KR101841968B1 - Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it - Google Patents
Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it Download PDFInfo
- Publication number
- KR101841968B1 KR101841968B1 KR1020170076286A KR20170076286A KR101841968B1 KR 101841968 B1 KR101841968 B1 KR 101841968B1 KR 1020170076286 A KR1020170076286 A KR 1020170076286A KR 20170076286 A KR20170076286 A KR 20170076286A KR 101841968 B1 KR101841968 B1 KR 101841968B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- base material
- coating composition
- metal base
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62204—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62222—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3409—Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
- C04B2235/3436—Alkaline earth metal silicates, e.g. barium silicate
- C04B2235/3454—Calcium silicates, e.g. wollastonite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
- C04B2235/3463—Alumino-silicates other than clay, e.g. mullite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/405—Iron group metals
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
본 발명은 세라믹 코팅 조성물의 제조방법, 그 코팅 조성물 및 이를 이용한 코팅방법에 관한 것으로, 더 상세하게는 맥반석(barley stone) 10~50중량%, 장석(feldspar) 10~50중량%, 초석(niter) 1~20중량%, 소다회(soda ash) 1~20중량%, 붕사(borax) 5~30중량%, 니켈(Ni) 1~7중량%, 규회석(wollastonite) 1~10중량%를 혼합하는 단계와, 상기 혼합된 혼합물을 용융처리하여 비정질 소결체로 제조하는 단계와, 상기 제조된 비정질 소결체를 냉각하는 단계와, 상기 냉각된 냉각물을 분쇄하는 단계와, 상기 분쇄물을 금속 모재의 표면에 도포하는 단계와, 상기 조성물이 도포된 금속 모재를 700~850℃의 온도로 1~20분간 소성처리하는 단계와, 상기 열처리된 금속 모재를 냉각하는 단계를 포함하는 것을 특징으로 한다.
본 발명에 의하면, 유기바인더의 사용이나 고온 소결의 공정 없이 금속 모재의 표면에 내부식성이 특히 우수한 세라믹 박막을 형성시킬 수 있는 장점이 있다. 또한, 원적외선을 방사하여 자정능력이 뛰어난 세라믹 박막을 형성시킬 수 있다는 장점이 있다. The present invention relates to a method for producing a ceramic coating composition, a coating composition thereof, and a coating method using the same. More particularly, the present invention relates to a ceramic coating composition comprising 10 to 50% by weight of barley stone, 10 to 50% by weight of feldspar, , 1 to 20% by weight of soda ash, 1 to 20% by weight of soda ash, 5 to 30% by weight of borax, 1 to 7% by weight of nickel (Ni) and 1 to 10% by weight of wollastonite Melting the mixed mixture to obtain an amorphous sintered body; cooling the amorphous sintered body; pulverizing the cooled cooling body; and grinding the pulverized material to a surface of the metal base material A step of firing the metal base material coated with the composition at a temperature of 700 to 850 캜 for 1 to 20 minutes, and a step of cooling the heat-treated base metal material.
According to the present invention, there is an advantage that a ceramic thin film having particularly excellent corrosion resistance can be formed on the surface of a metal base material without using an organic binder or a high-temperature sintering process. Further, there is an advantage that a ceramic thin film excellent in self-cleaning ability can be formed by radiating far-infrared rays.
Description
본 발명은 세라믹 코팅 조성물의 제조방법, 그 코팅 조성물 및 이를 이용한 코팅방법에 관한 것으로, 더 상세하게는 고온 소결이 요구되지 않으면서도 내부식성이 우수한 세라믹 코팅 조성물을 제조하고, 이를 이용하여 금속 소재의 모재를 코팅하는 방법에 관한 것이다. The present invention relates to a method for producing a ceramic coating composition, a coating composition thereof, and a coating method using the same, and more particularly, to a ceramic coating composition having excellent corrosion resistance without requiring high-temperature sintering, To a method of coating a base material.
일반적으로 각종 산업용품에는 제품의 보호 및 기능성의 향상을 위해 표면을 코팅하는 다양한 코팅제가 사용되고 있다. BACKGROUND ART In general, various kinds of coating agents for coating surfaces are used for various industrial products in order to improve the protection and functionality of products.
그 중 가장 대중적인 코팅 방법으로는 유기원료를 사용하는 도료의 도포를 들 수 있으나, 내열성이 낮고 코팅 피막 형성 후 시간의 경과 및 태양광, 일교차 등에 의해 변질, 탈색, 박리 등의 문제가 발생되며, 모재를 보호하고자 지속적인 유지보수 및 관리가 필요하였다.The most popular coating method is coating of organic material, but it has low heat resistance, time after formation of coating film, deterioration, decolorization and peeling due to sunlight and daylight. , Continuous maintenance and management were required to protect the base material.
이러한 문제에 대응하기 위해 최근에는 높은 내열성과 미관 및 인체친화적인 관점에서 세라믹 코팅제가 주목받고 있다.In order to cope with such a problem, ceramic coating agents have recently been attracting attention from the viewpoints of high heat resistance, aesthetic appearance and human-friendly properties.
현재까지 사용되고 있는 세라믹 코팅제로는 실란, 아크릴실리케이트, 실리콘 플루오르계 고분자 화합물 등의 유기바인더류를 사용한 유기물 세라믹 코팅제와, 유기바인더의 사용 없이 무기 세라믹만을 사용한 무기물 세라믹 코팅제가 있다.Ceramic coating agents that have been used so far include organic ceramic coating agents using organic binders such as silane, acryl silicate, and silicone fluorine polymer compounds and inorganic ceramic coating agents using only inorganic ceramics without using organic binders.
그러나 상기 유기물 세라믹 코팅제는 그 시공이 용이하나, 사용된 유기바인더류로 인해 각종 휘발성 유기 화합물(VOCs)이 다량 발생하여 환경에 악영향을 미치는 원인이 되고 있다.However, the organic ceramic coating agent is easy to apply, but a large amount of various volatile organic compounds (VOCs) are generated due to the used organic binders, thereby causing adverse effects on the environment.
그리고 상기 무기물 세라믹 코팅제는 환경오염을 유발하지는 않으나, 모재에 무기물 세라믹 코팅층이 고착되도록 하기 위해서는 1,100~1,700℃로 유지되는 소결로를 통해 장시간 소결시켜야 하였는바, 1,100℃가 넘는 고온을 장시간 유지해야 하므로 고온 소결에 따른 막대한 열처리 비용이 발생되는 단점이 있었다. The inorganic ceramic coating agent does not cause environmental pollution. However, in order to fix the inorganic ceramic coating layer to the base material, the inorganic ceramic coating agent must be sintered for a long time through a sintering furnace maintained at 1,100 to 1,700 ° C. There is a disadvantage in that a great heat treatment cost is incurred due to high-temperature sintering.
