운용될 수 있다.The catalyst according to the present invention can be used to form a bed in the catalytic reactor after it has been molded in the form of particles, spheres, pellets, rings or the like, which are prepared for decomposing and removing the perfluorinated compound in the waste gas, have. The catalyst layer formed in the catalytic reactor can be operated in the form of a packed bed (or fixed bed) or a fluidized bed.

촉매 반응기에서 가수분해 반응을 수행하기 위하여 외부로부터 물이 반응기 내부로 유입될 수 있다. 물은 반응기 외부에 별도로 구비된 공급원을 통해 공급될 수 있으며, 반응기 내부로 유입되기 전에 열교환기를 거쳐 가열되어 수증기 형태로 공급될 수 있다. 바람직하기로, 상기 반응기 내부에 공급되는 물은 순수를 사용하고, 가수분해 반응식을 고려하여 공급량을 조절할 수 있다.Water may be introduced into the reactor from the outside to perform the hydrolysis reaction in the catalytic reactor. Water may be supplied through a separate source outside the reactor and may be heated and fed in the form of steam in the heat exchanger before entering the reactor. Preferably, pure water is used as the water to be supplied to the inside of the reactor, and the supply amount can be controlled in consideration of the hydrolysis reaction formula.

상기 수증기는 수증기/PFC의 몰비가 1 ∼ 100 범위로 포함되며, 수증기와 함께 산소를 0 ∼ 50% 농도범위로 사용하여 촉매의 비활성화 없이 PFC를 분해할 수 있다. 수증기의 함유량이 상기 범위를 벗어나면 반응활성이 떨어진다.The water vapor contains a water / PFC molar ratio in the range of 1 to 100, and the PFC may be decomposed without deactivation of the catalyst by using 0 to 50% concentration of oxygen together with water vapor. If the content of water vapor is out of the above range, the reaction activity is decreased.

본 발명에 따른 과불화 화합물 분해용 촉매는 내산성 촉매로서, 과불화 화합물에 포함된 할로겐족 산성가스 또는 과불화합물이 분해하여 생성된 불소에 대해 내구성을 가지며, 반응활성도 증진시킬 수 있다. 따라서, 반도체 제조공정 및 디스플레이 제조공정에서 사용되는 세정제 및 에칭제 중 과불화 화합물을 분해하는 목적으로 사용이 가능하고, 특히 F2, Cl2, Br2 등과 같은 할로겐 산성가스를 사용하는 공정에서 배출되는 과불화 화합물을 분해하는 촉매로 유용하게 사용할 수 있다.The catalyst for decomposing a perfluorinated compound according to the present invention is an acid-resistant catalyst having durability against fluorine generated by decomposition of a halogen acid gas or a perfluorinated compound contained in a perfluorinated compound, and can increase the reaction activity. Therefore, it can be used for the purpose of decomposing perfluorinated compounds in cleaning agents and etching agents used in the semiconductor manufacturing process and the display manufacturing process. In particular, it is possible to use a halogen acid gas such as F 2 , Cl 2 , Br 2 , Which can be used as a catalyst for decomposing perfluorinated compounds.

도 1은 실시예 2 및 실시예 3의 각 촉매를 사용하여 CF4 분해 반응 전,후 촉매의 결정상 변화를 나타낸 그래프이다. 1 is a graph showing changes in the crystal phase of the catalyst before and after the CF 4 decomposition reaction using the catalysts of Examples 2 and 3.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. These embodiments are only for describing the present invention more specifically, and the scope of the present invention is not limited by these examples.

실시예Example 1.  One. ZrZr /알루미나 산화물 촉매의 제조/ Alumina Oxide Catalyst Preparation

지르코니아를 증류수에 녹인 용액을 150g의 보헤마이트와 함께 교반기에 넣고 8시간 동안 혼합하였다. 여과 후 40℃에서 1차 건조하고 110℃에서 8시간 동안 2차 건조하였다. 이어서, 2℃/min의 승온 조건 하에 650℃에서 6시간 소성하여, Zr-알루미나 산화물을 제조하였다. 이때 지르코늄의 양은 지지체로 사용된 보헤마이트의 Al 대비 20%의 무게 비로 적용하였다.The solution in which zirconia was dissolved in distilled water was put into a stirrer together with 150 g of boehmite and mixed for 8 hours. After filtration, it was primarily dried at 40 DEG C and then secondarily dried at 110 DEG C for 8 hours. Subsequently, the resultant was calcined at 650 DEG C for 6 hours under a temperature elevation condition of 2 DEG C / min to prepare a Zr-alumina oxide. At this time, the amount of zirconium was applied at a weight ratio of 20% to boehmite used as a support.

