[go: up one dir, main page]

KR101856849B1 - Method of producing glucose from chinese cabbage wastes and algae culture media containing glucose - Google Patents

Method of producing glucose from chinese cabbage wastes and algae culture media containing glucose Download PDF

Info

Publication number
KR101856849B1
KR101856849B1 KR1020160079206A KR20160079206A KR101856849B1 KR 101856849 B1 KR101856849 B1 KR 101856849B1 KR 1020160079206 A KR1020160079206 A KR 1020160079206A KR 20160079206 A KR20160079206 A KR 20160079206A KR 101856849 B1 KR101856849 B1 KR 101856849B1
Authority
KR
South Korea
Prior art keywords
glucose
chinese cabbage
cellulase
sulfuric acid
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020160079206A
Other languages
Korean (ko)
Other versions
KR20180000917A (en
Inventor
한인섭
김승리
Original Assignee
울산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산대학교 산학협력단 filed Critical 울산대학교 산학협력단
Priority to KR1020160079206A priority Critical patent/KR101856849B1/en
Priority to PCT/KR2017/005578 priority patent/WO2017222202A1/en
Publication of KR20180000917A publication Critical patent/KR20180000917A/en
Application granted granted Critical
Publication of KR101856849B1 publication Critical patent/KR101856849B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/06Separation; Purification
    • C07H1/08Separation; Purification from natural products
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/20Preparation of compounds containing saccharide radicals produced by the action of an exo-1,4 alpha-glucosidase, e.g. dextrose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/649Biodiesel, i.e. fatty acid alkyl esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01004Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • Y02E50/13

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 배추 폐기물로부터 포도당을 생산하는 방법 및 황산 처리된 배추 폐기물에 Trichoderma harzianum으로부터 수득된 셀룰라아제를 처리하여 수득한 효소 가수분해물을 포함하는 미세조류의 바이오디젤 생산용 배양액에 대한 것으로, 구체적으로는 Trichoderma harzianum으로부터 유래된 셀룰라아제(cellulase)를 이용하여 배추 폐기물을 효소 가수분해함으로써 포도당을 생산하여, 미세조류를 이용한 바이오디젤 생산 비용을 크게 절감할 수 있다.The present invention relates to a method for producing glucose from a Chinese cabbage waste and to a culture solution for producing biodiesel of a microalgae containing an enzyme hydrolyzate obtained by treating a cellulase obtained from Trichoderma harzianum to a sulfuric acid treated Chinese cabbage waste, Enzymatic hydrolysis of cabbage waste using cellulase derived from Trichoderma harzianum produces glucose, which can greatly reduce the production cost of biodiesel production using microalgae.

Description

배추 폐기물로부터 포도당을 생산하는 방법 및 포도당을 포함하는 미세조류 배양액{METHOD OF PRODUCING GLUCOSE FROM CHINESE CABBAGE WASTES AND ALGAE CULTURE MEDIA CONTAINING GLUCOSE}FIELD OF THE INVENTION [0001] The present invention relates to a method for producing glucose from cabbage wastes and a method for producing glucose from a cabbage waste,

본 발명은 배추 폐기물로부터 포도당을 생산하는 방법 및 상기 방법에 의해 제조된 포도당을 포함하는 바이오디젤 생산용 미세조류 배양액에 대한 것으로, 구체적으로는 Trichoderma harzianum으로부터 유래된 셀룰라아제(cellulase)를 이용하여 배추 폐기물을 효소 가수분해함으로써 포도당을 생산하는 방법에 대한 것이다.The present invention relates to a method for producing glucose from a Chinese cabbage waste and a microalgae culture liquid for producing biodiesel containing glucose produced by the method, and more particularly, to a method for producing a Chinese cabbage waste by using a cellulase derived from Trichoderma harzianum To produce glucose by enzymatic hydrolysis.

석유 연료는 오래전부터 고갈이라는 경고를 받아왔다. 고갈될 석유연료를 대신할 수 있는 것이 바이오 연료이다. 특히 미세조류를 통해 생산되는 바이오 연료는 연료사용으로 배출되는 온실가스인 이산화탄소배출량을 저감할 수 있어 지구온난화의 가속화를 저지할 수 있으며 생산과 유통에 들어가는 비용을 절감할 수 있어 많은 연구가 진행되고 있다. Petroleum fuels have long been warned of depletion. It is biofuels that can replace petroleum fuels that are depleted. In particular, biofuels produced through microalgae can reduce CO2 emissions, which are greenhouse gases emitted by fuel use. This can prevent the acceleration of global warming and reduce the cost of production and distribution. have.

바이오 연료는 미생물의 당 발효를 통해 생산된다. 자연으로부터 당 생산은 바이오 연료 생산 비용을 절감할 수 있어 리그노셀룰로스성 바이오매스의 셀룰로오스의 효소분해를 통해 당을 생산하는 방법이 세계적으로 통용되고 있다. 하지만, 대부분의 리그노셀룰로스성 바이오매스는 효소분해가 어려운 리그닌, 헤미셀룰로오스, 셀룰로오스가 복합적 구성을 이루고 있으므로 단순한 방법으로는 효율적으로 바이오 연료를 생산하기 어렵다. 이에 따라, 바이오매스의 전 처리 과정, 효소처리, 그리고 당 발효과정을 필요로 한다.Biofuels are produced by sugar fermentation of microorganisms. Because sugar production from nature can reduce the production cost of biofuels, a method for producing sugars through enzymatic degradation of cellulose of lignocellulosic biomass is widely used worldwide. However, most of the lignocellulosic biomass is composed of lignin, hemicellulose, and cellulose, which are difficult to degrade enzymes. Therefore, it is difficult to produce biofuels efficiently by a simple method. Accordingly, the biomass requires a pretreatment process, an enzyme treatment, and a sugar fermentation process.

바이오매스의 전 처리 과정은 희석 산, 알칼리, 과산화수소 등 다양한 방법이 존재한다. 그 중 희석 산을 이용한 방법은 소량의 산이 사용되기 때문에 공정 시 비용이 저렴하고 전 처리에 효과적이다. 특히, 희석 산 전 처리로 H2SO4는 상업적으로 다양한 바이오매스에 이용되고 있다.There are various methods of pretreatment of biomass such as dilute acid, alkali and hydrogen peroxide. Among them, dilute acid is used because a small amount of acid is used, which is inexpensive in process and effective for pretreatment. In particular, H 2 SO 4 has been used commercially in a variety of biomass by pretreatment with dilute acid.

효소처리 과정은 셀룰로오스를 분해하기 위해 β-glucosidase, endo-1,4-β-glucanase, exo-1,4-β-glucanase와 같은 3가지 셀룰라아제(cellulase)가 반드시 필요하다. Endo-1,4-β-glucanase는 셀룰로오스의 β-1,4-결합을 무차별적으로 cellobiose 단위로 가수분해한다. Exo-1,4-β-glucanase의 경우 endo와 비슷하나 셀룰로오스의 비환원성 말단부위를 인지해 cellobiose 단위로 가수분해한다. 이렇게 생성된 cellobiose와 다른 수용성 cello-oligosaccaride는 β-glucosidase에 의해 포도당으로 분해된다. 이러한 효소들은 곰팡이나 박테리아와 같은 미생물로부터 분비된다.In the enzymatic treatment, three cellulases such as β-glucosidase, endo-1,4-β-glucanase and exo-1,4-β-glucanase are necessary to decompose cellulose. Endo-1,4-β-glucanase hydrolyzes cellulosic β-1,4-linkage indiscriminately into cellobiose units. Exo-1,4-β-glucanase is similar to endo but recognizes the non-reducing end of cellulose and hydrolyzes to cellobiose unit. The cellobiose and other water-soluble cello-oligosaccarides thus produced are degraded into glucose by β-glucosidase. These enzymes are secreted from microorganisms such as fungi and bacteria.

