[go: up one dir, main page]

KR101803325B1 - 단방향 유체 흐름을 위한 중력 기반 미세유체 칩 - Google Patents

단방향 유체 흐름을 위한 중력 기반 미세유체 칩 Download PDF

Info

Publication number
KR101803325B1
KR101803325B1 KR1020160111344A KR20160111344A KR101803325B1 KR 101803325 B1 KR101803325 B1 KR 101803325B1 KR 1020160111344 A KR1020160111344 A KR 1020160111344A KR 20160111344 A KR20160111344 A KR 20160111344A KR 101803325 B1 KR101803325 B1 KR 101803325B1
Authority
KR
South Korea
Prior art keywords
reservoir
fluid
injection
microfluidic chip
tilted state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020160111344A
Other languages
English (en)
Inventor
성종환
이동욱
최인욱
하상근
Original Assignee
홍익대학교 산학협력단
한국식품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 홍익대학교 산학협력단, 한국식품연구원 filed Critical 홍익대학교 산학협력단
Priority to KR1020160111344A priority Critical patent/KR101803325B1/ko
Application granted granted Critical
Publication of KR101803325B1 publication Critical patent/KR101803325B1/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/18External loop; Means for reintroduction of fermented biomass or liquid percolate

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Dispersion Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Micromachines (AREA)

Abstract

미세유체 칩이 개시되며, 상기 미세유체 칩은, 일측에 형성되는 주입 리저버; 타측에 형성되되, 저면이 상기 주입 리저버의 저면보다 높은 위치에 형성되는 배출 리저버; 타측 방향으로의 제1 기울임 상태가 되면 상기 주입 리저버로부터 상기 배출 리저버로의 유체의 정 방향 흐름이 형성되는 주 채널; 및 일측 방향으로의 제2 기울임 상태가 되면 상기 배출 리저버로부터 상기 주입 리저버로의 유체의 역 방향 흐름이 형성되는 우회 채널을 포함하되, 상기 우회 채널은 상기 주 채널보다 높은 위치에 형성된다.