실시예Example 2. Zn/ 2. Zn / ZrZr /알루미나 산화물 촉매의 제조/ Alumina Oxide Catalyst Preparation

100g의 증류수에 활성금속 Zr 10wt%, Zn 10wt% 를 넣은 후 3g 의 질산을 첨가한 후 완전히 용해시켰다. 용해된 혼합액에 보헤마이트 150g을 넣고 1시간 동안 교반하였다. 여과 후 110℃에서 8시간 동안 건조하였다. 2℃/min의 승온 조건 하에 650℃에서 6시간 소성하였다. 10 g of active metal Zr and 10 wt% of Zn were added to 100 g of distilled water, and 3 g of nitric acid was added to the solution. 150 g of boehmite was added to the dissolved mixture and stirred for 1 hour. After filtration, it was dried at 110 DEG C for 8 hours. And fired at 650 DEG C for 6 hours under a temperature elevation condition of 2 DEG C / min.

실시예Example 3. 습윤  3. Wet 함침법을Impregnation 적용한 Zn -  The applied Zn - ZrZr /알루미나 산화물 촉매의 제조/ Alumina Oxide Catalyst Preparation

Zr 양이 20wt% 대신 10wt인 것을 제외하고 실시예 1과 동일한 방법으로 Zr-알루미나 산화물을 제조하였다.Zr-alumina oxide was prepared in the same manner as in Example 1, except that the amount of Zr was 10 wt% instead of 20 wt%.

80g의 증류수에 활성금속 Zn 10wt%을 넣은 후 완전히 용해시켰다. 상기 혼합용액을, 제조한 Zr-알루미나 산화물 100g에 3회에 걸쳐 적용하였다. 이어서 40℃에서 1차 건조하고 110℃에서 8시간 동안 2차 건조하였다. 건조 후 2℃/min의 승온 조건 하에 700℃에서 6시간 소성하였다. 10 g of active metal Zn was added to 80 g of distilled water and completely dissolved. The mixed solution was applied to 100 g of the Zr-alumina oxide thus prepared three times. Followed by primary drying at 40 占 폚 and secondary drying at 110 占 폚 for 8 hours. After drying, the resultant was fired at 700 ° C for 6 hours under a temperature elevation condition of 2 ° C / min.

도 1에 도시된 바와 같이, 실시예 3의 경우 48시간 동안 CF4 분해 반응 후 촉매의 결정상 변화가 실시예 2과 비교하여 적었다.During the 48 hours, and in the case of Example 3 as shown in Figure 1 was less CF 4 by the change of crystalline phase after decomposition catalyst in comparison with Example 2.

비교예Comparative Example 1. 알루미나 촉매의 제조 1. Preparation of Alumina Catalyst

400g의 증류수에 질산 및 인을 첨가하여 pH1의 산성용액을 제조한 후 500g의 보헤마이트를 첨가하여 1시간 동안 혼합한 후 1차 건조 후 650℃ 공기 분위기하에서 6시간 소성하여 제조하였다. 비교예 1의 경우 시간이 경과됨에 따라 CF4 분해효율이 저감되었다(표 2).Nitric acid and phosphorus were added to 400 g of distilled water to prepare an acidic solution having a pH of 1, 500 g of boehmite was added, and the mixture was stirred for 1 hour and then dried for 6 hours at 650 ° C. in an air atmosphere. In the case of Comparative Example 1, the efficiency of decomposition of CF 4 was reduced as time elapsed (Table 2).

비교예Comparative Example 2. Zn/알루미나 산화물 촉매의 제조 2. Preparation of Zn / alumina oxide catalyst

100g의 증류수에 Zn를 20wt% (108g) 넣은 후 완전히 용해시켰다. 여기에 보헤마이트 150g을 넣고 1시간 동안 교반하였다. 여과 후 110℃에서 8시간 동안 건조하였다. 2/min의 승온 조건 하에 650℃에서 6시간 소성하였다.Zn (20 wt%) (108 g) was added to 100 g of distilled water and completely dissolved. 150 g of boehmite was added thereto and stirred for 1 hour. After filtration, it was dried at 110 DEG C for 8 hours. Lt; RTI ID = 0.0 > 650 C < / RTI > for 6 hours.