미세조류는 바이오연료 생산에 있어서 가장 효율적이다. 대부분의 미세조류는 무기탄소와 유기탄소원을 통해 지방을 합성할 수 있다. 지방의 구성은 미세조류의 종에 따라 다르다. 미세조류의 지방은 중성지방과 극성 지방질로 나뉜다. 그 중 중성지방인 트리글리세리드는 바이오디젤을 생산하는데 있어 가장 주요한 지방이다. 미세조류는 이 트리글리세리드를 생산하기 위해 acetyl coenzyme A를 필요로 한다. 이는 무기탄소나 유기탄소원으로부터 형성된다. 특히, Chlorella protothecoides는 포도당, 아세테이트 또는 포도당과 같은 유기원이 제공되는 종속영양조건에서 높은 바이오메스 함량과 지방을 세포 내에 저장하는 것으로 알려졌다. 하지만 포도당의 배양액 첨가는 배양액의 전체비용의 80%를 차지하기 때문에 산업적으로 미세조류 배양액으로부터 바이오디젤 생산비용을 낮출 필요가 있다. Microalgae are the most efficient in biofuel production. Most microalgae can synthesize fats through inorganic carbon and organic carbon sources. The composition of the fat depends on the species of microalgae. The fat of microalgae is divided into neutral fat and polar fat. Among them, triglycerides, which are triglycerides, are the most important fats for producing biodiesel. Microalgae require acetyl coenzyme A to produce this triglyceride. It is formed from inorganic or organic carbon sources. In particular, Chlorella protothecoides is known to store high biomass content and fat in cells under heterotrophic conditions in which organic sources such as glucose, acetate or glucose are provided. However, since the addition of glucose to the culture medium accounts for 80% of the total cost of the culture, it is necessary to industrially lower the cost of biodiesel production from the microalgae culture.

현재 세계적으로 많이 사용되는 바이오 연료는 에탄올로 옥수수, 밀, 쌀, 사탕수수 등의 리그노셀룰로스성 바이오매스로부터 당화과정을 통해 미생물발효로 생산되고 있다. 하지만 이들 모두 작물이기 때문에 연료생산에 이용됨에 따라 식량난 문제를 야기한다. 그러나 폐기 농산물의 활용은 이와 같은 문제에서 벗어날 수 있을 뿐 아니라 환경적인 면에서도 장점을 가지고 있다. 본 발명에서는 바이오디젤 생산 비용 절감에 초점을 두어 폐기농산물인 배추의 당화과정을 통해 바이오디젤 생산용 C. protothecoides의 배양액에 첨가될 당 생성 공정을 개발하였다.Currently, biofuels, which are widely used in the world, are produced by microbial fermentation through saccharification process from lignocellulosic biomass such as corn, wheat, rice and sugar cane. However, since they are all crops, they are used for fuel production and cause food shortages. However, the use of waste agricultural products not only can escape from such problems but also has an environmental advantage. In the present invention, the sugar production process to be added to the culture of C. protothecoides for biodiesel production has been developed through saccharification process of Chinese cabbage, which is a waste agricultural product, with a focus on biodiesel production cost reduction.

1. 한국공개특허 제2012-0036883호1. Korean Patent Publication No. 2012-0036883 2. 한국등록특허 제1554874호2. Korean Patent No. 1554874

본 발명의 목적은 배추 폐기물로부터 포도당을 생산하는 방법을 제공하는 것이다. It is an object of the present invention to provide a process for producing glucose from cabbage wastes.

본 발명의 또 다른 목적은 황산 처리된 배추 폐기물에 Trichoderma harzianum으로부터 수득된 셀룰라아제를 처리하여 수득한 효소 가수분해물을 포함하는 바이오디젤 생산용 미세조류 배양액 및 이를 이용하는 바이오디젤 생산 방법을 제공하는 것이다.Yet another object of the present invention is to provide a microalgae culture medium for producing biodiesel containing enzyme hydrolyzate obtained by treating cellulase obtained from Trichoderma harzianum in sulfuric acid treated Chinese cabbage wastes and a method for producing biodiesel using the same.

상기의 목적을 달성하기 위하여, 본 발명은 배추 폐기물을 분쇄한 후 황산을 처리하는 단계; 및 상기 황산-처리된 배추 폐기물에 Trichoderma harzianum으로부터 유래된 셀룰라아제를 처리하여 효소 가수분해하는 단계를 포함하는 포도당의 생산 방법을 제공한다. In order to accomplish the above object, the present invention provides a method for treating a Chinese cabbage waste, And treating the sulfuric acid-treated Chinese cabbage waste with a cellulase derived from Trichoderma harzianum to perform enzymatic hydrolysis.

본 발명의 일 실시예에 있어서, 상기 황산은 0.2~0.6%의 농도로 배추 폐기물을 처리할 수 있다. In one embodiment of the present invention, the sulfuric acid can treat the Chinese cabbage waste at a concentration of 0.2 to 0.6%.

본 발명의 일 실시예에 있어서, 상기 셀룰라아제는 Trichoderma harzianum를 25~30℃, 100~150 rpm 및 pH 6~7의 조건 하에서 배양하여 수득될 수 있다. 상기 셀룰라아제의 활성도는 0.3~0.5 FPU/ml일 수 있으며, 상기 셀룰라아제는 0.15~0.4 FPU/ml의 투입량으로 황산-처리된 배추 폐기물에 처리될 수 있다.In one embodiment of the present invention, the cellulase can be obtained by culturing Trichoderma harzianum at 25 to 30 DEG C, 100 to 150 rpm and pH 6 to 7. The activity of the cellulase may be 0.3-0.5 FPU / ml and the cellulase may be treated with sulfuric acid-treated cabbage waste at a dose of 0.15-0.4 FPU / ml.

본 발명의 일 실시예에 있어서, 상기 효소 가수분해는 pH 5 및 40~50℃의 온도 범위에서 실시될 수 있다. In one embodiment of the present invention, the enzyme hydrolysis can be carried out at a pH of 5 and a temperature range of 40-50 ° C.

또한, 본 발명은 황산 처리된 배추 폐기물에 Trichoderma harzianum으로부터 수득된 셀룰라아제를 처리하여 수득한 효소 가수분해물을 포함하는 바이오디젤 생산용 미세조류 배양액을 제공한다.The present invention also provides a microalgae culture medium for producing biodiesel comprising an enzyme hydrolyzate obtained by treating cellulase obtained from Trichoderma harzianum in a sulfuric acid treated Chinese cabbage waste.

본 발명의 일 실시예에 있어서, 상기 미세조류는 바이오디젤 생산에 사용되는 것이라면 제한 없이 사용할 수 있다. 상기 미세조류는 Chlorella spp., Scenedesmus spp., Stigeoclonium spp. 또는 Dunaliella spp.를 포함할 수 있으며, 예를 들어, Chlorella protothecoides일 수 있으나, 이에 제한되지 않는다.In one embodiment of the present invention, the microalgae can be used without limitation as long as they are used for producing biodiesel. The microalgae are Chlorella spp., Scenedesmus spp., Stigoclonium spp. Or Dunaliella spp., For example, but not limited to, Chlorella protothecoides.