Description

단방향 유체 흐름을 위한 중력 기반 미세유체 칩{GRAVITY INDUCED ONE-WAY MICROFLUDIC CHIP}
본원은 단방향 유체 흐름을 위한 중력 기반 미세유체 칩에 관한 것이다.
식품 또는 신약 개발을 할 때에 전임상 시험은 성분의 효능과 독성을 평가하기 위한 단계이다. 이러한 전임상 시험 단계에서 인간 또는 동물 세포를 이용하여 부작용 및 효능을 예측할 수 있다. 그런데, 종래에는 세포 배양 모델의 정확성이 높지 않기 때문에, 개발 비용 및 시간이 많이 필요하였다.
이에 따라, 온 칩 세포 배양 기술이 식품 또는 신약 개발 시 수행되는 전임상 시험에 적용되고 있다. 온 칩 세포 배양 기술은, 인체 내부 환경과 유사한 환경을 조성하는 마이크로 칩에서 세포를 배양함으로써, 세포의 생리학적 유사성을 높일 수 있는 기술이다. 예시적으로, 완성된 칩 안에 장 세포와 간 세포를 각각 배양하여 장 흡수와 간 대사 반응을 인체에서의 반응과 유사하게 모사할 수 있다.
근래에, 플라스틱 접시에 세포를 배양하지 않고, 실제 인체의 혈류 및 장액 흐름을 모사한 미세유체 칩에 세포를 배양을 할 경우 세포의 활성과 기능이 개선된다는 보고가 있었다. 이에 따라 흐름이 도입된 세포 배양 시스템인 세포 배양 칩의 필요성이 커지고 있다.
종래의 온 칩 세포 배양 기술로는 국제공개공보 WO2013-086592(발명의 명칭 "ORGAN CHIPS AND USES THEREOF"), 국제공개공보 WO2013-086486(발명의 명칭 "INTEGRATED HUMAN ORGAN-ON-CHIP AL SYSTEMS") 등이 개시되어 있다.
미세유체 칩에 유체를 공급하는 대표적인 방식은 펌프를 이용하는 방법이지만, 튜브의 연결이 복잡해지거나 미생물 오염이 발생하는 등의 문제가 생길 수 있기 때문에, 보다 간편한 방식으로 중력을 이용한(칩의 기울임을 통한) 유체공급 방식이 사용되기도 한다.
중력 기반의 방식으로 칩에 유체를 공급하면서 동일한 유체를 지속적으로 순환시키기 위해서는 칩의 기울기 방향을 주기적으로 바꾸는 것이 필요하게 되고, 이에 따라 유체의 흐름 방향이 주기적으로 바뀌게 된다. 따라서 칩 설계 또는 세포 배양의 필요에 따라 유체가 한쪽으로만 흐르면서 순환해야 할 경우에는 중력 기반의 유체 공급 방식을 사용할 수 없게 된다.
본원은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 중력 기반 방식으로 유체를 공급하면서도, 추가적인 배지(유체)의 공급이나 제거가 없이 한쪽 방향(One-way)으로 배지(유체)의 연속적 흐름이 가능한 미세유체 칩 및 세포 배양 시스템을 제공하는 것을 목적으로 한다.
다만, 본원의 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 제 1 측면에 따른 미세유체 칩은, 일측에 형성되는 주입 리저버; 타측에 형성되되, 저면이 상기 주입 리저버의 저면보다 높은 위치에 형성되는 배출 리저버; 타측 방향으로의 제1 기울임 상태가 되면 상기 주입 리저버로부터 상기 배출 리저버로의 유체의 정 방향 흐름이 형성되는 주 채널; 및 일측 방향으로의 제2 기울임 상태가 되면 상기 배출 리저버로부터 상기 주입 리저버로의 유체의 역 방향 흐름이 형성되는 우회 채널을 포함하되, 상기 우회 채널은 상기 주 채널보다 높은 위치에 형성될 수 있다.
본원의 제2 측면에 따른 세포 배양 시스템은, 본원의 제1 측면에 따른 미세유체 칩; 및 상기 미세유체 칩에 대하여 상기 제1 기울임 상태 및 상기 제2 기울임 상태를 선택적으로 제공하는 기울기 조정 장치를 포함할 수 있다.
상술한 과제 해결 수단은 단지 예시적인 것으로서, 본원을 제한하려는 의도로 해석되지 않아야 한다. 상술한 예시적인 실시예 외에도, 도면 및 발명의 상세한 설명에 추가적인 실시예가 존재할 수 있다.
전술한 본원의 과제 해결 수단에 의하면, 제1 기울임 상태에서는 주 채널에서 유체의 정 방향 흐름이 형성되고, 제2 기울임 상태에서는 우회 채널에서 유체의 역 방향 흐름이 형성되므로, 주 채널 및 우회 채널 각각에서는 단 방향으로의 흐름이 형성될 수 있어, 유체(배지)의 추가 공급 및 제거 없이도 유체(배지)가 순환될 수 있는 미세유체 칩 및 세포 배양 시스템이 구현될 수 있다.
도 1의 (a)는 본원의 일 실시예에 따른 미세유체 칩을 상측에서 바라본 개략적인 개념도이다.
도 1의 (b)는 본원의 일 실시예에 따른 미세유체 칩을 측면에서 바라본 개략적인 개념도이다.
도 2의 (a)는 제1 기울임 상태에서 본원의 일 실시예에 따른 미세유체 칩 내에서 형성되는 유체의 흐름을 설명하기 위해, 제1 기울임 상태인 본원의 일 실시예에 따른 미세유체 칩을 상측에서 바라본 개략적인 개념도이다.
도 2의 (b) 및 (c)는 제1 기울임 상태에서 본원의 일 실시예에 따른 미세유체 칩 내에서 형성되는 유체의 흐름을 시간에 따라 설명하기 위해, 제1 기울임 상태인 본원의 일 실시예에 따른 미세유체 칩을 측면에서 바라본 개략적인 개념도이다.
도 3의 (a)는 제2 기울임 상태에서 본원의 일 실시예에 따른 미세유체 칩 내에서 형성되는 유체의 흐름을 설명하기 위해, 제2 기울임 상태인 본원의 일 실시예에 따른 미세유체 칩을 상측에서 바라본 개략적인 개념도이다.
도 3의 (b) 및 (c)는 제2 기울임 상태에서 본원의 일 실시예에 따른 미세유체 칩 내에서 형성되는 유체의 흐름을 시간에 따라 설명하기 위해, 제2 기울임 상태인 본원의 일 실시예에 따른 미세유체 칩을 측면에서 바라본 개략적인 개념도이다.
도 4a는 각각의 우회 채널의 폭이 1.5 mm, 3.5 mm 및 4.5 mm인 미세유체 칩 각각의 배출 리저버에서 주입 리저버로 이동하지 않고 배출 리저버에 잔류하는 유체의 부피를 측정한 결과를 도시한 그래프이다.
도 4b는 각각의 비아 홀과 주입 리저버의 폭의 차이가 0.5 mm, 1 mm 및 2.5 mm인 미세유체 칩 각각의 배출 리저버에서 주입 리저버로 이동하지 않고 배출 리저버에 잔류하는 유체의 부피를 측정한 결과를 도시한 그래프이다.
도 5는 상단 레이어를 제작하는 단계를 설명하기 위한 개략적인 개념도이다.
도 6은 중간 레이어를 제작하는 단계를 설명하기 위한 개략적인 개념도이다.
도 7은 하단 레이어를 제작하는 단계를 설명하기 위한 개략적인 개념도이다.
도 8은 상단 레이어, 중간 레이어 및 하단 레이어의 접합을 설명하기 위한 개략적인 개념도이다.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에", "상부에", "상단에", "하에", "하부에", "하단에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