실험예Experimental Example 1. One. 과불화 화합물 제거율 측정 및 비교Measurement and comparison of perfluorinated compound removal rate

실시예 1~3의 촉매와 대조군으로써 비교예 1의 방법으로 제조한 알루미늄포스페이트 촉매의 과불화 화합물(CF4)의 제거율를 비교하기 위하여 하기 실험을 수행하였다.In order to compare the removal rates of the perfluorinated compound (CF 4 ) of the aluminum phosphate catalyst prepared by the method of Comparative Example 1 as the catalyst of Examples 1 to 3, the following experiment was conducted.

실시예 1~3 및 비교예 1에서 제조된 촉매를 각각 7.6 g씩 취하여 3/4 inch 인코넬(Inconel) 반응관에 채우고, 외부히터를 사용하여 반응온도를 650 ~800℃로 조절하여, SV 2000 h-1의 조건에서 테트라플루오로메탄(CF4) 3000 ppm, 공기(Air) 368 ㎖/min 및 증류수 0.04 ㎖/min을 공급하면서 테트라플루오로메탄을 분해하였다. 테트라 플루오로메탄 전환률은 하기 수학식 1로 계산하였고, 반응물은 FT-IR을 이용하여 분석하였다. 그 결과를 하기 표 1 에 나타내었다.7.6 g of each of the catalysts prepared in Examples 1 to 3 and Comparative Example 1 were placed in a 3/4 inch Inconel reaction tube and the reaction temperature was adjusted to 650 to 800 ° C using an external heater. h- 1 , tetrafluoromethane was decomposed while supplying tetrafluoromethane (CF 4 ) 3000 ppm, air (Air) 368 ml / min and distilled water 0.04 ml / min. The conversion of tetrafluoromethane was calculated by the following equation (1), and the reactants were analyzed using FT-IR. The results are shown in Table 1 below.

Figure 112017020085153-pat00001
Figure 112017020085153-pat00001

제거율(%)Removal rate (%) 반응온도(℃)Reaction temperature (캜) 650℃650 ° C 700℃700 ℃ 750℃750 ℃ 800℃800 ° C 실시예 1Example 1 8080 9393 98.098.0 9999 실시예 2Example 2 85.985.9 9595 99.599.5 99.999.9 실시예 3Example 3 89.089.0 100100 99.999.9 100100 비교예 1Comparative Example 1 72.672.6 9191 98.298.2 99.899.8 비교예 2Comparative Example 2 86.186.1 9898 99.899.8 99.999.9

표 1에 나타낸 바와 같이, 본 발명에 따른 실시예 3의 방법으로 제조한 촉매의 테트라플로오로메탄의 제거율은 700도 이상의 온도 조건하에서 99.5%인 반면, 대조군의 알루미늄포스페이트 촉매(비교예 1)의 테트라플로오로메탄의 제거율은 700도 조건 하에서 91%의 테트라플로오로메탄의 제거효율을 보였다.As shown in Table 1, the removal rate of tetrafluoromethane in the catalyst prepared by the method of Example 3 according to the present invention was 99.5% under a temperature condition of 700 ° C or higher, The removal efficiency of tetrafluoromethane of the aluminum phosphate catalyst (Comparative Example 1) showed a removal efficiency of 91% of tetrafluoromethane under the condition of 700 ° C.

실험예Experimental Example 2. 장기 평가 2. Long term evaluation

실시예 1~3 및 비교예 1~2에서 제조된 각 촉매의 시간에 따른 과불화 화합물(CF4)의 제거률을 비교하기 위하여 하기 실험을 수행하였다.The following experiments were conducted to compare the removal rates of perfluorinated compounds (CF 4 ) with time for each catalyst prepared in Examples 1 to 3 and Comparative Examples 1 and 2.