본 발명의 일 실시예에 있어서, 상기 효소 가수분해물은 포도당일 수 있으며, 상기 포도당은 상기 배양액 내에 20%(v/v) 이하의 농도로 포함될 수 있다. In one embodiment of the present invention, the enzyme hydrolyzate may be a grape sugar, and the glucose may be contained in the culture solution at a concentration of 20% (v / v) or less.

또한, 본 발명은 본 발명에 따른 바이오디젤 생산용 배양액 내에서 미세조류를 배양한 후 배양액으로부터 지질과 지방산을 추출 및 분리하는 것을 포함하는, 바이오디젤의 생산 방법을 제공한다. The present invention also provides a method for producing biodiesel, comprising culturing microalgae in a culture solution for producing biodiesel according to the present invention, and then extracting and separating lipids and fatty acids from the culture solution.

본 발명의 일 실시예에 있어서, 상기 미세조류는 바이오디젤 생산에 사용되는 것이라면 제한 없이 사용할 수 있다. 상기 미세조류는 Chlorella spp., Scenedesmus spp., Stigeoclonium spp. 또는 Dunaliella spp.를 포함할 수 있으며, 예를 들어, Chlorella protothecoides일 수 있으나, 이에 제한되지 않는다.In one embodiment of the present invention, the microalgae can be used without limitation as long as they are used for producing biodiesel. The microalgae are Chlorella spp., Scenedesmus spp., Stigoclonium spp. Or Dunaliella spp., For example, but not limited to, Chlorella protothecoides.

본 발명은 국내에서 다량으로 배출되는 배추 폐기물을 사용하여 바이오디젤의 생산을 위해 공급되는 포도당을 생산할 수 있어, 바이오디젤의 생산 비용을 1/2 정도까지 크게 절감할 수 있으며, 포도당 생산을 위한 조건을 최적화함으로써 포도당의 생산량을 증가시킬 수 있다. 또한, 본 발명에서는 Trichoderma harzianum로부터 셀룰라아제를 생산하여 사용함으로써, 상업적으로 시판되는 혼합효소에 비해 거의 1/10 수준으로 공정 비용을 감소시킬 수 있다.The present invention can produce glucose to be supplied for the production of biodiesel using the Chinese cabbage waste discharged in large quantities in the domestic market and can greatly reduce the production cost of biodiesel to about 1/2, The amount of glucose produced can be increased. In addition, according to the present invention, by producing and using a cellulase from Trichoderma harzianum, the process cost can be reduced to almost 1/10 as compared with a commercially available mixed enzyme.

도 1은 본 발명의 일 실시예에 있어서 3 종의 Trichoderma harzianum 균주로부터 유래된 셀룰라아제의 시간에 따른 포도당 생산 수율을 나타낸 것이다.
도 2는 본 발명의 일 실시예에 있어서 최적 조건에서 배양된 Trichoderma harzianum으로부터 유래된 셀룰라아제의 시간에 따른 포도당 생산 수율을 나타낸 것이다.
도 3은 본 발명의 일 실시예에 있어서 pH에 따른 Trichoderma harzianum으로부터의 (A) 셀룰라아제의 생산 농도 및 (B) 셀룰라아제의 포도당 생산 수율을 나타낸 것이다.
도 4는 본 발명의 일 실시예에 있어서 배추의 다양한 전처리에 따른 포도당 생산 수율을 나타낸 것이다.
도 5는 본 발명의 일 실시예에 있어서, 배추에 전처리되는 황산의 농도에 따른 포도당 생산 수율을 나타낸 것이다.
도 6은 본 발명의 일 실시예에 있어서 배추에 전처리되는 황산의 농도에 따른 Chlorella protothecoides의 성장률을 나타낸 것이다.
도 7은 본 발명의 일 실시예에 있어서 배추의 황산 전처리시 온도에 따른 포도당의 생산 수율을 나타낸 것이다.
도 8은 본 발명의 일 실시예에 있어서 배추의 황산 전처리시 pH에 따른 포도당의 생산 수율을 나타낸 것이다.
도 9는 본 발명의 일 실시예에 있어서 배추의 황산 전처리 후 세척 유무에 따른 포도당의 생산 수율을 나타낸 것으로, (A) 종래의 가수분해 효소 칵테일 및 (B) 본 발명에 따른 셀룰로오스를 처리한 후의 포도당 생산 수율을 나타낸 것이다.
도 10은 본 발명의 일 실시예에 있어서 Chlorella protothecoides의 배양시 온도에 따른 포도당 생산 수율을 나타낸 것이다.
도 11은 본 발명의 일 실시예에 있어서 Chlorella protothecoides의 배양시 셀룰라아제의 투입량에 따른 포도당 생산 수율을 나타낸 것이다.
도 12는 본 발명의 일 실시예에 있어서 배추의 함량에 따른 포도당 생산 수율을 나타낸 것이다.
도 13은 본 발명의 일 실시예에 있어서 시판 셀룰라아제 및 본 발명의 셀룰라아제의 (A) 배양액 내의 총 포도당 생산량 및 (B) 포도당 생산 수율을 나타낸 것이다.
도 14는 본 발명의 일 실시예에 있어서 포도당 함량에 따른 Chlorella protothecoides 생장률을 나타낸 것이다.
도 15는 본 발명의 일 실시예에 있어서 배추 및 다른 바이오매스로부터의 셀룰로오스에 따른 포도당 생산 수율을 나타낸 것이다.
FIG. 1 shows the glucose production yields of cellulase derived from three Trichoderma harzianum strains over time according to one embodiment of the present invention.
Figure 2 shows the yield of glucose production with time of cellulase derived from Trichoderma harzianum cultured under optimal conditions in one embodiment of the present invention.
FIG. 3 shows (A) the production yield of cellulase from Trichoderma harzianum and (B) the yield of glucose production of the cellulase according to pH in one embodiment of the present invention.
FIG. 4 shows the yield of glucose production according to various pretreatments of Chinese cabbage according to an embodiment of the present invention.
FIG. 5 shows the yield of glucose production according to the concentration of sulfuric acid pretreated in Chinese cabbage according to an embodiment of the present invention.
6 shows the growth rate of Chlorella protothecoides according to the concentration of sulfuric acid pretreated in Chinese cabbage in an embodiment of the present invention.
FIG. 7 shows the production yield of glucose according to temperature during the sulfuric acid pretreatment of Chinese cabbage according to an embodiment of the present invention.
FIG. 8 shows the production yield of glucose according to pH during the sulfuric acid pretreatment of Chinese cabbage according to an embodiment of the present invention.
9 is a graph showing the production yield of glucose according to whether or not washed after pretreatment of sulfuric acid in Chinese cabbage according to an embodiment of the present invention, wherein (A) conventional hydrolytic enzyme cocktail and (B) cellulose after treatment according to the present invention Glucose production yield.
FIG. 10 shows the yield of glucose production according to temperature during the culture of Chlorella protothecoides in an embodiment of the present invention.
11 shows the yield of glucose production according to the amount of cellulase added to the culture of Chlorella protothecoides according to an embodiment of the present invention.
12 shows the yield of glucose production according to the content of Chinese cabbage in an embodiment of the present invention.
FIG. 13 shows the total glucose production amount and (B) glucose production yield in (A) culture medium of commercial cellulase and cellulase of the present invention in one embodiment of the present invention.
FIG. 14 shows growth rates of Chlorella protothecoides according to glucose content in one embodiment of the present invention.
15 shows the yield of glucose production according to cellulose from Chinese cabbage and other biomass in one embodiment of the present invention.