이러한 단점을 해소하기 위해 국내 등록특허 제10-1703345호에서는 규석, 장석, 나트륨, 붕소, 빙정석, 이산화티탄, 산화알루미늄, 망간, 니켈 등으로 구성된 세라믹 조성물을 1000~1600℃로 용융하여 세라믹 코팅 조성물을 제조하고, 이를 모재에 코팅한 후 600~1000℃의 온도로 소성처리하여 피막을 형성하는 방법을 제안하였다.In order to overcome such disadvantages, Korean Patent No. 10-1703345 discloses a ceramic coating composition obtained by melting a ceramic composition composed of silica, feldspar, sodium, boron, cryolite, titanium dioxide, aluminum oxide, manganese, nickel, , Which is then coated on the base material and then baked at a temperature of 600 to 1000 ° C to form a film.
상기한 선등록특허는 비교적 저온에서 열처리함으로써 고가의 열처리 비용을 절감하였으나, 내부식성에 제한이 있었다.Although the above-mentioned prior-art patents reduce the cost of expensive heat treatment by heat treatment at a relatively low temperature, there is a limitation in corrosion resistance.
따라서, 본 발명의 목적은 우수한 내부식성을 가지면서도 고온 소결이 요구되지 않는 비정질 구조의 세라믹 코팅 조성물을 제조하는 것이다. Accordingly, an object of the present invention is to prepare an amorphous ceramic coating composition which has excellent corrosion resistance and does not require high temperature sintering.
또한, 이러한 세라믹 코팅 조성물을 이용하여 금속 모재의 표면을 코팅함으로써, 내부식성이 우수한 세라믹 코팅층을 갖는 금속 모재를 제조하는 것이다.In addition, by coating the surface of a metal base material using such a ceramic coating composition, a metal base material having a ceramic coating layer excellent in corrosion resistance is produced.
상기와 같은 목적을 달성하기 위한 본 발명의 세라믹 코팅 조성물의 제조방법은, 맥반석(barley stone) 10~50중량%, 장석(feldspar) 10~50중량%, 초석(niter) 1~20중량%, 소다회(soda ash) 1~20중량%, 붕사(borax) 5~30중량%, 니켈(Ni) 1~7중량%, 규회석(wollastonite) 1~10중량%를 혼합하는 단계와, 상기 혼합된 혼합물을 용융처리하여 비정질 소결체로 제조하는 단계와, 상기 제조된 비정질 소결체를 냉각하는 단계와, 상기 냉각된 냉각물을 분쇄하는 단계를 포함하는 것을 특징으로 한다.In order to accomplish the above object, the present invention provides a method for preparing a ceramic coating composition, which comprises 10 to 50 wt% of barley stone, 10 to 50 wt% of feldspar, 1 to 20 wt% of niter, Mixing 1 to 20% by weight of soda ash, 5 to 30% by weight of borax, 1 to 7% by weight of nickel (Ni) and 1 to 10% by weight of wollastonite, Melting the amorphous sintered body to produce an amorphous sintered body; cooling the produced amorphous sintered body; and pulverizing the cooled cooling body.
상기 용융처리는 1,000~1,400℃로 1~10시간 동안 하는 것을 특징으로 한다.The melting treatment is performed at 1,000 to 1,400 ° C for 1 to 10 hours.
그리고 본 발명에 따른 세라믹 코팅 조성물은 상기한 방법을 통해 제조되는 것을 특징으로 한다.The ceramic coating composition according to the present invention is characterized in that it is produced through the above-described method.
그리고 본 발명에 따른 코팅방법은, 상기한 세라믹 코팅 조성물을 금속 모재의 표면에 도포하는 단계와, 상기 조성물이 도포된 금속 모재를 700~850℃의 온도로 1~20분간 소성처리하는 단계와, 상기 열처리된 금속 모재를 냉각하는 단계를 포함하는 것을 특징으로 한다.The coating method according to the present invention includes the steps of: applying the ceramic coating composition to a surface of a metal base material; firing the metal base material coated with the composition at a temperature of 700 to 850 ° C for 1 to 20 minutes; And cooling the heat-treated metal base material.
상기 코팅 조성물을 금속 모재의 표면에 도포하는 단계는, 상기 코팅 조성물을 10~2,000㎛의 두께로 도포하고, 상기 코팅 조성물을 금속 모재에 도포하는 단계 후, 상기 코팅 조성물이 도포된 금속 모재를 30~200℃의 온도에서 건조하는 단계를 더 포함한 후, 소성처리하는 것을 특징으로 한다. The step of applying the coating composition to the surface of the metal base material may include coating the coating composition to a thickness of 10 to 2,000 mu m and then applying the coating composition to the base metal material, Drying at a temperature of < RTI ID = 0.0 > 200 C, < / RTI >
상기 금속 모재는 파이프이고, 상기 소성처리하는 단계는, 고주파 유도 가열장치로 가열하여 소성처리하는 것을 특징으로 한다. The metal base material is a pipe, and the step of performing the sintering treatment is characterized in that the sintering treatment is performed by heating with a high frequency induction heating apparatus.
상기 열처리하는 단계는, 박스(Box)로에서 소성하는 것을 특징으로 한다.The heat-treating step is characterized by baking in a box furnace.
본 발명에 의하면, 유기바인더의 사용이나 고온 소결의 공정 없이 금속 모재의 표면에 내부식성이 특히 우수한 세라믹 박막을 형성시킬 수 있는 장점이 있다. 또한, 원적외선을 방사하여 자정능력이 뛰어난 세라믹 박막을 형성시킬 수 있다는 장점이 있다. According to the present invention, there is an advantage that a ceramic thin film having particularly excellent corrosion resistance can be formed on the surface of a metal base material without using an organic binder or a high-temperature sintering process. Further, there is an advantage that a ceramic thin film having excellent self-cleaning ability can be formed by radiating far-infrared rays.
아울러, 작업이 간편하며, 생산효율이 우수하여 세라믹 코팅 제품의 제조원가를 현저히 절감할 수 있는 장점이 있다.In addition, it is advantageous in that the manufacturing cost is remarkably reduced because the work is simple and the production efficiency is excellent.
도 1은 본 발명에 따른 세라믹 코팅 조성물의 제조공정도.
도 2는 본 발명에 따른 세라믹 코팅 방법의 공정도.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a process flow diagram for manufacturing a ceramic coating composition according to the present invention; FIG.
2 is a process diagram of a ceramic coating method according to the present invention.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
먼저, 본 발명에 따른 세라믹 코팅 조성물의 제조방법에 대해 설명한다.First, a method of manufacturing a ceramic coating composition according to the present invention will be described.
종래 세라믹 코팅 조성물은 유기바인더를 사용하거나, 코팅 공정 시 고온 소결이 요구되었다. 또한, 종래 1100℃ 이하의 저온 소결 공정을 갖는 조성물은 내부식성에 제한이 있었다. Conventional ceramic coating compositions require the use of organic binders or high temperature sintering in the coating process. In addition, conventionally, a composition having a low-temperature sintering process at 1100 DEG C or less has a limitation in corrosion resistance.
본 발명에 따른 세라믹 코팅 조성물은 이러한 단점을 해소하기 위한 것으로, 저온 소결이 가능하면서도 내부식성이 현저히 우수하다는 데 특징이 있다.The ceramic coating composition according to the present invention is characterized by being capable of low-temperature sintering and remarkably excellent in corrosion resistance, in order to overcome such disadvantages.
