[go: up one dir, main page]

KR101812536B1 - Wet spinningMethod for preparing GO-CNT composite fibers, GO-Graphene composite fibers, GO-Grephene-CNT composite fibers - Google Patents

Wet spinningMethod for preparing GO-CNT composite fibers, GO-Graphene composite fibers, GO-Grephene-CNT composite fibers Download PDF

Info

Publication number
KR101812536B1
KR101812536B1 KR1020160055046A KR20160055046A KR101812536B1 KR 101812536 B1 KR101812536 B1 KR 101812536B1 KR 1020160055046 A KR1020160055046 A KR 1020160055046A KR 20160055046 A KR20160055046 A KR 20160055046A KR 101812536 B1 KR101812536 B1 KR 101812536B1
Authority
KR
South Korea
Prior art keywords
graphene oxide
graphene
dispersion
carbon nanotube
composite fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020160055046A
Other languages
Korean (ko)
Other versions
KR20170125444A (en
Inventor
박상윤
신민균
김혁준
여창수
조윤제
조강래
Original Assignee
재단법인 차세대융합기술연구원
주식회사 퓨리텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 차세대융합기술연구원, 주식회사 퓨리텍 filed Critical 재단법인 차세대융합기술연구원
Priority to KR1020160055046A priority Critical patent/KR101812536B1/en
Priority to PCT/KR2017/001238 priority patent/WO2017191887A1/en
Publication of KR20170125444A publication Critical patent/KR20170125444A/en
Application granted granted Critical
Publication of KR101812536B1 publication Critical patent/KR101812536B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/06Washing or drying
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/441Yarns or threads with antistatic, conductive or radiation-shielding properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 a) 그래핀산화물/탄소나노튜브 분산액, 그래핀산화물/그래핀 분산액 또는 그래핀산화물/그래핀/탄소나노튜브 분산액을 준비하는 단계; b) 상기 분산액을 CTAB, 키토산, CaCl2, NaOH, KOH 으로 구성된 군에서 선택되는 1종 이상의 제1응고성분, 및 폴리비닐알코올(PVA), 폴리메틸메타아크릴레이트(PMMA), 폴리에틸렌이민(PEI), 폴리비닐필로리돈(PVP), 폴리에틸렌옥사이드(PEO)으로 이루어진 군에서 선택되는 1종 이상의 제2응고성분을 포함하는 응고욕에 방사시켜 겔 섬유를 제조하는 단계; 및 c) 상기 겔 섬유를 건조하는 단계를 포함하는, 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/그래핀/탄소나노튜브 복합섬유의 제조 방법을 제공한다.The present invention provides a method for preparing a graphene oxide / carbon nanotube dispersion, comprising the steps of: a) preparing a graphene oxide / carbon nanotube dispersion, a graphene oxide / graphene dispersion or a graphene oxide / graphene / carbon nanotube dispersion; b) CTAB to the dispersion liquid, chitosan, CaCl 2, NaOH, at least one member selected from the group consisting of KOH first coagulation components, and polyvinyl alcohol (PVA), polymethyl methacrylate (PMMA), polyethylene imine (PEI ), Polyvinylpyrrolidone (PVP), and polyethylene oxide (PEO), to produce a gel fiber; And c) drying the gel fiber to provide a graphene oxide / carbon nanotube conjugated fiber, a graphene oxide / graphene conjugated fiber or a graphene oxide / graphene / carbon nanotube conjugated fiber do.

Figure 112016043010616-pat00005
Figure 112016043010616-pat00005

Description

습식 방사공정을 이용한 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/그래핀/탄소나노튜브 복합섬유의 제조 방법{Wet spinningMethod for preparing GO-CNT composite fibers, GO-Graphene composite fibers, GO-Grephene-CNT composite fibers}TECHNICAL FIELD [0001] The present invention relates to a method for producing graphene oxide / carbon nanotube conjugated fiber, graphene oxide / graphene conjugated fiber or graphene oxide / graphene / carbon nanotube conjugated fiber using a wet spinning process, GO-Graphene composite fibers, GO-Grephene-CNT composite fibers}

본 발명은 습식 방사공정을 이용하여 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/그래핀/탄소나노튜브 복합섬유를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing graphene oxide / carbon nanotube composite fibers, graphene oxide / graphene composite fibers or graphene oxide / graphene / carbon nanotube composite fibers using a wet spinning process.

그래핀(Graphene), 탄소나노튜브(Carbon-Nanotube, 이하 'CNT')와 같은 나노탄소계열 물질은 전기적 특성, 열적 특성, 유연성, 기계적 강도가 매우 우수하여 차세대 전자 재료, 방열 재료, 초고강도 구조 재료로 주목받고 있는 첨단 소재이다.Nano-carbon materials such as Graphene and Carbon-Nanotube (CNT) have excellent electrical properties, thermal properties, flexibility, and mechanical strength, so that they can be used as next generation electronic materials, It is a high-tech material attracting attention as a material.

그래핀은 탄소 원자들이 sp2 혼성으로 육각형 벌집 모양을 이루는 2차원 평면 구조의 탄소 동소체로서, 단층 그래핀의 두께는 탄소원자 1개의 두께인 0.2 ~ 0.3 nm이고, 단층 그래핀은 물론, 10층 이하, 바람직하게는 2, 3층 정도의 적층 그래핀 구조 역시 통상적인 그래핀의 범주에 속한다.Graphene is a carbon isotope with a two-dimensional planar structure in which carbon atoms form a hexagonal honeycomb structure by sp 2 hybridization. The thickness of the single-layer graphene is 0.2 to 0.3 nm, which is one carbon atom thick. Hereinafter, the laminated graphene structure of about two or three layers is also within the general graphene category.

그래핀의 제조 방법으로는 화학기상증착법(CVD), 에피텍셜 성장법(Epitaxial Growth), 비산화 박리법(Nonoxidative Exfoliation), 화학적 박리법(Chemical Exfoliation) 등이 알려져 있다. 이 중 화학기상증착법, 에피텍셜 성장법, 비산화 박리법은 고품질의 순수 그래핀을 얻을 수 있는 장점이 있으나, 그래핀의 수율이 낮아 대량생산이 어렵고, 제조 비용이 높은 단점이 있어 현재 그 사용에 큰 제한이 있다. As a method of producing graphene, there are known chemical vapor deposition (CVD), epitaxial growth, nonoxidative exfoliation, and chemical exfoliation. Among them, the chemical vapor deposition method, the epitaxial growth method, and the non-oxidative peeling method are advantageous in that they can obtain high quality pure graphene. However, since the graphene yield is low, mass production is difficult and the manufacturing cost is high. There is a big restriction on.

한편, 화학적 박리법은 도 1에 도시된 바와 같이 흑연을 강산(질산,황산 등)으로 산화하고, 기계적(초음파 분쇄 또는 호모게나이저 분쇄)으로 박리시켜 산소관능기가 형성된 그래핀산화물(Graphene Oxide, 'GO')[도 1(a)]로 만든 다음, 일련의 화학적 환원(reduction)[도 1(b)] 및/또는 열적 환원 과정[도 1(c)]을 통해 산소관능기를 제거하여 그래핀[도 1(d)]을 제조하는 방법으로, 순수 그래핀과 구별되도록 '환원된 그래핀산화물(reduced GO, 'rGO')'로 호칭한다. 상기 '환원된 그래핀산화물(rGO)'는 그래핀의 산화 및 환원을 거치는 과정에서 그래핀 표면에 다소의 탄소 결함(carbon defection)이 발생되고, 산소관능기의 완전한 제거가 어려워 순수 그래핀에 비해서는 전기전도도 특성이 다소 떨어지지만, 대량 생산이 가능하고, 제조 비용이 낮다는 점과 순수 그래핀에 견주어 전기전도도, 열전도도에서 큰 차이가 없다는 점에서 현재 가장 널리 이용되고 있다.As shown in FIG. 1, the chemical peeling method is a method in which graphene oxide (Graphene Oxide) is formed by oxidizing graphite with a strong acid (nitric acid, sulfuric acid or the like) and peeling by mechanical (ultrasonic pulverization or homogenizer pulverization) 'GO') [Fig. 1 (a)] and then removing the oxygen functionality through a series of chemical reduction [Fig. 1 (b)] and / or thermal reduction process [Fig. 1 (c) (Reduced GO, 'rGO') 'to distinguish it from pure graphene, as a method for producing a pin [FIG. 1 (d)]. In the 'reduced graphene oxide (rGO)', a few carbon defects are generated on the surface of the graphene during the oxidation and reduction of graphene, and it is difficult to completely remove the oxygen functional groups, Is widely used at present because it has a low electrical conductivity, but can be mass-produced, has a low manufacturing cost, and has no significant difference in electric conductivity and thermal conductivity compared to pure graphene.

그래핀산화물(rGO)은 산화과정에서 생성되는 산소관능기들로 인해 그래핀과는 전혀 다른 전기적 특성을 가진다. 그래핀 자체는 탄소동소체이므로 비극성, 소수성을 띠고, 상온에서 구리보다 100배 높은 전기전도성을 가지는 데 반해, 그래핀산화물은 표면/가장자리에 형성된 산소관능기들(에폭시, 하이드록시, 카르복시기 등)로 인해 극성, 친수성을 띠며, 절연체 또는 극히 낮은 전기전도, 열전도 특성을 지닌다.Graphene oxide (rGO) has electrical properties that are quite different from graphene due to the oxygen functional groups generated during the oxidation process. Graphene itself is a non-polar, hydrophobic, and 100-fold higher electrical conductivity than copper at room temperature, since it is a carbon isotope, whereas graphene oxide is formed by the oxygen functional groups (epoxy, hydroxy, carboxy, etc.) Polarity, and hydrophilic, and has an insulator or extremely low electrical conductivity and thermal conductivity.

그래핀산화물(GO)은 비록 '환원된 그래핀산화물(rGO)'의 중간체에 속하지만, 그래핀산화물에 형성된 산소관능기로 인해 표면 개질이 용이할 뿐 아니라, 기능성 물질의 접합이 가능하여 생물학적 응용에 유망한 물질로 평가되고 있다. 예컨대, 그래핀산화물 표면에 핵산, (단일사슬) DNA, RNA, 압타머, 펩티드, 단백질, 항체, 성장인자, 효소 등의 생체분자 또는 고분자를 접합시킴으로써, 타겟물질의 검출(전기적 신호 또는 형광, 소광)에 이용할 수 있다.Although graphene oxide (GO) belongs to the intermediate of reduced graphene oxide (rGO), surface modification is facilitated owing to the oxygen functional groups formed in the graphene oxide, and functional materials can be bonded, As a promising material. For example, a biomolecule or a polymer such as a nucleic acid, a DNA (single chain), an RNA, an extramamer, a peptide, a protein, an antibody, a growth factor, Quenching).

탄소나노튜브(CNT)는 탄소 원자들이 sp2 혼성으로 육각형 벌집 모양을 이루는 원기둥 나노구조의 탄소 동소체로서, 벽을 이루고 있는 결합 수에 따라서 단일벽 탄소나노튜브(Single-walled CNT, 'SWNT'), 이중벽 탄소나노튜브(Double-walled CNT, 'DWNT'), 다중벽 탄소나노튜브(Multi-walled CNT, 'MWNT')로 구분된다.Carbon nanotubes (CNTs) are carbon nanotubes of hexagonal honeycomb structure with carbon atoms sp 2 hybridized. Single-walled carbon nanotubes (SWNTs) , Double-walled carbon nanotubes (DWNTs), and multi-walled carbon nanotubes (MWNTs).

탄소나노튜브 제조법은 화학기상증착법, 아크 방전법, 레이저 증발법, 플라즈마 토치법, 이온 충격법 등이 알려져 있다. 이들 중 화학기상증착법은 탄소 나노튜브의 대량 생산과 성장 제어가 가능한 장점이 있다.The carbon nanotube manufacturing method is known as a chemical vapor deposition method, an arc discharge method, a laser evaporation method, a plasma torch method, and an ion impact method. Among them, the chemical vapor deposition method has an advantage of mass production and growth control of carbon nanotubes.

그래핀과 탄소나노튜브는 높은 전기전도성과 비표면적을 가지므로 슈퍼캐패시터, 센서, 배터리, 액추에이터 용도의 전극(전극 활물질), 터치패널, 플렉서블 디스플레이, 고효율 태양전지, 방열필름, 코팅 재료, 바닷물 담수화 필터, 이차전지용 전극, 초고속 충전기 등 다양한 분야에 이용되고 있다.Since graphene and carbon nanotubes have high electrical conductivity and specific surface area, electrodes (electrode active material) for use in supercapacitors, sensors, batteries and actuators, touch panels, flexible displays, high efficiency solar cells, heat dissipation films, coating materials, Filters, electrodes for secondary batteries, ultra-fast chargers, and the like.

근래들어 그래핀, 그래핀산화물, 탄소나노튜브의 존재와 물리적 특성이 알려지면서 이들을 이용하여 섬유 또는 복합 섬유로 제작하려는 다양한 연구들이 진행되고 있다. 특히 습식 방사공정을 이용한 연구들이 활발히 이루어지고 있다.Recently, the existence of graphene, graphene oxide, carbon nanotubes and their physical properties have been known, and various studies have been made to fabricate them as fibers or composite fibers. Particularly, researches using wet spinning processes are being actively carried out.

도 2는 그래핀산화물의 습식 방사법(a) 및 습식 방사공정에서 그래핀산화물(또는 그래핀, 나노탄소튜브)이 정렬되는 과정(b)을 나타내는 모식도이다.Fig. 2 is a schematic diagram showing a wet spinning process (a) of graphene oxide and a process (b) in which graphene oxide (or graphene, nanocarbon tube) is aligned in a wet spinning process.

도 2를 참조하여 설명하면, 그래핀산화물 방사용액은 방사구금(토출노즐)을 통해 응고욕으로 토출되어 응집되는 데, 그래핀산화물의 정렬과정은 시린지 속에 무방향성과 무질서하게 위치한 그래핀산화물이 미세 내경의 방사 노즐을 따라 이동하면서 유체간의 전단응력(shear stress)에 의해 노즐의 축 방향으로 정렬되고(I), 응고욕에 토출된 후 정렬된 그래핀산화물은 응고욕에서 용매 교환(sovent change)과정을 통해 자기조립에 의해 겔 섬유(gel fibers)가 형성되고(II), 상기 겔 섬유는 일련의 연신, 수세, 건조 과정을 거쳐 그래핀산화물 섬유로 제조된다. 상기 제조된 그래핀산화물 섬유는 전기적 특성을 위해 그래핀산화물 섬유를 열적 또는 화학적 환원 처리하는 추가 공정을 거친다. 그래핀, 탄소나노튜브의 습식 방사공정 역시 상술한 그래핀산화물 방사공정과는 큰 차이가 없으나, 후술하는 바와 같이 응고욕 특성이 완전히 달라 종래 공지된 습식 방사법으로는 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/탄소나노튜브 복합섬유 제조가 사실상 불가능하다.Referring to FIG. 2, the graphene oxide spinning solution is discharged into a coagulation bath through a spinneret (discharge nozzle) and agglomerates. The graphene oxide aligning process is performed by using a graphene oxide (I) of the nozzle by shear stress between the fluids as they move along the spinneret of the fine inner diameter, and the graphene oxide aligned after being discharged into the coagulation bath is subjected to sovent change Gel fiber is formed by self-assembly through a process (II), and the gel fiber is formed into a graphene oxide fiber through a series of drawing, washing and drying processes. The prepared graphene oxide fibers are subjected to an additional process for thermal or chemical reduction treatment of the graphene oxide fibers for electrical properties. The wet spinning process of graphene and carbon nanotubes is not significantly different from the graphene oxide spinning process described above. However, as described later, the coagulating bath characteristics are completely different. Conventionally known wet spinning processes include graphene oxide / Or graphene oxide / carbon nanotube composite fibers is practically impossible.