이하에서는, 본원의 일 실시예에 따른 미세유체 칩(이하 '본 미세유체 칩'이라 함)에 대해 설명한다.
도 1의 (a)는 본원의 일 실시예에 따른 미세유체 칩을 상측에서 바라본 개략적인 개념도이고, 도 1의 (b)는 본원의 일 실시예에 따른 미세유체 칩을 측면에서 바라본 개략적인 개념도이다.
도 1의 (a) 및 도 1의 (b)를 참조하면, 본 미세유체 칩은 주입 리저버(1)를 포함한다. 도 1의 (a) 및 도 1의 (b)에 나타난 바와 같이, 주입 리저버(1)는 미세유체 칩의 일측에 형성된다. 주입 리저버(1)에는 유체가 주입될 수 있다. 예시적으로, 유체는 배지일 수 있다.
또한, 도 1의 (a) 및 도 1의 (b)를 참조하면, 본 미세유체 칩은 배출 리저버(2)를 포함한다. 도 1의 (a) 및 도 1의 (b)에 나타난 바와 같이, 배출 리저버(2)는 미세유체 칩의 타측에 형성된다. 또한, 도 1의 (b)를 참조하면, 미세유체 집의 기울임이 없는 상태에서, 배출 리저버(2)는 그 저면이 주입 리저버(1)의 저면보다 높은 위치에 형성된다.
또한, 도 1의 (a) 및 도 1의 (b)를 참조하면, 본 미세유체 칩은 주 채널(3)을 포함한다.
도 2의 (a)는 제1 기울임 상태에서 본원의 일 실시예에 따른 미세유체 칩 내에서 형성되는 유체의 흐름을 설명하기 위해, 제1 기울임 상태인 본원의 일 실시예에 따른 미세유체 칩을 상측에서 바라본 개략적인 개념도이고, 도 2의 (b) 및 (c)는 제1 기울임 상태에서 본원의 일 실시예에 따른 미세유체 칩 내에서 형성되는 유체의 흐름을 시간에 따라 설명하기 위해, 제1 기울임 상태인 본원의 일 실시예에 따른 미세유체 칩을 측면에서 바라본 개략적인 개념도이다.
도 2의 (b) 및 도 2의 (c)를 참조하면, 타측 방향으로의 제1 기울임 상태가 되면, 주 채널(3)에는 주입 리저버(1)로부터 배출 리저버(2)로의 유체의 정 방향 흐름이 형성된다. 즉, 제1 기울임 상태는 주 채널(3)에 주입 리저버(1)로부터 배출 리저버(2)로의 유체의 정 방향 흐름이 형성되도록 하는 기울임 상태를 의미할 수 있다. 이를 위해, 주 채널(3)은 제1 기울임 상태에서 주입 리저버(1)와 연결된 일측이 배출 리저버(2)와 연결된 타측보다 높은 위치에 위치하도록 형성될 수 있다.
또한, 도 2의 (a) 및 도 2의 (b)를 참조하면, 주 채널(3)의 일측은 주입 리저버(1)의 저면과 연결되고, 주 채널(3)의 타측은 배출 리저버(2)의 저면과 연결될 수 있다. 또한, 제1 기울임 상태에서, 주입 리저버(1) 및 배출 리저버(2)는 주입 리저버(1)의 저면(예를 들면 저면의 하한 높이값)이 배출 리저버(2)의 저면(예를 들면 저면의 상한 높이값)보다 높은 위치에 위치하도록 형성될 수 있다. 이에 따르면, 중력에 의한 위치 에너지 차이(높이 차)에 의해, 제1 기울임 상태에서 주 채널(3)에는 주입 리저버(1)로부터 배출 리저버(2)로의 유체의 정 방향 흐름이 형성될 수 있다.
보다 바람직하게는, 배출 리저버(2)의 유체를 수용할 수 있는 최대 레벨(도 2의 (c)를 참조하면 배출 리저버(2) 내 유체의 최대 레벨)의 높이보다 주 채널(3)의 일측과 연결되는 주입 리저버(1) 부분(예를 들면 주입 리저버(1)의 측면 하단)의 높이가 더 높도록 제1 기울임 상태를 정의하면, 주입 리저버(1) 내의 유체가 최대한 주 채널(3)로 이동되어 순환될 수 있을 것이다. 구체적으로 도 2의 (c)를 참조하면, 주입 리저버(1)와 배출 리저버(2)가 동일 기압(압력) 조건 하에 있을 경우, 제1 기울임 상태에서 주입 리저버(1), 배출 리저버(2) 및 주 채널(3) 중 적어도 하나 이상에 포함된 유체의 표면은 상호 평형을 이루어 동일한 수평 레벨 상에 형성될 수 있다. 이러한 상호 평형 상태에서, 배출 리저버(2)의 유체를 수용할 수 있는 최대 레벨의 높이보다 주 채널(3)의 일측과 연결되는 주입 리저버(1) 부분의 높이가 더 높도록 제1 기울임 상태가 설정된다면, 주입 리저버(1) 내에 있는 유체는 주입 리저버(1) 내에 잔류하지 않고 주 채널(3) 측으로 이동될 수 있다.
또한, 주입 리저버(1)는 제1 기울임 상태에서 우회 채널(4)의 일측이 연결된 부분(예를 들면 주입 리저버(1)의 상단부)을 통해 우회 채널(4)로 유체가 이동되는 것을 방지하도록 구비됨이 바람직하다. 구체적으로 도 2의 (b)를 참조하면, 주입 리저버(1)와 우회 채널(4)은 제1 기울임 상태에서의 주입 리저버(1)에 수용된 유체의 최대 레벨이 우회 채널(4)의 일측이 연결된 부분의 높이보다 낮도록 구비되고, 이에 따라 제1 기울임 상태에서 우회 채널(4)이 아닌 주 채널(3)로만 유체가 이동될 수 있다.
또한, 본 미세유체 칩은 우회 채널(4)을 포함한다. 도 1의 (b)를 참조하면, 우회 채널(4)은 주 채널(3)보다 높은 위치에 형성된다.
도 3의 (a)는 제2 기울임 상태에서 본원의 일 실시예에 따른 미세유체 칩 내에서 형성되는 유체의 흐름을 설명하기 위해, 제2 기울임 상태인 본원의 일 실시예에 따른 미세유체 칩을 상측에서 바라본 개략적인 개념도이고, 도 3의 (b) 및 (c)는 제2 기울임 상태에서 본원의 일 실시예에 따른 미세유체 칩 내에서 형성되는 유체의 흐름을 시간에 따라 설명하기 위해, 제2 기울임 상태인 본원의 일 실시예에 따른 미세유체 칩을 측면에서 바라본 개략적인 개념도이다
도 3의 (b) 및 도 3의 (c)를 참조하면, 일측 방향으로의 제2 기울임 상태가 되면, 우회 채널(4)에는 배출 리저버(2)로부터 주입 리저버(1)로의 유체의 역 방향 흐름이 형성된다. 즉, 제2 기울임 상태는 우회 채널(4)에 배출 리저버(2)로부터 주입 리저버(1)로의 유체의 역 방향 흐름이 형성되도록 하는 기울임 상태를 의미할 수 있다. 이를 위해, 우회 채널(4)은 제2 기울임 상태에서, 배출 리저버(2)와 연결된 타측이 주입 리저버(1)와 연결된 일측보다 높은 위치에 위치하도록 형성될 수 있다.
또한, 도 3의 (b) 및 도 3의 (c)를 참조하면, 우회 채널(4)의 일측은 주입 리저버(1)의 상단부와 연결될 수 있다. 또한, 우회 채널(4)의 타측은 그 저면이 배출 리저버(2)의 저면과 연속되도록 배출 리저버(2)의 측면 하단에 연결될 수 있다. 또한, 주입 리저버(1) 및 배출 리저버(2)는, 제2 기울임 상태에서, 배출 리저버(2)의 저면(예를 들면 저면의 하한 높이값)이 주입 리저버(1)의 상단부(예를 들면 상단부의 상한 높이값)보다 높은 위치에 위치하도록 형성될 수 있다. 이에 따르면, 제2 기울임 상태에서의 높이 차에 의해, 우회 채널(4)에는 배출 리저버(2)의 저면으로부터 주입 리저버(1)의 상단부로의 유체의 역 방향 흐름이 형성될 수 있다.