이를 위한 본 발명의 세라믹 코팅 조성물의 제조방법은, 맥반석(barley stone) 10~50중량%, 장석(feldspar) 10~50중량%, 초석(niter) 1~20중량%, 소다회(soda ash) 1~20중량%, 붕사(borax) 5~30중량%, 니켈(Ni) 1~7중량%, 규회석(wollastonite) 1~10중량%를 혼합하는 단계와, 상기 혼합된 혼합물을 용융처리하여 비정질 소결체로 제조하는 단계와, 상기 제조된 비정질 소결체를 냉각하는 단계와, 상기 냉각된 냉각물을 분쇄하는 단계를 포함하는 것을 특징으로 한다.The method for preparing the ceramic coating composition of the present invention comprises 10 to 50% by weight of barley stone, 10 to 50% by weight of feldspar, 1 to 20% by weight of niter, soda ash 1 By weight of borax, 1 to 7% by weight of nickel (Ni), and 1 to 10% by weight of wollastonite; and mixing the mixed mixture with the amorphous sintered body A step of cooling the amorphous sintered body thus produced, and a step of pulverizing the cooled cooling body.
이하, 도 1을 참조하여 본 발명에 따른 항균 세라믹 코팅 조성물의 제조방법에 대해 상세히 설명한다.Hereinafter, a method for producing the antibacterial ceramic coating composition according to the present invention will be described in detail with reference to FIG.
맥반석(barley stone) 10~Barley stone 10 ~ 50중량%50 wt% , , 장석feldspar (feldspar) 10~(feldspar) 50중량%50 wt% , 초석(niter) 1~, Niter 1 ~ 20중량%20 wt% , 소다회(soda ash) 1~, Soda ash 1 ~ 20중량%20 wt% , , 붕사borax (borax) 5~(borax) 30중량%30 wt% , 니켈(Ni) 1~7중량%, 규회석(wollastonite) 1~10중량%를 혼합하는 단계.1 to 7% by weight of nickel (Ni), and 1 to 10% by weight of wollastonite.
먼저, 맥반석, 장석, 초석, 소다회, 붕사, 니켈, 규회석을 혼합한다. 이때, 상기한 성분들을 이용하는 이유는, 이러한 성분을 통해 세라믹 박막의 내부식성을 현저히 상승시키고, 원적외선 방사의 기능성을 부여하기 위함이다. 아울러, 상기 조성물의 열팽창계수가 금속, 특히 철 또는 스테인리스 스틸 소재의 열팽창계수와 유사하도록 함으로써, 코팅층, 즉 세라믹 박막의 물성이 우수하면서도 박리현상이 일어나지 않고 부착력이 뛰어나도록 하기 위함이다. First, the elvan, feldspar, foundation stone, soda ash, borax, nickel and wollastonite are mixed. At this time, the above-mentioned components are used for the purpose of significantly increasing the corrosion resistance of the ceramic thin film through these components and imparting the functionality of far-infrared radiation. In addition, the thermal expansion coefficient of the composition is similar to that of a metal, especially iron or stainless steel, so that the coating layer, that is, the ceramic thin film has excellent physical properties, but does not cause peeling and has excellent adhesion.
더욱 구체적으로, 상기 맥반석은 원적외선을 다량 방사하여 탈취 및 항균의 효과를 부여하고, 상기 장석은 코팅층의 물성을 개선하며, 부식 저항성의 향상에도 기여하고, 상기 초석은 코팅층의 물성 향상은 물론, 코팅층 표면의 불균일화 현상을 방지하는 역할을 한다. 상기 소다회는 코팅층의 강도를 향상시키며, 코팅층이 균일하게 형성될 수 있도록 돕고, 상기 붕사는 코팅층의 부착력을 향상시켜주는 것은 물론, 조성 보전성을 좋게 하며, 상기 니켈은 강도를 향상시켜주고, 상기 규회석은 코팅층의 내부식성 및 강도를 현저히 증대시켜 주는 역할을 한다. More specifically, the elvan forms a large amount of far-infrared rays to impart deodorizing and antibacterial effects. The feldspar improves the physical properties of the coating layer and also contributes to the improvement of corrosion resistance. The core stone can improve the physical properties of the coating layer, And the like. The soda ash improves the strength of the coating layer and helps the coating layer to be uniformly formed. The borax improves the adhesion of the coating layer, improves the compositional integrity, and improves the strength of the wollastonite Serves to significantly increase the corrosion resistance and strength of the coating layer.
그리고 그 혼합비는, 맥반석 10~50중량%, 장석 10~50중량%, 초석 1~20중량%, 소다회 1~20중량%, 붕사 5~30중량%, 니켈 1~7중량%, 규회석 1~10중량%를 혼합하는 것이 바람직한바, 이는 제조되는 세라믹 코팅 조성물의 원적외선 방사율, 용융온도, 내부식성, 모재와의 부착성 등을 고려한 것으로, 이러한 혼합비를 벗어날 경우 상기한 특성들이 저하되므로 상기한 혼합비로서 혼합한다.The mixture ratio is 10 to 50% by weight of elvan, 10 to 50% by weight of feldspar, 1 to 20% by weight of corundum, 1 to 20% by weight of soda ash, 5 to 30% by weight of borax, 1 to 7% by weight of nickel, 10% by weight of the ceramic coating composition is mixed. This is because considering the far-infrared ray emissivity, the melting temperature, the corrosion resistance and the adhesion with the base material of the ceramic coating composition to be produced, .
한편, 코팅 조성물에 다른 색상을 부여하기 위하여 공지된 안료 등을 추가로 더 혼합할 수 있음은 당연하며, 그 실시를 제한하지 않는다. 아울러, 안료 외에도 물성 향상을 위해 이 기술이 속하는 분야에서 공지된 성분을 더 포함할 수도 있음은 당연하다. On the other hand, it is obvious that it is possible to further mix known pigments and the like to impart different colors to the coating composition, and the practice thereof is not limited. In addition to pigments, it is of course also possible to further include known components in the field to which this technique belongs in order to improve physical properties.
또한, 상기 혼합물에 사용되는 각 재료의 입도는 제한하지 않는다.The particle size of each material used in the mixture is not limited.
상기 혼합된 혼합물을 용융처리하여 비정질 소결체로 제조하는 단계.And melting the mixed mixture to produce an amorphous sintered body.
다음으로, 상기 혼합된 혼합물을 용융처리하여 비정질 소결체로 제조한다. 이때, 상기 용융처리는 1,000~1,400℃의 온도에서 1~10시간 동안 소결하는 것을 의미하는바, 상기 용융처리 온도가 낮을 경우 소결이 어렵고, 1400℃보다 높을 경우 불필요한 에너지의 소요로 인해 제조비용이 높아지는 단점이 있다. Next, the mixed mixture is melt-treated to produce an amorphous sintered body. In this case, the melting treatment means sintering at a temperature of 1,000 to 1,400 ° C. for 1 to 10 hours. When the melting temperature is low, sintering is difficult. When the melting temperature is higher than 1400 ° C., .