본 발명은 배추 폐기물을 분쇄한 후 황산을 처리하는 단계; 및 상기 황산 처리된 배추 폐기물에 Trichoderma harzianum으로부터 유래된 셀룰라아제를 처리하여 효소 가수분해하는 단계를 포함하는 포도당의 생산 방법을 제공한다. The present invention relates to a method for treating a Chinese cabbage waste, And treating the sulfuric acid treated Chinese cabbage waste with a cellulase derived from Trichoderma harzianum to perform enzymatic hydrolysis.

상기 방법에서, 배추의 황산 처리 단계의 조건을 최적화함으로써 포도당의 생산 수율을 증가시킬 수 있다. 구체적으로, 상기 황산은 0.2~0.6%의 농도로 배추 폐기물을 처리할 수 있으며, 바람직하게는, 0.25%~0.5%, 가장 바람직하게는 0.5%의 농도이다. In this method, the yield of glucose production can be increased by optimizing the conditions of the sulfuric acid treatment step of the Chinese cabbage. Specifically, the sulfuric acid can treat the cabbage waste at a concentration of 0.2 to 0.6%, preferably 0.25 to 0.5%, most preferably 0.5%.

상기 셀룰라아제는 Trichoderma harzianum를 25~30℃, 100~150 rpm 및 pH 6~7의 조건 하에서 배양하여 수득할 수 있으며, 28℃, 130 rpm, pH 6의 조건에서 배양했을 때 약 0.3~0.5 FPU/ml, 바람직하게는 약 0.4 FPU/ml의 높은 활성도를 갖는 셀룰라아제를 수득할 수 있다. 상기 셀룰라아제는 상업적으로 시판되는 혼합효소에 비해 거의 1/10 수준 공정 비용으로 생산될 수 있다. 상기 셀룰라아제는 0.15~0.4 FPU/ml의 투입량으로 황산 처리된 배추 폐기물에 처리될 수 있으며, 바람직하게는 0.24 FPU/ml의 투입량으로 처리될 수 있다.The cellulase may be obtained by culturing Trichoderma harzianum under the conditions of 25 to 30 DEG C, 100 to 150 rpm and pH 6 to 7. When the cellulase is cultured under the conditions of 28 DEG C, 130 rpm, pH 6, about 0.3 to 0.5 FPU / ml, preferably about 0.4 FPU / ml, can be obtained. The cellulase can be produced at a cost of almost 1/10 the level of a commercially available mixed enzyme. The cellulase may be treated in a sulfuric acid treated cabbage waste at an input of 0.15 to 0.4 FPU / ml, and preferably at an input of 0.24 FPU / ml.

본 발명의 일 실시예에 있어서, 상기 효소 가수분해를 위한 최적 조건은 pH 5 및 40~50℃의 온도 범위이며, 바람직하게는 45℃의 온도에서 실시될 수 있다. In one embodiment of the present invention, the optimum conditions for the enzymatic hydrolysis can be carried out at a pH of 5 and a temperature range of 40 to 50 ° C, preferably at a temperature of 45 ° C.

또한, 본 발명은 황산 처리된 배추 폐기물에 Trichoderma harzianum으로부터 수득된 셀룰라아제를 처리하여 수득한 효소 가수분해물을 포함하는 미세조류, 예를 들어, Chlorella protothecoides의 바이오디젤 생산용 배양액을 제공한다.The present invention also provides a culture medium for the production of biodiesel of microalgae, for example, Chlorella protothecoides, which comprises an enzyme hydrolyzate obtained by treating cellulase obtained from Trichoderma harzianum in a sulfuric acid treated Chinese cabbage waste.

본 발명의 일 실시예에 있어서, 상기 효소 가수분해물은 포도당일 수 있다. 상기 포도당은 상기 배양액 내에 20%(v/v) 이하의 농도로 포함될 수 있으며, 20% 초과시 상기 미세조류의 성장을 저해시킬 수 있다. In one embodiment of the present invention, the enzyme hydrolyzate may be a grape sugar. The glucose may be contained in the culture solution at a concentration of 20% (v / v) or less, and when the concentration exceeds 20%, the growth of the microalgae may be inhibited.

이하 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 하기 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples. It will be apparent to those skilled in the art that the following examples are merely illustrative of the present invention and that the scope of the present invention is not limited to these examples.

<실시예 1>&Lt; Example 1 >

T. harzianum로부터의 셀룰라아제 생산Cellulase production from T. harzianum

T. harzianum (KACC 40549, 40784, 40793)은 국내 농업유전자원 정보센터로부터 분양받았다. 스톡 배양은 MYG 배지(0.2% 맥아 추출물, 0.2% 효모 추출물, 2% 포도당 및 2% 아가), 28℃에서 계대 배양하였다. MYG 아가 플레이트에서 7일간 배양된 T. harzianum 를 0.02% tween 80으로 spore를 수거했다. 모아진 spore는 cell counting을 하였다. 곰팡이 셀룰라아제 생산을 위해 Mandel's 배지(Carbon 10 g·L-1, Peptone 1.0 g·L-1, Urea 0.3 g·L-1, Tween 80 2.0 ml, Antifoam 2.0 ml, (NH4)2SO4 1.4 g·L-1, KH2PO4 2.0 g·L-1 CaCl 0.3 g·L-1 MgSO4·7H2O 0.3 g·L-1, Fe2SO4·7H2O 0.005 g·L-1, MnSO4·7H2O 0.0016 g·L-1 ZnSO4·7H2O 0.0014 g·L-1, CoCl2·7H2O 0.002 g·L-1)를 이용했다. 수거된 spore는 Mandel's 배지에 3*105 spores/ml로 접종하였다. 각 균주는 28℃, 130 rpm에서 배양하였다. 배양 후, 4℃에 보관하여 사용했다. T. harzianum (KACC 40549, 40784, 40793) was distributed from the National Agricultural Genetic Resources Information Center. Stock culture was subcultured at 28 ° C in MYG medium (0.2% malt extract, 0.2% yeast extract, 2% glucose and 2% agar). T. harzianum cultured on MYG agar plates for 7 days was collected with 0.02% tween 80 spores. Collected spores were cell counted. For the production of fungal cellulase, Mandel's medium (Carbon 10 g L -1 , Peptone 1.0 g L -1 , Urea 0.3 g L -1 , Tween 80 2.0 mL, Antifoam 2.0 mL, (NH 4 ) 2 SO 4 1.4 g L -1 , KH 2 PO 4 2.0 g L -1 CaCl 0.3 g L -1 MgSO 4 .7H 2 O 0.3 g L -1 , Fe 2 SO 4 .7H 2 O 0.005 g L -1 , MnSO 4 .7H 2 O 0.0016 g · L -1 ZnSO 4 · 7H 2 O 0.0014 g · L -1 , CoCl 2 · 7H 2 O 0.002 g · L -1 ) was used. The collected spores were inoculated into Mandel's medium at 3 * 10 5 spores / ml. Each strain was incubated at 28 ° C and 130 rpm. After incubation, the cells were stored at 4 ° C and used.