이러한 본 미세유체 칩에 의하면, 제1 기울임 상태에서는, 주입 리저버(1) 내의 유체가 주 채널(3)을 통해 배출 리저버(2)로 이동될 수 있고, 제2 기울임 상태에서는, 배출 리저버(2) 내의 유체가 주로 우회 채널(4)을 통해 주입 리저버(1)로 흐를 수 있다. 이에 따라, 제1 기울임 상태 및 제2 기울임 상태가 교번하여 일어나면, 유체(배지)가 본 미세유체 칩 내에서 순환하며 흐를 수 있다.
즉, 본 미세유체 칩은 제1 기울임 상태 및 제2 기울임 상태에 따른 주입 리저버(1)와 배출 리저버(2)의 높이 차를 이용해, 본 미세유체 칩 내에서의 인체의 혈류 및 장액 흐름을 유체 순환 형태로 모사할 수 있다.
이에 따라, 본 미세유체 칩 내로 유체가 추가 공급되거나 본 미세유체 칩 내로부터 유체가 제거되지 않아도 본 미세유체 칩 내에서는 유체의 연속적 흐름이 형성될 수 있다.
또한, 본 미세유체 칩은 높은 숙련도가 요구되고 유지 비용이 크게 발생하는 펌프를 이용해 유체의 흐름을 형성하는 것이 아니라, 상술한 바와 같이, 주입 리저버(1)와 배출 리저버(2)의 높이 차를 이용한 중력 기반 유체 흐름을 형성하므로, 사용자의 접근성을 높이고 유지 비용을 경감시킬 수 있다.
또한, 본 미세유체 칩은 제1 기울임 상태에서 유체가 우회 채널(4)로 흐르는 것이 방지되고, 제2 기울임 상태에서 유체가 주 채널(3)로 흐르는 것이 방지되도록, 주 처낼(3)과 우회 채널(4)에 높이차를 둠으로써, 주 채널(3) 및 우회 채널(4) 각각에서의 단 방향 흐름 형성이 극대화될 수 있다.
또한 전술한 바와 같이, 우회 채널(4)의 일측은, 제1 기울임 상태에서 우회 채널(4)을 통한 유체의 흐름이 형성되지 않는 높이로 주입 리저버(1)와 연결될 수 있다. 예시적으로, 도 2의 (b) 및 도 2의 (c)에 나타난 바와 같이, 우회 채널(4)의 일측은 주입 리저버(1)의 상단부와 연결될 수 있다.
또한, 우회 채널(4)의 타측은 배출 리저버(2)에 대하여 주 채널(3)의 타측보다 상측에 연결될 수 있다. 예시적으로, 상술한 바와 같이, 주 채널(3)의 타측은 배출 리저버(2)의 저면에 연결되고, 우회 채널(4)의 타측은 배출 리저버(2)의 측면에 연결될 수 있다. 이때, 우회 채널(4)의 타측은 그 저면이 배출 리저버(2)의 저면과 연속되도록 배출 리저버(2)의 측면 하단에 연결될 수 있다.
또한, 우회 채널(4)의 횡단면은 주 채널(3)의 횡단면보다 클 수 있다. 이에 따라, 우회 채널(4)은 제2 기울임 상태일 때의 역 방향 흐름 유량이 주 채널(3)의 역 방향 흐름 유량보다 크도록 형성될 수 있다.
보다 바람직하게는, 도 3의 (a), 도 3의 (b) 및 도 3의 (c)를 참조하면, 대부분의 유체가 우회 채널(4)을 통해 역 방향 이동되어 순환될 수 있도록, 우회 채널(4)의 횡단면은 주 채널(3)의 횡단면보다 훨씬 크게 설정될 수 있다. 즉, 주 채널(3)은 미세 채널인 반면, 우회 채널(4)은 미세 채널에 해당하지 않을 수 있다. 또한 전술한 바와 같이, 제2 기울임 상태에서 주입 리저버(1)에 소정 이상의 유체가 충진되고 나면, 주입 리저버(1)에 충진된 유체의 압력이 주 채널(3)의 통해 주입 리저버(1)로 이동되려는 유체의 압력보다 커져서, 제2 기울임 상태에서 주 채널(3)을 통한 유체의 이동이 차단될 수 있다. 즉, 주 채널(3)의 일측은, 제2 기울임 상태일 때 주입 리저버(1)에 충진된 유체의 압력이 주 채널(3)을 통한 유체의 역 방향 흐름의 유압보다 커지면, 주 채널(3)을 통한 유체의 역 방향 흐름이 차단되도록 주입 리저버(1)에 연결될 수 있다.
특히, 주 채널(3)의 일측이 주입 리저버(1)의 저면과 연결되는 경우, 주입 리저버(1)에 충진된 유체가 주 채널(3)의 일측에 가하는 유압은 단시간 내에 크게 증가될 수 있어, 제2 기울임 상태에서 주 채널(3)을 통한 유체의 이동은 제2 기울임 상태에 놓인 직후 바로 차단될 수 있을 것이다.
이와 같이, 우회 채널(4)의 횡단면의 면적을 주 채널(3)의 횡단면의 면적보다 크게 설정함으로써, 제2 기울임 상태에서 주 채널(3)을 통한 역 방향 흐름이 발생하는 것을 최소화하여, 주 채널(3)에서는 정 방향으로의 단 방향 흐름만이 메인 흐름이 되게 할 수 있다.
또한, 본 미세유체 칩은 우회 채널(4)의 횡단면의 면적을 주 채널(3)의 횡단면의 면적보다 크게 설정함으로써, 우회 채널(4)을 통한 유체의 역 방향 흐름의 유속을 주 채널(3)을 통한 유체의 정 방향 흐름의 유속보다 크게 만들어, 주 채널(3)에 유체의 흐름이 없는 시간이 최소화하여 최대한 연속적으로 주 채널(3)에서의 단방향 흐름을 형성할 수 있다. 다시 말해, 본 미세유체 칩은 상기와 같이 주 채널(3)과 우회 채널(4)에 크기(단면적) 차이를 두어, 유체가 역 방향으로 흐를 때에는 빨리 흘러가게 함으로써, 주 채널(3)에서의 단방향 흐름이 단절되는 시간(주 채널에 흐름이 없는 상태에 놓이는 시간)을 크게 줄일 수 있어, 주 채널(3)에서의 단 방향 흐름을 최대한 연속적으로 형성할 수 있다.
이와 같이, 유체의 정 방향 흐름은 주 채널(3)을 통해 이루어지고, 유체의 역 방향 흐름은 우회 채널(4)을 통해 이루어지므로, 주 채널(3) 및 우회 채널(4) 각각에서의 유체의 흐름은 단 방향(one-way) 흐름으로 구현될 수 있으며, 이에 따라 추가적인 유체의 공급이나 제거 없이도 유체의 순환이 효율적으로 구현될 수 있다.
또한, 본 미세유체 칩은 챔버(5)를 포함할 수 있다. 챔버(5)에서는 세포가 배양될 수 있다. 또한, 챔버(5)는 주입 리저버(1)와 배출 리저버(2) 사이에 형성될 수 있다. 또한, 챔버(5)는 주 채널(3) 상(주 채널(3)의 중간)에 형성될 수 있다.
챔버(5)가 주 채널(3) 상에 형성되므로, 주입 리저버(1)로부터 배출 리저버(2)를 향하는 정 방향으로의 흐름이 주로 챔버(5)에 작용할 수 있다. 즉, 본 미세유체 칩에 있어서, 주 채널(3)은 세포가 배양되는 챔버(5)에 유체의 흐름을 정 방향으로 작용하는 역할을 할 수 있고, 우회 채널(4)은 배출 리저버(2)로 유입된 유체가 다시 주입 리저버(1)로 옮겨지게 하는 역할을 할 수 있다.
또한, 상술한 바와 같이, 유체가 본 미세유체 칩 내에서 순환하므로, 유체의 추가 공급이 이루어지지 않아도, 세포 배양을 위한 챔버(5)에 대한 유체의 흐름 방향이 지속적으로 일정하게 유지될 수 있다.