본 발명에서는 상기 혼합물을 소결하여 비정질 상태의 세라믹 코팅 조성물을 제조하므로, 코팅 공정시 1,100℃ 이상의 고온 소결 공정을 수행하지 않더라도 강도, 내마모성, 부착력, 표면경도 및 내부식성 등이 우수한 세라믹 피막을 형성할 수 있다는 특징이 있다. In the present invention, since the amorphous ceramic coating composition is produced by sintering the mixture, a ceramic coating having excellent strength, abrasion resistance, adhesion, surface hardness and corrosion resistance is formed without performing a high temperature sintering process at 1,100 ° C or more Can be.
상기 제조된 비정질 소결체를 냉각하는 단계.Cooling the produced amorphous sintered body.
그리고 상기 제조된 비정질 소결체를 냉각시킨다. 상기 냉각은 상온에 방치하거나, 냉풍 등을 이용하거나, 냉각 롤러를 통과시키는 등의 건식 방법을 채택할 수도 있고, 물에 투입하여 냉각시키는 습식 냉각방법을 채택할 수 있는 것으로, 그 방법을 제한하지 않는다. Then, the produced amorphous sintered body is cooled. The cooling may be performed by a dry method such as leaving at room temperature, using cold air or passing through a cooling roller, or employing a wet cooling method in which water is added to cool the material. Do not.
이러한 소결체를 냉각하는 방법은 이미 이 기술이 속하는 분야에서 충분히 공지된 사항이므로, 이에 대한 상세한 설명은 생략한다. 또한, 상기 소결체는 분쇄가 가능한 정도로 냉각되면 족한 것으로 통상 20~50℃ 정도면 족하나, 이를 제한하지 않는다. Since the method of cooling the sintered body is well known in the field of the technology, detailed description thereof will be omitted. The sintered body may be cooled to such an extent that the sintered body can be pulverized. The sintered body is usually about 20 to 50 캜, but is not limited thereto.
아울러, 상기 용융처리 및 냉각시의 승온속도와 냉각속도는 특별히 제한이 없으며, 승온 또는 냉각속도를 일정하게 유지하면서 승온 또는 냉각할 수 있고, 점진적 또는 불연속적으로 다양하게 변화시키면서 승온 또는 냉각시킬 수도 있는 것으로, 그 실시를 제한하지 않는다. The heating rate and cooling rate at the time of the melting treatment and cooling are not particularly limited and the temperature can be raised or cooled while the temperature or the cooling rate is kept constant and the temperature can be increased or decreased while varying gradually or discontinuously There is no restriction on the implementation.
상기 냉각된 The cooled 냉각물을Cooling water 분쇄하는 단계. Crushing step.
그리고 상기 냉각된 냉각물을 분쇄한다. 상기 분쇄 역시 건식으로 밀링하여 분말상의 코팅 조성물로서 사용할 수도 있고, 냉각물을 물과 함께 분쇄, 즉 습식 밀링하여 액상의 코팅 조성물로서 사용할 수도 있으며, 습식 분쇄한 후, 다시 냉풍, 열풍 또는 자연건조하여 분말상의 코팅 조성물로서 사용할 수도 있는 것으로, 그 실시를 제한하지 않는다. And the cooled cooling product is pulverized. The pulverization can also be carried out by dry milling and used as a powder coating composition. Alternatively, the cooling product may be pulverized, that is, wet milled with water to be used as a liquid coating composition, or may be wet pulverized and then cooled again, And may be used as a coating composition in a powder form.
또한, 그 분쇄 입도 역시 크게 제한하지 않으나, 1~300㎛ 정도의 크기일 수 있다. Also, the grain size is not limited to a large extent, but may be about 1 to 300 mu m.
상기와 같이 제조된 본 발명의 항균 세라믹 코팅 조성물은 앞서 설명한 바와 같이, 원적외선의 방사율이 높고, 모재와의 접착력이 우수하며, 특히 우수한 내부식성을 갖는다는 데 특징이 있다. 또한, 비정질의 구조이기 때문에 코팅시 고온 소결 공정을 포함하지 않더라도 이러한 특징이 발휘된다는 점에 특징이 있다. As described above, the antimicrobial ceramic coating composition according to the present invention is characterized in that it has a high emissivity of far-infrared rays, an excellent adhesion to a base material, and particularly excellent corrosion resistance. In addition, since it is an amorphous structure, it is characterized in that these characteristics are exhibited even when a high temperature sintering process is not included in coating.
이하, 이러한 본 발명의 코팅 조성물을 이용하여 금속 모재를 코팅하는 방법에 대해 도 2를 참조하여 상세히 설명한다.Hereinafter, a method of coating a metal base material using the coating composition of the present invention will be described in detail with reference to FIG.
본 발명에 따른 코팅방법은, 상기한 조성물을 금속 모재의 표면에 도포하는 단계와, 상기 조성물이 도포된 금속 모재를 700~850℃의 온도로 1~20분간 소성처리하는 단계와, 상기 열처리된 금속 모재를 냉각하는 단계를 포함하는 것을 특징으로 한다.The coating method according to the present invention includes the steps of applying the composition to the surface of a metal base material, firing the metal base material coated with the composition at a temperature of 700 to 850 캜 for 1 to 20 minutes, And cooling the metal base material.
상기한 세라믹 코팅 조성물을 금속 The ceramic coating composition described above was mixed with a metal 모재의Of base metal 표면에 도포하는 단계. Applying to the surface.
먼저, 상기한 세라믹 코팅 조성물을 금속 모재의 표면에 도포한다. 여기서, 상기 세라믹 코팅 조성물은 앞서 설명한 바와 같이, 분말 상 일수도 있으며, 액상의 상태일 수도 있는 것으로 그 종류는 무관하다. First, the above-mentioned ceramic coating composition is applied to the surface of the metal base material. As described above, the ceramic coating composition may be in a powder state or in a liquid state, and the kind thereof is irrelevant.
그리고 상기 모재로는 금속 소재로 된 다양한 종류의 것을 사용할 수 있지만, 특히 철 또는 스테인리스 스틸을 포함하는 소재의 모재를 사용할 수 있다. 이는 후술될 열처리 단계에서 고주파 유도 가열장치 또는 박스로를 이용하므로, 철 또는 스테인리스 스틸을 포함하는 소재를 이용할 경우 가열이 더욱 용이하기 때문이다. As the base material, various kinds of metal materials can be used, but in particular, a base material of a material including iron or stainless steel can be used. This is because the high-frequency induction heating apparatus or the box furnace is used in the heat treatment step to be described later, so that it is easier to heat when a material including iron or stainless steel is used.