상기 실험예 1에서 반응온도를 700도로 고정하는 것을 제외하고는 동일한 방법으로 수행하였으며 시간이 지남에 따른 테트라플로오로메탄 화합물의 제거율을 측정하였다. 그 결과는 하기 표 2에 나타내었다. In the same manner as in Experimental Example 1, except that the reaction temperature was fixed at 700 ° C., the removal rate of the tetrafluoromethane compound was measured over time. The results are shown in Table 2 below.

제거율(%)Removal rate (%) 시간time 초기효율Initial efficiency 400(h)400 (h) 실시예 1Example 1 9393 8888 실시예 2Example 2 9595 8888 실시예 3Example 3 100100 9595 비교예 1Comparative Example 1 9191 8080 비교예 2Comparative Example 2 9898 8383

상기 표 2에 나타낸 바와 같이, 실시예 3의 산화촉매의 과불화합물의 제거율은 97.0-95%로 나타났고, 17일간 지속한 후에도 95%이상 전환율로 유지되는 것으로 확인되었다. As shown in Table 2, the removal rate of the peroxide compound of the oxidation catalyst of Example 3 was 97.0-95%, and it was confirmed that the conversion rate was maintained at 95% or more even after 17 days of continuous use.

Claims (14)

과불화 화합물 가수분해 반응 동안 촉매 활성이 유지되는 내구성이, 지르코니아가 없는 알루미나 촉매 겸 지지체 대비 향상되도록, (i) 알루미늄 트리하이드록사이드(aluminum trihydroxide), 보에마이트(boehmite) 및 의보에마이트(pseudo-boehmite)로 구성된 군에서 선택된 알루미나 전구체 원료와, (ii) 지르코니아(ZrO2) 또는 지르코니아 졸을 (iii) 물 함유 용매에서 혼합, 건조 및 소성하여 제조한, Al : Zr (질량) = 100 : 0.01 ~ 50인 알루미나 및 지르코니아 혼합 촉매 지지체를 포함하는 과불화 화합물 가수분해용 촉매.(I) aluminum trihydroxide, boehmite and boehmite (hereinafter referred to as " alumina catalyst "), and Zr (mass) = 100 (mass) produced by mixing, drying and firing zirconia (ZrO 2 ) or zirconia sol in a water-containing solvent, and (ii) an alumina precursor material selected from the group consisting of pseudo- : A catalyst for hydrolysis of perfluorinated compounds comprising alumina and zirconia mixed catalyst supports of 0.01 to 50 wt%. 제1항에 있어서, 알루미나 및 지르코니아 혼합 촉매 지지체에 활성금속으로 아연(Zn)이 촉매지지체 100 중량부 대비 0.01 ~ 20 중량부로 담지된 것이 특징인 과불화 화합물 가수분해용 촉매.The catalyst for hydrolysis of perfluorinated compounds according to claim 1, wherein zinc (Zn) as an active metal is supported on alumina and zirconia mixed catalyst support in an amount of 0.01 to 20 parts by weight per 100 parts by weight of the catalyst support. 제1항에 있어서, 알루미나 및 지르코니아 혼합 촉매 지지체에, gallium, Cerium, Phosphorus, Ruthenium, 및 cobalt로 구성된 군에서 하나 이상 선택된 활성금속이 촉매지지체 100 중량부 대비 0.01 ~ 20 중량부로 담지된 것이 특징인 과불화 화합물 가수분해용 촉매.The catalyst support according to claim 1, wherein at least one selected from the group consisting of gallium, cerium, phosphorus, ruthenium, and cobalt is supported on alumina and zirconia mixed catalyst supports in an amount of 0.01 to 20 parts by weight, A catalyst for the hydrolysis of perfluorinated compounds. 제2항 또는 제3항에 있어서, 활성금속은 습윤 함침법(wet-incipient method)으로 알루미나 및 지르코니아 혼합 촉매 지지체에 담지된 것이 특징인 과불화 화합물 가수분해용 촉매.The catalyst for hydrolysis of perfluorinated compounds according to claim 2 or 3, wherein the active metal is supported on alumina and zirconia mixed catalyst supports by a wet-incipient method. 지르코니아 또는 지르코니아 졸을 녹인 수용액을, 알루미늄 트리하이드록사이드(aluminum trihydroxide), 보에마이트(boehmite) 및 의보에마이트(pseudo-boehmite)로 구성된 군에서 선택된 알루미나 전구체와 혼합하는 단계(단계 1); 및
건조 및 소성하여 Al : Zr (질량) = 100 : 0.01 ~ 50인 Zr-알루미나 산화물을 제조하는 단계(단계 2)를 포함하는, 제1항에 기재된 과불화 화합물 가수분해용 촉매의 제조방법.
Zirconia or zirconia sol with an alumina precursor selected from the group consisting of aluminum trihydroxide, boehmite and pseudo-boehmite (step 1); And
A process for producing a catalyst for hydrolysis of perfluorinated compounds according to claim 1, comprising a step (step 2) of producing Zr-alumina oxide having Al: Zr (mass) = 100: 0.01 to 50 by drying and firing.
제5항에 있어서, 아연(Zn) 함유 수용액으로 Zr-알루미나 산화물 지지체를 습윤함침하고 건조 및 소성하는 단계(단계 3)를 더 포함하는 것이 특징인, 과불화 화합물 가수분해용 촉매의 제조방법.6. The method of claim 5, further comprising the step of wet-impregnating, drying and calcining the Zr-alumina oxide support with an aqueous solution containing zinc (Zn) (step 3). 제5항에 있어서, zinc, gallium, Cerium, Phosphorus, Ruthenium, 및 cobalt로 구성된 군에서 하나 이상 선택된 활성금속을 촉매 지지체 100중량부 대비 활성금속을 0.01 ~ 20중량부로 함유하는 수용액으로 Zr-알루미나 산화물 지지체를 습윤함침하고 건조 및 소성하는 단계(단계 3)를 더 포함하는 것이 특징인, 과불화 화합물 가수분해용 촉매의 제조방법.The method according to claim 5, wherein an active metal selected from the group consisting of zinc, gallium, Cerium, Phosphorus, Ruthenium, and cobalt is added to an aqueous solution containing 0.01 to 20 parts by weight of an active metal relative to 100 parts by weight of the catalyst support, Further comprising the step of wet impregnating, drying and calcining the support (step 3). 제7항에 있어서, 활성금속 함유 수용액 중 활성금속 전구체는 인의 경우 디암모늄하이드로포스페이트((NH4)2HPO4), 암모늄디하이드로포스페이트(NH4H2PO4), 인산(H3PO4) 또는 이의 혼합물이고,
인 이외의 활성 금속의 전구체는 해당 금속의 아세틸아세테이트, 염화물, 클로요오드화물, 나이트로실나이트레이트, 산화물, 또는 이의 혼합물인 것이 특징인 과불화 화합물 가수분해용 촉매의 제조방법.
The method of claim 7, wherein, when the active metal precursor of the active metal-containing aqueous solution is phosphoric di-ammonium phosphate ((NH 4) 2 HPO 4 ), ammonium dihydro phosphate (NH 4 H 2 PO 4) , phosphoric acid (H 3 PO 4 ) Or a mixture thereof,
Wherein the precursor of the active metal other than phosphorus is an acetylacetate, a chloride, a cloiodide, a nitrosylnitrate, an oxide, or a mixture thereof of the metal.
제1항 내지 제3항 중 어느 한 항에 기재된 과불화 화합물 가수분해용 촉매를 사용하여, 과불화 화합물 함유 가스에서 과불화 화합물을 분해하는 단계를 포함하는 것이 특징인 과불화 화합물 처리 방법.A process for treating a perfluorinated compound characterized by comprising the step of decomposing a perfluorinated compound in a gas containing a perfluorinated compound using the catalyst for hydrolysis of the perfluorinated compound according to any one of claims 1 to 3. 제9항에 있어서, 과불화 화합물 함유 가스는 할로겐 산성가스를 함유하는 것이 특징인 과불화 화합물 처리 방법.10. The method of claim 9, wherein the perfluorinated compound containing gas comprises a halogen acid gas. 제1항 내지 제3항 중 어느 한 항에 기재된 과불화 화합물 가수분해용 촉매를 사용하여, 과불화 화합물 함유 가스에서 과불화 화합물을 가수분해하는 단계를 포함하는 것이 특징인 반도체 제조공정.A semiconductor manufacturing process characterized by comprising the step of hydrolyzing a perfluorinated compound in a gas containing perfluorinated compound using the catalyst for hydrolysis of a perfluorinated compound according to any one of claims 1 to 3. 제11항에 있어서, 과불화 화합물 함유 가스는 반도체 제조공정에서 배출되는 유해 폐가스인 것이 특징인 반도체 제조공정.12. The semiconductor manufacturing process according to claim 11, wherein the gas containing the perfluorinated compound is a harmful waste gas discharged from a semiconductor manufacturing process. 제1항 내지 제3항 중 어느 한 항에 기재된 과불화 화합물 가수분해용 촉매를 사용하여, 과불화 화합물 함유 가스에서 과불화 화합물을 가수분해하는 단계를 포함하는 것이 특징인 디스플레이 제조공정.A process for producing a display characterized by comprising the step of hydrolyzing a perfluorinated compound in a gas containing perfluorinated compound using the catalyst for hydrolysis of the perfluorinated compound according to any one of claims 1 to 3. 제13항에 있어서, 과불화 화합물 함유 가스는 디스플레이 제조공정에서 배출되는 유해 폐가스인 것이 특징인 디스플레이 제조공정.
14. The display manufacturing process according to claim 13, wherein the perfluorinated compound-containing gas is a harmful waste gas discharged from a display manufacturing process.
KR1020170025748A 2016-02-25 2017-02-27 Acid-resistant catalyst for decomposing perfluorinated compounds and use thereof Active KR101867507B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160022814 2016-02-25
KR1020160022814 2016-02-25