만일 챔버(5) 내에서 유체 흐름 방향이 일정치 않다면, 챔버(5) 내에서 배양되는 세포에 비정상적인 유체 흐름이 작용될 수 있기 때문에, 세포 기능에 부정적인 영향이 미칠 수 있다. 예시적으로, 중력을 이용하여 챔버(5)에 유체를 공급하는 방법을 사용할 경우, 추가적인 유체의 공급 없이 유체를 순환시키기 위해서는, 주기적으로 중력 방향을 변화시켜 유체의 흐름 방향을 반전시키는 것이 필요하다. 이러한 경우, 챔버(5) 내에서 배양되는 세포 기능에 부정적인 영향이 작용할 수 있다.
그런데, 본 미세유체 칩에 의하면, 상술한 바와 같이, 챔버(5)에 정 방향으로의 단 방향(one-way) 흐름이 이루어지기 때문에, 챔버(5) 내에서 배양되는 세포에 대한 악영향을 최소화하면서 유체를 순환시킬 수 있다.
정리하면, 본 미세유체 칩은 제1 기울임 상태 및 제2 기울임 상태에 따른 주입 리저버(1)와 배출 리저버(2)의 높이 차를 이용하여, 유체의 지속적인 공급 및 지속적인 제거 없이, 처음 공급된 유체(배지)만으로 챔버(5)에 대해 단 방향(one-way) 흐름을 용이하게 도입할 수 있다. 이에 따라, 본 미세유체 칩은 체내와 유사한 환경에서 세포 배양이 일어나는 모델로 활용될 수 있다.
또한, 챔버(5)는 그 저면이 주 채널(3)과 연결되도록(통하도록) 형성될 수 있다.
또한, 도 1의 (b)를 참조하면, 본 미세유체 칩은, 주입 리저버(1)를 외부와 연통시키는 비아 홀(6)을 포함할 수 있다. 비아 홀(6)을 통해 외부로부터 주입 리저버(1) 내로 유체가 유입될 수 있다. 비아 홀(6)은 주입 리저버(1)와 동심원 관계일 수 있다. 또한, 도 1의 (b)에 나타난 바와 같이, 비아 홀(6)의 폭(직경)은 주입 리저버(1)의 폭보다 클 수 있다.
도 4a는 각각의 우회 채널의 폭이 1.5 mm, 3.5 mm 및 4.5 mm인 미세유체 칩 각각의 배출 리저버에서 주입 리저버로 이동하지 않고 배출 리저버에 잔류하는 유체의 부피를 측정한 결과를 도시한 그래프이다.
도 4a를 참조하면, 우회 채널(4)의 폭이 3.5 mm인 미세유체 칩의 잔류 부피가 가장 적은 것을 확인할 수 있다. 이에 따르면, 배출 리저버(2)에 잔류되는 유체의 부피를 최소화시켜, 배출 리저버(2) 내의 유체를 최대한 주입 리저버(1)로 이동시키기 위한 우회 채널(4)의 횡단면의 최적 폭은 3.5 mm일 수 있다.
또한, 도 4b는 각각의 비아 홀과 주입 리저버의 폭의 차이가 0.5 mm, 1 mm 및 2.5 mm인 미세유체 칩 각각의 배출 리저버에서 주입 리저버로 이동하지 않고 배출 리저버에 잔류하는 유체의 부피를 측정한 결과를 도시한 그래프이다.
도 4b를 참조하면, 비아 홀(6)과 주입 리저버(1)의 폭의 차이가 1 mm 인 미세유체 칩의 잔류 부피가 가장 적은 것을 확인할 수 있다. 이에 따르면, 배출 리저버(2)에 잔류되는 유체의 부피를 최소화시켜, 배출 리저버(2) 내의 유체를 최대한 주입 리저버(1)로 이동시키기 위한 비아 홀(6)과 주입 리저버(1)의 폭의 최적 차이는 1 mm일 수 있다.
또한, 본원은 본원의 일 실시예에 따른 세포 배양 시스템을 제공할 수 있다. 본원의 일 실시예에 따른 세포 배양 시스템은 전술한 본 미세유체 칩을 포함한다. 또한, 본원의 일 실시예에 따른 세포 배양 시스템은 본 미세유체 칩에 대하여 제1 기울임 상태 및 제2 기울임 상태를 선택적으로 제공하는 기울기 조정 장치를 포함한다.
예시적으로, 기울기 조정 장치는 중력 유동 디바이스(gravity flow device)일 수 있다. 또한, 기울기 조정 장치는 예시적으로, 제1 기울임 상태 및 제2 기울임 상태를 교번하여 제공할 수 있다.
예시적으로, 본원의 일 실시예에 따른 세포 배양 시스템의 운용은 이하와 같을 수 있다.
주입 리저버(1)에 배지를 150 uL 채우고, 배양 챔버(5)에 배지를 200 uL를 채워 사각 디쉬에 담아 기울기 조정 장치에 올릴 수 있다. 또한, 기울기 조정 장치와 연결된 컴퓨터의 APT User 프로그램을 이용하여 제1 기울임 상태(기울기 최대각 20°, 머무름 시간 5 min), 제1 기울임 상태로의 회전 속도 0.1°/sec, 제2 기울임 상태(기울기 최대각 10°, 머무름 시간 : 0 min) 및 제2 기울임 상태로의 회전 속도 0.1°/sec의 순서로 move sequencer를 설정할 수 있다. 이 후, 제1 기울임 상태 및 제2 기울임 상태가 반복적으로 일어나도록 기울기 조정 장치를 작동시킬 수 있다.
이에 따르면, 제1 기울임 상태에서, 주입 리저버(1)에 있는 배지가 주 채널(3)을 통하여 배출 리저버(2)로 이동하게 되고, 제2 기울임 상태에서, 배출 리저버(2)에 있는 배지가 우회 채널(4)을 통하여 주입 리저버(2)로 돌아올 수 있다.
한편 이하에서는, 본원의 일 실시예에 따라 전술한 본 미세유체 칩을 제조하는 방법(이하 '본 제조 방법'이라 함)에 대해 설명한다.
도 5는 상단 레이어를 제작하는 단계를 설명하기 위한 개략적인 개념도이고, 도 6은 중간 레이어를 제작하는 단계를 설명하기 위한 개략적인 개념도이며, 도 7은 하단 레이어를 제작하는 단계를 설명하기 위한 개략적인 개념도이고, 도 8은 상단 레이어, 중간 레이어 및 하단 레이어의 접합을 설명하기 위한 개략적인 개념도이다.
본 제조 방법은 상단 레이어를 제작하는 단계를 포함한다. 상단 레이어를 제작하는 단계는, 도 5의 (a)를 참조하면, 제1 레이어(91)를 준비하는 단계를 포함할 수 있다.
제1 레이어(91)를 준비하는 단계는, 페트리 접시(petri dish)에 가교되지 않은 PDMS를 부은 후 가교시키는 단계를 포함할 수 있다. PDMS를 부어 가교시키는 단계에서, PDMS는 예를 들어 3.5mm 높이로 부어질 수 있다.
또한, 상단 레이어를 제작하는 단계는, 도 5의 (b)를 참조하면,제1 레이어(91)의 일측에 상하 방향으로 관통하는 상단 제1 홀(911)을 형성하는 단계를 포함할 수 있다. 상단 제1 홀(911)은 비아 홀(6) 형성 예정 지점에 비아 홀(6)과 대응되는 형상을 가지고 형성될 수 있다. 또한, 상단 제1 홀(911)은 10 mm biopsy punch에 의해 형성될 수 있다.
또한, 상단 레이어를 제작하는 단계는, 도 5의 (b)를 참조하면, 제1 레이어(91)의 타측에 상하 방향으로 관통하는 상단 제2 홀(912)을 형성하는 단계를 포함할 수 있다. 구체적으로, 상단 제2 홀(912)은 배출 리저버(2)의 형성 예정 지점에 배출 리저버(2)와 대응되는 형상을 가지고 형성될 수 있다. 또한, 상단 제2 홀(912)은 8 mm biopsy punch에 의해 형성될 수 있다.
또한, 상단 레이어를 제작하는 단계는, 도 5의 (b)를 참조하면, 상단 제1 홀(911) 및 상단 제2 홀(912) 사이에 상단 제3 홀(914)을 형성하는 단계를 포함할 수 있다. 상단 제3 홀(914)은 챔버(5) 형성 예정 지점에 챔버(5)의 상부 형상(수평 단면)과 대응되는 형상을 가지고 형성될 수 있다. 또한, 상단 제3 홀(914)은 8 mm biopsy punch에 의해 형성될 수 있다.
또한, 상단 레이어를 제작하는 단계는, 우회 채널(4)에 대응하는 우회 채널 슬롯(913)을 형성하는 단계를 포함할 수 있다. 예시적으로, 3 mm 폭의 사각 펀치나 칼을 이용해 주입 리저버(1)와 배출 리저버(2)를 연결하는 우회 채널(4)에 대응하는 경로를 형성할 수 있다. 참고로, 도 1을 참조하면, 평면 상에서 보았을 때 상술한 상단 제3 홀(914)과 우회 채널 슬롯(913)은 상호 중첩되지 않게 별도의 영역에 형성될 수 있다.
또한, 상단 레이어를 제작하는 단계에 있어서, 상단 제1 홀(911), 상단 제2 홀(912), 상단 제3 홀(914) 및 우회 채널(4)의 형성 순서는 상술한 설명 순서에 한정되지 않는다.
또한, 본 제조 방법은 중간 레이어를 제작하는 단계를 포함할 수 있다. 중간 레이어를 제작하는 단계는, 도 6의 (a)를 참조하면, 제2 레이어(92)를 준비하는 단계를 포함할 수 있다. 예시적으로, 제2 레이어(92)를 준비하는 단계는, 페트리 접시(petri dish)에 가교되지 않은 PDMS를 부은 후, 가교시키는 단계를 포함할 수 있다. PDMS를 부어 가교시키는 단계에서, PDMS는 예시적으로, 3.5mm 높이로 부어질 수 있다.
또한, 중간 레이어를 제작하는 단계는, 도 6의 (b)를 참조하면, 제2 레이어(92)의 일측에 상하 방향으로 관통하는 중간 제1 홀(921)을 형성하는 단계를 포함할 수 있다. 구체적으로, 중간 제1 홀(921)은 주입 리저버(1)의 형성 예정 지점에 주입 리저버(1)와 대응되는 형상으로 형성될 수 있다. 또한, 중간 제1 홀(921)은 8 mm biopsy punch에 의해 형성될 수 있다.
또한, 중간 레이어를 제작하는 단계는, 도 6의 (b)를 참조하면, 제2 레이어(92)의 타측에 상하 방향으로 관통하는 중간 제2 홀(922)을 형성하는 단계를 포함할 수 있다. 중간 제2 홀(922)은 주 채널(3)에 대응하는 형상으로 형성될 수 있다. 예시적으로, 중간 제2 홀(922)은 1 mm biopsy punch에 의해 형성될 수 있다.
또한, 중간 레이어를 제작하는 단계는, 도 6의 (b)를 참조하면, 상하 방향으로 관통하는 중간 제3홀(924)을 형성하는 단계를 포함할 수 있다. 중간 제3홀(924)은 챔버(5) 형성 예정 지점에 챔버(5)와 대응되는 형상을 가지고 형성될 수 있다. 이러한 중간 제3 홀(924)은 평면 상에서 보았을 때 상단 제3 홀(914)에 대응하는 위치에 형성될 수 있다. 또한, 중간 제3홀(924)은 8 mm biopsy punch에 의해 형성될 수 있다.
또한, 중간 레이어를 제작하는 단계에 있어서, 중간 제1 홀(921), 중간 제2 홀(922) 및 중간 제3 홀(924)의 형성 순서는 상술한 설명 순서에 한정되지 않는다.
또한, 본 제조 방법은 하단 레이어를 제작하는 단계를 포함할 수 있다.
도 7을 참조하면, 하단 레이어를 제작하는 단계는 소프트 포토리소그래피(soft photolithography)를 이용하여 주 채널(3)과 대응되는 형상의 돌출부가 양각된 웨이퍼(wafer)에 가교되지 않은 폴리디메틸실록산(pdms)을 부은 후 가교시키는 단계를 포함할 수 있다. 이 때, 폴리디메틸실록산은 웨이퍼 내에 1 mm 높이로 부어질 수 있다. 폴리디메틸실록산을 웨이퍼에 부어 가교시키는 단계 이후에, 굳어진 폴리디메틸실록산을 웨이퍼로부터 분리킬 수 있다. 이에 따라, 상면에 함몰부(931)를 갖는 제3 레이어(93)가 형성될 수 있다. 함몰부(931)는 주 채널(3)의 형성 예정 지점에 주 채널(3)과 대응하는 형상(단면적)으로 형성될 수 있다.
참고로, 본 제조 방법에 있어서, 상단 레이어를 제작하는 단계, 중간 레이어를 제작하는 단계 및 하단 레이어를 제작하는 단계의 수행 순서는 상기 설명 순서에만 한정되는 것은 아니다.
또한, 본 제조 방법은, 상단 레이어, 중간 레이어 및 하단 레이어를 상호 연결하는 단계를 포함할 수 있다. 상기 상호 연결하는 단계는, 상단 레이어의 상단 제1홀(911), 중간 레이어의 중간 제1 홀(921) 및 하단 레이어의 함몰부(931)가 서로 연통되고, 상단 레이어의 상단 제2홀(912), 중간 레이어의 중간 제2홀(922) 및 하단 레이어의 함몰부(931)가 서로 연통되며, 상단 레이어의 상단 제3홀(914), 중간 레이어의 중간 제3홀(924) 및 하단 레이어의 함몰부(931)가 서로 연통되도록 상단 레이어, 중간 레이어 및 하단 레이어를 연결(적층)할 수 있다. 적층하는 단계에서, 상단 레이어, 중간 레이어 및 하단 레이어간의 연결은 플라즈마 본딩(plasma bonding)에 의해 이루어질 수 있다. 예시적으로, 플라즈마 표면 처리기에 의해 상기 플라즈마 본딩이 이루어질 수 있다.
또한, 본 제조 방법은, 도 8을 참조하면, 하단 레이어의 하면과 기판(94)의 상면을 연결하는 단계를 포함할 수 있다. 예시적으로, 기판(94)은 Slide glass일 수 있다.
참고로, 본 제조 방법에 있어서, 상단 레이어, 중간 레이어 및 하단 레이어를 상호 연결하는 단계와 하단 레이어의 하면과 기판(94)의 상면을 연결하는 단계는 상기 상단 레이어를 제작하는 단계, 중간 레이어를 제작하는 단계 및 하단 레이어를 제작하는 단계의 수행 순서는 상기 설명 순서에만 한정되는 것은 아니다. 예를 들어, 하단 레이어의 하면과 기판(94)의 상면을 연결하는 단계가 먼저 수행된 다음, 상단 레이어, 중간 레이어 및 하단 레이어를 상호 연결하는 단계가 수행될 수 있다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.
1: 주입 리저버 2: 배출 리저버
3: 주 채널 4: 우회 채널
5: 챔버 6: 비아 홀
91: 제1 레이어 911: 상단 제1 홀
912: 상단 제2 홀 913: 우회 채널 슬롯
914: 상단 제3 홀 92: 제2 레이어
921: 중간 제1 홀 922: 중간 제2 홀
924: 중간 제3 홀 93: 제3 레이어
931: 함몰부 94: 기판

Claims (14)

  1. 세포 배양을 위한 미세유체 칩으로서,
    일측에 형성되는 주입 리저버;
    타측에 형성되되, 상기 미세유체 칩의 기울임이 없는 상태에서 저면이 상기 주입 리저버의 저면보다 높은 위치에 형성되는 배출 리저버;
    타측 방향으로의 제1 기울임 상태가 되면 상기 주입 리저버로부터 상기 배출 리저버로의 유체의 정 방향 흐름이 형성되는 주 채널; 및
    일측 방향으로의 제2 기울임 상태가 되면 상기 배출 리저버로부터 상기 주입 리저버로의 유체의 역 방향 흐름이 형성되는 우회 채널을 포함하되,
    상기 주 채널은, 상기 제1 기울임 상태에서 상기 주입 리저버와 연결된 일측이 상기 배출 리저버와 연결된 타측보다 높은 위치에 위치하도록 형성되고,
    상기 우회 채널은 상기 미세유체 칩의 기울임이 없는 상태에서 상기 주 채널보다 높은 위치에 형성되며, 상기 제1 기울임 상태에서 그 일측이 상기 우회 채널을 통한 유체의 흐름이 형성되지 않는 높이로 상기 주입 리저버와 연결되며, 상기 제2 기울임 상태에서 상기 배출 리저버와 연결된 타측이 상기 주입 리저버와 연결된 일측보다 높은 위치에 위치하도록 형성되고,
    상기 우회 채널의 횡단면의 면적은, 상기 우회 채널을 통한 유체의 역 방향 흐름의 유속이 상기 주 채널을 통한 유체의 역 방향 흐름의 유속보다 크도록, 상기 주 채널의 횡단면의 면적보다 큰 것인, 미세유체 칩.
  2. 삭제
  3. 제1항에 있어서,
    상기 주 채널은, 그 일측이 상기 주입 리저버의 저면과 연결되고, 그 타측이 상기 배출 리저버의 저면과 연결되며,
    상기 주입 리저버 및 상기 배출 리저버는, 상기 제1 기울임 상태에서 상기 주입 리저버의 저면이 상기 배출 리저버의 저면보다 높은 위치에 위치하도록 형성되는 것인, 미세유체 칩.
  4. 삭제
  5. 제1항에 있어서,
    상기 우회 채널은, 그 일측이 상기 주입 리저버의 상단부와 연결되고, 그 타측이 배출 리저버의 저면과 연속되도록 연결되며,
    상기 주입 리저버 및 상기 배출 리저버는, 상기 제2 기울임 상태에서, 상기 배출 리저버의 저면이 상기 주입 리저버의 상단부보다 높은 위치에 위치하도록 형성되는 것인, 미세유체 칩.
  6. 삭제
  7. 제1항에 있어서,
    상기 주입 리저버 및 상기 우회 채널 각각은, 상기 제1 기울임 상태에서 상기 주입 리저버에 수용된 유체의 레벨이 상기 우회 채널의 일측이 연결된 부분의 높이보다 낮도록 구비되는 것인, 미세유체 칩.
  8. 제1항에 있어서,
    상기 우회 채널의 타측은 상기 배출 리저버의 측면에 연결되고,
    상기 주 채널의 타측은 상기 배출 리저버의 저면에 연결되는 것인, 미세유체 칩.
  9. 제8항에 있어서,
    상기 우회 채널의 타측은 그 저면이 상기 배출 리저버의 저면과 연속되도록 상기 배출 리저버의 측면 하단에 연결되는 것인, 미세유체 칩.
  10. 삭제
  11. 제1항에 있어서,
    상기 주 채널의 일측은, 상기 제2 기울임 상태일 때 상기 주입 리저버에 충진된 유체의 압력이 상기 주 채널을 통한 유체의 역 방향 흐름의 유압보다 커지면 상기 주 채널을 통한 유체의 역 방향 흐름이 차단되도록, 상기 주입 리저버의 저면에 연결되는 것인, 미세유체 칩.
  12. 제1항에 있어서,
    상기 주입 리저버와 상기 배출 리저버 사이의 상기 주 채널 상에 형성되는 챔버를 더 포함하는, 미세유체 칩.
  13. 제12항에 있어서,
    상기 챔버는, 그의 저면이 상기 주 채널과 연결되도록 형성되는 것인, 미세유체 칩.
  14. 세포 배양 시스템
    제1항에 따른 미세유체 칩; 및
    상기 미세유체 칩에 대하여 상기 제1 기울임 상태 및 상기 제2 기울임 상태를 선택적으로 제공하는 기울기 조정 장치를 포함하는 세포 배양 시스템.
KR1020160111344A 2016-08-31 2016-08-31 단방향 유체 흐름을 위한 중력 기반 미세유체 칩 Active KR101803325B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160111344A KR101803325B1 (ko) 2016-08-31 2016-08-31 단방향 유체 흐름을 위한 중력 기반 미세유체 칩

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160111344A KR101803325B1 (ko) 2016-08-31 2016-08-31 단방향 유체 흐름을 위한 중력 기반 미세유체 칩

Publications (1)

Publication Number Publication Date
KR101803325B1 true KR101803325B1 (ko) 2017-12-05

Family

ID=60920874

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160111344A Active KR101803325B1 (ko) 2016-08-31 2016-08-31 단방향 유체 흐름을 위한 중력 기반 미세유체 칩

Country Status (1)

Country Link
KR (1) KR101803325B1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200051481A (ko) * 2018-11-05 2020-05-13 재단법인대구경북과학기술원 생체 모사 칩 장치
KR20220003746A (ko) * 2020-07-02 2022-01-11 주식회사 클리노믹스 입자 여과 장치 및 입자 여과 방법
US11273445B2 (en) 2018-11-05 2022-03-15 Daegu Gyeongbuk Institute Of Science And Technology Biomimetic chip device
WO2025051969A1 (en) 2023-09-08 2025-03-13 Mimetas B.V. Titerplate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054521A (ja) * 2006-08-29 2008-03-13 Canon Inc 細胞培養処理装置及び細胞培養処理方法
JP2011528552A (ja) * 2008-07-18 2011-11-24 キヤノン ユー.エス. ライフ サイエンシズ, インコーポレイテッド 微小流体dna試料調製のための方法およびシステム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054521A (ja) * 2006-08-29 2008-03-13 Canon Inc 細胞培養処理装置及び細胞培養処理方法
JP2011528552A (ja) * 2008-07-18 2011-11-24 キヤノン ユー.エス. ライフ サイエンシズ, インコーポレイテッド 微小流体dna試料調製のための方法およびシステム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200051481A (ko) * 2018-11-05 2020-05-13 재단법인대구경북과학기술원 생체 모사 칩 장치
KR102320725B1 (ko) * 2018-11-05 2021-11-02 재단법인대구경북과학기술원 생체 모사 칩 장치
US11273445B2 (en) 2018-11-05 2022-03-15 Daegu Gyeongbuk Institute Of Science And Technology Biomimetic chip device
KR20220003746A (ko) * 2020-07-02 2022-01-11 주식회사 클리노믹스 입자 여과 장치 및 입자 여과 방법
KR102433675B1 (ko) * 2020-07-02 2022-08-18 주식회사 클리노믹스 입자 여과 장치 및 입자 여과 방법
WO2025051969A1 (en) 2023-09-08 2025-03-13 Mimetas B.V. Titerplate
NL2035770B1 (en) 2023-09-08 2025-03-14 Mimetas B V Titerplate

Similar Documents

Publication Publication Date Title
KR101803325B1 (ko) 단방향 유체 흐름을 위한 중력 기반 미세유체 칩
US20210308675A1 (en) Removing bubbles in a microfluidic device
Materne et al. The multi-organ chip-a microfluidic platform for long-term multi-tissue coculture
TWI541345B (zh) 培養容器
US8263023B2 (en) Microfluidic system and method for sorting cell clusters and for the continuous encapsulation thereof following sorting thereof
JP6857123B2 (ja) 細胞ベースの相互作用を調べるためのマイクロ流体プラットフォーム
CN1909847A (zh) 处理细胞、胚胎或者卵母细胞的装置
CN108699504A (zh) 灌注歧管组件
JP2009520505A (ja) 微少流体細胞培養培地
JP2024014902A (ja) 細胞培養チップの使用方法
JP7501689B2 (ja) 細胞培養チップ、及びこれを用いた細胞培養方法
KR102734231B1 (ko) 오가노이드 배양 및 약물 스크리닝을 위한 미세유체 칩 및 그의 이용 방법
Lockhart et al. Drug testing of monodisperse arrays of live microdissected tumors using a valved multiwell microfluidic platform
KR20170000940A (ko) 위-장-간 생체 모사 마이크로 칩
KR101887633B1 (ko) 상처를 모사하는 유체 칩
EP2811013A1 (en) Hanging network plate
Misun et al. Fabrication and operation of microfluidic hanging-drop networks
US20200024563A1 (en) Method and system for a cell culture system with recirculating culture medium
US20240368517A1 (en) Cell culture device and movement system
JP2020115781A (ja) 細胞培養チップ
Inman Development of a high throughput 3D perfused liver tissue bioreactor
MXPA06002797A (en) Apparatus for handling cells, embryos or oocytes

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20160831

PA0201 Request for examination
PN2301 Change of applicant

Patent event date: 20170420

Comment text: Notification of Change of Applicant

Patent event code: PN23011R01D

PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20170516

Patent event code: PE09021S01D

PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20170923

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20171124

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20171124

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20201124

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20210927

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20220920

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20241002

Start annual number: 8

End annual number: 8