T. harzianum으로부터 산출된 셀룰라아제 활성도는 Filter paper assay를 통해 측정되었다. 1 X 6 cm 의 paper(wattman no.1)를 1.5 ml 튜브에 넣은 후, pH 5.0의 50 mM 아세트산나트륨 1 ml와 곰팡이 셀룰라아제 0.5 ml를 넣었다. 그 후, 수조에서 50℃, 1시간 동안 반응시켰다. 다음으로, 15분간 끓여준 후 5분간 식혀주었다. 곰팡이 셀룰로오스에 의해 paper로부터 산출된 포도당은 glucose kit(sigma GAGO 20)로 분석하였으며 540 nm에서 흡광도를 측정하였다.Cellulase activity from T. harzianum was measured by Filter paper assay. 1 x 6 cm paper (wattman no. 1) was placed in a 1.5 ml tube, and then 1 ml of 50 mM sodium acetate at pH 5.0 and 0.5 ml of fungal cellulase were added. Thereafter, the reaction was carried out in a water bath at 50 DEG C for 1 hour. Next, it was boiled for 15 minutes and then cooled for 5 minutes. Glucose from paper was analyzed by glucose kit (Sigma GAGO 20) and absorbance was measured at 540 nm.

상기 ATCC no. 40549, 40784 및 40793의 T. harzianum으로부터 생산된 셀룰라아제의 효소활성도를 측정하였다. 균주들은 6일간 배양되었고 매일 배양액의 효소 활성도를 측정한 결과 ATCC no. 40784 균주가 가장 높았다(도 1).The ATCC no. 40549, 40784, and 40793 of T. harzianum. The strains were cultured for 6 days and the enzyme activities of the cultures were measured daily. 40784 strain was the highest (Fig. 1).

<실시예 2>&Lt; Example 2 >

셀룰라아제의 최적 활성도를 위한 조건 결정Determination of conditions for optimal activity of cellulase

T. harzianum ATCC no. 40784 균주에서 분비되는 셀룰라아제 활성도의 최적 적정 배양시간과 pH를 조사하였다. 우선 Mandel's 배지에서 28℃, 130 rpm, 6일간 배양하였을 때 5일째에 가장 높은 활성도를 보였다(도 2). 또한, 동일한 조건에서 배양하였을 때 효소의 농도는 pH 6에서 높았으나(도 3의 A) 활성도는 pH 7에서 가장 높은 것을 확인했다(도 3의 B). 이때 T. harzianum으로부터 분비된 효소의 활성도는 평균 약 0.4 FPU/ml를 보였다.T. harzianum ATCC no. The optimum cell culture time and pH of cellulase activity in 40784 strain were investigated. The highest activity was observed at 5 days after incubation in Mandel's medium at 28 ° C and 130 rpm for 6 days (FIG. 2). Also, when cultured under the same conditions, the enzyme concentration was high at pH 6 (FIG. 3A) and the activity was highest at pH 7 (FIG. 3B). At this time, the activity of the enzyme secreted from T. harzianum averaged about 0.4 FPU / ml.

<실시예 3>&Lt; Example 3 >

배추의 전처리 조건의 결정Determination of pretreatment conditions of Chinese cabbage

배추는 일반 상점에서 구입하였다. 배추를 씻어 흙을 제거한 후, 잎 표면의 물기를 실온에서 약 2시간 정도 건조하였다. 건조된 배추는 혼합기를 통해 갈아주었다. 갈린 배추는 사용 전까지 20℃에 보관하였다.Chinese cabbage was purchased at a general store. The Chinese cabbage was washed and the soil was removed, and the moisture of the leaf surface was dried at room temperature for about 2 hours. Dried Chinese cabbage was changed through a mixer. The ground cabbage was stored at 20 ° C until use.

여러 가지 전 처리 방법 중 적합한 것을 선택하기 위하여 황산(H2SO4), 과산화수소(PAA), 과산화수소와 황산(PAA + H2SO4), 인산과 황산(PO4 + H2SO4)을 배추에 처리하였다. 그 결과 황산을 처리하였을 때 포도당 산출량이 가장 높았다(도 4). 산 처리 이외에도 알칼리 방법을 처리해 보았을 때 황산보다 포도당 산출량이 낮았다.(H 2 SO 4 ), hydrogen peroxide (PAA), hydrogen peroxide and sulfuric acid (PAA + H 2 SO 4 ), phosphoric acid and sulfuric acid (PO 4 + H 2 SO 4 ) Respectively. As a result, glucose yield was the highest when treated with sulfuric acid (FIG. 4). In addition to the acid treatment, the yield of glucose was lower than that of sulfuric acid when the alkali method was applied.

<실시예 4><Example 4>

황산의 처리 농도 결정Determination of treatment concentration of sulfuric acid

배추의 리그닌 제거 및 조직의 팽창을 위한 적절한 황산처리 농도를 조사하였다. The concentration of sulfuric acid treatment for the removal of lignin and expansion of tissue of Chinese cabbage was investigated.

배추의 전 처리를 위해 황산(catalog B3010-1250, Junsei)을 사용했다. 건조배추가 약 5 %인 갈린 배추에 황산을 첨가하였다. 첨가농도를 선택하기 위해 배추에 황산 0%, 0.125%, 0.25%, 0.5%, 1%로 넣어준 후 50℃에서 40분간 고온·고압 처리하였다. 처리 효율을 알아보기 위해 황산 처리된 배추에 산업적으로 판매되는 효소(sigma C2730 1 FPU/ml, sigma C6105 3.5 FPU/ml)를 45℃, 130 rpm 에서 2일간 처리하였다. 그 후 glucose kit(sigma GAGO 20)를 통해 포도당 산출량을 측정하였다. 그 결과 효소를 통한 포도당의 산출량은 0.5%로 처리해준 것이 포도당 함량이 가장 높았으며 0.25%가 두 번째로 포도당 함량이 높았다(도 5).Sulfuric acid (catalog B3010-1250, Junsei) was used for the pretreatment of Chinese cabbage. Sulfuric acid was added to the gallinel cabbage, which had about 5% dry cabbage. 0.1%, 0.25%, 0.5%, and 1% sulfuric acid were added to the Chinese cabbage to select the addition concentration, and the mixture was subjected to high temperature and high pressure treatment at 50 ° C for 40 minutes. To investigate the treatment efficiency, industrially marketed enzymes (sigma C2730 1 FPU / ml, sigma C6105 3.5 FPU / ml) were treated with sulfuric acid in Chinese cabbage at 45 ° C and 130 rpm for 2 days. Glucose output was then measured using a glucose kit (Sigma GAGO 20). As a result, the yield of glucose through the enzyme was 0.5%, the glucose content was the highest, and the 0.25% glucose content was the second highest (FIG. 5).

C. protothecoides가 황산 전처리 과정에서 영향을 받는지를 확인하였다. 배지에 각각 0%, 0.25%, 0.5% 농도로 황산을 처리하여 C. protothecoides를 배양하여 흡광도 측정을 한 결과 대조군과 황산을 처리한 그룹간의 차이가 크지 않음을 확인하였다(도 6).C. protothecoides was affected by sulfuric acid pretreatment. The absorbance was measured by culturing C. protothecoides with 0%, 0.25%, and 0.5% concentrations of sulfuric acid in the medium, respectively. As a result, it was confirmed that the difference between the control group and the group treated with sulfuric acid was not large (FIG.

황산 전 처리 과정에서의 최적 온도를 조사하였다. T. harzianum으로부터 분비된 효소는 0.16 FPU/ml가 첨가되었으며 130 rpm에서 2일간 가수분해가 진행되었다. 그 결과 배추에 황산처리 후 50℃에서 반응시키는 것이 포도당 산출량에 가장 큰 효과를 보였다(도 7).The optimum temperature in the sulfuric acid pretreatment was investigated. Enzymes secreted from T. harzianum were added 0.16 FPU / ml and hydrolyzed at 130 rpm for 2 days. As a result, the reaction of the Chinese cabbage at 50 ° C after sulfuric acid treatment showed the greatest effect on glucose yield (FIG. 7).

<< 실시예Example 5> 5>

배추 세척에 따른 포도당 생산 수율 평가Evaluation of Glucose Production by Cabbage Washing

산 처리된 배추를 효소 가수분해에 앞서, 산 처리 시 배추 즙의 산과 산부산물이 효소 가수분해에 주는 영향에 대해 조사했다. 0.25% 산 처리된 배추를 각각 걸러진 배추 양(g)의 0 배, 1.5 배, 3 배의 증류수를 넣어 세척하였다. 그 후, Sigma cocktail 효소와 곰팡이 효소를 50℃, 130 rpm에서 2일간 처리하였다. 그 결과 두 그룹 모두 증류수를 넣어 세척을 가했을 때 세척을 하지 않은 그룹에 비해 포도당 산출량이 낮았다(도 9). 이는 세척하며 배추를 정제하는 과정에서 포도당의 손실이 있었을 것으로 예상됐다. The effect of acid and acid by-products of cabbage juice on enzyme hydrolysis was investigated before acid hydrolysis of acid treated Chinese cabbage. The 0.25% acid treated Chinese cabbage was washed with 0, 1.5, and 3 times distilled water, respectively, of the extracted chinese cabbage (g). The Sigma cocktail enzyme and fungal enzyme were then treated at 50 ° C and 130 rpm for 2 days. As a result, both groups showed lower glucose yields compared to the untreated group when washed with distilled water (FIG. 9). It was expected that there would be a loss of glucose in the process of washing and purifying the cabbage.

<실시예 6>&Lt; Example 6 >

포도당의 생산 조건 결정Determination of glucose production conditions

Manderl's 배지에서 pH 7, 28℃, 130 rpm에서 5일간 길러진 ATCC no. 40784 균주의 셀룰라아제의 최적 pH, 온도, 효소투입량을 조사하였다. 그 결과 pH 5에서 포도당 산출량이 가장 높았다(도 8). 40, 45, 50℃의 온도에서 효소활성도를 2일간 측정한 결과 45℃와 50℃가 비슷함을 볼 수 있었다. 때문에 45℃를 효소 적합 온도로 정하였다(도 10). T. harziaum으로부터 분비된 효소 0.4 FPU/ml를 0.08, 0.16, 0.24 그리고 0.32 FPU/ml 로 투여하였을 때 0.24 FPU/ml를 처리하는 것이 가장 효율이 높았다(도 11).ATCC no. 5, grown in Manderl's medium at pH 7, 28 ° C, 130 rpm for 5 days. The optimum pH, temperature and enzyme loading of 40784 strain of cellulase were investigated. As a result, glucose yield was the highest at pH 5 (FIG. 8). The enzyme activity was measured at 40, 45 and 50 ℃ for 2 days. The results were similar to those of 45 ℃ and 50 ℃. For this reason, 45 캜 was set to an enzyme-compatible temperature (Fig. 10). Treatment of 0.24 FPU / ml with 0.4 FPU / ml of the enzyme secreted from T. harziaum at 0.08, 0.16, 0.24 and 0.32 FPU / ml was the most efficient (FIG. 11).

효소의 최적 활성도 조건을 맞춘 후, 배추의 함량에 따른 포도당 산출량을 조사하였다. 배추를 곱게 간 후의 건조 중량은 갈린 배추 약 5%를 1.7%, 2.8%, 3.9%, 5.0%로 희석하여 사용했다. 그 결과 5.0%의 배추에서 포도당 산출도가 가장 높았다(도 12).After optimizing the activity of the enzyme, the glucose yield according to the content of Chinese cabbage was investigated. The dry weight of Chinese cabbage was about 5%, which was diluted to 1.7%, 2.8%, 3.9% and 5.0%. As a result, glucose yield was the highest in 5.0% of Chinese cabbage (FIG. 12).

<실시예 7>&Lt; Example 7 >

포도당의 생산Production of glucose

산 처리된 배추는 pH 5.0으로 맞춘 후, 전체농도가 50 mM 아세테이트가 되도록 맞추었다. 멸균 후 산 처리된 배추 산물에 T. harziaum으로부터 분비된 효소를 처리하였다. 효소와 반응전 1 ml의 시료를 채취하여 -20℃에 보관하였다. 효소반응은 50℃, 130 rpm, 3일간 반응시켰다. 반응 후, 1 ml의 시료를 채취하여 효소반응 전 시료와 함께 glucose kit(sigma GAGO 20)를 통해 포도당 산출량을 측정하였다.The acid treated Chinese cabbage was adjusted to pH 5.0, and adjusted to a total concentration of 50 mM acetate. After the sterilization, the acid treated cabbage products were treated with the enzyme secreted from T. harziaum. One milliliter of sample was collected before enzyme reaction and stored at -20 ° C. The enzyme reaction was carried out at 50 ° C and 130 rpm for 3 days. After the reaction, 1 ml of sample was collected and glucose yield was measured with a glucose kit (Sigma GAGO 20) together with the sample before enzyme reaction.

<실시예 8>&Lt; Example 8 >

T. T. harziaum으로to harziaum 부터from 분비된 효소와 상업용 효소의 활성도 비교 Comparison of activities of secreted enzymes and commercial enzymes

ATCC no. 40784 균주의 배양액에서 직접 얻어진 섬유소 분해효소(Cellulase 0.4 FPU/ml)와 상업용 혼합효소(sigma C2730 0.013 FPU/ml, sigma C6105 0.046 FPU/ml)의 활성도를 비교해보았다. 0.25% 황산이 처리된 배추에 각각의 효소를 0.16 FPU/ml가 되도록 처리한 후, 45℃, 130 rpm에서 4일간 포도당 양을 측정하였다. 포도당 산출량으로 비교 결과 상업용 혼합효소의 활성도가 약 2배 가량 높았다(도 13). 하지만 공정비용을 고려해보았을 때 상업용 혼합효소의 경우 1 g의 포도당을 생산하기 위해 약 800원의 비용이 발생하는 반면 T. harziaum으로부터 분비된 효소의 경우 약 90원에 불과하였다(표 1). 이를 통해 T. harziaum으로부터 분비된 효소를 사용하는 것이 활성도와 공정비용을 고려하였을 때 적합한 것을 알 수 있었다.ATCC no. (Cellulase 0.4 FPU / ml) and commercial mixed enzyme (sigma C2730 0.013 FPU / ml, sigma C6105 0.046 FPU / ml) directly obtained from the culture of 40784 strain. Each enzyme was treated with 0.15 FPU / ml in 0.25% sulfuric acid-treated Chinese cabbage, and the amount of glucose was measured at 45 ° C and 130 rpm for 4 days. As a result of the glucose yield, the activity of the commercial mixed enzyme was about twice as high (Fig. 13). However, considering the cost of the process, the commercial mixed enzyme cost about 800 won to produce 1 g of glucose, while the enzyme secreted from T. harziaum costs only about 90 won (Table 1). This suggests that the use of enzymes secreted from T. harziaum is appropriate when considering activity and process costs.

Figure 112016061208930-pat00001
Figure 112016061208930-pat00001

<< 실시예Example 9> 9>

C. protothecoides의 배양Culture of C. protothecoides

C. protothecoides는 PB5 배지(NaNO3 2.94 mM, K2HPO4 0.43 mM, MgSO4·7H2O 0.3 mM, CaCl2·2H2O 0.17 mM, KH2PO4 1.29 mM, NaCl 0.43 mM. Yeast extract 0.50 %, HEPES 10 mM, Vitamin B12 0.1 μM, Biotin 0.1 μM, Thiamine 6.5 μM), 26℃에서 계대 배양하였다.C. protothecoides is PB5 medium (NaNO 3 2.94 mM, K 2 HPO 4 0.43 mM, MgSO 4 .7H 2 O 0.3 mM, CaCl 2 .2H 2 O 0.17 mM, KH 2 PO 4 1.29 mM, NaCl 0.43 mM. Yeast extract 0.50%, HEPES 10 mM, Vitamin B12 0.1 μM, Biotin 0.1 μM, Thiamine 6.5 μM) and subcultured at 26 ° C.

실시예 7과 같이 배추로부터 산출된 당은 PB5 배양액에 20, 40, 60, 그리고 80% (V/V)으로 첨가하였다. 당량은 2%로 맞추어 주었으며 조류를 3×106 algaes/ml로 접종하였다. 접종된 미세조류는 26℃, 130 rpm에서 배양이 되었으며 성장도를 보기 위해 24시간마다 시료를 채취하여 glucose kit(sigma GAGO 20)를 통해 잔류 포도당량을 측정하였다. As in Example 7, the saccharide produced from Chinese cabbage was added to PB5 culture medium at 20, 40, 60, and 80% (V / V). The equivalent was adjusted to 2% and algae were inoculated at 3 × 10 6 algaes / ml. The inoculated microalgae were cultured at 26 ° C and 130 rpm, and samples were collected every 24 hours for the growth and residual glucose was measured by glucose kit (Sigma GAGO 20).

배추로부터 생산된 당을 미세조류 배양액에 0, 20, 40, 60 그리고 80% (V/V)으로 첨가했다. C. protothecoides는 5일간 26℃, 130 rpm하여 미세조류의 성장을 조사하였다. 1일마다 시료를 채취하여 배추 당을 20%로 첨가하였을 때는 성장에 영향을 주지 않았지만 그 이상의 농도에서는 C. protothecoides의 성장에 심각한 저해가 있는 것을 관찰하였다(도 14).The sugar produced from Chinese cabbage was added to the microalgae culture at 0, 20, 40, 60 and 80% (V / V). C. protothecoides was examined for growth of microalgae at 26 ° C and 130 rpm for 5 days. When samples were taken every day and added with 20% of Chinese cabbage, growth was not affected, but it was observed that there was a serious inhibition of growth of C. protothecoides at higher concentrations (Fig. 14).

<< 실시예Example 10> 10>

다양한 바이오메스를 이용한 포도당 생산Production of glucose using various biomes

다른 종류의 바이오매스(팜유 추출 후 찌꺼기, 볏짚, 찻잎)를 사용하여 개발한 공정을 통해 당 생성을 조사하였다. 볏짚, 찻잎, 팜 찌꺼기를 분쇄기로 갈아준 후, 5%의 바이오매스를 0.5 % H2SO4로 전 처리하였다. 그 후 T. harzianum으로부터 분비된 효소를 0.24 FPU/ml를 넣고 45C, 130rpm에서 반응시켰다. 24시간마다 시℃를 채취하여 glucose kit(sigma GAGO 20)를 통해 잔류 포도당 양을 측정하였다.Sugar production was investigated through a process developed using different types of biomass (residue after palm oil extraction, rice straw, tea leaves). After standard grind the rice straw, tea leaves, farm residues in grinder, were pretreated biomass of 5% to 0.5% H 2 SO 4. Then, the enzyme secreted from T. harzianum was added at 0.24 FPU / ml and reacted at 45 ° C and 130 rpm. The glucose concentration was measured by glucose kit (Sigma GAGO 20) at 24 ℃.

결과로서, 볏짚이 당 생성이 약 4 mg/ml로 높은 것을 볼 수 있다(도 15). 하지만 배추자체가 가진 당이 많기 때문에 전체 생성된 당의 총량은 배추가 볏짚에 비해서 2배 가량 높은 것을 볼 수 있었다(도 15).As a result, it can be seen that rice straw has a sugar production as high as about 4 mg / ml (Fig. 15). However, since the amount of sugar contained in the cabbage itself is large, the total amount of the total sugar produced is twice as high as that of rice straw (Fig. 15).

이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.The present invention has been described with reference to the preferred embodiments. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. Therefore, the disclosed embodiments should be considered in an illustrative rather than a restrictive sense. The scope of the present invention is defined by the appended claims rather than by the foregoing description, and all differences within the scope of equivalents thereof should be construed as being included in the present invention.

Claims (10)

배추 폐기물을 분쇄한 후 황산을 처리하는 단계; 및
상기 황산 처리된 배추 폐기물에 Trichoderma harzianum(KACC No. 40784)으로부터 수득된 셀룰라아제를 처리하여 효소 가수분해하는 단계
를 포함하는 포도당의 생산 방법.
Crushing the Chinese cabbage waste and then treating the sulfuric acid; And
Treating the sulfuric acid treated Chinese cabbage waste with the cellulase obtained from Trichoderma harzianum (KACC No. 40784) to perform enzyme hydrolysis
&Lt; / RTI &gt;
제 1 항에 있어서,
상기 황산은 0.2~0.6%의 농도로 처리하는 것인, 포도당의 생산 방법.
The method according to claim 1,
Wherein the sulfuric acid is treated at a concentration of 0.2 to 0.6%.
제 1 항에 있어서,
상기 셀룰라아제는 Trichoderma harzianum(KACC No. 40784)를 25~30℃, 100~150 rpm 및 pH 6~7의 조건 하에서 배양하여 수득한 것인, 포도당의 생산 방법.
The method according to claim 1,
Wherein said cellulase is obtained by culturing Trichoderma harzianum (KACC No. 40784) at 25 to 30 DEG C, 100 to 150 rpm and pH 6 to 7.
제 1 항에 있어서,
상기 셀룰라아제의 활성도는 0.3~0.5 FPU/ml인 것인, 포도당의 생산 방법.
The method according to claim 1,
Wherein the activity of the cellulase is 0.3 to 0.5 FPU / ml.
제 1 항에 있어서,
상기 셀룰라아제는 0.15~0.4 FPU/ml의 투입량으로 처리되는 것인, 포도당의 생산 방법.
The method according to claim 1,
Wherein the cellulase is treated at a dosage of 0.15 to 0.4 FPU / ml.
제 1 항에 있어서,
상기 효소 가수분해는 pH 5 및 40~50℃의 온도 범위에서 실시되는 것인, 포도당의 생산 방법.
The method according to claim 1,
Wherein the enzyme hydrolysis is carried out at a pH of 5 and a temperature range of 40 to 50 占 폚.
황산 처리된 배추 폐기물에 Trichoderma harzianum(KACC No. 40784)으로부터 수득된 셀룰라아제를 처리하여 수득한 효소 가수분해물을 포함하는 바이오디젤 생산용 미세조류 배양액.A microalgae culture for producing biodiesel comprising an enzyme hydrolyzate obtained by treating cellulase obtained from Trichoderma harzianum (KACC No. 40784) in a sulfuric acid treated Chinese cabbage waste. 제 7 항에 있어서,
상기 효소 가수분해물은 포도당을 포함하는 것인, 바이오디젤 생산용 미세조류 배양액.
8. The method of claim 7,
Wherein the enzyme hydrolyzate comprises glucose.
제 8 항에 있어서,
상기 배양액은 상기 포도당을 20%(v/v) 이하의 농도로 포함하는 것인, 바이오디젤 생산용 미세조류 배양액.
9. The method of claim 8,
Wherein the culture medium contains the glucose at a concentration of 20% (v / v) or less.
제 7 항의 바이오디젤 생산용 배양액 내에서 미세조류를 배양한 후 배양액으로부터 지질과 지방산을 추출 및 분리하는 것을 포함하는, 바이오디젤의 생산 방법.A method for producing biodiesel comprising culturing microalgae in a culture solution for producing biodiesel according to claim 7, and extracting and separating lipids and fatty acids from the culture solution.
KR1020160079206A 2016-06-24 2016-06-24 Method of producing glucose from chinese cabbage wastes and algae culture media containing glucose Expired - Fee Related KR101856849B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020160079206A KR101856849B1 (en) 2016-06-24 2016-06-24 Method of producing glucose from chinese cabbage wastes and algae culture media containing glucose
PCT/KR2017/005578 WO2017222202A1 (en) 2016-06-24 2017-05-29 Method for producing glucose from agricultural byproduct, and microalgal culture medium including glucose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160079206A KR101856849B1 (en) 2016-06-24 2016-06-24 Method of producing glucose from chinese cabbage wastes and algae culture media containing glucose

Publications (2)

Publication Number Publication Date
KR20180000917A KR20180000917A (en) 2018-01-04
KR101856849B1 true KR101856849B1 (en) 2018-05-10

Family

ID=60784091

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160079206A Expired - Fee Related KR101856849B1 (en) 2016-06-24 2016-06-24 Method of producing glucose from chinese cabbage wastes and algae culture media containing glucose

Country Status (2)

Country Link
KR (1) KR101856849B1 (en)
WO (1) WO2017222202A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210113901A (en) 2020-03-09 2021-09-17 엘지전자 주식회사 Control method of Robot system including a plurality of moving robots

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110306100A1 (en) * 2008-06-02 2011-12-15 De Crecy Eudes Method of producing fatty acids for biofuel, biodiesel, and other valuable chemicalspct/

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100205247B1 (en) * 1996-07-08 1999-07-01 한인섭 A trichoderma sp which decompose cellulose
MY169799A (en) * 2011-12-22 2019-05-16 Xyleco Inc Processing biomass for use in fuel cells related applications
KR102411079B1 (en) * 2014-10-07 2022-06-21 에스케이에코프라임 주식회사 Method for preparing of bio-diesel and fatty acid using microalgae oil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110306100A1 (en) * 2008-06-02 2011-12-15 De Crecy Eudes Method of producing fatty acids for biofuel, biodiesel, and other valuable chemicalspct/

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
정승미, 김용진, New & Renewable Energy, Vol.9., No.1., pp.25-32. (2013.03)*

Also Published As

Publication number Publication date
KR20180000917A (en) 2018-01-04
WO2017222202A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
Ojumu et al. Cellulase production by Aspergillus flavus Linn isolate NSPR 101 fermented in sawdust, bagasse and corncob
Ang et al. Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation
Intasit et al. Synergistic production of highly active enzymatic cocktails from lignocellulosic palm wastes by sequential solid state-submerged fermentation and co-cultivation of different filamentous fungi
Lim et al. Efficient recovery of lignocellulolytic enzymes of spent mushroom compost from oyster mushrooms, Pleurotus spp., and potential use in dye decolorization
RU2560424C2 (en) Method of obtaining fermentation broth composition
Reddy et al. Cellulase production by Aspergillus niger on different natural lignocellulosic substrates
Shariq et al. Application of Candida tropicalis MK-160 for the production of xylanase and ethanol
Sajith et al. Production and partial purification of cellulase from a novel fungus, Aspergillus flavus BS1
Nutongkaew et al. Bioconversion of oil palm trunk residues hydrolyzed by enzymes from newly isolated fungi and use for ethanol and acetic acid production under two-stage and simultaneous fermentation
Gupta et al. Solid state fermentation of non-edible oil seed cakes for production of proteases and cellulases and degradation of anti-nutritional factors
Karmakar et al. Extra cellular endoglucanase production by Rhizopus oryzae in solid and liquid state fermentation of agro wastes
Iqbal et al. Media optimization for hyper-production of carboxymethyl cellulase using proximally analyzed agroindustrial residue with Trichoderma harzianum under SSF
Xiao et al. Solid state fermentation of aquatic macrophytes for crude protein extraction
Ribeiro et al. Unlocking xylan’s potential: Coffee husk-derived xylanolytic blend for sustainable bioprocessing
Kumar et al. Parthenium hysterophorus weed as a novel substrate for β-glucosidase production by Penicillium citrinum NAF5: application of the crude extract to biomass saccharification
Ezeonu et al. Enhanced availability of biofuel and biomass components in Aspergillus niger and Aspergillus fumigatus treated rice husk
KR101856849B1 (en) Method of producing glucose from chinese cabbage wastes and algae culture media containing glucose
KR101075602B1 (en) Mutant Strain of Brettanomyces custersii and Method of Ethanol Production Using the Same
Janveja et al. Kitchen waste residues as potential renewable biomass resources for the production of multiple fungal carbohydrases and second generation bioethanol
Nurudeen et al. Cellulase and biomass production from sorghum (Sorghum guineense) waste by Trichoderma longibrachiatum and aspergillus terreus
Leghlimi et al. Improvement of fungal cellulase production by solid state fermentation
EP3660150B1 (en) Provident method of cellulases enzymes production by penicillium funiculosum mrj-16 using low cost media components
CN112941120A (en) Method for producing microbial oil by using VFAs and lignocellulose raw materials
JPWO2009096215A1 (en) Ethanol production method
Praveenkumar et al. Comparative analysis of saccharification of cassava sago waste using Aspergillus niger and Bacillus sp. for the production of bio-ethanol using Saccharomyces cerevisiae

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

St.27 status event code: A-1-2-D10-D21-exm-PE0902

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

E601 Decision to refuse application
PE0601 Decision on rejection of patent

St.27 status event code: N-2-6-B10-B15-exm-PE0601

AMND Amendment
P11-X000 Amendment of application requested

St.27 status event code: A-2-2-P10-P11-nap-X000

P13-X000 Application amended

St.27 status event code: A-2-2-P10-P13-nap-X000

PX0901 Re-examination

St.27 status event code: A-2-3-E10-E12-rex-PX0901

PX0701 Decision of registration after re-examination

St.27 status event code: A-3-4-F10-F13-rex-PX0701

X701 Decision to grant (after re-examination)
GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

Fee payment year number: 1

St.27 status event code: A-2-2-U10-U11-oth-PR1002

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

PR1001 Payment of annual fee

Fee payment year number: 4

St.27 status event code: A-4-4-U10-U11-oth-PR1001

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R11-asn-PN2301

St.27 status event code: A-5-5-R10-R13-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R11-asn-PN2301

St.27 status event code: A-5-5-R10-R13-asn-PN2301

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PR1001 Payment of annual fee

Fee payment year number: 5

St.27 status event code: A-4-4-U10-U11-oth-PR1001

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PC1903 Unpaid annual fee

Not in force date: 20230504

Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

St.27 status event code: A-4-4-U10-U13-oth-PC1903

PC1903 Unpaid annual fee

Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

Not in force date: 20230504

St.27 status event code: N-4-6-H10-H13-oth-PC1903

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000