습식 방사공정에서는 방사용액의 종류 및 특성과, 이에 적합한 응고욕 성분, 조성의 선정이 매우 중요한 데, 그래핀과 탄소나노튜브는 비극성, 비수용성으로 비슷한 응고욕 특성을 가지는 반면, 그래핀산화물은 극성, 수용성으로 그래핀, 탄소나노튜브와는 전혀 다른 응고욕 특성을 가진다.In the wet spinning process, it is very important to select the type and characteristics of the spinning solution and the suitable coagulation bath composition and composition. Graphene and carbon nanotubes are nonpolar, Polarity and water-solubility, it has a coagulating bath property completely different from graphene and carbon nanotubes.

그래핀, 탄소나노튜브의 응고욕 특성Coagulation bath characteristics of graphene, carbon nanotube

그래핀, 탄소나노튜브는 비극성, 소수성을 띠고, 층간 반데르발스력에 의해 서로 응집되므로 물에 전혀 용해되지 않고, 대부분의 유기용매에도 잘 용해되지 않는다. 따라서 계면활성제와 초음파 처리를 통해 그래핀, 탄소나노튜브 분산액을 제조하여 방사용액으로 이용한다.Since graphene and carbon nanotubes are nonpolar and hydrophobic and aggregate with each other due to the interlayer van der Waals force, they do not dissolve in water at all, and they do not dissolve well in most organic solvents. Therefore, graphene and carbon nanotube dispersions are prepared through surfactant and ultrasonic treatment and used as spinning solution.

그래핀, 탄소나노튜브의 응고(응집) 성분으로는 폴리비닐알코올(PVA), 폴리메틸메타아크릴레이트(PMMA), 폴리에틸렌이민(PEI), 폴리비닐필로리돈(PVP), 폴리에틸렌옥사이드(PEO) 등의 수용성 고분자가 알려져 있다. 그래핀 방사용액 또는 탄소나노튜브 방사용액이 노즐을 통해 응고욕에 방사되면, 상기 수용성 고분자는 방사 섬유 상에 침투하여 계면활성제를 대체하여 섬유상에 고분자 매트릭스를 형성함으로써 그래핀 섬유, 탄소나노튜브 섬유, 보다 정확히는 그래핀/고분자 복합섬유, 탄소나노튜브/고분자 복합섬유가 제조된다.Examples of coagulation components of graphene and carbon nanotubes include polyvinyl alcohol (PVA), polymethyl methacrylate (PMMA), polyethyleneimine (PEI), polyvinylpyrrolidone (PVP), polyethylene oxide (PEO) Are known as water-soluble polymers. When the graphene spinning solution or the carbon nanotube spinning solution is radiated to the coagulating bath through the nozzle, the water-soluble polymer penetrates the spinning fiber to replace the surfactant to form a polymer matrix on the fiber, , More precisely, graphene / polymer composite fibers, carbon nanotube / polymer composite fibers are produced.

대한민국 특허공개 제10-2012-0105179호는 a)그래핀(환원된 그래핀 또는 환원된 그래핀산화물)을 계면활성제와 함께 용매에 분산시켜 분산액을 제조하는 단계; 및 b) 상기 분산액을 고분자(PVA) 용액에 혼입하여 습식 방사한 후 건조시켜 섬유를 제조하는 단계를 포함하는 그래핀/PVA 복합섬유 제조 방법을 개시하고 있고, Korean Patent Laid-Open Publication No. 10-2012-0105179 discloses a method for producing a dispersion comprising: a) dispersing graphene (reduced graphene or reduced graphene oxide) together with a surfactant in a solvent to prepare a dispersion; And b) wet-spinning the dispersion with a polymer (PVA) solution, followed by drying to prepare a fiber. Also disclosed is a method for producing a graphene / PVA composite fiber,

대한민국 특허공개 제10-2012-0107026호는 상기 특허에서 제조된 그래핀/PVA 복합섬유에 추가적으로 열처리하거나 강산으로 처리하여 PVA 고분자를 제거하여 그래핀 섬유를 제조하는 방법을 개시하고 있다.Korean Patent Laid-Open No. 10-2012-0107026 discloses a method for producing graphene fibers by further treating a graphene / PVA conjugate fiber produced in the above patent with heat treatment or treatment with strong acid to remove PVA polymer.

대한민국 특허등록 제10-1182380호는 그래핀/탄소나노튜브 분산액을 PVA 응고욕에 방사시켜 그래핀/탄소나노튜브/PVA 복합섬유를 제조하는 방법을 개시하고 있으나, 상기 그래핀은 그래핀산화물(GO)이 아닌, 환원된 그래핀산화물(rGO) 또는 화학적으로 개질된 환원된 그래핀산화물(RCCG)이 이용한다.Korean Patent Registration No. 10-1182380 discloses a method of producing a graphene / carbon nanotube / PVA conjugate fiber by spinning a graphene / carbon nanotube dispersion liquid into a PVA coagulating bath, wherein the graphene graphene oxide (RGO) or a chemically modified reduced graphene oxide (RCCG), rather than a graphene oxide (GO).

탄소나노튜브 섬유의 습식 방사공정은 하기와 같이 여러 문헌에 개시되어 있다.The wet spinning process of carbon nanotube fibers is disclosed in various documents as follows.

Vigolo 등은 계면활성제(1.0wt% 도데실설폰산나트륨(SDS))를 이용하여 0.35wt% SWNT 분산액을 만든 다음, 5wt% 폴리비닐알코올(PVA)/증류수 응고욕에 방사시켜 탄소나노튜브 섬유를 최초로 제조하였다(Vigolo, B. et al. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290, 1331-1334 (2000)).Vigolo et al. Prepared a 0.35 wt% SWNT dispersion using a surfactant (1.0 wt% sodium dodecylsulfonate (SDS)) and then spinning it in a 5 wt% polyvinyl alcohol (PVA) / distilled water coagulating bath to first produce carbon nanotube fibers (Vigolo, B. et al., Macroscopic fibers and ribbons of oriented carbon nanotubes, Science 290, 1331-1334 (2000)).

Munoz 등은 세틸트리메틸암모늄 브로마이드(CTAB), 도데실벤젠설폰산나트륨(SDBS), 도데실설폰산리튬(LDS)의 계면활성제를 이용하여 SWNT 분산액을 만든 다음, 폴리에틸렌이민(PEI)/증류수 응고욕에 방사시켜 SWNT/PEI 섬유를 제조하였다(Adv. Mater. 2005, 17, No.8, April 18). 제조된 SWNT/PEI 섬유는 SWNT/PVA 복합섬유에 비해 전기전도성이 100배 증가되는 것이 확인되었다.Munoz et al. Prepared SWNT dispersions using cetyltrimethylammonium bromide (CTAB), sodium dodecylbenzenesulfonate (SDBS), and lithium dodecylsulfonate (LDS) surfactants and then dissolved in a polyethyleneimine (PEI) / distilled water coagulation bath (SWNT / PEI) fibers were prepared by spinning ( Adv. Mater . 2005, 17, No. 8, April 18). It was confirmed that the prepared SWNT / PEI fiber had a 100 times increase in electrical conductivity compared to the SWNT / PVA composite fiber.

Winey 등은 폴리메틸메타크릴레이트(PMMA)을 응고매로 하는 CNT 복합필름 제조 방법을 개시하였다(Winey et al., Macromolecules, 2004, 37, 9048).Winey et al. (Winey et al., Macromolecules , 2004, 37, 9048) disclose a method for producing a CNT composite film using polymethyl methacrylate (PMMA) as a coagulating agent.

Smalley 등은 PVA/PVP을 응고매로 하는 CNT 복합필름 제조 방법을 개시하였다.Smalley et al. Disclosed a method for producing a CNT composite film using PVA / PVP as a coagulating agent.

그래핀산화물의 응고욕 특성Coagulation bath characteristics of graphene oxide

상술한 그래핀, 탄소나노튜브와 달리, 그래핀산화물의 응고욕으로는 CTAB, 키토산, CaCl2, NaOH, KOH 등이 알려져 있고, 이들 중에서도 CTAB이 주로 이용된다.Unlike the graphene and carbon nanotubes described above, CTAB, chitosan, CaCl 2 , NaOH, KOH and the like are known as coagulation baths of graphene oxide, and CTAB is mainly used among them.

그래핀산화물의 응집과정은 CTAB 등 양전하로 대전된 분자를 이용한 비용매 침전(non-solvent precipitation), 환원제(NaOH)를 이용한 분산 불안정(dispersion destabilization)(Nat. Comm. 2011, 2, 571.), CaCl2 등을 이용한 2가 이온(Ca2+)에 의한 그래핀산화물 가교(ionic cross-linking)(Adv. Mater.2013, 25, 188.), 키토산 등을 이용한 고분자전해질 착물화(polyelectrolyte complexation)(Adv. Func. Mater.2013, 23, 5345.) 등이 알려져 있다.The coagulation process of graphene oxides is based on non-solvent precipitation using positively charged molecules such as CTAB, dispersion destabilization using NaOH ( Nat. Comm. 2011, 2, 571.) , Ionic cross-linking with divalent ions (Ca 2+ ) using CaCl 2 ( Adv. Mater. 2013, 25, 188.), and polyelectrolyte complexation using chitosan ) ( Adv. Func. Mater . 2013, 23, 5345.) are known.

상기에서 주목할 점은 그래핀산화물과 그래핀/탄소나노튜브는 서로 응고욕 특성이 달라 종래 공지의 습식 방사공정으로는 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/(그래핀+탄소나노튜브) 복합섬유 제조가 불가능하다는 것이다.It should be noted that graphene oxide and graphene / carbon nanotubes have different coagulating bath characteristics, and thus, in the conventional wet spinning process, graphene oxide / carbon nanotube conjugated fiber, graphene oxide / It is impossible to manufacture a pin oxide / (graphene + carbon nanotube) conjugated fiber.

예를 들어, 그래핀산화물의 응고매인 CTAB은 탄소나노튜브에서는 반대로 분산제 역할을 하므로, 그래핀산화물/탄소나노튜브 분산액을 CTAB 응고욕에 방사할 경우 그래핀산화물은 응고되지만 탄소나노튜브는 응고되지 않고, 분사되어 정량비를 갖는 그래핀산화물/탄소나노튜브 섬유화(겔화)가 발생되지 않는다. 반면, PVA는 탄소나노튜브, 그래핀의 응고매로 작용하지만, 그래핀산화물에서는 반대로 분산제 역할을 하므로, 그래핀산화물/탄소나노튜브 분산액을 PVA 응고욕에 방사할 경우 탄소나노튜브, 그래핀은 응고되지만 그래핀산화물은 응고되지 않아 역시 섬유화(겔화)가 발생되지 않는다.For example, CTAB, which is a coagulant of graphene oxide, acts as an anti-dispersant in carbon nanotubes, so when the graphene oxide / carbon nanotube dispersion is spun into a CTAB coagulation bath, the graphene oxide solidifies but the carbon nanotubes do not solidify (Gelling) of graphene oxide / carbon nanotube having a quantitative ratio is not generated. On the other hand, since PVA acts as a coagulant for carbon nanotubes and graphenes, but acts as a dispersant for graphene oxide, when the graphene oxide / carbon nanotube dispersion is spun into a PVA coagulation bath, carbon nanotubes and graphene But the graphene oxide is not solidified and no gelling occurs.

전술한 바와 같이 그래핀, 탄소나노튜브는 전기전도성, 열전도성이 매우 우수하여 제조되는 섬유 역시 전기전도도, 열전도도가 매우 우수하다. 이와 반대로 그래핀산화물은 전기전도성, 열전도성이 낮아 제조되는 섬유 역시 절연체이거나 낮은 전기전도도, 열전도를 가진다.As described above, graphene and carbon nanotubes are excellent in electrical conductivity and thermal conductivity, and fibers produced thereby are also excellent in electrical conductivity and thermal conductivity. Conversely, graphene oxide has low electrical conductivity and low thermal conductivity, so that fibers produced are also insulators, have low electrical conductivity and thermal conductivity.

따라서, 그래핀산화물과 탄소나노튜브(또는 그래핀)로 이루어진 복합섬유는 GO와 CNT의 함량비에 따라 전기전도도, 열전도도를 제어할 수 있으며, 인장강도, 탄성도, 신율등의 기계적 특성을 극대화할 수 있다. 그리고 rGO, CNT는 초음파처리 과정 중, 불가피하게 결함, 입경크기 감소가 발생하는데 비해, 습식공정에 사용되는 GO는 평균입경이 수십 um내외로 큰 GO를 사용하므로 기계적 특성이 우수하고, 환원시 전기전도도가 우수하다.Therefore, the composite fiber composed of graphene oxide and carbon nanotube (or graphene) can control the electrical conductivity and thermal conductivity according to the content ratio of GO and CNT, and can control the mechanical properties such as tensile strength, elasticity and elongation Can be maximized. In contrast, rGO and CNT inevitably cause defect and particle size reduction during ultrasonic treatment, whereas the GO used in the wet process has excellent mechanical properties because GO having a mean particle size of several tens of μm is used, Excellent conductivity.

또한, 그래핀산화물은 그래핀, 탄소나노튜브에 비해 생체분자(핵산, 압타머, 효소 등), 고분자 등 다양한 기능성 물질의 도입이 가능한 반면, 전기전도성을 위해서는 추가적인 화학적/열적 환원공정 또는 후처리 공정이 요구되는 데, 이러한 환원공정, 후처리 공정에 의해 상기 기능성 물질이 분해되거나 파괴되어 기능이 감쇄되거나 상실된다. 따라서, 상술한 환원공정, 후처리 공정없이도 높은 전기전도성을 가지는 섬유 개발이 요구된다.In addition, graphene oxide can introduce various functional materials such as biomolecules (nucleic acids, platamers, enzymes, etc.) and polymers in comparison with graphene and carbon nanotubes, while additional electrical / chemical thermal / The functional substance is decomposed or destroyed by the reduction process and the post-process, so that the function is attenuated or lost. Therefore, it is required to develop fibers having high electrical conductivity without the above-mentioned reduction step and post-treatment step.