또한, 본 발명에서는 금속 모재로서 다양한 형태의 것을 적용할 수 있으며, 특히 종래 세라믹 코팅의 적용이 어려웠던 파이프도 이용할 수 있다는 점에 특징이 있다. 즉, 고 내식성 및 고 내산성을 요구하는 파이프는, 스테인리스 소재를 원형 그대로 두껍게 사용해야 하지만, 소재의 고비용으로 인해 사용을 꺼리는 경우가 대부분이었으며, 철 소재를 이용할 경우 내식성, 내산성이 현저히 떨어지는 단점이 있었다. 본 발명을 따르면 철은 물론 스테인리스 스틸의 두께를 얇게 하고, 본 발명의 조성물을 코팅하면 고 내식성 및 내산성을 확보할 수 있어 저비용의 세라믹 파이프를 생산할 수 있기 때문이다. 아울러, 금속 모재로서 파이프 이외 다양한 형태의 것을 이용할 수 있음은 당연하다.In addition, the present invention can be applied to various types of metal base materials. In particular, the present invention is characterized in that pipes which are difficult to apply the conventional ceramic coating can also be used. In other words, a pipe requiring high corrosion resistance and high acid resistance is required to use a thick stainless steel material as it is in a circular shape. However, most of the pipes are unlikely to be used due to high cost of materials, and corrosion resistance and acid resistance are remarkably deteriorated when iron materials are used. According to the present invention, it is possible to produce a low-cost ceramic pipe because it can secure high corrosion resistance and acid resistance by coating the composition of the present invention while reducing the thickness of stainless steel as well as iron. It goes without saying that various types of metal base materials other than pipes can be used.
여기서, 상기 코팅 조성물을 도포하여서 되는 도포층, 즉 코팅층의 두께는, 10~2,000㎛인이 바람직한데, 코팅층의 두께가 10㎛ 미만일 경우 충분한 물성확보가 어렵고, 2,000㎛를 초과하더라도 더 이상의 세라믹 코팅 제품으로서의 물성증가가 없으면서도 비용이 증가하므로 효율적이지 못하기 때문이다. 상기 코팅층의 두께는 코팅의 횟수, 코팅 방법 등에 따라 조절할 수 있다.If the thickness of the coating layer is less than 10 mu m, it is difficult to secure sufficient physical properties. If the thickness of the coating layer is more than 2,000 mu m, This is because the cost increases without increasing the physical properties of the product, which is not efficient. The thickness of the coating layer can be controlled according to the number of coatings, the coating method, and the like.
그리고 상기 코팅방법은 종래 공지된 다양한 방법을 적용할 수 있는바, 딥코팅법(Dip coationg), 분체 코팅법(powder coating), 스프레이 코팅법(Spray coating), 브러시법(brushing), 용사코팅법(thermal spraying) 등 어떠한 방법을 사용해도 무방하다. 즉, 모재의 종류 및 형태, 요구되는 코팅층의 두께에 따라 적절히 선택할 수 있으며, 가장 바람직하게는 습식 분체(Spray coating) 또는 용사코팅법(Thermal spraying)을 이용하는 것이다.As the coating method, various methods known in the art can be applied. Examples of the coating method include a dip coating method, a powder coating method, a spray coating method, a brushing method, a spray coating method (thermal spraying) may be used. That is, it can be appropriately selected according to the type and the shape of the base material and the thickness of the required coating layer, and the spray coating or the thermal spraying is most preferably used.
상기 코팅 조성물이 도포된 금속 모재When the coating composition is applied to the metal base material 를To 건조하는 단계. Drying step.
다음으로, 상기 코팅 조성물이 도포된 금속 모재를 건조한다. 상기 건조는 30~200℃의 온도의 건조실에서 이루어질 수 있으며, 건조시간은 제한하지 않는다. 즉, 상기 건조는 코팅층이 충분히 건조될 정도까지 진행하는바, 그 건조온도에 따라 건조시간이 달라지나 통상 5분~1시간 정도이다. Next, the metal base material to which the coating composition is applied is dried. The drying may be performed in a drying chamber at a temperature of 30 to 200 DEG C, and the drying time is not limited. That is, the drying is performed until the coating layer is sufficiently dried, and the drying time varies depending on the drying temperature, but is usually about 5 minutes to 1 hour.
다만, 분말 상의 코팅 조성물을 이용하여 세라믹 조성물을 도포하였을 경우, 상기 건조 단계는 생략할 수 있다.However, when the ceramic composition is applied using the powdery coating composition, the drying step may be omitted.
상기 건조된 금속 The dried metal 모재를Base material 700~850℃의 온도로 1~20분간 소성처리하는 단계. And calcining at a temperature of 700 to 850 캜 for 1 to 20 minutes.
그리고 상기 건조된 금속 모재를 700~850℃의 온도로 1~20분간 소성처리한다.The dried metal base material is fired at a temperature of 700 to 850 DEG C for 1 to 20 minutes.
이때, 상기 열처리는 고주파 유도 가열장치 또는 박스로(BOX爐)를 이용한다.At this time, a high-frequency induction heating apparatus or a box furnace is used as the heat treatment.
여기서, 상기 고주파 유도 가열장치란, 피열물(被熱物)이 되는 도체를 코일 내에 두고, 여기에 고주파 전류를 흘리면 금속 도체의 표면 가까이에 와전류가 생겨 이 손실의 열로 가열하는 장치를 말하는 것으로, 상기 건조된 금속 모재를 피열물로 하여 소성처리하는 것이다. 이러한 고주파 유도 가열장치는 금속 모재가 파이프일 경우 유용하다.Here, the high-frequency induction heating apparatus refers to a device that places a conductor serving as an object to be heated in a coil and causes an eddy current to be generated near the surface of the metal conductor when a high-frequency current is passed therethrough, And the dried metal base material is subjected to firing treatment as an object to be heated. Such a high frequency induction heating apparatus is useful when the metal base material is a pipe.
또한, 박스로는 전기 또는 가스의 열원을 사용하며, 다량을 한번에 넣고 소성하는 박스 형태의 고정식로와, 하나씩 지그에 걸어 로타리식으로 회전하는 터널 형태의 연속식로가 있다. 이러한 박스로의 크기는 모재의 크기와 비례하여 제작되며, 지그(JIG)와 대차(臺車)를 사용한다. 이때 상기 대차는 모터를 부착하어 자동으로 사용이 가능하다. 또한, 모재의 모양에 따라 연속 소성로의 하부에 레일을 설치하고 지그에 눕혀서 지나가거나, 소성로 상부에 레일을 설치하여 지그에 걸여 세워서 지나갈 수도 있다. In addition, the box furnace uses a heat source of electric or gas, a box type stationary furnace in which a large quantity is charged at one time and a furnace, and a tunnel type continuous furnace rotatably mounted in a jig. The size of the box is made proportional to the size of the base material, and a jig and a cart are used. At this time, the bogie can be used automatically by attaching a motor. In addition, depending on the shape of the base material, rails may be provided on the lower part of the continuous firing furnace and laid on the jig, or rails may be installed on the upper part of the firing furnace,
아울러, 그 소성처리 온도는 종래 1,100℃ 이상이야 했으나, 본 발명에서는 700~850℃의 온도로 열처리하는 것만으로도, 충분히 세라믹 피막이 형성되고, 그 물성 역시 현저히 개선된다. 이때, 상기 소성처리 시간은 1~20분이면 족하다.In addition, although the baking treatment temperature is conventionally higher than 1,100 ° C in the present invention, the ceramic coating film is sufficiently formed by heat treatment at a temperature of 700 to 850 ° C, and its physical properties are also remarkably improved. At this time, the calcination treatment time may be 1 to 20 minutes.
상기 remind 열처리된Heat-treated 금속 모재 Metal base material 를To 냉각하는 단계. Cooling step.