Publications (2)

Publication Number Publication Date
KR20170101160A KR20170101160A (en) 2017-09-05
KR101867507B1 true KR101867507B1 (en) 2018-06-18

Family

ID=59685506

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170025748A Active KR101867507B1 (en) 2016-02-25 2017-02-27 Acid-resistant catalyst for decomposing perfluorinated compounds and use thereof

Country Status (2)

Country Link
KR (1) KR101867507B1 (en)
WO (1) WO2017146554A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110876926B (en) * 2018-09-05 2023-04-11 中国石油化工股份有限公司 Zirconium-aluminum composite sol, preparation method and application thereof, and preparation method of catalytic cracking catalyst
WO2020130748A1 (en) * 2018-12-21 2020-06-25 주식회사 에코프로 Catalyst for decomposing perfluorocompounds, and preparation method therefor
KR102343483B1 (en) * 2019-12-10 2021-12-28 한국에너지기술연구원 Method of preparing alumina based catalyst or adsorbent using boehmite or pseudobomite powder
KR102349738B1 (en) * 2020-03-10 2022-01-12 주식회사 글로벌스탠다드테크놀로지 Manufacturing method of Nickel based active catalysts
CN113351238B (en) * 2021-07-01 2023-08-15 中国环境科学研究院 Boron nitride material for photocatalytic degradation of perfluorinated compounds and application thereof
KR102735957B1 (en) * 2022-08-04 2024-12-03 주식회사 에코프로에이치엔 Catalyst for removal of perfluorocompound

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3899444A (en) 1972-02-07 1975-08-12 Ethyl Corp Exhaust gas catalyst support
JP2569421B2 (en) * 1993-09-10 1997-01-08 九州大学長 Catalyst for decomposition treatment of fluorine compound gas
US20020150527A1 (en) 1996-06-12 2002-10-17 Guild Associates, Inc. Catalyst composition and method of controlling PFC and HFC emissions
KR20060086896A (en) * 1997-06-20 2006-08-01 가부시끼가이샤 히다치 세이사꾸쇼 Decomposition Method, Catalyst and Decomposition Apparatus for Fluorine-Containing Compound
KR20130051191A (en) * 2011-11-09 2013-05-20 한국화학연구원 Catalyst for decomposing perfluorinated compounds containing halogen acid gas and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6509511B1 (en) * 1998-10-07 2003-01-21 Guild Associates, Inc. Process for the conversion of perfluoroalkanes, a catalyst for use therein and a method for its preparation
JP4065672B2 (en) * 2001-10-10 2008-03-26 株式会社荏原製作所 Method and apparatus for treating exhaust gas containing fluorine-containing compound
JP2011045832A (en) * 2009-08-27 2011-03-10 Hitachi Ltd Fluorine compound decomposition catalyst
KR101406198B1 (en) * 2011-05-31 2014-06-12 주식회사 코캣 Catalyst for removing SF6 and preparatio method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3899444A (en) 1972-02-07 1975-08-12 Ethyl Corp Exhaust gas catalyst support
JP2569421B2 (en) * 1993-09-10 1997-01-08 九州大学長 Catalyst for decomposition treatment of fluorine compound gas
US20020150527A1 (en) 1996-06-12 2002-10-17 Guild Associates, Inc. Catalyst composition and method of controlling PFC and HFC emissions
KR20060086896A (en) * 1997-06-20 2006-08-01 가부시끼가이샤 히다치 세이사꾸쇼 Decomposition Method, Catalyst and Decomposition Apparatus for Fluorine-Containing Compound
KR20130051191A (en) * 2011-11-09 2013-05-20 한국화학연구원 Catalyst for decomposing perfluorinated compounds containing halogen acid gas and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
일본 특허공보 특허 제 2569421호(1997.01.08.) 1부. *