본 발명은 습식 방사법을 이용하여 소정의 전기전도도, 열전도도, 기계적 특성을 가지는 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/그래핀/탄소나노튜브 복합섬유를 제조하는 방법을 제공하는 데 그 목적이 있다.The present invention relates to a graphene oxide / carbon nanotube composite fiber having a predetermined electrical conductivity, thermal conductivity and mechanical properties by using a wet spinning method, a graphene oxide / graphene composite fiber or a graphene oxide / graphene / carbon nanotube composite And to provide a method for producing fibers.

상기 기술적 과제를 해결하기 위하여, 본 발명은, According to an aspect of the present invention,

a) 그래핀산화물/탄소나노튜브 분산액, 그래핀산화물/그래핀 분산액 또는 그래핀산화물/그래핀/탄소나노튜브 분산액을 준비하는 단계; b) 상기 분산액을 CTAB, 키토산, CaCl2, NaOH, KOH 으로 구성된 군에서 선택되는 1종 이상의 제1응고성분, 및 폴리비닐알코올(PVA), 폴리메틸메타아크릴레이트(PMMA), 폴리에틸렌이민(PEI), 폴리비닐필로리돈(PVP), 폴리에틸렌옥사이드(PEO)으로 이루어진 군에서 선택되는 1종 이상의 제2응고성분을 포함하는 응고욕에 방사시켜 겔 섬유를 제조하는 단계; 및 c) 상기 겔 섬유를 건조하는 단계를 포함하는, 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/그래핀/탄소나노튜브 복합섬유의 제조 방법을 제공한다.a) preparing a graphene oxide / carbon nanotube dispersion, a graphene oxide / graphene dispersion or a graphene oxide / graphene / carbon nanotube dispersion; b) CTAB to the dispersion liquid, chitosan, CaCl 2, NaOH, at least one member selected from the group consisting of KOH first coagulation components, and polyvinyl alcohol (PVA), polymethyl methacrylate (PMMA), polyethylene imine (PEI ), Polyvinylpyrrolidone (PVP), and polyethylene oxide (PEO), to produce a gel fiber; And c) drying the gel fiber to provide a graphene oxide / carbon nanotube conjugated fiber, a graphene oxide / graphene conjugated fiber or a graphene oxide / graphene / carbon nanotube conjugated fiber do.

상기 분산액에서 그래핀산화물:탄소나노튜브의 함량(wt%)비는 제한되지는 않으나 1:4 ~ 4:1인 것이 바람직하다.The content (wt%) ratio of graphene oxide: carbon nanotube in the dispersion is not limited, but is preferably 1: 4 to 4: 1.

상기 분산액에서 그래핀산화물:그래핀의 함량(wt%)비는 제한되지는 않으나 1:4 ~ 4:1인 것이 바람직하다.The content (wt%) of graphene oxide: graphene in the dispersion is not limited, but is preferably 1: 4 to 4: 1.

상기 분산액에서 그래핀산화물:(그래핀+탄소나노튜브)의 함량(wt%)비는 제한되지는 않으나 1:4 ~ 4:1이고, 상기 그래핀:탄소나노튜브 함량(wt%)비는 제한되지는 않으나 1:4 ~ 4:1인 것이 바람직하다.The ratio of graphene oxide (graphene + carbon nanotubes) in the dispersion is 1: 4 to 4: 1, although the ratio of graphene to carbon nanotubes is not limited. The graphene: carbon nanotube content (wt% But it is preferably 1: 4 to 4: 1.

상기 방사용액에서 그래핀산화물, 그래핀, 탄소나노튜브 전체 농도는 0.1 ~ 2wt%인 것이 바람직하다.In the spinning solution, the total concentration of graphene oxide, graphene, and carbon nanotubes is preferably 0.1 to 2 wt%.

상기 응고욕에서 CTAB 농도는 0.03~0.1wt%, CaCl2, NaOH, KOH 농도는 3~10wt%, PVA, PMMA, PEI, PVP, PEO 농도는 2~40wt%인 것이 바람직하다.Preferably, the concentration of CTAB in the coagulating bath is 0.03 to 0.1 wt%, the concentration of CaCl 2 , NaOH, KOH is 3 to 10 wt%, and the concentration of PVA, PMMA, PEI, PVP and PEO is 2 to 40 wt%.

상기 그래핀산화물은 타겟물질 검출능을 가지는 기능성 물질이 도입된 그래핀산화물인 것을 수 있다. 상기 기능성 물질은 핵산, DNA, RNA, 압타머, 펩티드, 단백질, 항체, 성장인자, 효소, 형광물질, 소광물질일 수 있다.The graphene oxide may be a graphene oxide into which a functional material capable of detecting a target substance is introduced. The functional material may be a nucleic acid, a DNA, an RNA, an extramamer, a peptide, a protein, an antibody, a growth factor, an enzyme, a fluorescent substance, or a minerals.

상기 그래핀 또는 탄소나노튜브를 분산시키기 위한 계면활성제는, 도데실벤젠설폰산나트륨(SDBS), 도데실설폰산나트륨(SDS), 리그노설폰산나트륨(SLS), 라우레스설폰산나트륨(SLES), 라우릴 에테르 설폰산나트륨(SLES), 미레스설폰산나트륨(Sodium myreth sulfate), 도데실설폰산리튬(LDS)의 친수성 설폰산기(SO3 -)를 가지는 음이온성 계면활성제, 또는 세틸트리메틸암모늄 브로마이드(CTAB), 세틸트리메틸암모늄클로라이드(CTAC), 세틸피리디늄클로라이드(CPC), 도데실트리메틸암모늄 브로마이드(DTAB), 테트라데실트리메틸암모늄 브로마이드(TTAB), 테트라트리메틸암모늄 브로마이드(TMB), 디옥타데실디메틸암모늄브로마이드(DODAB), 디메틸디옥타데실암모늄클로라이드(DODMAC)의 양이온 계면활성제, 또는 Tween 20, 40, 60, 80, Triton X-100, 글리세롤알킬에스테르(Glycerol alkyl esters), 글리세릴라우릴에스테르(Glyceryl laurate esters), 폴리에틸렌글리콜소르비탄알킬에스테르(Polyoxyethylene glycol sorbitan alkyl esters), 폴리에틸렌글리콜옥타데실에테르의 비이온성 계면활성제가 이용될 수 있다.The surface active agent for dispersing the graphene or carbon nanotube is selected from the group consisting of sodium dodecylbenzenesulfonate (SDBS), sodium dodecylsulfonate (SDS), sodium lignosulfonate (SLS), sodium laurethesulfonate (SLES) An anionic surfactant having a hydrophilic sulfonic acid group (SO 3 - ) of sodium lauryl ether sulfonate (SLES), sodium myreth sulfate, lithium dodecylsulfonate (LDS), or an anionic surfactant having cetyltrimethylammonium bromide (CTAB), cetyltrimethylammonium chloride (CTAC), cetylpyridinium chloride (CPC), dodecyltrimethylammonium bromide (DTAB), tetradecyltrimethylammonium bromide (TTAB), tetratrimethylammonium bromide (TMB), dioctadecyldimethylammonium (DODAB), dimethyl dioctadecylammonium chloride (DODMAC) cationic surfactants, or Tween 20, 40, 60, 80, Triton X-100, glycerol alkyl esters, Recessed GW a lauryl ester (Glyceryl laurate esters), polyethylene glycol sorbitan alkyl ester nonionic surfactant (Polyoxyethylene glycol sorbitan alkyl esters), polyethylene glycol octadecyl ether may be used.

상기 건조된 복합섬유는 화학적 또는 열적 환원시키는 단계를 더 포함할 수 있다.The dried composite fiber may further include chemical or thermal reduction.

본 발명에 따라 제조된 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/그래핀/탄소나노튜브 복합섬유는 추가적인 환원공정 또는 후처리 공정없이도 전기전도도, 열전도도 특성을 가질 뿐 아니라, 그래핀산화물와 탄소나노튜브(또는 그래핀)의 함량에 따라 제조되는 복합섬유의 전기전도도, 열전도도 특성은 선형의 증가 곡선을 나타내므로, 소정의 목적하는 전기전도도, 열전도도를 가지는 복합섬유의 제조가 가능하다. The graphene oxide / carbon nanotube composite fiber, the graphene oxide / graphene composite fiber, or the graphene oxide / graphene / carbon nanotube composite fiber prepared according to the present invention can be used for the electrical conductivity, thermal conductivity And the electrical conductivity and thermal conductivity characteristics of the composite fiber produced according to the content of the graphene oxide and the carbon nanotube (or graphene) exhibit a linear increase curve. Therefore, the desired electrical conductivity, thermal conductivity It is possible to produce a conjugate fiber having a degree of crystallinity.

또한, 본 발명에 그래핀산화물은 그래핀, 탄소나노튜브에 비해 생체분자(핵산, 압타머, 효소 등), 고분자 등 다양한 기능성 물질의 부착이 가능하므로, 추가적인 환원과정에 따른 기능성 물질의 분해, 파괴없이 높은 전기전도성을 가진 복합섬유의 제조가 가능하다.In addition, the graphene oxide of the present invention is capable of attaching various functional materials such as biomolecules (nucleic acids, platamers, enzymes, etc.) and polymers as compared with graphene and carbon nanotubes, It is possible to manufacture a composite fiber having high electrical conductivity without breaking.

도 1은 화학박리법에 따른 그래핀산화물(GO)으로부터 '환원된 그래핀산화물(rGO)'을 생성하는 과정을 나타낸 그래핀 구조의 모식도이다.
도 2는 그래핀산화물의 습식 방사법(도 2a) 및 습식 방사공정에서 그래핀산화물(또는 그래핀, 나노탄소튜브)이 정렬되는 과정(도 2b)을 나타내는 모식도이다.
도 3은 본 발명의 실시예 2에 따라 제조된 그래핀산화물/탄소나노튜브 복합섬유의 전자주사현미경(SEM)사진으로, (a)는 단면사진, (b)는 이의 확대 사진이다.
도 4는 본 발명의 실시예 1 내지 4에 따라 제조된 그래핀산화물/탄소나노튜브 복합섬유와 비교예 3에 따라 제조된 그래핀산화물 섬유, 비교예 4에 따라 제조된 탄소나노튜브 섬유의 전기전도도를 측정한 그래프이다.
1 is a schematic diagram of a graphene structure showing a process of producing a 'reduced graphene oxide (rGO)' from a graphene oxide (GO) according to a chemical stripping method.
FIG. 2 is a schematic diagram showing wet spinning of graphene oxide (FIG. 2A) and a process of aligning graphene oxide (or graphene, nanocarbon tube) in a wet spinning process (FIG. 2B).
3 is a scanning electron micrograph (SEM) photograph of the graphene oxide / carbon nanotube composite fiber produced according to Example 2 of the present invention, wherein (a) is a cross-sectional photograph and (b) is an enlarged photograph thereof.
FIG. 4 is a graph showing the results of measurement of graphene oxide / carbon nanotube composite fibers prepared according to Examples 1 to 4 of the present invention and graphene oxide fibers prepared according to Comparative Example 3, It is a graph measuring the conductivity.

본 발명자들은 그래핀산화물, 그래핀, 탄소나노튜브 분산액을 방사용액으로 하여 습식 방사공정을 연구하던 중, 그래핀산화물의 응고매(제1응고성분)와 탄소나노튜브, 그래핀의 응고매(제2응고성분)를 모두 포함하는 응고욕에 습식 방사할 때, 놀랍게도 섬유화(겔화)가 발생되어 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/그래핀/탄소나노튜브 복합섬유가 효과적으로 제조되는 것을 확인하여 본 발명을 완성하였다.The present inventors studied wet spinning processes using graphene oxide, graphene, and carbon nanotube dispersions as spinning solutions, and found that the coagulation property of graphene oxide (first coagulation component) and the coagulation property of carbon nanotubes and graphene (Second coagulation component), surprisingly, fibrosis (gelation) is generated to form graphene oxide / carbon nanotube composite fiber, graphene oxide / graphene composite fiber or graphene oxide / graphene / Carbon nanotube conjugated fiber can be effectively produced, thereby completing the present invention.

본 발명에 따른 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/그래핀/탄소나노튜브 복합섬유 제조 방법은,The method for producing a graft oxide / carbon nanotube conjugated fiber, graphene oxide / graft conjugated fiber, or graphene oxide / graphene / carbon nanotube conjugated fiber according to the present invention comprises:

a) 그래핀산화물/탄소나노튜브 분산액, 그래핀산화물/그래핀 분산액 또는 그래핀산화물/그래핀/탄소나노튜브 분산액을 준비하는 단계; b) 상기 분산액을 CTAB, 키토산, CaCl2, NaOH, KOH 으로 구성된 군에서 선택되는 1종 이상의 제1응고성분 및 폴리비닐알코올(PVA), 폴리메틸메타아크릴레이트(PMMA), 폴리에틸렌이민(PEI), 폴리비닐필로리돈(PVP), 폴리에틸렌옥사이드(PEO)으로 이루어진 군에서 선택되는 제2응고성분을 포함하는 응고욕에 습식 방사시켜 겔 섬유를 제조하는 단계; 및 c) 상기 겔 섬유를 건조하는 단계를 단계를 포함하여 이루어진다.a) preparing a graphene oxide / carbon nanotube dispersion, a graphene oxide / graphene dispersion or a graphene oxide / graphene / carbon nanotube dispersion; b) mixing the dispersion with at least one first coagulation component selected from the group consisting of CTAB, chitosan, CaCl 2 , NaOH, KOH and polyvinyl alcohol (PVA), polymethylmethacrylate (PMMA), polyethyleneimine (PEI) Preparing a gel fiber by wet spinning in a coagulation bath containing a second coagulation component selected from the group consisting of polyvinylpyrrolidone (PVP) and polyethylene oxide (PEO); And c) drying the gel fibers.

그래핀산화물(GO)Graphene oxide (GO)

본 발명에 있어서, 그래핀산화물(GO)은 화학적 박리법을 이용하여 제조된다.In the present invention, graphene oxide (GO) is produced by a chemical stripping method.

그래핀산화물은 강산을 이용해 흑연을 산화시켜 그래핀 층간에 산소관능기가 도입된 팽창 산화흑연을 만들고, 용액 상에서 초음파분쇄나 급속가열을 하는 것으로 제조된다.The graphene oxide is produced by oxidizing graphite using a strong acid to make expanded graphite with oxygen functional groups introduced between the graphene layers and ultrasonic pulverizing or rapid heating in solution.

Staudenmaier와 Hamdi는 황산/질산 혼합물을 이용하여 산화흑연을 제조하는 방법을 개시하고 있으나, 현재 대부분의 그래핀산화물은 농황산(fuming sulfuric acid)에 질산나트륨/염소산칼륨을 섞은 혼합물을 이용하여 흑연을 산화시키는 Hummers 방법 또는 이의 변형 방법을 주로 이용하여 제조된다.Staudenmaier and Hamdi disclose a method for producing graphite oxide using a sulfuric acid / nitric acid mixture, but most of the graphene oxides presently are oxidized graphite using a mixture of sodium nitrate / potassium chlorate with fuming sulfuric acid Or by using a Hummers method or a modified method thereof.

그래핀산화물은 그래핀의 표면 또는/및 말단에 에폭시기, 하이드록시기, 말단에 카르복시기 또는 카르보닐기 등 다양한 산소관능기 그룹이 형성된 구조를 가진다.The graphene oxide has a structure in which various oxygen functional group groups such as an epoxy group, a hydroxyl group, and a terminal carboxyl group or carbonyl group are formed on the surface or / and the terminal of graphene.

상기 그래핀산화물은 절연체를 가지며, 산화 정도, 특성에 따라 낮은 전도성을 가지나, 그래핀 또는 탄소나노튜브에 비해서는 극히 미미한 수준이다.The graphene oxide has an insulator and has low conductivity depending on the degree of oxidation and characteristics, but is extremely small compared to graphene or carbon nanotubes.

본 발명에 따른 그래핀산화물은 기능성 물질이 부착된 그래핀산화물을 포함한다. 상기 기능성 물질은 예컨대, 바이오센서 분야에서 타겟물질의 검출을 위해 이용하는 다양한 감지물질이다. 상기 기능성 물질은 핵산, DNA, RNA, 압타머, 펩티드, 단백질, 항체, 성장인자, 효소, 형광물질, 소광물질, 생체분자, 기능성 고분자일 수 있다. 상기 기능성 물질은 그래핀산화물의 관능기와 결합되어 형성될 수 있다. 상기 감지물질이 타겟물질과 결합 또는 반응하면 전기적 신호 또는 형광(또는 소광)을 관찰함으로써 특정 핵산, 단백질, 성장인자와 같은 중요한 생체분자를 성공적으로 검출할 수 있게 된다. 상기 기능성 물질에 따른 전기적 신호는 본 발명에 따른 복합섬유의 전기전도성 물질인 그래핀, 탄소나노튜브를 통해 전달됨으로써 낮은 전기적 신호에도 불구하고 높은 검출력을 제공할 수 있다.The graphene oxide according to the present invention includes graphene oxide to which a functional material is attached. The functional material is, for example, various sensing materials used for the detection of a target substance in the biosensor field. The functional material may be a nucleic acid, a DNA, an RNA, an extramamer, a peptide, a protein, an antibody, a growth factor, an enzyme, a fluorescent substance, a minerals substance, a biomolecule, and a functional polymer. The functional material may be formed by bonding with the functional group of the graphene oxide. When the sensing material binds to or reacts with a target material, it is possible to successfully detect important biomolecules such as specific nucleic acids, proteins, and growth factors by observing an electrical signal or fluorescence (or extinction). The electrical signal according to the functional material is transmitted through the electroconductive material of the composite fiber according to the present invention through the graphene and carbon nanotubes, so that it can provide a high detection power despite the low electrical signal.

한편, 본 발명에 따른 그래핀산화물은 화학적으로 개질된 그래핀산화물을 포함할 수 있다. 그래핀산화물의 화학적 개질은 예컨대, 유기 단분자들을 그래핀산화물의 산소관능기(에폭시기, 하이드록시기, 카르복시기 등)들과 반응시켜 제조될 수 있다. 아민기를 가지는 유기 단분자는 하기 반응식에 보이는 바와 같이 그래핀산화물의 에폭시기와 반응하여 유기 단분자가 그래핀산화물에 도입된다(Polymer(Korea), Vol. 35, No. 3, pp 265-271, 2011).Meanwhile, the graphene oxide according to the present invention may include chemically modified graphene oxide. Chemical modification of the graphene oxide can be produced, for example, by reacting organic monomers with an oxygen functional group (epoxy group, hydroxyl group, carboxyl group, etc.) of the graphene oxide. The organic single molecule having an amine group reacts with the epoxy group of the graphene oxide as shown in the following reaction formula to introduce an organic monomolecule into the graphene oxide ( Polymer (Korea), Vol. 35, No. 3, pp 265-271, 2011).

Figure 112016043010616-pat00001
Figure 112016043010616-pat00001

이소시아네이트로 기능기화된 그래핀산화물은 극성용매에서 분산성이 크게 향상되는 것으로 보고된다(S. Stankovich, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Carbon, 44, 3342 (2006)).It is reported that graphene oxide functionalized with isocyanate greatly improves the dispersibility in polar solvents (S. Stankovich, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Carbon, 44, 3342 (2006)).

상기 그래핀산화물은 상기 산소관능기 그룹에 의해 극성, 친수성을 띠므로 물, 유기용매, 물/유기용매와 같은 극성용매에 잘 분산된다.Since the graphene oxide is polar and hydrophilic due to the oxygen functional group, it is well dispersed in a polar solvent such as water, organic solvent or water / organic solvent.

상기 그래핀산화물의 용매로는 증류수, 디메틸포름아미드, 메탄올, 에탄올, 에틸렌글리콜, n-부탄올, tert-부틸알코올, 이소프로필알코올, n-프로판올, 에틸아세테이트, 디메틸설폭사이드, 테트라하이드로퓨란 등이 이용될 수 있으나, 이 중에서 증류수 또는 증류수/유기용매가 바람직하다.Examples of the solvent of the graphene oxide include distilled water, dimethylformamide, methanol, ethanol, ethylene glycol, n-butanol, tert -butyl alcohol, isopropyl alcohol, n-propanol, ethyl acetate, dimethyl sulfoxide and tetrahydrofuran Among them, distilled water or distilled water / organic solvent is preferable.

그래핀산화물 농도는 방사용액 대비 1 ~ 20 mg/mL(0.1 ~ 2wt%)인 것이 바람직하나 이에 한정되지는 않는다. 본 발명의 방사용액에서 그래핀산화물, 그래핀, 탄소나노튜브 전체 농도는 0.1 ~ 2wt%인 것이 바람직하다.The graphene oxide concentration is preferably 1 to 20 mg / mL (0.1 to 2 wt%) based on the spray solution, but is not limited thereto. In the spinning solution of the present invention, the total concentration of graphene oxide, graphene, and carbon nanotubes is preferably 0.1 to 2 wt%.

그래핀(Graphene, rGO 포함)Graphene (including rGO)

본 발명에 따른 그래핀은 기계적 박리법, 화학기상증착법(CVD), 에피텍셜 성장법(Epitaxial Growth), 비산화 박리법(Nonoxidative Exfoliation) 등으로 제조될 수 있으나, 상술한 그래핀산화물을 고온열처리 또는 화학적으로 환원시켜 제조되는 환원된 그래핀산화물(rGO)을 이용하는 것이 바람직하다. 본 발명에 따른 그래핀으로는 화학적으로 개질된 그래핀(Chemically converted graphene, CCG), 화학적으로 개질된 환원 그래핀(rCCG)도 이용될 수 있다. 본 발명에 따른 그래핀은 환원된 그래핀산화물(rGO)인 것이 더욱 바람직하다.The graphene according to the present invention can be produced by a mechanical stripping method, a chemical vapor deposition (CVD) method, an epitaxial growth method or a nonoxidative exfoliation method. However, Or a reduced graphene oxide (rGO) produced by chemical reduction is preferably used. As the graphene according to the present invention, chemically converted graphene (CCG) or chemically modified reduction graphene (rCCG) may be used. More preferably, the graphene according to the present invention is a reduced graphene oxide (rGO).

상기 환원공정에서 열처리, 화학적 환원처리는 이미 다양한 방법이 공지되어 있다. 그래핀산화물의 대표적 환원제로는 하이드라진, 소듐 하이드라진, 하이드라진 하이드레이트(hydrazine hydrate) 등의 하이드라진계, 하이드로퀴논(hydroquinone), 소듐 보로하이드라이드(NaBH4), 아스코빅산(ascorbic acid), 글루코스(glucose) 등이 이용될 수 있으나, 이에 제한되지는 않는다.Various methods of heat treatment and chemical reduction treatment in the reduction step are already known. Representative reducing agents of graphene oxide include hydrazine compounds such as hydrazine, sodium hydrazine and hydrazine hydrate, hydroquinone, sodium borohydride (NaBH 4 ), ascorbic acid, glucose, But the present invention is not limited thereto.

그래핀(또는 환원된 그래핀산화물)은 비극성 또는 매우 약한 극성, 소수성을 가지므로 계면활성제를 이용하여 용매에 분산시킨다. 상기 계면활성제로는 도데실벤젠설폰산나트륨(SDBS), 도데실설폰산나트륨(SDS), 리그노설폰산나트륨(SLS), 라우레스설폰산나트륨(SLES), 라우릴 에테르 설폰산나트륨(SLES), 미레스설폰산나트륨(Sodium myreth sulfate), 도데실설폰산리튬(LDS)의 친수성 설폰산기(SO3 -)를 가지는 음이온성 계면활성제, 또는 세틸트리메틸암모늄 브로마이드(CTAB), 세틸트리메틸암모늄클로라이드(CTAC), 세틸피리디늄클로라이드(CPC), 도데실트리메틸암모늄 브로마이드(DTAB), 테트라데실트리메틸암모늄 브로마이드(TTAB), 테트라트리메틸암모늄 브로마이드(TMB), 디옥타데실디메틸암모늄브로마이드(DODAB), 디메틸디옥타데실암모늄클로라이드(DODMAC)의 양이온 계면활성제, 또는 Tween 20, 40, 60, 80, Triton X-100, 글리세롤알킬에스테르(Glycerol alkyl esters), 글리세릴라우릴에스테르(Glyceryl laurate esters), 폴리에틸렌글리콜소르비탄알킬에스테르(Polyoxyethylene glycol sorbitan alkyl esters), 폴리에틸렌글리콜옥타데실에테르의 비이온성 계면활성제가 이용될 수 있다. 본 발명에서는 제한되지는 않으나 친수성 설폰산기(SO3 -)를 가지는 음이온성 계면활성제를 이용하여 수분산시키는 것이 바람직하다. 본 발명에 따른 그래핀을 효과적으로 분산하기 위하여 초음파 처리가 추가될 수 있다.Since graphene (or reduced graphene oxide) has a non-polar or very weak polarity and hydrophobicity, it is dispersed in a solvent using a surfactant. Examples of the surfactant include sodium dodecylbenzenesulfonate (SDBS), sodium dodecylsulfonate (SDS), sodium lignosulfonate (SLS), sodium laureth sulfate (SLES), sodium lauryl ether sulfonate (SLES) (CTAB), cetyltrimethylammonium chloride (CTAC), anionic surfactants having a hydrophilic sulfonic acid group (SO 3 - ) of dodecylsulfonyl lithium (LDS), or anionic surfactants such as cetyltrimethylammonium bromide (CPC), dodecyltrimethylammonium bromide (DTAB), tetradecyltrimethylammonium bromide (TTAB), tetratrimethylammonium bromide (TMB), dioctadecyldimethylammonium bromide (DODAB), dimethyl dioctadecylammonium Triton X-100, Glycerol alkyl esters, Glyceryl laurate esters, < RTI ID = 0.0 > Li a glycol sorbitan alkyl ester nonionic surfactant (Polyoxyethylene glycol sorbitan alkyl esters), polyethylene glycol octadecyl ether may be used. Although not limited in the present invention, it is preferable to disperse water by using an anionic surfactant having a hydrophilic sulfonic acid group (SO 3 - ). Ultrasonic processing may be added to effectively disperse the graphene according to the present invention.

상기 그래핀 또는 그래핀산화물은 시트 조각 형태로 존재하는 데, "그래핀 플레이크"(Graphene flake), "그래핀 시트", "그래핀 결정"으로 지칭될 수 있다. 본 발명에 따른 그래핀 플레이크의 평균 직경은 수 μm 이상이고, 그래핀 또는 그래핀산화물의 층수가 3층 이하인 것이 바람직하다.The graphene or graphene oxide is present in the form of a sheet, which may be referred to as "graphene flake", "graphene sheet", "graphene crystal". The average diameter of the graphene flakes according to the present invention is preferably several micrometers or more, and the number of graphene or graphene oxide layers is preferably three or less.

그래핀 농도는 방사용액 대비 1 ~ 20 mg/mL(0.1 ~ 2wt%)인 것이 바람직하나 이에 한정되지는 않는다. 본 발명의 방사용액에서 그래핀산화물, 그래핀, 탄소나노튜브 전체 농도는 0.1 ~ 2wt%인 것이 바람직하다.The concentration of graphene is preferably 1 to 20 mg / mL (0.1 to 2 wt%), but is not limited thereto. In the spinning solution of the present invention, the total concentration of graphene oxide, graphene, and carbon nanotubes is preferably 0.1 to 2 wt%.

탄소나노튜브(Carbon-Nanotube, CNT)Carbon Nanotube (CNT)

본 발명에 있어서, 탄소나노튜브(CNT)는 단일벽 탄소나노튜브(SWNT, Single-walled CNT), 이중벽 탄소나노튜브(DWNT, Double-walled CNT), 다중벽 탄소나노튜브(MWNT, Multi-walled CNT)이 가능하나, 전기전도성과 기계적 특성을 고려하여 SWNT가 더욱 바람직하다. CNT는 화학기상증착법(CVD), 아크 방전법, 레이저 증발법 등 공지의 방법을 통해 제조될 수 있다.In the present invention, the carbon nanotubes (CNTs) may be single walled carbon nanotubes (SWNTs), double walled carbon nanotubes (DWNTs), multi-walled carbon nanotubes (MWNTs) CNT) is possible, but SWNT is more preferable considering electrical conductivity and mechanical characteristics. CNTs can be produced by a known method such as chemical vapor deposition (CVD), arc discharge, or laser evaporation.

탄소나노튜브는 비극성이며, CNT 측벽 상호에 강한 반데르발스력(van der Waals forces)을 가지므로 물과 같은 극성용매, 유기용매에는 잘 용해되거나 분산되지 않는다. 따라서 CNT의 효과적인 분산을 위해 계면활성제와 초음파를 이용하여 분산하는 것이 바람직하다.Carbon nanotubes are non-polar and have strong van der Waals forces on CNT sidewalls, so they are not well dissolved or dispersed in polar and organic solvents such as water. Therefore, it is preferable to disperse the CNTs using a surfactant and ultrasonic waves for effective dispersion of the CNTs.

상기 계면활성제로는 상술한 그래핀 분산을 위한 계면활성제들이 동일하게 이용될 수 있다.Surfactants for dispersing graphene may be used as the surfactant.

상기 계면활성제 농도는 CNT 분산에 있어 중요하다. 계면활성제의 농도가 낮으면 분산 안정성이 떨어지고, 너무 높으면 삼투압은 depletion-induced aggregation을 일으킨다. 상기 분산액에서 CNT와 계면활성제의wt% 비율는 1:2~1:3 인 것이 바람직하나, 계면활성제의 종류에 따라 변동될 수 있다.The surfactant concentration is important for CNT dispersion. The lower the concentration of the surfactant, the lower the dispersion stability. If too high, the osmotic pressure causes depletion-induced aggregation. The weight ratio of CNT to surfactant in the dispersion is preferably 1: 2 to 1: 3, but may vary depending on the kind of the surfactant.

CNT의 농도는 방사용액 대비 1 ~ 30 mg/mL(0.1 ~ 3wt%)이 것이 바람직하난 이에 한정되지는 않는다. CNT 농도는 더욱 바람직하게는 3 ~ 20 mg/mL(0.1 ~ 2 wt%)이고, 가장 바람직하게는 5 ~ 10 mg/mL(0.5 ~ 1.0wt%)이다. 본 발명의 방사용액에서 그래핀산화물, 그래핀, 탄소나노튜브 전체 농도는 0.1 ~ 2 wt%인 것이 바람직하다.The concentration of CNT is preferably from 1 to 30 mg / mL (0.1 to 3 wt%) based on the flushing solution, but not limited thereto. The CNT concentration is more preferably 3 to 20 mg / mL (0.1 to 2 wt%), and most preferably 5 to 10 mg / mL (0.5 to 1.0 wt%). In the spinning solution of the present invention, the total concentration of graphene oxide, graphene, and carbon nanotubes is preferably 0.1 to 2 wt%.

CNT 분산액의 용매로는 물(증류수), 물/유기 혼합 용매일 수 있다.The solvent for the CNT dispersion may be water (distilled water) or water / organic mixture.

본 발명에 따른 그래핀산화물/탄소나노튜브 분산액, 그래핀산화물/그래핀 분산액, 그래핀산화물/그래핀/탄소나노튜브 분산액은 목적하는 그래핀산화물, 그래핀, 탄소나노튜브와 계면활성제를 물 또는 물/유기용매에 넣고 동시에 분산, 초음파 처리하여 제조될 수 있으나, 그래핀산화물 분산액, 그래핀 분산액, 탄소나노튜브 분산액을 각각 제조한 후, 서로 혼합하는 것으로 제조될 수 있다.The graphene oxide / graphene dispersion, graphene oxide / graphene / carbon nanotube dispersion according to the present invention can be prepared by dispersing the desired graphene oxide, graphene, carbon nanotubes and surfactant in water Or a water / organic solvent and simultaneously dispersing and ultrasonically treating the dispersion. Alternatively, the graphene oxide dispersion, the graphene dispersion, and the carbon nanotube dispersion may be prepared and then mixed with each other.

또한, 그래핀과 탄소나노튜브를 함께 상술한 계면활성제를 이용하여 물 또는 물/유기용매에 분산시켜 그래핀/탄소나노튜브 분산액을 제조한 다음, 그래핀산화물 분산액과 혼합하는 것으로 제조될 수도 있다.The graphene / carbon nanotube dispersion may be prepared by dispersing graphene and carbon nanotubes in water or a water / organic solvent using the surfactants described above, and then mixing the graphene / carbon nanotube dispersion with a graphene oxide dispersion .

상기 분산액은 방사용액으로 사용된다. 상기 방사용액의 농도는 분산액을 적절히 희석하는 것으로 제조될 수도 있다.The dispersion is used as a spinning solution. The concentration of the spinning solution may be made by appropriately diluting the dispersion.

상기 그래핀산화물/탄소나노튜브 분산액에서 그래핀산화물(GO):탄소나노튜브(CNT)의 성분비는 4:1 ~ 1:4, 바람직하게는 3:2 ~ 2:3, 더욱 바람하게는 1:1이다. 성분 별로 각각의 분산액을 제조한 후, 분산액의 양을 조절하여 혼합하는 것으로 이들 성분비는 계산될 수 있다.The ratio of graft oxide (GO) to carbon nanotube (CNT) in the graphene oxide / carbon nanotube dispersion is 4: 1 to 1: 4, preferably 3: 2 to 2: 3, more preferably 1: : 1. These component ratios can be calculated by preparing each dispersion for each component and then adjusting the amount of the dispersion to be mixed.

상기 그래핀산화물/그래핀 분산액에서 그래핀산화물(GO):그래핀(rGO)의 성분비는 4:1 ~ 1:4, 바람직하게는 3:2 ~ 2:3, 더욱 바람하게는 1:1이다.The ratio of graphene oxide (GO) to graphene (rGO) in the graphene oxide / graphene dispersion is in the range of 4: 1 to 1: 4, preferably 3: 2 to 2: 3, more preferably 1: to be.

상기 그래핀산화물/그래핀/탄소나노튜브 분산액에서 그래핀산화물:(탄소나노튜브+그래핀)의 성분비는 4:1 ~ 1:4, 바람직하게는 3:2 ~ 2:3, 더욱 바람하게는 1:1이고, 그래핀:탄소나노튜브의 성분비는 4:1 ~ 1:4, 바람직하게는 3:2 ~ 2:3, 더욱 바람하게는 1:1이다.The ratio of graphene oxide: (carbon nanotube + graphene) in the graphene oxide / graphene / carbon nanotube dispersion is 4: 1 to 1: 4, preferably 3: 2 to 2: 3, Is 1: 1, and the ratio of graphene: carbon nanotubes is 4: 1 to 1: 4, preferably 3: 2 to 2: 3, more preferably 1: 1.

본 발명에 따른 응고욕은 CTAB, 키토산, CaCl2, NaOH, KOH 으로 구성된 군에서 선택되는 1종 이상의 제1응고성분 및, 폴리비닐알코올(PVA), 폴리메틸메타아크릴레이트(PMMA), 폴리에틸렌이민(PEI), 폴리비닐필로리돈(PVP), 폴리에틸렌옥사이드(PEO)으로 이루어진 군에서 선택되는 1종 이상의 제2응고성분을 동시에 응고매로 포함하는 것을 특징으로 한다.The coagulation bath according to the present invention may comprise at least one first coagulation component selected from the group consisting of CTAB, chitosan, CaCl 2 , NaOH, KOH, and at least one first solidification component selected from the group consisting of polyvinyl alcohol (PVA), polymethyl methacrylate (PMMA) (PEI), polyvinyl pyrrolidone (PVP), and polyethylene oxide (PEO) at the same time as a coagulating agent.

상기 제1응고성분은 그래핀산화물의 응고매로, 제2응고성분은 그래핀 또는 탄소나노튜브의 응고매로 알려져 있으나, 상기 제1응고성분과 제2응고성분의 혼합물을 응고욕으로 시도한 예는 없다.The first solidification component is known as a coagulation medium of graphene oxide and the second solidification component is known as a coagulation medium of graphene or carbon nanotube. However, in the case where a mixture of the first solidification component and the second solidification component is tried with a coagulation bath There is no.

상기 제1응고성분 중에서 CTAB은 양이온성 계면활성제이나 그래핀산화물의 응고매로서 가장 널리 알려져 있다. CaCl2는 2가 이온(Ca2+)에 의해 그래핀산화물이 서로 가교되어 응집되는 것을 알려져 있다(Adv. Mater.2013, 25, 188.). NaOH, KOH는 환원제로서 그래핀산화물의 환원을 통한 응집을 발생시키는 것으로 알려져 있다(Nat. Comm. 2011, 2, 571.). 키토산은 고분자전해질 착물화(polyelectrolyte complexation)에 의해 그래핀산화물을 응집하는 것으로 알려져 있다(Adv. Func. Mater.2013, 23, 5345.)Among the first coagulation components, CTAB is most widely known as a coagulant of cationic surfactant or graphene oxide. CaCl 2 is known to be agglomerated by graphene oxides crosslinked by divalent ions (Ca 2+ ) ( Adv. Mater. 2013, 25, 188.). NaOH and KOH are known to cause aggregation through reduction of graphene oxide as a reducing agent ( Nat. Comm. 2011, 2, 571.). Chitosan is known to aggregate graphene oxide by polyelectrolyte complexation ( Adv. Func. Mater . 2013, 23, 5345.)

상기 제2응고성분의 나노탄소튜브, 그래핀의 응고욕으로는 다양한 문헌에 공지되어 있다. Vigolo 등은 계면활성제(1.0wt% 도데실설폰산나트륨(SDS))를 이용하여 0.35wt% SWNT 분산액을 만든 다음, 5wt% 폴리비닐알코올(PVA)/증류수 응고욕에 방사시켜 탄소나노튜브 섬유를 최초로 제조하였다(Vigolo, B. et al. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290, 1331-1334 (2000)).The nano carbon tubes of the second solidification component, the coagulation bath of graphene, are known in various literatures. Vigolo et al. Prepared a 0.35 wt% SWNT dispersion using a surfactant (1.0 wt% sodium dodecylsulfonate (SDS)) and then spinning it in a 5 wt% polyvinyl alcohol (PVA) / distilled water coagulating bath to first produce carbon nanotube fibers (Vigolo, B. et al., Macroscopic fibers and ribbons of oriented carbon nanotubes, Science 290, 1331-1334 (2000)).

Munoz 등은 세틸트리메틸암모늄 브로마이드(CTAB), 도데실벤젠설폰산나트륨(SDBS), 도데실설폰산리튬(LDS)의 계면활성제를 이용하여 SWNT 분산액을 만든 다음, 폴리에틸렌이민(PEI)/증류수 응고욕에 방사시켜 SWNT/PEI 섬유를 제조하였다(Adv. Mater. 2005, 17, No.8, April 18). 제조된 SWNT/PEI 섬유는 SWNT/PVA 복합섬유에 비해 전기전도성이 100배 증가되는 것이 확인되었다.Munoz et al. Prepared SWNT dispersions using cetyltrimethylammonium bromide (CTAB), sodium dodecylbenzenesulfonate (SDBS), and lithium dodecylsulfonate (LDS) surfactants and then dissolved in a polyethyleneimine (PEI) / distilled water coagulation bath (SWNT / PEI) fibers were prepared by spinning ( Adv. Mater . 2005, 17, No. 8, April 18). It was confirmed that the prepared SWNT / PEI fiber had a 100 times increase in electrical conductivity compared to the SWNT / PVA composite fiber.

Winey 등은 폴리메틸메타크릴레이트(PMMA)을 응고매로 하는 CNT 복합필름 제조 방법을 개시하였다(Winey et al., Macromolecules, 2004, 37, 9048).Winey et al. (Winey et al., Macromolecules , 2004, 37, 9048) disclose a method for producing a CNT composite film using polymethyl methacrylate (PMMA) as a coagulating agent.

Smalley 등은 PVA/PVP을 응고매로 하는 CNT 복합필름 제조 방법을 개시하였다.Smalley et al. Disclosed a method for producing a CNT composite film using PVA / PVP as a coagulating agent.

상기 제1응고성분 및 제2응고성분은 수용성을 띠며, 본 발명의 응고욕은 상기, 제1응고성분 및 제2응고성분을 증류수에 용해시켜 제조될 수 있다. 또한, 응고욕의 용매로는 디메틸포름아미드, 메탄올, 에탄올, 에틸렌글리콜, n-부탄올, tert-부틸알코올, 이소프로필알코올, n-프로판올, 에틸아세테이트, 디메틸설폭사이드, 테트라하이드로퓨란 등의 유기 용매가 이용될 수 있다. 본 발명에서 응고용 용매로는 증류수가 바람직하나 이에 제한되지는 않는다.The first solidifying component and the second solidifying component are water-soluble, and the solidifying bath of the present invention can be produced by dissolving the first solidifying component and the second solidifying component in distilled water. Examples of the solvent for the coagulating bath include organic solvents such as dimethylformamide, methanol, ethanol, ethylene glycol, n-butanol, tert-butyl alcohol, isopropyl alcohol, n-propanol, ethyl acetate, dimethyl sulfoxide and tetrahydrofuran Can be used. In the present invention, distilled water is preferably used as an emulsifying solvent, but the present invention is not limited thereto.

상기 제1응고성분 및 제2응고성분의 응고액 농도는 그래핀산화물, 그래핀, 탄소나노튜브의 종래 습식 방사공정에서 공지된 응고욕 농도(함량wt%)에서 이용될 있다.The coagulating liquid concentration of the first coagulation component and the second coagulation component may be used at a known coagulation bath concentration (content wt%) in a conventional wet spinning process of graphene oxide, graphene, and carbon nanotubes.

예를 들어, 응고욕에서 CTAB 농도는 0.03~0.1wt%, 바람직하게는 0.05wt%(0.5 mg/mL)이며, CaCl2, NaOH, KOH은 3~10wt%, PVA, PMMA, PEI, PVP, PEO는 2~40wt%, 바람직하게는 5~10wt%이나, 이에 제한되지는 않는다.For example, the concentration of CTAB in the coagulating bath is 0.03 to 0.1 wt%, preferably 0.05 wt% (0.5 mg / mL), and CaCl 2 , NaOH, KOH are 3 to 10 wt%, PVA, PMMA, PEI, PVP, PEO is 2 to 40 wt%, preferably 5 to 10 wt%, but is not limited thereto.

방사용액 중의 그래핀산화물, 그래핀, 탄소나노튜브의 성분비에 따라 응고욕의 제1응고성분과 제2응고성분의 함량은 달라질 수 있다. 방사용액 중 그래핀산화물의 함량이 높으면 응고욕 중 제1응고성분의 함량이 증가할 수 있으며, 그래핀, 탄소나노튜브 함량이 높으면 응고욕 중 제2응고성분의 함량이 증가되는 것이 바람직하다.The content of the first solidification component and the second solidification component of the coagulation bath may vary depending on the ratio of the graphene oxide, graphene and carbon nanotubes in the spinning solution. If the content of graphene oxide in the spinning solution is high, the content of the first solidification component in the coagulation bath may increase, and if the content of graphene and carbon nanotubes is high, the content of the second coagulation component in the coagulation bath is preferably increased.

상기 그래핀산화물/탄소나노튜브 분산액, 그래핀산화물/그래핀 분산액, 그래핀산화물/그래핀/탄소나노튜브 분산액은 상기 제1응고성분만을 포함하는 응고욕, 상기 제2응고성분만으로 이루어진 응고욕에서는 섬유화(겔화)가 일어나지 않아 섬유가 형성되지 않는 반면, 상기 제1응고성분과 제2응고성분을 포함하는 응고욕에서는 섬유화가 일어나는 것이 본 발명에서 확인되었다.Wherein the graphene oxide / carbon nanotube dispersion, the graphene oxide / graphene dispersion, and the graphene oxide / graphene / carbon nanotube dispersion are mixed in a coagulation bath containing only the first coagulation component, Fibrosis (gelling) does not occur and fibers are not formed, whereas fibrosis occurs in the coagulation bath containing the first and second coagulation components.

본 발명에 따르면 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유, 그래핀산화물/그래핀/탄소나노튜브 복합섬유에서 그래핀산환물:(그래핀+탄소나노튜브)의 함량비에 따라 복합섬유의 전기전도도는 크게 달라지는 것이 확인되었다. 본 발명에서 그래핀산화물의 함량이 높을수록 제조된 복합섬유의 전기전도도는 낮아지는 경향을, 그래핀산화물의 함량이 작을수록 제조된 복합섬유의 전기전도도를 증가하였다.According to the present invention, the content of graphene oxide / carbon nanotube conjugated fiber, graphene oxide / graphene conjugated fiber, graphene oxide / graphene / carbon nanotube conjugate fiber content of graphene oxide: (graphene + carbon nanotube) It was confirmed that the electric conductivity of the composite fibers varies greatly according to the ratio. In the present invention, the higher the content of graphene oxide, the lower the electrical conductivity of the composite fibers. The lower the content of graphene oxide, the higher the electrical conductivity of the composite fibers.

본 발명에 따른 복합섬유는 별도의 그래핀산화물의 환원공정 없이 전기전도 특성을 가진다. 따라서, 핵산, DNA, RNA, 압타머 등의 기능성 물질이 도입된 그래핀산화물을 사용하는 경우 이들 기능성 물질이 화학적, 열적 환원공정에 의해 파괴, 또는 분해되지 않으면서 전기전도의 특성을 가질 수 있게 한다.The composite fiber according to the present invention has electric conduction characteristics without a separate graphene oxide reduction process. Therefore, when a graphene oxide into which a functional material such as nucleic acid, DNA, RNA, or aptamer is introduced is used, these functional materials are not destroyed or decomposed by a chemical or thermal reduction process, do.

다만, 본 발명의 그래핀산화물이 기능성 물질이 없는 경우에는 본 발명의 복합섬유는 공지의 열적 환원 방법 또는 화학적 환원 방법을 통해 추가 환원공정을 거칠 수 있다. 상기 열적 환원 방법은 제한되지는 않으나, 상온에서 200 ~ 1000 ℃로 0.1 ~ 10 ℃/분의 속도로 승온하여 이루어질 수 있다. 상기 화학적 환원 방법은 히드라진(hydrazine), 요오드화수소산(Hydroiodic acid), 브롬화수소산(hydrobromic acid), 수소화붕소나트륨(sodiumborohyride), 수소화리튬알루미늄(lithium aluminum hydride) 그리고 황산(surfuric acid) 등 공지의 환원제를 이용하여 이루어질 수 있다.However, when the graphene oxide of the present invention does not contain a functional material, the composite fiber of the present invention may undergo a further reduction process through a known thermal or chemical reduction method. The thermal reduction method is not limited, but may be performed at a temperature of 200 to 1000 ° C at a room temperature and at a rate of 0.1 to 10 ° C / minute. The chemical reduction method may be carried out by using a known reducing agent such as hydrazine, hydroiodic acid, hydrobromic acid, sodium borohydride, lithium aluminum hydride and sulfuric acid. .

이하 실시예를 통하여 본 발명에 따른 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/그래핀/탄소나노튜브 복합섬유 제조 방법을 상세히 설명한다.Hereinafter, a method for producing a graft oxide / carbon nanotube conjugated fiber, a grafted oxide / graft conjugated fiber or a grafted oxide / graft / carbon nanotube conjugated fiber according to the present invention will be described in detail with reference to the following examples.

재료 준비Material preparation

그래핀산화물(GO) 분산액 제조Preparation of graphene oxide (GO) dispersion

흑연 플레이크 2.4 g을 과황산포타슘 2.0g, 오산화인 2.0g이 용해된 황산 10mL에 넣은 후 80℃에서 72시간 동안 반응시켰다. 상기 흑연을 희석시킨 후 진공 여과를 통해 수득한 후, 24시간동안 진공에서 상온 건조시킴으로써 팽창 흑연(expanded graphite)를 수득하였다. 수득된 팽창 흑연을 92mL의 황산에 분산시킨 후, 과망간산포타슘 12.0g을 녹여 35℃에서 2시간 30분동안 반응시킨 다음 증류수 1.0L를 전체 분산액의 온도가 45℃를 넘지 않도록 30분간 첨가한 후, 30% 과산화수소수 20mL를 첨가함으로써 반응을 종결시켰다. 상기 반응 혼합물을 10,000rpm의 속도로 10분간 원심분리시킨 후 1.0M 염산 수용액을 첨가하여 원심분리하는 과정을 3회 이상 반복하고, 물을 첨가하여 13,000rpm의 속도로 40분간 원심분리하는 과정을 5회 이상 반복하고, 건조하여 그래핀산화물을 수득하였다. 상기 수득된 그래핀산화물 1g을 증류수 200 mL에 넣고 용해하여 0.5wt% GO 수분산액을 수득하였다.2.4 g of graphite flake was placed in 10 mL of sulfuric acid dissolved in 2.0 g of potassium persulfate and 2.0 g of phosphorus pentoxide and reacted at 80 DEG C for 72 hours. The graphite was diluted and then obtained by vacuum filtration, and then expanded at room temperature in vacuum for 24 hours to obtain expanded graphite. The obtained expanded graphite was dispersed in 92 mL of sulfuric acid. Then, 12.0 g of potassium permanganate was dissolved and reacted at 35 DEG C for 2 hours and 30 minutes. Then, 1.0 L of distilled water was added for 30 minutes so that the temperature of the total dispersion did not exceed 45 DEG C, The reaction was terminated by adding 20 mL of 30% aqueous hydrogen peroxide. The reaction mixture was centrifuged at a speed of 10,000 rpm for 10 minutes and then centrifuged at a rate of 13,000 rpm for 40 minutes. Times, and dried to obtain a graphene oxide. 1 g of the obtained graphene oxide was dissolved in 200 mL of distilled water and dissolved to obtain a 0.5 wt% GO water dispersion.

그래핀(rGO) 분산액 제조Preparation of graphene (rGO) dispersions

상기와 같이 방법으로 그래핀산화물 수분산액을 준비한 다음, 여기에 과량의 하이드라진을 넣고 80℃에서 2시간 동안 환원시켜 응집된 그래핀을 수득하였다. 상기 응집된 그래핀에 진한 황산을 첨가하여 180℃에서 12시간 동안 반응시켜 환원시키고, 수세, 건조 과정을 거쳐 환원된 그래핀산화물(rGO)를 얻었다. 증류수 100 mL에 상기 수득된 rGO 0.5g 및 도데실벤젠설폰산나트륨(SDBS) 0.25g을 넣고 30분간 초음파 처리를 하여 0.5wt% rGO 수분산액을 제조하였다.The graphene oxide aqueous dispersion was prepared as described above, and an excessive amount of hydrazine was added thereto, followed by reduction at 80 DEG C for 2 hours to obtain agglomerated graphene. Concentrated sulfuric acid was added to the coagulated graphene, which was reacted at 180 ° C for 12 hours to reduce, washed, and dried to obtain reduced graphene oxide (rGO). 0.5 g of the obtained rGO and 0.25 g of sodium dodecylbenzenesulfonate (SDBS) were added to 100 mL of distilled water and ultrasonicated for 30 minutes to prepare a 0.5 wt% rGO aqueous dispersion.

탄소나노튜브(SWNT) 분산액 제조Manufacture of carbon nanotube (SWNT) dispersion

증류수 100mL에 SWNT 0.5g 및 계면활성제 SDBS 0.25g을 넣고, 30분간 초음파 처리하여 0.5wt% SWNT 수분산액을 제조하였다.0.5 g of SWNT and 0.25 g of surfactant SDBS were added to 100 ml of distilled water and ultrasonicated for 30 minutes to prepare a 0.5 wt% SWNT water dispersion.

응고액 제조Coagulation preparation

CTAB 응고액, PVA 응고액, CaCl2 응고액을 각각 제조한 다음, 이들을 혼합하여 CTAB/PVA 혼합 응고액, CaCl2/PVA 혼합 응고액을 제조하였다. 응고액 혼합시 증류수 증가에 따른 성분 함량이 감소되는 것을 감안하여 0.10wt% CTAB, 10wt% PVA, 10wt% CaCl2 함량으로 준비하여 혼합 응고욕에 이용하였다.The CTAB coagulating solution, the PVA coagulating solution and the CaCl 2 coagulating solution were respectively prepared and then mixed to prepare a mixed coagulating solution of CTAB / PVA and CaCl 2 / PVA. In consideration of the fact that the content of distilled water increases as the amount of distilled water decreases, 0.10wt% CTAB, 10wt% PVA and 10wt% CaCl 2 content were prepared and mixed in a coagulating bath.

증류수 2L에 CTAB 2g을 넣고 용해시켜 0.10wt% CTAB 응고액을 제조하였다.2 g of CTAB was added to 2 L of distilled water and dissolved to prepare a 0.10 wt% CTAB coagulated solution.

증류수 2L에 PVA 222g을 넣고 용해시켜 10wt% PVA 응고액을 제조하였다.222 g of PVA was added to 2 L of distilled water and dissolved to prepare a 10 wt% PVA coagulation solution.

증류수 2L에 CaCl2 222g을 넣고 용해시켜 10wt% CaCl2 응고액을 제조하였다.222 g of CaCl 2 was added to 2 L of distilled water and dissolved to prepare a 10 wt% CaCl 2 coagulated solution.

실시예 1 내지 4 : CTAB/PVA 응고욕을 이용한 그래핀산화물/탄소나노튜브 복합섬유의 제조Examples 1 to 4: Preparation of graphene oxide / carbon nanotube conjugate fiber using CTAB / PVA coagulating bath

하기 표 1에 도시된 바와 같이, 상기 제조된 0.5wt% GO 수분산액과 0.5wt% SWNT 수분산액을 GO:SWNT = 4:1, 3:2, 2:3, 1:4로 각각 혼합하여 GO/SWNT 수분산액을 제조하여 방사용액으로 사용하였다.As shown in the following Table 1, the prepared 0.5 wt% GO water dispersion and 0.5 wt% SWNT water dispersion were mixed with GO: SWNT = 4: 1, 3: 2, 2: / SWNT water dispersion was prepared and used as spinning solution.

하기 표 1에 도시된 바와 같이, 상기 제조된 0.10wt% CTAB 응고액과 10wt% PVA 응고액을 혼합하여 CTAB/PVA 응고욕을 준비하였다.As shown in the following Table 1, a CTAB / PVA coagulating bath was prepared by mixing the prepared 0.10 wt% CTAB coagulating solution and 10 wt% PVA coagulating solution.

상기 제조된 각각의 GO/SWNT 분산액을 5mL 시린지에 투입한 후 내경 0.3 mm 방사노즐을 통하여 1 mL/min 이하의 방사 속도를 유지하면서 상기 제조된 CTAB/PVA 응고욕에 회전 또는 선형으로 방사용액을 주입하여 겔 형태의 섬유를 제조하였다. 방사용액 주입 30분 후에 겔 형태의 섬유를 증류수에 잠시 이동시켜서 남은 응고욕을 제거하고, 상온에서 24시간 동안 건조시켜 그래핀산화물/탄소나노튜브 복합섬유를 제조하였다.Each of the prepared GO / SWNT dispersions was put into a 5 mL syringe and rotated or linearly sprayed onto the prepared CTAB / PVA coagulation bath while maintaining a spinning rate of 1 mL / min or less through a 0.3 mm diameter spinneret To prepare a gel-like fiber. Thirty minutes after the spinning solution injection, the gel-type fibers were temporarily moved to distilled water to remove the remaining coagulation bath and dried at room temperature for 24 hours to prepare a graphene oxide / carbon nanotube composite fiber.

분산액 성분(in water)The dispersion component (in water) 응고욕 성분(in water)Coagulation bath component (in water) 섬유fiber 0.5wt% GO0.5wt% GO 0.5wt% SWNT0.5 wt% SWNT 0.10wt% CTAB0.10 wt% CTAB 10wt% PVA10 wt% PVA 실시예 1Example 1 8 mL8 mL 2 mL2 mL 600 mL600 mL 400 mL400 mL 실시예 2Example 2 6 mL6 mL 4 mL4 mL 600 mL600 mL 400 mL400 mL 실시예 3Example 3 4 mL4 mL 6 mL6 mL 400 mL400 mL 600 mL600 mL 실시예 4Example 4 2 mL2 mL 8 mL8 mL 400 mL400 mL 600 mL600 mL

비교예 1 내지 4 : 그래핀산화물 섬유 및 탄소나노튜브 섬유의 제조Comparative Examples 1 to 4: Preparation of graphene oxide fibers and carbon nanotube fibers

하기 표 2에 도시된 바와 같이 상기 제조된 0.5wt% GO 수분산액, 0.5wt% SWNT 수분산액을 1:1로 혼합하여 GO/SWNT 수분산액을 제조한 다음, CTAB 응고욕(비교예 1), PVA 응고욕(비교예 2)에 각각 방사하였다. 방사 결과 응고욕 내에서 섬유화(겔화)가 발생되지 않아 섬유로 제조할 수 없었다.The GO / SWNT water dispersion was prepared by mixing the prepared 0.5 wt% GO water dispersion and 0.5 wt% SWNT water dispersion at a ratio of 1: 1 as shown in the following Table 2, and then the CTAB coagulation bath (Comparative Example 1) PVA coagulation bath (Comparative Example 2). As a result of the spinning, fibrosis (gelation) was not generated in the coagulation bath, so that it could not be made into fibers.

대조구로서 0.5wt% GO 수분산액을 CTAB 응고욕(비교예 3), 0.5wt% SWNT 수분산액을 PVA 응고욕(비교예 4)에 각각 방사하여, 섬유를 제조하였다.A fiber dispersion was prepared by spinning a 0.5 wt% GO water dispersion as a control, a CTAB coagulating bath (Comparative Example 3), and a 0.5 wt% SWNT aqueous dispersion to a PVA coagulation bath (Comparative Example 4).

분산액 성분(in water)The dispersion component (in water) 응고욕 성분(in water)Coagulation bath component (in water) 섬유fiber 0.5wt% GO0.5wt% GO 0.5wt% SWNT0.5 wt% SWNT 0.10wt% CTAB0.10 wt% CTAB 10wt% PVA10 wt% PVA 비교예 1Comparative Example 1 5 mL5 mL 5 mL5 mL 1000 mL1000 mL -- 비교예 2Comparative Example 2 5 mL5 mL 5 mL5 mL -- 1000 mL1000 mL 비교예 3Comparative Example 3 10 mL10 mL -- 1000 mL1000 mL -- ○ (GO fibers)○ (GO fibers) 비교예 4Comparative Example 4 -- 10 mL10 mL -- 1000 mL1000 mL ○ (SWNT fibers)○ (SWNT fibers)

실시예 5 내지 8 : CaClExamples 5 to 8: CaCl 2 22 /PVA 응고욕을 이용한 그래핀산화물/그래핀 복합섬유의 제조/ Preparation of graphene oxide / graphene conjugate fiber by PVA coagulation bath

하기 표 3에 도시된 바와 같이, 상기 제조된 0.5wt% GO 수분산액과 0.5wt% rGO 수분산액을 GO:rGO = 4:1, 3:2, 2:3, 1:4로 각각 혼합하여 GO/rGO 수분산액을 제조하여 방사용액으로 사용하였다.As shown in the following Table 3, the prepared 0.5 wt% GO aqueous dispersion and 0.5 wt% rGO aqueous dispersion were mixed with GO: rGO = 4: 1, 3: 2, 2: / rGO aqueous dispersion was prepared and used as spinning solution.

하기 표 3에 도시된 바와 같이, 상기 제조된 10wt% CaCl2 응고액과 10wt% PVA 응고액을 혼합하여 각각의 CaCl2/PVA 응고욕을 준비하였다.As shown in the following Table 3, each CaCl 2 / PVA coagulating bath was prepared by mixing the 10 wt% CaCl 2 coagulating solution and the 10 wt% PVA coagulating solution prepared above.

상기 실시예 1과 동일한 방법으로 습식 방사를 실시하여 그래핀산화물/그래핀 복합섬유를 제조하였다. Wet spinning was carried out in the same manner as in Example 1 to prepare a graphene oxide / graphene conjugated fiber.

분산액 성분(in water)The dispersion component (in water) 응고욕 성분(in water)Coagulation bath component (in water) 섬유fiber 0.5wt% GO0.5wt% GO 0.5wt% rGO0.5 wt% rGO 10wt% CaCl2 10 wt% CaCl 2 10wt% PVA10 wt% PVA 실시예 5Example 5 8 mL8 mL 2 mL2 mL 600 mL600 mL 400 mL400 mL 실시예 6Example 6 6 mL6 mL 4 mL4 mL 600 mL600 mL 400 mL400 mL 실시예 7Example 7 4 mL4 mL 6 mL6 mL 400 mL400 mL 600 mL600 mL 실시예 8Example 8 2 mL2 mL 8 mL8 mL 400 mL400 mL 600 mL600 mL

비교예 5 내지 8 : 그래핀산화물 섬유 및 탄소나노튜브 섬유의 제조Comparative Examples 5 to 8: Preparation of graphene oxide fibers and carbon nanotube fibers

하기 표 4에 도시된 바와 같이, 상기 제조된 0.5wt% GO 수분산액, 0.5wt% rGO 수분산액을 1:1로 혼합하여 GO/rGO 수분산액을 제조한 다음, CaCl2 응고욕(비교예 5), PVA 응고욕(비교예 6)에 각각 방사하였다. 방사 결과 응고욕 내에서 섬유화(겔화)가 발생되지 않아 섬유로 제조할 수 없었다.As shown in the following Table 4, the GO / rGO aqueous dispersion was prepared by mixing the prepared 0.5 wt% aqueous GO dispersion and 0.5 wt% rGO aqueous dispersion at a ratio of 1: 1, and then the CaCl 2 coagulation bath (Comparative Example 5 ), And a PVA coagulation bath (Comparative Example 6). As a result of the spinning, fibrosis (gelation) was not generated in the coagulation bath, so that it could not be made into fibers.

대조구로서 0.5wt% GO 수분산액을 CaCl2 응고욕(비교예 3), 0.5wt% SWNT 수분산액을 PVA 응고욕(비교예 4)에 각각 방사하여, 섬유를 제조하였다.As a control, a 0.5 wt% GO water dispersion was spun into a CaCl 2 coagulation bath (Comparative Example 3) and a 0.5 wt% SWNT aqueous dispersion to a PVA coagulation bath (Comparative Example 4) to prepare fibers.

분산액 성분(in water)The dispersion component (in water) 응고욕 성분(in water)Coagulation bath component (in water) 섬유fiber 0.5wt% GO0.5wt% GO 0.5wt% rGO0.5 wt% rGO 10wt% CaCl2 10 wt% CaCl 2 10wt% PVA10 wt% PVA 비교예 5Comparative Example 5 5 mL5 mL 5 mL5 mL 1000 mL1000 mL -- 비교예 6Comparative Example 6 5 mL5 mL 5 mL5 mL -- 1000 mL1000 mL 비교예 7Comparative Example 7 10 mL10 mL -- 1000 mL1000 mL -- ○ (GO fibers)○ (GO fibers) 비교예 8Comparative Example 8 -- 10 mL10 mL -- 1000 mL1000 mL ○ (rGO fibers)○ (rGO fibers)

실시예 9 내지 12 : 그래핀산화물/그래핀/탄소나노튜브 복합섬유의 제조Examples 9 to 12: Preparation of graphene oxide / graphene / carbon nanotube conjugate fiber

하기 표 5에 도시된 바와 같이, 상기 제조된 0.5wt% GO 수분산액, 0.5wt% rGO 수분산액, 0.5wt% SWNT 수분산액을 GO:rGO:SWNT = 8:1:1, 6:2:2, 4:3:3, 2:4:4로 각각 혼합하여 GO/rGO/SWNT 수분산액을 제조하여 방사용액으로 사용하였다.As shown in the following Table 5, the prepared 0.5 wt% GO water dispersion, 0.5 wt% rGO aqueous dispersion and 0.5 wt% SWNT aqueous dispersion were mixed with GO: rGO: SWNT = 8: 1: 1, 6: 2: 2 , 4: 3: 3, and 2: 4: 4, respectively, to prepare GO / rGO / SWNT water dispersion.

하기 표 5에 도시된 바와 같이, 상기 제조된 0.10wt% CTAB 응고욕과 5wt% PVA 응고욕을 혼합하여 각각의 CTAB/PVA 응고욕을 준비하였다.Each of the CTAB / PVA coagulating baths was prepared by mixing the prepared 0.10 wt% CTAB coagulation bath and the 5 wt% PVA coagulation bath as shown in Table 5 below.

상기 실시예 1과 동일한 방법으로 습식 방사를 실시하여 그래핀산화물/그래핀/탄소나노튜브 복합섬유를 제조하였다.Wet spinning was carried out in the same manner as in Example 1 to prepare a graphene oxide / graphene / carbon nanotube composite fiber.

분산액 성분(in water)The dispersion component (in water) 응고욕 성분(in water)Coagulation bath component (in water) 섬유fiber 0.5wt% GO0.5wt% GO 0.5wt% SWNT0.5 wt% SWNT 0.5wt% rGO0.5 wt% rGO 0.10wt% CTAB0.10 wt% CTAB 10wt% PVA10 wt% PVA 실시예 9Example 9 8 mL8 mL 1 mL1 mL 1 mL1 mL 600 mL600 mL 400 mL400 mL 실시예 10Example 10 6 mL6 mL 2 mL2 mL 2 mL2 mL 600 mL600 mL 400 mL400 mL 실시예 11Example 11 4 mL4 mL 3 mL3 mL 3 mL3 mL 400 mL400 mL 600 mL600 mL 실시예 12Example 12 2 mL2 mL 4 mL4 mL 4 mL4 mL 400 mL400 mL 600 mL600 mL

실험예 1: 그래핀산화물/탄소나노튜브 복합섬유의 모폴로지(Morphology)Experimental Example 1: Morphology of graphene oxide / carbon nanotube composite fiber

실시예 2에 따라 제조된 그래핀산화물/탄소나노튜브 섬유를 전자주사현미경(SEM)으로 촬영하여 그 결과를 도 3에 나타내었다. The graphene oxide / carbon nanotube fibers prepared according to Example 2 were photographed by scanning electron microscope (SEM) and the results are shown in FIG.

도 3(a)는 그래핀산화물/탄소나노튜브 섬유의 단면사진, 도 3(b)는 이의 확대 사진이다.3 (a) is a cross-sectional photograph of the graphene oxide / carbon nanotube fiber, and Fig. 3 (b) is an enlarged photograph thereof.

도 3(b)에 보이는 바와 같이, 그래핀산화물과 탄소나노튜브는 별도의 뭉침현상없이 서로 균일하게 결합되는 것을 확인할 수 있다.As shown in FIG. 3 (b), it can be confirmed that the graphene oxide and the carbon nanotube are uniformly bonded to each other without causing agglomeration.

실험예 2: 그래핀산화물/탄소나노튜브 복합섬유의 전기전도도 분석Experimental Example 2: Electrical Conductivity Analysis of Graphene Oxide / Carbon Nanotube Composite Fiber

상기 실시예 1 내지 4에 따라 제조된 그래핀산화물/탄소나노튜브 복합섬유와 비교예 3에 따라 제조된 그래핀산화물 섬유, 비교예 4에 따라 제조된 탄소나노튜브 섬유의 전기전도도 특성을 측정하여 도 4에 나타내었다.The electrical conductivity characteristics of the graphene oxide / carbon nanotube composite fiber prepared according to Examples 1 to 4 and the carbon nanotube fiber prepared according to Comparative Example 3 and the graphene oxide fiber prepared according to Comparative Example 4 were measured 4.

도 4에 보이는 바와 같이, 비교예3의 그래핀산화물 섬유는 그래핀산화물의 절연 특성에 의해 ~10-3 S/m의 절연체에 가까운 전기전도도를 보인 반면, 실시예 1의 복합섬유(그래핀산화물:탄소나노튜브=4:1)는 ~1 S/m, 실시예 2의 복합섬유(그래핀산화물:탄소나노튜브=3:2)는 ~10 S/m, 실시예 3의 복합섬유(그래핀산화물:탄소나노튜브=3:2)는 ~102 S/m, 실시예 4의 복합섬유(그래핀산화물:탄소나노튜브=1:4)는 ~104 S/m로 탄소나노튜브의 함량 증가에 따라 전기전도도 역시 현저히 증가하는 것이 확인되었다.As shown in FIG. 4, the graphene oxide fibers of Comparative Example 3 exhibited electric conductivities close to that of an insulator of ~ 10 -3 S / m due to the insulating properties of graphene oxide, while the composite fibers of Example 1 The composite fiber of Example 2 (graphene oxide: carbon nanotube = 3: 2) was about 10 S / m, and the composite fiber of Example 3 (carbon nanotube = 4: graphene oxide: CNT = 3: 2) and 10 2 composite fiber of the S / m, example 4 (graphene oxide: CNT = 1: 4) 10 4 CNT in S / m It was confirmed that the electrical conductivity was also significantly increased with the increase of the content.

Claims (10)

a) 그래핀산화물/탄소나노튜브 분산액, 그래핀산화물/그래핀 분산액 또는 그래핀산화물/그래핀/탄소나노튜브 분산액을 준비하는 단계;
b) 상기 분산액을 CTAB, 키토산, CaCl2, NaOH, KOH 으로 구성된 군에서 선택되는 1종 이상의 제1응고성분, 및 폴리비닐알코올(PVA), 폴리메틸메타아크릴레이트(PMMA), 폴리에틸렌이민(PEI), 폴리비닐필로리돈(PVP), 폴리에틸렌옥사이드(PEO)으로 이루어진 군에서 선택되는 1종 이상의 제2응고성분을 포함하는 응고욕에 방사시켜 겔 섬유를 제조하는 단계; 및
c) 상기 겔 섬유를 건조하는 단계를 포함하는,
그래핀산화물 복합섬유의 제조 방법.
a) preparing a graphene oxide / carbon nanotube dispersion, a graphene oxide / graphene dispersion or a graphene oxide / graphene / carbon nanotube dispersion;
b) CTAB to the dispersion liquid, chitosan, CaCl 2, NaOH, at least one member selected from the group consisting of KOH first coagulation components, and polyvinyl alcohol (PVA), polymethyl methacrylate (PMMA), polyethylene imine (PEI ), Polyvinylpyrrolidone (PVP), and polyethylene oxide (PEO), to produce a gel fiber; And
c) drying said gel fibers.
A method for producing graphene oxide composite fibers.
제1항에 있어서,
상기 분산액에서 그래핀산화물:탄소나노튜브의 함량(wt%)비는 1:4 ~ 4:1인 것을 특징으로 하는,
그래핀산화물 복합섬유의 제조 방법.
The method according to claim 1,
Wherein the content of graphene oxide: carbon nanotubes (wt%) in the dispersion is 1: 4 to 4: 1.
A method for producing graphene oxide composite fibers.
제1항에 있어서,
상기 분산액에서 그래핀산화물:그래핀의 함량(wt%)비는 1:4 ~ 4:1인 것을 특징으로 하는,
그래핀산화물 복합섬유의 제조 방법.
The method according to claim 1,
Characterized in that the content (wt%) of graphene oxide: graphene in the dispersion is 1: 4 to 4: 1.
A method for producing graphene oxide composite fibers.
제1항에 있어서,
상기 분산액에서 그래핀산화물:(그래핀+탄소나노튜브)의 함량(wt%)비는 1:4 ~ 4:1이고, 상기 그래핀:탄소나노튜브 함량(wt%)비는 1:4 ~ 4:1인 것을 특징으로 하는,
그래핀산화물 복합섬유의 제조 방법.
The method according to claim 1,
The ratio of graphene oxide: (graphene + carbon nanotubes) in the dispersion is 1: 4 to 4: 1, and the content of graphene: carbon nanotubes is 1: 4 to 4: 4: 1. ≪ RTI ID = 0.0 >
A method for producing graphene oxide composite fibers.
제1항에 있어서,
상기 그래핀산화물/탄소나노튜브 분산액에서 그래핀산화물/탄소나노튜브 전체 농도는 0.1 ~ 2wt%, 그래핀산화물/그래핀 분산액에서 그래핀산화물/그래핀 전체 농도는 0.1 ~ 2wt%, 그래핀산화물/그래핀/탄소나노튜브 분산액에서 그래핀산화물/그래핀/탄소나노튜브 전체 농도는 0.1 ~ 2wt%인 것을 특징으로 하는,
그래핀산화물 복합섬유의 제조 방법.
The method according to claim 1,
The total concentration of graphene oxide / carbon nanotubes in the graphene oxide / carbon nanotube dispersion is 0.1 to 2 wt%, the total concentration of graphene oxide / graphene in the graphene oxide / graphene dispersion is 0.1 to 2 wt% / Graphene / the total concentration of graphene oxide / graphene / carbon nanotube in the carbon nanotube dispersion is 0.1 to 2 wt%
A method for producing graphene oxide composite fibers.
제1항에 있어서,
상기 응고욕에서 CTAB 농도는 0.03~0.1wt%이고 , CaCl2, NaOH, KOH 농도는 3~10wt%이고, PVA, PMMA, PEI, PVP, PEO 농도는 2~40wt%인 것을 특징으로 하는,
그래핀산화물 복합섬유의 제조 방법.
The method according to claim 1,
Wherein the CTAB concentration in the coagulation bath is 0.03 to 0.1 wt%, the concentration of CaCl 2 , NaOH, and KOH is 3 to 10 wt%, and the concentration of PVA, PMMA, PEI, PVP, and PEO is 2 to 40 wt%
A method for producing graphene oxide composite fibers.
제1항에 있어서,
상기 그래핀산화물은 타겟물질 검출능을 가지는 기능성 물질이 도입된 그래핀산화물인 것을 특징으로 하는,
그래핀산화물 복합섬유의 제조 방법.
The method according to claim 1,
Wherein the graphene oxide is a graphene oxide into which a functional material capable of detecting a target substance is introduced.
A method for producing graphene oxide composite fibers.
제7항에 있어서,
상기 기능성 물질은 핵산, DNA, RNA, 압타머, 펩티드, 단백질, 항체, 성장인자, 효소, 형광물질, 소광물질로 이루어진 군에서 선택되는 것을 특징으로 하는,
그래핀산화물 복합섬유의 제조 방법.
8. The method of claim 7,
Wherein the functional material is selected from the group consisting of a nucleic acid, DNA, RNA, an extramamer, a peptide, a protein, an antibody, a growth factor, an enzyme, a fluorescent substance,
A method for producing graphene oxide composite fibers.
제1항에 있어서,
상기 그래핀 또는 탄소나노튜브를 분산시키기 위한 계면활성제는, 도데실벤젠설폰산나트륨(SDBS), 도데실설폰산나트륨(SDS), 리그노설폰산나트륨(SLS), 라우레스설폰산나트륨(SLES), 라우릴 에테르 설폰산나트륨(SLES), 미레스설폰산나트륨(Sodium myreth sulfate), 도데실설폰산리튬(LDS)의 친수성 설폰산기(SO3 -)를 가지는 음이온성 계면활성제, 또는 세틸트리메틸암모늄 브로마이드(CTAB), 세틸트리메틸암모늄클로라이드(CTAC), 세틸피리디늄클로라이드(CPC), 도데실트리메틸암모늄 브로마이드(DTAB), 테트라데실트리메틸암모늄 브로마이드(TTAB), 테트라트리메틸암모늄 브로마이드(TMB), 디옥타데실디메틸암모늄브로마이드(DODAB), 디메틸디옥타데실암모늄클로라이드(DODMAC)의 양이온 계면활성제, 또는 Tween 20, 40, 60, 80, Triton X-100, 글리세롤알킬에스테르(Glycerol alkyl esters), 글리세릴라우릴에스테르(Glyceryl laurate esters), 폴리에틸렌글리콜소르비탄알킬에스테르(Polyoxyethylene glycol sorbitan alkyl esters), 폴리에틸렌글리콜옥타데실에테르의 비이온성 계면활성제로 이루어진 군에서 선택되는 것인,
그래핀산화물 복합섬유의 제조 방법.
The method according to claim 1,
The surface active agent for dispersing the graphene or carbon nanotube is selected from the group consisting of sodium dodecylbenzenesulfonate (SDBS), sodium dodecylsulfonate (SDS), sodium lignosulfonate (SLS), sodium laurethesulfonate (SLES) An anionic surfactant having a hydrophilic sulfonic acid group (SO 3 - ) of sodium lauryl ether sulfonate (SLES), sodium myreth sulfate, lithium dodecylsulfonate (LDS), or an anionic surfactant having cetyltrimethylammonium bromide (CTAB), cetyltrimethylammonium chloride (CTAC), cetylpyridinium chloride (CPC), dodecyltrimethylammonium bromide (DTAB), tetradecyltrimethylammonium bromide (TTAB), tetratrimethylammonium bromide (TMB), dioctadecyldimethylammonium (DODAB), dimethyl dioctadecylammonium chloride (DODMAC) cationic surfactants, or Tween 20, 40, 60, 80, Triton X-100, glycerol alkyl esters, The recess GW will lauryl ester (Glyceryl laurate esters), polyethylene glycol sorbitan alkyl ester (Polyoxyethylene glycol sorbitan alkyl esters), polyethylene glycol is selected from the group consisting of non-ionic surfactants of octadecyl ether,
A method for producing graphene oxide composite fibers.
제1항에 있어서,
상기 건조된 복합섬유를 화학적 또는 열적 환원시키는 단계를 더 포함하는 것을 특징으로 하는,
그래핀산화물 복합섬유의 제조 방법.
The method according to claim 1,
Further comprising the step of chemically or thermally reducing the dried composite fiber.
A method for producing graphene oxide composite fibers.
KR1020160055046A 2016-05-04 2016-05-04 Wet spinningMethod for preparing GO-CNT composite fibers, GO-Graphene composite fibers, GO-Grephene-CNT composite fibers Active KR101812536B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020160055046A KR101812536B1 (en) 2016-05-04 2016-05-04 Wet spinningMethod for preparing GO-CNT composite fibers, GO-Graphene composite fibers, GO-Grephene-CNT composite fibers
PCT/KR2017/001238 WO2017191887A1 (en) 2016-05-04 2017-02-04 Method for producing graphene oxide/carbon nanotube composite fiber, graphene oxide/graphene composite fiber or graphene oxide/graphene/carbon nanotube composite fiber using wet spinning process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160055046A KR101812536B1 (en) 2016-05-04 2016-05-04 Wet spinningMethod for preparing GO-CNT composite fibers, GO-Graphene composite fibers, GO-Grephene-CNT composite fibers

Publications (2)

Publication Number Publication Date
KR20170125444A KR20170125444A (en) 2017-11-15
KR101812536B1 true KR101812536B1 (en) 2017-12-29

Family

ID=60203054

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160055046A Active KR101812536B1 (en) 2016-05-04 2016-05-04 Wet spinningMethod for preparing GO-CNT composite fibers, GO-Graphene composite fibers, GO-Grephene-CNT composite fibers

Country Status (2)

Country Link
KR (1) KR101812536B1 (en)
WO (1) WO2017191887A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230077556A (en) * 2021-11-25 2023-06-01 한국전력공사 Composite graphene electrode using electroconductive material and Supercapacitor having the same

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107338498B (en) * 2017-08-21 2019-01-25 广东富琳健康产业有限公司 A kind of functional fibre and preparation method thereof for graphene far infrared waist support
CN109610027B (en) * 2018-01-08 2021-01-19 江苏恒辉安防股份有限公司 Graphene composite ultra-high molecular weight polyethylene fiber and preparation method thereof
KR101973895B1 (en) * 2018-02-12 2019-04-29 한국과학기술원 Graphene Polymer Composite Fiber structure as thermoelectric materials and Fabrication and manufacturing method thereof
KR102602632B1 (en) * 2018-02-13 2023-11-15 아톰 드레드즈 코퍼레이션 Graphene oxide fiber and method for manufacturing the same
KR102712431B1 (en) * 2018-03-19 2024-10-02 아톰 드레드즈 코퍼레이션 Graphene complex fiber and fabricating method of the same
KR102529541B1 (en) * 2018-03-20 2023-05-04 아톰 드레드즈 코퍼레이션 High Strength Graphene Fiber and Manufacturing Method Thereof
CN108439395A (en) * 2018-03-22 2018-08-24 福州大学 A kind of preparation method and applications of nitrogen boron codope porous active Carbon Materials
KR102467629B1 (en) * 2018-08-09 2022-11-18 아톰 드레드즈 코퍼레이션 Graphene wet spinning coagulating bath and method for manufacturing graphene oxide fiber using the same
CN110029409B (en) * 2018-11-30 2024-03-12 青岛大学 Preparation method of graphene oxide fiber and obtained fiber
KR102724674B1 (en) * 2019-04-17 2024-10-30 아톰 드레드즈 코퍼레이션 PAN-Graphene complex fiber and fabricating method of the same
CN110396731B (en) * 2019-04-25 2021-04-27 北京航空航天大学 Preparation method of bionic high-strength high-toughness nano composite fiber
WO2020221361A1 (en) * 2019-04-30 2020-11-05 青岛大学 Preparation method for graphene oxide fiber, and fiber obtained thereby
CN110453329B (en) * 2019-08-19 2021-12-10 河北宏润新型面料有限公司 Production process of compact spinning graphene composite fiber
CN112522812B (en) * 2019-09-18 2023-03-10 中国科学院苏州纳米技术与纳米仿生研究所 A kind of porous carbon nanofiber and its preparation method and application
CN110629325B (en) * 2019-09-30 2020-11-17 华中科技大学 Multi-element doped graphene fiber, and preparation and application thereof
CN110902672B (en) * 2019-12-26 2021-10-01 北京化工大学 Photothermal effect multi-level structure microspherical graphene aerogel and preparation method thereof
CN111778716B (en) * 2020-06-04 2022-10-11 上海灿越化工科技有限公司 Method for synergistically enhancing lipophilicity of polytetrafluoroethylene fiber by using hydrophobic graphene oxide/carbon nano tube
CN111908452A (en) * 2020-07-13 2020-11-10 深圳市展旺新材料科技有限公司 Graphene carbon nanotube composite high-thermal-conductivity film and preparation method thereof
CN111876223B (en) * 2020-08-05 2022-08-02 扬州工业职业技术学院 A kind of modified carbon nanotube ionic liquid layered liquid crystal lubricant and preparation method thereof
KR102440348B1 (en) * 2020-10-07 2022-09-05 한양대학교 산학협력단 Graphene/CNT composite fiber and fabrication method for the same
KR102683907B1 (en) 2020-12-29 2024-07-10 충북대학교 산학협력단 Nanomaterials having cellulase enzyme-mimicking activity and methods of increasing bioethanol production from lignocellulosic biomass using the same
CN113249862B (en) * 2021-05-13 2022-06-14 晋江市霖园塑胶雨具有限公司 Anti-static fabric for jacket
KR102488108B1 (en) * 2021-06-01 2023-01-13 연세대학교 산학협력단 Method for manufacturing a separation membrane based on a polar carbon nanotube dispersion and a polar one-dimensional carbon body
CN113445308A (en) * 2021-07-21 2021-09-28 北京轻越科技有限公司 Method for preparing conductive fiber based on aqueous carbon nanotube graphene composite slurry
CN113862992B (en) * 2021-09-10 2023-10-31 东南大学 Composite electrogenesis fiber based on sodium alginate and preparation method thereof
CN113713638B (en) * 2021-10-14 2024-02-13 山东海科创新研究院有限公司 A double-layer high-strength superhydrophobic separation membrane and its preparation method and application
CN114150502B (en) * 2021-11-05 2022-12-27 苏州大学 Alkaline semi-solid electrolyte membrane and preparation and application thereof
KR102722324B1 (en) * 2021-11-25 2024-10-25 한국과학기술연구원 Fiber composite comprising 2-dimensional carbon nanomaterials and carbon nanotube and manufacturing method thereof
CN114016150B (en) * 2021-12-10 2023-10-10 江西省纳米技术研究院 High-conductivity nano carbon/metal composite fiber and preparation method thereof
CN114507914B (en) * 2022-01-27 2023-12-05 闽都创新实验室 Method for preparing special electrical sensing fiber through wet spinning
CN115289989B (en) * 2022-02-16 2025-06-10 浙江理工大学 Liquid gallium-based liquid flexible strain sensor for fluorescent electronic skin
CN114836645B (en) * 2022-04-06 2022-11-01 西北工业大学 Preparation method of carbon nanotube-graphene hybrid porous preform with designable configuration
CN115138395B (en) * 2022-07-18 2023-06-30 黑龙江工业学院 Preparation method and application of black phosphorus-based photocatalytic composite material
CN116180327B (en) * 2023-01-07 2024-07-05 江苏盛纺纳米材料科技股份有限公司 Tensile non-woven fabric and production process thereof
CN116121903B (en) * 2023-04-10 2024-12-31 江西师范大学 Method for assisting carbon nano tube dispersion wet spinning fiber formation by double polymers
CN118580532B (en) * 2024-05-22 2025-01-21 中国石油大学(华东) An antibacterial film based on Pickering emulsion and its preparation method and application
CN119411241A (en) * 2024-11-18 2025-02-11 吴江市天缘纺织有限公司 A high shrinkage nylon production process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101182380B1 (en) * 2011-03-15 2012-09-12 한양대학교 산학협력단 Hybrid polymer composite fibers comprising graphene and carbon nanotubes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101818177B1 (en) * 2011-08-10 2018-01-12 한국과학기술원 A kit for assaying Endonuclease or Methyltrasnferase activities based on graphene oxide
KR101554215B1 (en) * 2012-04-03 2015-09-21 연세대학교 산학협력단 Carbon nanofiber having excellent electrical characteristics and method for manufacturing the carbon nano fiber
KR101573877B1 (en) * 2014-04-24 2015-12-11 서울대학교 산학협력단 Method for manufacturing grphene based nanocarbon fiber using self assembly of layers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101182380B1 (en) * 2011-03-15 2012-09-12 한양대학교 산학협력단 Hybrid polymer composite fibers comprising graphene and carbon nanotubes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230077556A (en) * 2021-11-25 2023-06-01 한국전력공사 Composite graphene electrode using electroconductive material and Supercapacitor having the same

Also Published As

Publication number Publication date
WO2017191887A1 (en) 2017-11-09
KR20170125444A (en) 2017-11-15

Similar Documents

Publication Publication Date Title
KR101812536B1 (en) Wet spinningMethod for preparing GO-CNT composite fibers, GO-Graphene composite fibers, GO-Grephene-CNT composite fibers
KR101812534B1 (en) Method for preparing GO-CNT composite fibers, GO-Graphene composite fibers, GO-Graphene-CNT composite fibers
Xu et al. In situ polymerization approach to graphene-reinforced nylon-6 composites
KR101928911B1 (en) Method for preparing graphene oxide fibers, graphene fibers or their composite fibers by using wet spinning induced by electric field
KR20170121504A (en) Method for preparing graphene oxide fibers, graphene fibers or their composite fibers by using wet spinning induced by electric field
CN114074927B (en) Two-dimensional material, preparation method thereof and composite membrane
KR101550386B1 (en) Graphene dispersions and Graphene-ionic liquid polymer composites
Tang et al. Graphene/polymer composite materials: processing, properties and applications
KR101573877B1 (en) Method for manufacturing grphene based nanocarbon fiber using self assembly of layers
US9453118B2 (en) Hybrid polymer composite fiber including graphene and carbon nanotube, and method for manufacturing same
CN103524785B (en) A kind of graphene/SiO2 composite material and its preparation method and application
JP2013515847A (en) Dispersion of nanotubes and / or nanoplatelets in polyolefins
CN106029564B (en) High content of carbon nanotubes fluid
Jia et al. Nafion-assisted exfoliation of MoS2 in water phase and the application in quick-response NIR light controllable multi-shape memory membrane
US12234368B2 (en) Dispersions comprising high surface area nanotubes and discrete carbon nanotubes
CN104988592B (en) Polyvinyl alcohol/graphene composite nano fiber material and preparation method thereof
CN104947227A (en) Polyvinylpyrrolidone/graphene composite nanofiber material and preparation method thereof
JP2020164378A (en) Nanocellulose / nanocarbon composite structure and its manufacturing method
CN102911402A (en) Preparation method of star-shaped heat conducting filler with multiple heat conducting points
Lay et al. Combined effect of carbon nanotubes and polypyrrole on the electrical properties of cellulose-nanopaper
US12162758B2 (en) Lithium ion battery using high surface area nanotubes
US8709676B2 (en) Chemically bonded carbon nanotube-polymer hybrid and nanocomposite thereof
Yin et al. Enhancing the reinforcing efficiency in CNT nanocomposites via the development of pyrene-based active dispersants
Moharana et al. Graphene-based polymer composites: Physical and chemical properties
Zhang et al. Properties of graphene/polymer nanocomposite fibers

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20160504

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20170111

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20171127

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20171220

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20171220

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20201215

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20211215

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20221215

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20231205

Start annual number: 7

End annual number: 7