다음으로, 공지된 방법을 통해 상기 열처리된 금속 모재를 상온 정도로 냉각함으로써, 코팅작업을 완료한다. Next, the heat-treated metal base material is cooled to about room temperature through a known method to complete the coating operation.
상기와 같은 방법으로 코팅된 금속 모재는 그 표면이 매끄럽고, 광택이 있으며, 코팅층과 금속 모재간의 접착력이 우수하다는 특징이 있다. 또한, 내산성, 강도, 내열성 및 내마모성이 특히 우수하다.The surface of the coated metal base material is smooth and glossy, and the adhesion between the coating layer and the metal base material is excellent. In addition, it is particularly excellent in acid resistance, strength, heat resistance and abrasion resistance.
따라서, 유기바인더를 포함하지 않고, 고온 소결이 요구되지 않아 간단한 방법으로 환경오염을 유발하지 않으면서 고품질, 즉 고 내산성, 고 강도, 고 내열성 및 고 내마모성의 특징으로 갖는 세라믹 코팅 금속 모재를 제공할 수 있는 장점이 있다. Accordingly, there is provided a ceramic-coated metal base material which does not contain an organic binder, does not require high-temperature sintering and does not cause environmental pollution in a simple manner, and has characteristics of high quality, i.e., high acid resistance, high strength, high heat resistance and high abrasion resistance There are advantages to be able to.
한편, 필요한 경우 본 발명의 코팅 조성물을 적용하기 전, 전처리로서 금속 모재의 표면으로부터 이물질이나 기름때를 제거하고, 코팅 조성물의 흡착력이 향상되도록 샌드블라스팅이나 표면 연마 등의 공정을 추가적으로 포함할 수 있는 것으로, 그 실시를 제한하지 않는다.On the other hand, if necessary, prior to application of the coating composition of the present invention, a pretreatment may further include steps such as sandblasting and surface polishing so as to remove foreign substances or grease from the surface of the metal base material and improve the adsorption force of the coating composition , Its implementation is not limited.
다만, 본 발명에 따라 코팅된 금속 모재는 앞서 설명한 바와 같이, 그 표면이 매끄럽고 광택이 있으므로, 별도의 그라인딩 또는 광택 공정과 같은 후처리 마감 작업은 불필요하다.However, as described above, since the surface of the coated metal base material according to the present invention is smooth and glossy, a post-finishing operation such as a separate grinding or polishing process is unnecessary.
또한, 본원발명은 그 부착성이 우수하여, 코팅층의 박리현상이 일어나지 않으므로, 전처리로서 금속 모재의 표면에 미세 요철을 형성하는 산처리공정도 요구되지 않는다. Further, since the present invention is excellent in adhesion and does not cause peeling of the coating layer, an acid treatment step of forming fine unevenness on the surface of the metal base material as a pretreatment is not required.
이하, 구체적인 실시예를 통해 본 발명을 더욱 상세히 설명한다. Hereinafter, the present invention will be described in more detail with reference to specific examples.
(실시예 1)(Example 1)
맥반석 30중량%, 장석 25중량%, 초석 10중량%, 소다회 10중량%, 붕사 15중량%, 니켈 5중량%, 규회석 5중량%로 되는 코팅 재료를 준비하였다. 그리고 이를 1200℃에서 3시간 용융처리하여 비정질 소결체로 제조하고, 상온 냉각하여 30℃가 되도록 한 후, 1~300㎛의 크기로 건식 밀링하였다. A coating material was prepared which contained 30% by weight of elvan, 25% by weight of feldspar, 10% by weight of cornerstone, 10% by weight of soda ash, 15% by weight of borax, 5% by weight of nickel and 5% by weight of wollastonite. Then, the amorphous sintered body was melted at 1200 ° C. for 3 hours, cooled to room temperature, and then milled to a size of 1 to 300 μm.
그리고 상기 건식 밀링된 조성물을 모재의 표면에 분체 코팅하였다. 그리고 박스로에서 800℃로 10분간 소성처리한 후, 상온 냉각시켰다. 상기 코팅된 피막의 두께는 100㎛로 하였다. The dry milled composition was powder coated onto the surface of the base material. The mixture was calcined in a box furnace at 800 ° C for 10 minutes, and then cooled at room temperature. The thickness of the coated film was 100 mu m.
여기서, 상기 모재로는 2T의 두께를 갖는 스테인레스 304 강판과, KS D 3504에서 규정된 철근인 D22를 각각 사용하였다.Here, as the base material, a stainless steel 304 steel plate having a thickness of 2T and a reinforcing bar D22 specified in KS D 3504 were used.
(비교예 1)(Comparative Example 1)
실시예 1과 동일하게 실시하되, 상기 코팅 재료로서 규석 25중량%, 장석 20중량%, 나트륨 10중량%, 붕소 6중량%, 빙정석 6중량%, 이산화티탄 6중량%, 산화알루미늄 16중량%, 망간 6중량%, 니켈 5중량%를 혼합하여 사용하였다. The coating material was prepared in the same manner as in Example 1 except that 25 wt% of silica, 20 wt% of feldspar, 10 wt% of sodium, 6 wt% of boron, 6 wt% of cryolite, 6 wt% of titanium dioxide, 6 wt% of manganese, and 5 wt% of nickel were mixed and used.
(시험예 1)(Test Example 1)
상기 실시예 1의 원적외선 방사율을 테스트하였다. 시험방법은 KCL-FIR-1005;2011에 따랐으며, FT-IR Spectrometer를 이용하여 측정하였다. 시편으로는 실시예 1의 코팅층이 형성된 스테인레스 304 강판(10cm×10cm, 2T)을 사용하였다. The far infrared ray emissivity of Example 1 was tested. The test method was followed in accordance with KCL-FIR-1005; 2011 and measured by FT-IR spectrometer. As the test piece, a stainless steel 304 plate (10 cm x 10 cm, 2T) having the coating layer of Example 1 was used.
(측정온도:40℃, 측정파장: 5㎛~20㎛)Far-infrared emissivity
(Measurement temperature: 40 占 폚, measurement wavelength: 5 占 퐉 to 20 占 퐉)
(24.2±0.3)% R.H.
(22.4 ± 0.1) ° C
(24.2 ± 0.3)% RH
(측정온도:40℃, 측정파장: 5㎛~20㎛)Far-infrared radiation energy
(Measurement temperature: 40 占 폚, measurement wavelength: 5 占 퐉 to 20 占 퐉)
(24.2±0.3)% R.H.(22.4 ± 0.1) ° C
(24.2 ± 0.3)% RH
상기 표 1에서 확인할 수 있는 바와 같이, 실시예 1은 원적외선 방사율이 85%에 달하며, 높은 방사에너지를 가짐을 확인하였다. As can be seen from the above Table 1, Example 1 shows that the far infrared ray emissivity reaches 85% and has a high radiant energy.