Also Published As

Publication number Publication date
KR20170101160A (en) 2017-09-05
WO2017146554A1 (en) 2017-08-31

Similar Documents

Publication Publication Date Title
KR101867507B1 (en) Acid-resistant catalyst for decomposing perfluorinated compounds and use thereof
KR100461758B1 (en) Catalyst for decomposition of perfluoro-compound in waste-gas and method of decomposition with thereof
JP3977887B2 (en) Treatment method for fluorine compound-containing gas
US7347980B2 (en) Process for treating fluorine compound-containing gas
JP3269456B2 (en) Method for decomposing fluorine-containing compound, catalyst and decomposition apparatus
US20210362132A1 (en) Metal oxide catalysts for removal of large capacity perfluorinated compounds
KR100746528B1 (en) Process and Catalyst for Decomposing Perfluoro Compound, and Apparatus for Treating Perfluoro Compound
KR20180121730A (en) Acid-resistant catalyst for decomposing perfluorinated compounds having increased forming strength and use thereof
KR20200092068A (en) Tungsten-zirconium metal oxide catalysts for removal of large capacity perfluorinated compounds and its manufacturing method
KR101869375B1 (en) Aluminum oxide catalyst for decomposing perfluorinated compounds and method of manufacturing the same
JP2012050969A (en) Catalyst for decomposing nitrous oxide and method for cleaning nitrous oxide-containing gas by using the same
CN101450273B (en) Treatment method of fluorine-containing compound gas
JP4596432B2 (en) Method and apparatus for decomposing fluorine-containing compounds
JP4300258B2 (en) Method for catalytic decomposition of global warming gas
US20240316536A1 (en) Catalyst for decomposing perfluorocompounds and method of preparing same
KR20210020982A (en) Tungsten-zirconium metal oxide catalyst for decomposing large-capacity perfluorinated compounds and method for decomposing perfluorinated compounds using the catalyst
JP2001224926A (en) Method for decomposing fluorine-containing compound, catalyst and decomposition apparatus
JP2008100229A (en) Treatment method of fluorine compound-containing gas
JP2006142160A (en) Nitrous oxide decomposition catalyst and nitrous oxide decomposition method using the catalyst
JP2001162139A5 (en)
TWI352616B (en) Method for treating gas containing fluorine compou
JP2000225342A (en) Catalyst for decomposing fluorine-containing compound and method for decomposing fluorine-containing compound
JP2004255380A (en) Method for treating fluorine compound-containing gas
KR20160116191A (en) Device and method for treating perfluoro compound by using reaction-separation simultaneous process
HK1081896B (en) Catalyst and method for decomposition of perfluoro-compound in waste gas

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20170227

PA0201 Request for examination
A302 Request for accelerated examination
PA0302 Request for accelerated examination

Patent event date: 20170306

Patent event code: PA03022R01D

Comment text: Request for Accelerated Examination

Patent event date: 20170227

Patent event code: PA03021R01I

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20170616

Patent event code: PE09021S01D

PG1501 Laying open of application
E90F Notification of reason for final refusal
PE0902 Notice of grounds for rejection

Comment text: Final Notice of Reason for Refusal

Patent event date: 20171019

Patent event code: PE09021S02D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20180308

PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20180607

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20180608

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20210525

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20220602

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20230418

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20240408

Start annual number: 7

End annual number: 7