(시험예 2)(Test Example 2)
68% 질산(HNO3), 98% 황산(H2SO4), 35% 염산(HCl), 55% 불산(HF)을 이용하여 실시예 1 및 비교예 1의 내산성을 테스트하였다. 내산성 테스트를 위하여 상기 실시예 1 및 비교예 1의 코팅층이 형성된 철근을 길이가 3cm가 되도록 시편을 준비하였다.The acid resistance of Example 1 and Comparative Example 1 was tested using 68% nitric acid (HNO 3 ), 98% sulfuric acid (H 2 SO 4 ), 35% hydrochloric acid (HCl) and 55% hydrofluoric acid (HF). For the acid resistance test, specimens were prepared so that the reinforcing bars formed with the coating layers of Example 1 and Comparative Example 1 had a length of 3 cm.
테스트 방법은 종이컵 8개에 질산 150㎖, 황산 150㎖, 염산 150㎖ 및 불산 150㎖를 각각 2개씩 담아 Aset(질산, 황산, 염산 및 불산 각 1개씩)과 B set(질산, 황산, 염산 및 불산 각 1개씩)으로 나누어 둔 후, Aset의 종이컵에 실시예 1의 시편을, B set의 종이컵에는 비교예 1의 시편을 각각 투입하여 24시간 방치한 후, 시편을 꺼내 시편의 적청발생 정도를 디지털면적계를 이용하여 측정하고, 부식면적율을 계산하였다. 이때 부식 면적율의 계산은 부식면적/측정면적 ×100으로 하였다. 이때 각 산의 온도는 20℃로 유지하였다.Test methods were as follows: Acet (one each of nitric acid, sulfuric acid, hydrochloric acid, and hydrofluoric acid) and B set (nitric acid, sulfuric acid, hydrochloric acid, and hydrochloric acid) containing two 150 ml of nitric acid, 150 ml of sulfuric acid, And one set of each one of the hydrofluoric acid). Thereafter, the specimen of Example 1 was placed in a paper cup of Aset and the specimen of Comparative Example 1 was placed in a paper cup of B set. After 24 hours, the specimen was taken out and the degree of redness A digital area meter was used to measure the corrosion area rate. At this time, the calculation of the corrosion area ratio was made as corrosion area / measurement area × 100. The temperature of each acid was maintained at 20 ° C.
그리고 대조군으로서는 코팅층이 형성되지 않은 철근을 동일한 크기로 준비하여 사용하였다.As a control, reinforcing bars having no coating layer were prepared in the same size.
상기 표 2에서 확인할 수 있는 바와 같이 실시예 1은 질산, 황산, 염산, 불산 모두에서 반응 없음을 확인하였다. 반면, 비교예 1은 황산과 염산에 반응이 없음을 확인하였으나, 질산과 불산에서 약간의 부식이 진행되며, 대조군은 질산, 황산, 염산 및 불산 모두에 다량의 부식이 진행됨을 확인하였다. As can be seen from the above Table 2, it was confirmed that in Example 1, no reaction was observed in all of nitric acid, sulfuric acid, hydrochloric acid and hydrofluoric acid. On the other hand, in Comparative Example 1, it was confirmed that there was no reaction with sulfuric acid and hydrochloric acid. However, slight corrosion occurred in nitric acid and hydrofluoric acid, and a large amount of corrosion was observed in nitric acid, sulfuric acid, hydrochloric acid and hydrofluoric acid.
(시험예 3)(Test Example 3)
상기 실시예 1 및 비교예 1의 염수 테스트를 실시하였다. 상기 염수 테스트를 위하여 상기 실시예 1 및 비교예 1의 코팅층이 형성된 철근을 길이가 3cm가 되도록 시편을 준비하였다. 상기 염수 테스트는 7%의 염화나트륨 수용액과 15%의 염화나트륨 수용액에 상기 실시예 1 및 비교예 1의 시편을 30일간 침지(염화나트륨 수용액의 온도 30℃) 시킨 후, 적청발생 정도를 디지털면적계를 이용하여 측정하고, 부식면적율을 계산하였다. 이때 부식면적율의 계산은 부식면적/측정면적 ×100로 하였다. The salt test of Example 1 and Comparative Example 1 was conducted. For the salt water test, specimens were prepared so that the reinforcing bars formed with the coating layers of Example 1 and Comparative Example 1 had a length of 3 cm. The salt water test was conducted by immersing the specimen of Example 1 and Comparative Example 1 in a 7% aqueous solution of sodium chloride and an aqueous solution of 15% of sodium chloride for 30 days (at a temperature of 30 캜 of sodium chloride aqueous solution) And the corrosion area ratio was calculated. At this time, the calculation of the corrosion area ratio was made as corrosion area / measurement area × 100.
그리고 대조군으로서는 코팅층이 형성되지 않은 철근을 동일한 크기로 준비하여 사용하였다.As a control, reinforcing bars having no coating layer were prepared in the same size.
상기 표 3에서 확인할 수 있는 바와 같이, 실시예 1은 염수 테스트 결과 부식이 전혀 일어나지 않았음을 확인하였다.As can be seen from the above Table 3, in Example 1, it was confirmed that no corrosion was observed as a result of the salt water test.
이상, 본 발명을 바람직한 실시예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the scope of the present invention is not limited to the disclosed exemplary embodiments. It will also be appreciated that many modifications and variations will be apparent to those skilled in the art without departing from the scope of the invention.
Claims (7)
상기 혼합된 혼합물을 1,000~1,400℃로 1~10시간 동안 용융처리하여 비정질 소결체로 제조하는 단계와,
상기 제조된 비정질 소결체를 냉각하는 단계와,
상기 냉각된 냉각물을 분쇄하는 단계를 포함하는 것을 특징으로 하는 세라믹 코팅 조성물의 제조방법.
10 to 50% by weight of barley stone, 10 to 50% by weight of feldspar, 1 to 20% by weight of niter, 1 to 20% by weight of soda ash, 5 to 30% by weight of borax 1 to 7% by weight of nickel (Ni) and 1 to 10% by weight of wollastonite,
Melting the mixed mixture at 1,000 to 1,400 ° C for 1 to 10 hours to produce an amorphous sintered body;
Cooling the produced amorphous sintered body,
And milling the cooled cooling product. ≪ RTI ID = 0.0 > 11. < / RTI >
A ceramic coating composition produced by the process of claim 2.
상기 조성물이 도포된 금속 모재를 700~850℃의 온도로 1~20분간 소성처리하는 단계와,
상기 열처리된 금속 모재를 냉각하는 단계를 포함하는 것을 특징으로 하는 세라믹 코팅 조성물의 코팅방법.
Applying the ceramic coating composition of claim 3 to the surface of the metal base material,
Firing the metal base material coated with the composition at a temperature of 700 to 850 캜 for 1 to 20 minutes;
And cooling the heat treated metal matrix. ≪ RTI ID = 0.0 > 11. < / RTI >
상기 코팅 조성물을 금속 모재의 표면에 도포하는 단계는, 상기 코팅 조성물을 10~2,000㎛의 두께로 도포하고,
상기 코팅 조성물을 금속 모재에 도포하는 단계 후,
상기 코팅 조성물이 도포된 금속 모재를 30~200℃의 온도에서 건조하는 단계를 더 포함한 후, 소성처리하는 것을 특징으로 하는 세라믹 코팅 조성물의 코팅방법.
5. The method of claim 4,
Wherein the step of applying the coating composition to the surface of the metal base material comprises applying the coating composition to a thickness of 10 to 2,000 mu m,
After the step of applying the coating composition to the metal base material,
Further comprising a step of drying the metal base material coated with the coating composition at a temperature of 30 to 200 캜, followed by baking treatment.
상기 금속 모재는 파이프이고,
상기 열처리하는 단계는,
고주파 유도 가열장치로 가열하여 열처리하는 것을 특징으로 하는 세라믹 코팅 조성물의 코팅방법.
6. The method of claim 5,
The metal base material is a pipe,
The step of heat-
And heating by a high-frequency induction heating apparatus to heat-treat the ceramic coating composition.
상기 열처리하는 단계는,
박스(Box)로에서 소성하는 것을 특징으로 하는 세라믹 코팅 조성물의 코팅방법.The method according to claim 6,
The step of heat-
Lt; RTI ID = 0.0 > (Box). ≪ / RTI >
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170076286A KR101841968B1 (en) | 2017-06-16 | 2017-06-16 | Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170076286A KR101841968B1 (en) | 2017-06-16 | 2017-06-16 | Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101841968B1 true KR101841968B1 (en) | 2018-03-26 |
Family
ID=61910810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170076286A Expired - Fee Related KR101841968B1 (en) | 2017-06-16 | 2017-06-16 | Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101841968B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200118955A (en) * | 2019-04-09 | 2020-10-19 | 임정욱 | Mineral material composition from basalt source and anti-wear coating layers and anti-wear shaped articles manufactured by using the same |
KR20220128810A (en) * | 2021-03-15 | 2022-09-22 | 김진욱 | Functional ceramic coating agents and their coating methods |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101405322B1 (en) * | 2014-02-28 | 2014-06-11 | 부림산업개발(주) | Inorganic ceramic paint for curing at room temperature and painting method using the same |
KR101703345B1 (en) * | 2016-08-05 | 2017-02-06 | 성기영 | Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it |
-
2017
- 2017-06-16 KR KR1020170076286A patent/KR101841968B1/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101405322B1 (en) * | 2014-02-28 | 2014-06-11 | 부림산업개발(주) | Inorganic ceramic paint for curing at room temperature and painting method using the same |
KR101703345B1 (en) * | 2016-08-05 | 2017-02-06 | 성기영 | Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200118955A (en) * | 2019-04-09 | 2020-10-19 | 임정욱 | Mineral material composition from basalt source and anti-wear coating layers and anti-wear shaped articles manufactured by using the same |
KR102197178B1 (en) | 2019-04-09 | 2020-12-31 | 임정욱 | Mineral material composition from basalt source and anti-wear coating layers and anti-wear shaped articles manufactured by using the same |
KR20220128810A (en) * | 2021-03-15 | 2022-09-22 | 김진욱 | Functional ceramic coating agents and their coating methods |
KR102720786B1 (en) | 2021-03-15 | 2024-10-23 | 김진욱 | Functional ceramic coating agents and their coating methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101703345B1 (en) | Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it | |
Mahadik et al. | Double layer SiO2/Al2O3 high emissivity coatings on stainless steel substrates using simple spray deposition system | |
KR101841970B1 (en) | Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it | |
KR101414019B1 (en) | Method for forming hydrophilic inorganic layer | |
EP2921534A1 (en) | Inorganic paint composition, and method for forming inorganic paint film by using same | |
CN106221559B (en) | A kind of ordinary steel high-temp. resistant antioxidation coating and its application method | |
EP1900847A2 (en) | Annular furnace member coated with inorganic material | |
CN102248166A (en) | Electrode preparation process for depositing diamond abrasive tool with electric sparks | |
KR101841968B1 (en) | Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it | |
CN103386786A (en) | Thermochromism coating with variable emissivity and preparation method thereof | |
CN104817270B (en) | Enamel black glaze and preparation method thereof | |
CN104193173A (en) | Heat-insulating coating material for firing enamel on surface of titanium alloy and preparation method thereof | |
KR101789324B1 (en) | Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it | |
Tao et al. | Comparative study of MoSi2-borosilicate glass coatings on fibrous ceramics prepared by in-situ reaction method and two-step method | |
CN108441006B (en) | High-conversion-rate black body radiation coating | |
KR101841965B1 (en) | Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it | |
KR101841971B1 (en) | Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it | |
CN105463457A (en) | Preparation technique for thermal spraying nano-microcrystalline enamel | |
KR101841957B1 (en) | Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it | |
KR101431148B1 (en) | Method of preparing ceramic coating material for low temperature sintering and coated product using the same | |
CN111303672A (en) | Graphene high-temperature-resistant heat exchange enhanced coating, preparation method and coating method thereof | |
CN106242282B (en) | A kind of ceramic glaze and preparation method thereof of absorbable electromagnetic radiation | |
CN103042479A (en) | Preparation method of ceramic grinding wheel made of metal base grinding stone, glass and tungsten-molybdenum alloy | |
CN107244891A (en) | It is a kind of to repair the production method of surface scratch exterior wall tile automatically | |
JPH0640760A (en) | Base composition for producing large-sized ceramic plate having low water absorbing property and production of large-sized ceramic plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
St.27 status event code: A-0-1-A10-A12-nap-PA0109 |
|
PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
PA0302 | Request for accelerated examination |
St.27 status event code: A-1-2-D10-D16-exm-PA0302 St.27 status event code: A-1-2-D10-D17-exm-PA0302 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-3-3-R10-R18-oth-X000 |
|
PE0902 | Notice of grounds for rejection |
St.27 status event code: A-1-2-D10-D21-exm-PE0902 |
|
E13-X000 | Pre-grant limitation requested |
St.27 status event code: A-2-3-E10-E13-lim-X000 |
|
P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
PR1002 | Payment of registration fee |
Fee payment year number: 1 St.27 status event code: A-2-2-U10-U11-oth-PR1002 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
P14-X000 | Amendment of ip right document requested |
St.27 status event code: A-5-5-P10-P14-nap-X000 |
|
P16-X000 | Ip right document amended |
St.27 status event code: A-5-5-P10-P16-nap-X000 |
|
Q16-X000 | A copy of ip right certificate issued |
St.27 status event code: A-4-4-Q10-Q16-nap-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R14-asn-PN2301 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
PR1001 | Payment of annual fee |
Fee payment year number: 4 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
P14-X000 | Amendment of ip right document requested |
St.27 status event code: A-5-5-P10-P14-nap-X000 |
|
P16-X000 | Ip right document amended |
St.27 status event code: A-5-5-P10-P16-nap-X000 |
|
Q16-X000 | A copy of ip right certificate issued |
St.27 status event code: A-4-4-Q10-Q16-nap-X000 |
|
PR1001 | Payment of annual fee |
Fee payment year number: 5 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
PR1001 | Payment of annual fee |
Fee payment year number: 6 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
PC1903 | Unpaid annual fee |
Not in force date: 20240321 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE St.27 status event code: A-4-4-U10-U13-oth-PC1903 |
|
PC1903 | Unpaid annual fee |
Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20240321 St.27 status event code: N-4-6-H10-H13-oth-PC1903 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |