[go: up one dir, main page]

KR101793515B1 - Manufacturing method of molybdenum disulfide nanoflake - Google Patents

Manufacturing method of molybdenum disulfide nanoflake Download PDF

Info

Publication number
KR101793515B1
KR101793515B1 KR1020160089088A KR20160089088A KR101793515B1 KR 101793515 B1 KR101793515 B1 KR 101793515B1 KR 1020160089088 A KR1020160089088 A KR 1020160089088A KR 20160089088 A KR20160089088 A KR 20160089088A KR 101793515 B1 KR101793515 B1 KR 101793515B1
Authority
KR
South Korea
Prior art keywords
molybdenum disulfide
nanoflake
unsubstituted
substituted
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020160089088A
Other languages
Korean (ko)
Inventor
이선숙
안기석
임종선
명성
송우석
강민아
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020160089088A priority Critical patent/KR101793515B1/en
Application granted granted Critical
Publication of KR101793515B1 publication Critical patent/KR101793515B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명은 이황화몰리브덴 나노 플레이크의 제조방법에 관한 것으로, 상세하게는 기판 상에 프로모터층을 코팅하고, 상기 프로모터층 상에 이황화몰리브덴 나노 플레이크를 형성하는 이황화몰리브덴 나노 플레이크의 제조방법에 관한 것이다.The present invention relates to a method for producing molybdenum disulfide nanoflake, and more particularly, to a method for producing molybdenum disulfide nanoflake which forms molybdenum disulfide disulfide on the promoter layer by coating a promoter layer on the substrate.

Description

이황화몰리브덴 나노 플레이크의 제조방법{Manufacturing method of molybdenum disulfide nanoflake}Technical Field [0001] The present invention relates to a molybdenum disulfide nanoflake,

본 발명은 이황화몰리브덴 나노 플레이크의 제조방법에 관한 것으로, 상세하게는 기판 상에 프로모터층을 코팅하고, 상기 프로모터층 상에 이황화몰리브덴 나노 플레이크를 형성하는 이황화몰리브덴 나노 플레이크의 제조방법에 관한 것이다.The present invention relates to a method for producing molybdenum disulfide nanoflake, and more particularly, to a method for producing molybdenum disulfide nanoflake which forms molybdenum disulfide disulfide on the promoter layer by coating a promoter layer on the substrate.

탄소 원자들이 육각형의 벌집 모양으로 배열된 그래핀은 대표적인 이차원 물질로, 구조에 따른 특성으로 인해 매우 큰 관심을 받고 있다. 그래핀은 강철보다 200배 이상 강하며, 다이아몬드보다 2배 이상 열전도율이 높으며, 구리보다 100배 이상 전기전도도가 높고, 실리콘보다 100배 이상 전자를 빠르게 움직일 수 있다. 그래핀의 이러한 기계적, 열적, 전기적 특성은 에너지 띠틈이 없는 그래핀의 전자구조에서 기인하고 있다.Graphene, in which hexagonal honeycomb-shaped carbon atoms are arranged, is a typical two-dimensional material. Graphene is more than 200 times stronger than steel, more than twice as high as diamond, 100 times more conductive than copper, and 100 times more electrons than silicon. This mechanical, thermal and electrical property of graphene is due to the electronic structure of graphene without energy gap.

그러나 역설적으로 이러한 에너지 띠틈(bandgap)이 없는 그래핀은 반도체가 아닌 준금속의 특성을 보이며, 트랜지스터로 적용하는데 큰 장벽이 되고 있다. 따라서 트랜지스터 응용을 위해 그래핀에 에너지 띠틈(bandgap)을 만들 수 있는 그래핀 나노리본이나 그래핀 겹층에 대한 연구가 활발히 진행되어 왔으나, 약 0.4 eV의 제한적인 띠틈만이 가능하며, 띠틈이 형성되면 이동도가 급격히 감소하는 문제가 있어 실질적인 응용에는 한계가 있는 상황이다.Paradoxically, however, graphene without such a bandgap exhibits the characteristics of semi-metals rather than semiconductors, and is becoming a major barrier to transistor application. Therefore, graphene nanoribbons or graphene layers capable of forming energy bandgap in graphene for transistor application have been actively studied. However, only limited band gap of about 0.4 eV is possible, and a band gap is formed There is a problem that the mobility decreases sharply and there is a limit to the practical application.

이러한 문제점을 해결하기 위해 그래핀 이외의 이차원 물질에 주목하기 시작했으며, 최근 이황화몰리브덴과 같은 전이금속 칼코겐화합물에 대한 관심이 급증하고 있다. In order to solve these problems, attention has been paid to two-dimensional materials other than graphene, and recently interest in transition metal chalcogen compounds such as molybdenum disulfide is rapidly increasing.

이황화몰리브덴(MoS2)은 그래핀과 유사한 층상구조를 가지는 전이금속 칼코게나이트 물질 중 하나로 벌크물질일 경우 약 1.3 eV의 간접형 띠틈(indirect bandgap)을 가지지만 나노 두께의 박막으로 얇아지면 1.8 eV의 직접형 띠틈(direct bandgap)을 가지는 것으로 알려져 있어 이황화몰리브덴 나노 박막을 제조하고자 하는 연구가 활발히 진행중이다.Molybdenum disulfide (MoS 2 ) is one of the transition metal chalcogenide materials having a layered structure similar to graphene. It has an indirect bandgap of about 1.3 eV in the case of bulk material, but when it is thinned with nano-thick film, It is known to have a direct bandgap, and studies for manufacturing molybdenum disulfide nanotubes are actively underway.

반면, 표면적이 넓어 표면 또는 가장가리에서 일어나는 전기화학 반응에 대한 물리적/화학적 변화를 최대화 시킬 수 있는 이황화몰리브덴 나노 플레이크를 제조하고자 하는 연구는 아직 미미한 실정이다.On the other hand, there is still a small amount of research to produce molybdenum disulfide nanoflake capable of maximizing the physical / chemical change of the electrochemical reaction occurring on the surface or the edge due to its wide surface area.

현재까지 이황화몰리브덴 나노 플레이크를 제조하는 방법으로는 화학적 방법과 기계적 방법이 있다. 화학적 박리법을 이용한 플레이크 합성법은 화학적 처리로 인한 특성 저하가 있을 수 있으며, 기판과의 단순한 물리적 결함만으로는 전기 소자와 같은 응용에 제한이 있다. 또한, 기계적 박리법을 통한 플레이크 합성방법으로는 수직으로 정렬하는 기술은 거의 불가능할 뿐만 아니라 대량생산에도 문제점이 있다. 이에 반해 화학 기상증착방법을 이용한 평평한 2차원 구조를 합성할 경우 임의로 발생하는 Seeding site로 인한 결함 및 다 결정성이 균일한 박막 합성에 문제점으로 발생할 수 있다.To date, there have been chemical and mechanical methods for producing molybdenum disulfide nanoflake. The flake synthesis method using the chemical stripping method may have a characteristic deterioration due to the chemical treatment, and there is a limitation in application such as an electric element by a simple physical defect with the substrate. Further, as a flake synthesis method using a mechanical stripping method, a technique of vertically aligning is almost impossible, and there is also a problem in mass production. On the other hand, when a flat two - dimensional structure is synthesized by using a chemical vapor deposition method, defects due to a random seeding site and polycrystallinity may cause problems in uniform thin film synthesis.

대한민국 공개특허 10-2015-0015183 (2015년 02월 10일)Korean Patent Publication No. 10-2015-0015183 (February 10, 2015)

Qian, H. et al., Scientific Reports, 2016, 6, 211171Qian, H. et al., Scientific Reports, 2016, 6, 211171

본 발명은 상기와 같은 문제점을 해결하기 위해 도출된 것으로, 기판 표면에 형성된 프로모터층 위에 몰리브덴 전구체 및 황 소스를 공급하여 이황화몰리브덴 나노 플레이크를 제조하는 방법을 제공하는 것을 목적으로 한다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for preparing molybdenum disulfide nanoflake by supplying a molybdenum precursor and a sulfur source onto a promoter layer formed on a substrate surface.

본 발명은 이황화몰리브덴 나노 플레이크의 제조방법에 관한 것이다.The present invention relates to a process for producing molybdenum disulfide nanoflake.

본 발명의 일 양태는One aspect of the present invention is

a) 기판 표면에 프로모터층을 형성하는 단계; 및a) forming a promoter layer on a substrate surface; And

b) 상기 프로모터층 표면에 몰리브덴 전구체 및 황 소스를 공급하여 이황화몰리브덴 나노 플레이크를 형성하는 단계;b) forming a molybdenum precursor and a sulfur source on the surface of the promoter layer to form molybdenum disulfide nanoflake;

를 포함하는 이황화몰리브덴 나노 플레이크의 제조방법에 관한 것이다.And a method for producing the molybdenum disulfide nanoflake.

본 발명의 일 실시예에 있어서, 상기 프로모터층은 하기 화학식 1 내지 3에서 선택되는 어느 하나 이상의 화합물을 포함하는 것일 수 있다. In one embodiment of the present invention, the promoter layer may include one or more compounds selected from the following formulas (1) to (3).

[화학식 1][Chemical Formula 1]

Figure 112016068124417-pat00001
Figure 112016068124417-pat00001

[화학식 2](2)

Figure 112016068124417-pat00002
Figure 112016068124417-pat00002

[화학식 3](3)

Figure 112016068124417-pat00003
Figure 112016068124417-pat00003

(상기 화학식 1 내지 3에서,(In the above Formulas 1 to 3,

Z는 독립적으로 C-R' 또는 N이며;Z is independently C-R 'or N;

R'는 수소, 할로겐, 치환되거나 치환되지 않은 (C1-C20)알킬기 또는 치환되거나 치환되지 않은 (C6-C20)아릴기이고;R 'is hydrogen, halogen, a substituted or unsubstituted (C1-C20) alkyl group or a substituted or unsubstituted (C6-C20) aryl group;

R1 내지 R16은 각각 독립적으로 수소, 할로겐, 치환되거나 치환되지 않은 (C1-C20)알킬기 또는 치환되거나 치환되지 않은 (C6-C20)아릴기이다.)R 1 to R 16 are each independently hydrogen, halogen, a substituted or unsubstituted (C 1 -C 20) alkyl group or a substituted or unsubstituted (C 6 -C 20) aryl group.

본 발명의 일 실시예에 있어서, 상기 프로모터층은 하기 화학식 4의 화합물을 포함하는 것일 수 있다.In one embodiment of the present invention, the promoter layer may include a compound represented by the following general formula (4).

[화학식 4][Chemical Formula 4]

Figure 112016068124417-pat00004
Figure 112016068124417-pat00004

(상기 화학식 4에서, R1 내지 R8 및 R17 내지 R20은 각각 독립적으로 수소, 할로겐, 치환되거나 치환되지 않은 (C1-C20)알킬기, 또는 치환되거나 치환되지 않은 (C6-C20)아릴기이다.)(Wherein R 1 to R 8 and R 17 to R 20 each independently represent hydrogen, halogen, a substituted or unsubstituted (C 1 -C 20) alkyl group, or a substituted or unsubstituted (C 6 -C 20) aryl group to be.)

본 발명의 일 실시예에 있어서, 상기 a)단계 및 b)단계는 스퍼터링(Sputtering), 물리적 기상 증착(physical vapor deposition), 플라즈마강화 화학증착법(plasma-enhanced chemical vapor deposition), 열화학증착법(Thermal Chemical Vapor Deposition), 분자층 증착법(Molecular Layer Deposition), 원자층 증착법(Atomic Layer Deposition) 및 열 증착법(Thermal Evaporation)에서 선택되는 어느 하나의 증착법에 의해 수행될 수 있다.In an embodiment of the present invention, the steps a) and b) may be performed by any one of a sputtering method, a physical vapor deposition method, a plasma-enhanced chemical vapor deposition method, a thermal chemical vapor deposition method A vapor deposition method, a vapor deposition method, a molecular layer deposition method, an atomic layer deposition method, and a thermal evaporation method.

본 발명의 일 실시예에 있어서, 상기 몰리브덴 전구체는 다양한 방법을 통해 몰리브덴의 증착을 진행할 수 있는 물질이라면 종류에 한정하지 않으며, 일예로 사황화몰리브덴산 암모늄((NH4)2MoS4), 칠몰리브덴산 암모늄((NH4)6Mo7O24), 사황화몰리브덴산 테트라메틸암모늄 (((CH3)4N)2MoS4) 및 사황화몰리브덴산 테트라에틸암모늄 (((C2H5)4N)2MoS4)에서 선택되는 어느 하나 이상일 수 있다.In one embodiment of the present invention, the molybdenum precursor is not limited to any kind as long as it can deposit molybdenum through various methods. For example, ammonium molybdate tetraborate ((NH 4 ) 2 MoS 4 ) ((NH 4 ) 6 Mo 7 O 24 ), tetramethylammonium tetrapropylammonium molybdate (((CH 3 ) 4 N) 2 MoS 4 ) and tetraethylammonium tetrapropylammonium tetrafluoroborate (((C 2 H 5 ) 4 N) 2 MoS 4 ).

본 발명의 일 실시예에 있어서, 상기 황 소스는 균일한 두께의 이황화몰리브덴 나노 플레이크 증착을 유도할 수 있는 것이라면 종류에 한정하지 않으며, 일예로 기화된 황(sulfur) 또는 황화수소(H2S)일 수 있다.In one embodiment of the present invention, the sulfur source is not limited to the type as long as it can induce the deposition of uniform thickness of molybdenum disulfide nanoflake. For example, vaporized sulfur or hydrogen sulfide (H 2 S) .

본 발명에 따른 이황화몰리브덴 나노 플레이크의 제조방법은 프로모터층으로부터 이황화몰리브덴 나노 플레이크를 대면적으로 제조할 수 있고, 이황화몰리브덴 나노 플레이크가 프로모터층으로부터 순차적으로 수직 성장되어 우수한 결정성을 가질 수 있다. 또한 성장 중에 흘려주는 몰리브덴 전구체 및 황 소스의 양, 성장시키는 온도, 그리고 포로모터층의 두께 등에 따라 제조되는 이황화몰리브덴 나노 플레이크의 양을 조절할 수 있다. 본 발명에 따라 제조된 이황화몰리브덴 나노 플레이크는 표면적이 넓어 표면 또는 가장가리에서 일어나는 전기화학 반응에 대한 물리적/화학적 변화를 최대화 시킬 수 있다는 장점이 있다. The molybdenum disulfide nanoflake according to the present invention can be produced from a promoter layer with a large area of molybdenum disulfide nanoflurane, and the molybdenum disulfide nanoflake is grown vertically successively from the promoter layer to have excellent crystallinity. Also, the amount of molybdenum disulfide nanoflake produced according to the amount of molybdenum precursor and sulfur source to be flowed, growth temperature, thickness of the impregnated motor layer, and the like can be controlled. The molybdenum disulfide nanoflake produced according to the present invention has an advantage that it can maximize the physical / chemical change of the electrochemical reaction occurring on the surface or the edge due to its wide surface area.

도 1 프로모터층의 두께에 따른 이황화몰리브덴 나노 플레이크의 이미지
도 2 - 수직으로 성장된 이황화몰리브덴 나노 플레이크와 프로모터층 표면에 수평으로 성장된 이황화몰리브덴 필름의 투과 전자현미경 이미지
도 3 프로모터층의 유무에 따른 이황화몰리브덴 나노 플레이크의 형성 여부를 나타내는 이미지
도 4 - 다양한 성장 온도에서 SiO2 표면 위에 성장된 이황화몰리브덴 나노 플레이크의 이미지
Fig. 1 Image of molybdenum disulfide nanoflake according to the thickness of the promoter layer
FIG. 2 - Transmission electron microscope image of vertically grown molybdenum disulfide nanoflake and molybdenum disulfide film grown horizontally on the surface of the promoter layer
Fig. 3 Image showing the formation of molybdenum disulfide nanoflake depending on the presence or absence of the promoter layer
Figure 4 - Image of molybdenum disulfide nanoflake grown on SiO 2 surface at various growth temperatures

이하 첨부된 도면 및 구체 예들을 참조하여 본 발명에 따른 이황화몰리브덴 나노 플레이크의 제조방법에 대해 상세히 설명한다. 다만 하기 구체예 또는 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다. Hereinafter, a method of preparing the molybdenum disulfide nanoflake according to the present invention will be described in detail with reference to the accompanying drawings and specific examples. It should be understood, however, that the invention is not limited thereto and that various changes and modifications may be made without departing from the spirit and scope of the invention.

또한 달리 정의되지 않은 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본원에서 설명에 사용되는 용어는 단지 특정 구체 예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다.Unless otherwise defined, all technical and scientific terms have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention.

또한 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 이하 제시되는 도면들은 본 발명의 사상을 명확히 하기 위해 과장되어 도시될 수 있다. 또한 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.In addition, the following drawings are provided by way of example so that those skilled in the art can fully understand the spirit of the present invention. Therefore, the present invention is not limited to the following drawings, but may be embodied in other forms, and the drawings presented below may be exaggerated in order to clarify the spirit of the present invention. Also, throughout the specification, like reference numerals designate like elements.

또한 명세서 및 첨부된 특허청구범위에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.Also, the singular forms as used in the specification and the appended claims are intended to include the plural forms as well, unless the context clearly indicates otherwise.

또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In describing the components of the present invention, terms such as first, second, A, B, (a), and (b) may be used. These terms are intended to distinguish the constituent elements from other constituent elements, and the terms do not limit the nature, order or order of the constituent elements. When a component is described as being "connected", "coupled", or "connected" to another component, the component may be directly connected to or connected to the other component, It should be understood that an element may be "connected," "coupled," or "connected."

본 발명에 따른 이황화몰리브덴 나노 플레이크의 제조방법은The process for producing molybdenum disulfide nanoflake according to the present invention comprises

a) 기판 표면에 프로모터층을 형성하는 단계; 및a) forming a promoter layer on a substrate surface; And

b) 상기 프로모터층 표면에 몰리브덴 전구체 및 황 소스를 공급하여 이황화몰리브덴 나노 플레이크를 형성하는 단계;b) forming a molybdenum precursor and a sulfur source on the surface of the promoter layer to form molybdenum disulfide nanoflake;

을 포함하여 진행할 수 있다.. ≪ / RTI >

상기 기판은 다양한 증착법을 적용할 수 있는 것이라면 종류에 한정하지 않으나, 바람직하게는 ALD temperature window에 열적 안정성을 가지는 것이 좋다. 또한 투명 기재, 플렉서블 기재, 또는 투명 플렉서블 기재일 수 있으나 이에 제한되는 것은 아니다. The substrate is not limited to the type as long as various deposition methods can be applied, but it is preferable that the substrate has thermal stability in the ALD temperature window. It may also be a transparent substrate, a flexible substrate, or a transparent flexible substrate, but is not limited thereto.

상기 기판의 예를 들면 유리, 석영, 사파이어, SiC, MgO 등의 투명한 무기물 기판, 폴리에틸렌 테레프탈레이트(PET), 폴리스티렌(PS), 폴리이미드(PI), 폴리염화비닐(PVC), 폴리비닐피롤리돈(PVP), 폴리에틸렌(PE) 등의 투명 플렉서블한 유기물 기판 또는 Si, Ge, GaAs, InP, InSb, InAs, AlAs, AlSb, CdTe, ZnTe, ZnS, CdSe, CdSb, GaP 등의 기판을 사용할 수 있다. 디바이스용 기판으로 PET와 같은 플라스틱 기판을 사용하면 전자 소자를 유연성 있는 디바이스로 제조할 수 있다.Examples of the substrate include a transparent inorganic substrate such as glass, quartz, sapphire, SiC, or MgO; a transparent substrate such as polyethylene terephthalate (PET), polystyrene (PS), polyimide (PI), polyvinyl chloride A transparent flexible organic material substrate such as PVP or polyethylene or a substrate made of Si, Ge, GaAs, InP, InSb, InAs, AlAs, AlSb, CdTe, ZnTe, ZnS, CdSe, CdSb or GaP have. When a plastic substrate such as PET is used as a substrate for a device, an electronic device can be manufactured as a flexible device.

본 발명에서 상기 프로모터층은 하기 화학식 1 내지 3에서 선택되는 어느 하나 이상의 화합물을 포함할 수 있다.In the present invention, the promoter layer may include any one or more compounds selected from the following formulas (1) to (3).

[화학식 1][Chemical Formula 1]

Figure 112016068124417-pat00005
Figure 112016068124417-pat00005

[화학식 2](2)

Figure 112016068124417-pat00006
Figure 112016068124417-pat00006

[화학식 3](3)

Figure 112016068124417-pat00007
Figure 112016068124417-pat00007

(상기 화학식 1 내지 3에서,(In the above Formulas 1 to 3,

Z는 독립적으로 C-R' 또는 N이며;Z is independently C-R 'or N;

R'는 수소, 할로겐, 치환되거나 치환되지 않은 (C1-C20)알킬기 또는 치환되거나 치환되지 않은 (C6-C20)아릴기이고;R 'is hydrogen, halogen, a substituted or unsubstituted (C1-C20) alkyl group or a substituted or unsubstituted (C6-C20) aryl group;

R1 내지 R16은 각각 독립적으로 수소, 할로겐, 치환되거나 치환되지 않은 (C1-C20)알킬기 또는 치환되거나 치환되지 않은 (C6-C20)아릴기이다.)R 1 to R 16 are each independently hydrogen, halogen, a substituted or unsubstituted (C 1 -C 20) alkyl group or a substituted or unsubstituted (C 6 -C 20) aryl group.

상기 프로모터는 몰리브덴을 증착할 때 높은 온도에서 황을 기화할 경우 단일 층 또는 2 내지 5층 구조를 지닌 이황화몰리브덴 나노 플레이크를 합성할 수 있도록 보조하는 역할을 수행한다.The promoter plays a role of assisting synthesis of molybdenum molybdenum disulfide nanoflake having a single layer or 2 to 5 layer structure when sulfur is vaporized at a high temperature.

본 발명에서 상기 화학식 1은 통상적으로 포피린(porphyrin)이라 불리는 화합물로서, 질소 원자를 포함하는 오각형 물질인 피롤(pyrrole)이 서로 4개 연결되어 거대한 고리를 이루고 있는 안정한 화합물이고, 테트라피롤(tetrapyrrole) 화합물로 분류될 수 있다. 포피린은 11개의 이중결합이 컨쥬게이트되어 있고 휘켈 법칙 "4n+2"의 방향족성(aromaticity)을 만족하기 때문에 평면구조를 가진다. 또한, 포피린은 메조(meso)와 β-피롤 위치에 여러 작용기들을 도입하여 다양한 포피린 화합물을 합성할 수 있다. In the present invention, the compound of formula (1) is a compound called porphyrin, which is a stable compound having four rings of pyrrole which is a pentagonal substance containing a nitrogen atom and is formed into a gigantic ring, and tetrapyrrole, ≪ / RTI > compounds. Porphyrin has a planar structure because it has 11 double bonds conjugated and satisfies the aromaticity of the " 4n + 2 " Also, porphyrin can synthesize various porphyrin compounds by introducing various functional groups at meso and β-pyrrole positions.

본 발명에서 상기 화학식 2 또는 3은 각각 프탈로시아닌계 또는 나프탈로시아닌계로서 이종원소를 포함할 수 있는 방향족 고리 화합물(aromatic cyclic compound)의 일종이다. In the present invention, the formula (2) or (3) is a phthalocyanine-based or naphthalocyanine-based aromatic cyclic compound which may contain hetero elements.

본 발명에서 상기 프로모터로 더 상세하게는 하기 화학식 4의 구조를 갖는 화합물을 더 포함할 수 있다.In the present invention, the promoter may further include a compound having a structure represented by the following formula (4).

[화학식 4][Chemical Formula 4]

Figure 112016068124417-pat00008
Figure 112016068124417-pat00008

(상기 화학식 4에서, R1 내지 R8 및 R17 내지 R20은 각각 독립적으로 수소, 할로겐, 치환되거나 치환되지 않은 (C1-C20)알킬기, 또는 치환되거나 치환되지 않은 (C6-C20)아릴기이다.)(Wherein R 1 to R 8 and R 17 to R 20 each independently represent hydrogen, halogen, a substituted or unsubstituted (C 1 -C 20) alkyl group, or a substituted or unsubstituted (C 6 -C 20) aryl group to be.)

상기 프로모터로 포피린, 프탈로시아닌계 또는 나프탈로시아닌계가 아닌 다른 탄소화합물을 사용하는 경우, 수직 배열된 대면적 이황화몰리브덴 나노 플레이크를 성장시키는데 어려움이 있다. 예를 들어 황과 몰리브덴의 비율이 이황화몰리브덴의 비율과 상이할 수 있다. When carbon compounds other than porphyrin, phthalocyanine or naphthalocyanine are used as the promoter, it is difficult to grow vertically aligned molybdenum disulfide nanoflake dislocations. For example, the ratio of sulfur to molybdenum may be different from that of molybdenum disulfide.

본 발명에서 상기 a) 단계에서 기판 상에 프로모터를 증착하기 위한 방법은 공지의 증착법이라면 무엇이든 가능하며 특별히 한정되지는 않는다. 일예로 열증착(thermal evaporation)이 가능한 챔버에서 반응하는 것이 좋으며, 주기적으로 반응체를 공급할 수 있으며, 반응 후 남은 잉여체를 제거하기 위한 불활성 가스 혹은 질소 가스 등의 이유로 로터리 진공펌프 등을 더 구비하는 것이 좋다.In the present invention, the method for depositing the promoter on the substrate in the step a) may be any known deposition method and is not particularly limited. For example, it is preferable to perform the reaction in a chamber capable of thermal evaporation, and it is possible to supply the reactant periodically and further include a rotary vacuum pump or the like for reasons such as inert gas or nitrogen gas for removing excess residue after the reaction It is good to do.

상기 a) 단계에서 형성된 프로모터층 표면에 몰리브덴 전구체 및 황 소스를 공급하여 이황화몰리브덴 나노 플레이크를 형성할 수 있다.Molybdenum precursor and sulfur source may be supplied to the surface of the promoter layer formed in step a) to form molybdenum disulfide nanoflake.

본 발명에서 상기 몰리브덴 전구체는 다양한 방법을 통해 몰리브덴의 증착을 진행할 수 있는 물질이라면 종류에 한정하지 않는다. 상기 몰리브덴 전구체의 일예로는 사황화몰리브덴산 암모늄((NH4)2MoS4), 칠몰리브덴산 암모늄((NH4)6Mo7O24·4H2O), 사황화몰리브덴산 테트라메틸암모늄 (((CH3)4N)2MoS4) 및 사황화몰리브덴산 테트라에틸암모늄 (((C2H5)4N)2MoS4)에서 선택되는 어느 하나 이상일 수 있다.In the present invention, the molybdenum precursor is not limited to any kind as long as the material can deposit molybdenum through various methods. Examples of the molybdenum precursor include ammonium molybdate tetra (ammonium (NH 4 ) 2 MoS 4 ), ammonium chilled molybdate ((NH 4 ) 6 Mo 7 O 24 .4H 2 O), tetramethylammonium tetraphenyl molybdate ((CH 3 ) 4 N) 2 MoS 4 ) and tetraethyl ammonium molybdate tetraethyl ammoniumsulfate (((C 2 H 5 ) 4 N) 2 MoS 4 ).

본 발명에서 상기 황 소스는 균일한 두께의 이황화몰리브덴 나노 플레이크 증착을 유도할 수 있는 것이라면 종류에 한정하지 않으며, 일예로 기화된 황(sulfur), 황화수소(H2S) 등을 사용할 수 있다.In the present invention, the sulfur source is not limited to the type as long as it can induce the deposition of molybdenum disulfide nanoprecite having a uniform thickness. For example, vaporized sulfur, hydrogen sulfide (H 2 S) and the like can be used.

본 발명의 이황화몰리브덴 나노 플레이크의 제조방법은 증착방법을 제한하지 않으나, 일예로 스퍼터링(Sputtering), 물리적 기상 증착(physical vapor deposition), 플라즈마강화 화학증착법(plasma-enhanced chemical vapor deposition), 열화학증착법(Thermal Chemical Vapor Deposition), 분자층 증착법(Molecular Layer Deposition), 원자층 증착법(Atomic Layer Deposition) 및 열 증착법(Thermal Evaporation)에서 선택되는 어느 하나의 증착법에 의해 진행할 수 있다.The method of manufacturing the molybdenum disulfide nanoflake of the present invention is not limited to the vapor deposition method. For example, the method of sputtering, physical vapor deposition, plasma-enhanced chemical vapor deposition, A thermal evaporation method, a thermal chemical vapor deposition method, a molecular layer deposition method, an atomic layer deposition method, and a thermal evaporation method.

본 발명의 일 실시예에 있어서, 바람직하게 상기 프로모터층은 열증착 공정을 통해 기판 표면에 형성될 수 있으며, 상기 이황화몰리브덴 나노 플레이크는 열화학증착법을 통해 상기 프로모터층 표면에 형성될 수 있다. In one embodiment of the present invention, the promoter layer may be formed on the surface of the substrate through a thermal deposition process, and the molybdenum disulfide nanoflakes may be formed on the surface of the promoter layer through thermal chemical vapor deposition.

본 발명의 일 실시예에 있어서, 상기 증착방법을 진행하는 반응기는 프로모터층을 증착하기 위한 열증착기와 이황화몰리브덴을 성장시키기 위한 열화학증착기를 사용하는 것이 좋다. In one embodiment of the present invention, it is preferable to use a thermal evaporator for evaporating the promoter layer and a thermochemical evaporator for growing molybdenum disulfide.

상기 프로모터를 증착시키기 위하여 고순도의 고체 또는 액체상의 프로모터를 사용하거나, 프로모터를 유기 용매에 용해시킨 프로모터 용액을 사용할 수 있다. 상기 유기 용매로는 상기 프로모터를 용해시킬 수 있는 용매라면 특별한 제한 없이 사용할 수 있다.In order to deposit the promoter, a high-purity solid or liquid phase promoter may be used, or a promoter solution in which the promoter is dissolved in an organic solvent may be used. As the organic solvent, any solvent capable of dissolving the promoter can be used without any particular limitation.

상기 프로모터의 증착은 진공에서 상기 프로모터 또는 프로모터 용액에 열을 가해 프로모터를 기화시켜 기체 상태의 프로모터 분자들이 성장시키기를 원하는 기판에 접촉됨으로써 수행될 수 있으며, 프로모터의 양에 따라서 프로모터층의 두께를 조절할 수 있다. The deposition of the promoter may be performed by heating the promoter or the promoter solution in a vacuum to vaporize the promoter and bringing the promoter molecules in a gaseous state into contact with a substrate to be grown. The thickness of the promoter layer may be adjusted according to the amount of the promoter .

상기 프로모터 또는 프로모터 용액을 100℃ 내지 400℃ 온도 범위 내에서 열처리함으로서 상기 프로모터의 기화가 용이하게 이루어질 수 있다.The promoter may be easily vaporized by heat-treating the promoter or the promoter solution within a temperature range of 100 ° C to 400 ° C.

이런 프로모터층이 증착된 기판을 열화학증착기에 넣고 기체상태의 몰리브덴을 포함한 몰리브덴 소스와 황 소스를 공급해주면서 고온을 유지하게 되면 이황화 몰리브덴 층이 성장하게 된다. 이때 이황화몰리브덴 층은 대면적으로 순차적으로 수직 성장된 이황화몰리브덴 나노 플레이크를 나타낸다. When the substrate on which the promoter layer is deposited is placed in a thermochemical vaporizer and molybdenum source including gaseous molybdenum source and sulfur source are supplied and maintained at a high temperature, a molybdenum disulfide layer is grown. At this time, the molybdenum disulfide layer represents a molybdenum disulfide nanoflake grown vertically sequentially in a large area.

본 발명에 따른 이황화몰리브덴 나노 플레이크의 제조방법은 기판 상에 증착된 프로모터층으로부터 이황화몰리브덴 나노 플레이크를 대면적으로 순차적으로 수직 성장시킬 수 있으며, 몰리브덴 전구체 및 황소스의 사용량, 프로모터층의 두께 및 이황화몰리브덴을 성장시키는 공정온도를 변경하여 제조되는 이황화몰리브덴 나노 플레이크의 양을 조절할 수 있다.The molybdenum disulfide nanoflake according to the present invention can grow the molybdenum disulfide disulfide from the promoter layer deposited on the substrate in a vertical direction in a sequential manner. The molybdenum precursor and the sulfur source amount, the thickness of the promoter layer, The amount of the molybdenum disulfide nanoflake produced by changing the process temperature for growing molybdenum can be controlled.

제조하고자 하는 이황화몰리브덴 나노 플레이크의 양에 따라 프로모터층의 두께 및 이황화몰리브덴의 성장 온도를 변경할 수 있으나, 바람직한 프로모터층의 두께는 0.5 내지 50 nm이며, 이황화몰리브덴의 성장 온도는 600 내지 900℃, 바람직하게는 600 내지 800℃일 수 있다. 이때 나노 플레이크의 양이 최대로 성장되는 조건은 반응기의 크기 및 모양에 따라 다를 수 있지만, 약 0.5 내지 2.5nm의 프로모터의 두께와 약 650 내지 750℃의 성장 온도의 경우에 나노 플레이크의 양이 최대가 될 수 있다.The thickness of the promoter layer and the growth temperature of the molybdenum disulfide can be changed according to the amount of the molybdenum disulfide nanoflake to be produced. However, the preferable thickness of the promoter layer is 0.5 to 50 nm, the growth temperature of the molybdenum disulfide is 600 to 900 DEG C Lt; RTI ID = 0.0 > 800 C < / RTI > The conditions under which the amount of nanoflake is maximally grown may vary depending on the size and shape of the reactor. However, in the case of the thickness of the promoter of about 0.5 to 2.5 nm and the growth temperature of about 650 to 750 DEG C, .

또한, 본 발명에 따라 제조된 이황화몰리브덴 나노 플레이크는 표면적이 넓어 표면 또는 가장가리에서 일어나는 전기화학 반응에 대한 물리적/화학적 변화를 최대화 시킬 수 있어 차세대 플렉시블 전자기기를 구현할 수 있는 핵심 소자로 사용될 수 있다.In addition, the molybdenum disulfide nanoflake produced according to the present invention can maximize the physical / chemical change of the electrochemical reaction occurring on the surface or the edge due to its wide surface area, and can be used as a core element capable of realizing a next generation flexible electronic device .

본 발명에 따라 제조된 이황화몰리브덴 나노 플레이크의 두께, 크기는 성장 조건에 따라서 다를 수 있지만, 이황화몰리브덴 나노 플레이크의 두께는 약 1 내지 10nm 정도의 분포를 가지며, 이황화몰리브덴 나노 플레이크의 크기는 수십 나노미터에서 수십 마이크로 까지 다양하다. The thickness and size of the molybdenum disulfide nanoflake produced according to the present invention may vary depending on growth conditions, but the molybdenum disulfide nanoflake has a thickness of about 1 to 10 nm, the size of the molybdenum disulfide nanoflake is several tens nanometers To tens of micros.

이하, 실시예를 통해 본 발명에 따른 이황화몰리브덴 나노 플레이크의 제조방법을 더욱 상세히 설명한다. 다만 하기 실시예는 본 발명을 더욱 상세히 설명하기 위한 하나의 예시일 뿐, 본 발명이 이에 제한되는 것은 아니다.Hereinafter, a method of preparing the molybdenum disulfide nanoflake according to the present invention will be described in more detail with reference to Examples. However, the following examples are only illustrative of the present invention in further detail, and the present invention is not limited thereto.

(실시예 1)(Example 1)

Si에 SiO2가 300㎚ 두께로 성장된 기판(2㎝× 2㎝)을 초음파 세척기를 이용하여 아세톤, 에탄올, 증류수 순서로 세척하고 건조하였다. 세정된 기판을 열증착을 진행할 수 있는 반응기에 위치시킨 후, 열증착챔버에 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphine (p-THPP; 화학식 4에서 R1 내지 R8 = 수소, R17 내지 R20 = 4-히드록시페닐인 화합물)의 정제된 소스를 열선위에 위치시키고, 300℃에서 기체화시켜 0.05Å/s의 속도로 흘려보내 1.75 ㎚ 두께의 p-THPP 박막을 증착하였다.A substrate (2 cm x 2 cm) having a thickness of 300 nm of SiO 2 grown on Si was washed with an acetone, ethanol, distilled water, and dried using an ultrasonic washing machine. After placing the heat which is capable of promoting the cleaning substrate deposition reactor, the deposition chamber heat 5,10,15,20-tetrakis (4-hydroxyphenyl) -21 H, 23 H -porphine (p -THPP; in the formula (4) R 1 to R 8 = hydrogen, R 17 to R 20 = 4-hydroxyphenyl) was placed on a hot wire and gasified at 300 ° C. and flowed at a rate of 0.05 Å / s to form a 1.75 nm thick Lt; RTI ID = 0.0 > p- THPP < / RTI >

이렇게 얻어진 p-THPP 증착한 SiO2 기판과 칠몰리브덴산 암모늄((NH4)6Mo7O24)를 0.1M 의 농도로 증류수에 분산시켜 2000 rpm에서 30 초간 스핀 코팅한 SiO2 기판을 화학기상증착기 챔버 안에 준비한 후 반응기 중앙에 구비하였다. 또한 황 소스로는 0.2g의 황 분말을 가스주입구에 가까운 반응챔버 끝에 위치시켰다. 황과 몰리브덴 소스((NH4)6Mo7O24 on SiO2)의 거리는 20㎝로 유지하고 이황화몰리브덴을 성장할 기판 (p-THPP on SiO2)은 몰리브덴 소스((NH4)6Mo7O24 on SiO2)에 인접하게 위치시켜 구비하였다. 합성 조건으로는 500 sccm의 아르곤(Ar) 가스를 5분간 흘려보내면서 1.4 torr, 700℃에서 수직 방향으로의 이황화몰리브덴 나노 플레이크를 합성하였다. 그 결과를 도 1의 (i)에 도시하였다. 이때 제조된 나노 플레이크의 크기와 두께는 각각 수 나노미터와 수십 나노미터 크기에 해당된다. The thus obtained p -THPP deposited a SiO 2 substrate and seven ammonium molybdate ((NH 4) 6 Mo 7 O 24) to a 0.1M SiO 2 substrate was dispersed in distilled water at a concentration by 30 seconds of spin-coating at 2000 rpm chemical vapor After being prepared in the evaporator chamber, it was provided at the center of the reactor. As the sulfur source, 0.2 g of sulfur powder was placed at the end of the reaction chamber near the gas inlet. The substrate ( p- THPP on SiO 2 ) to maintain the distance of sulfur and molybdenum source ((NH 4 ) 6 Mo 7 O 24 on SiO 2 ) to 20 cm and the molybdenum disulfide to grow is a molybdenum source ((NH 4 ) 6 Mo 7 O 24 on SiO 2 ). As a synthesis condition, molybdenum disulfide nanoflake was synthesized in vertical direction at 1.4 torr and 700 ℃ while flowing 500 sccm of argon (Ar) gas for 5 minutes. The results are shown in Fig. 1 (i). The size and thickness of the nanoflake produced are several nanometers and tens nanometers, respectively.

또한, 성장된 이황화몰리브덴 나노 플레이크의 투과 전자현미경 이미지를 도 2에 도시하였다. 도 2의 윗 그림은 수직으로 성장된 이황화몰리브덴 나노 플레이크의 이미지이고, 이때 플레이크의 가장자리는 성장된 플레이크의 층이 약 다섯 층이 형성된 것을 알 수 있다. 아랫 그림은 프로모터층 표면에 성장된 수평으로 성장된 이황화몰리브덴 필름의 투과 전자현미경 이미지이다. 이때, 플레이크 뿐만 아니라 플레이크에 붙어 있는 수평으로 성장된 필름도 다양한 격자 구조를 갖는 이황화몰리브덴 층이 형성이 되었다는 것을 알 수 있다. A transmission electron microscope image of the grown molybdenum disulfide nanoflake is shown in FIG. 2 is an image of a vertically grown molybdenum disulfide nanoflake. At this time, it can be seen that the edge of the flake is formed with about five layers of grown flakes. The bottom image is a transmission electron microscope image of horizontally grown molybdenum disulfide film grown on the surface of the promoter layer. At this time, it can be seen that not only the flakes but also the horizontally grown films attached to the flakes formed a molybdenum disulfide layer having various lattice structures.

(실시예 2)(Example 2)

프로모터층의 두께를 50nm로 변화시키는 것을 제외하고 상기 실시예 1과 동일한 방법으로 실험을 진행하여 합성된 이황화몰리브덴 나노 플레이크의 이미지를 도 1의 (ii)에 도시하였다. FIG. 1 (ii) shows an image of molybdenum disulfide nanoflake synthesized by conducting the experiment in the same manner as in Example 1, except that the thickness of the promoter layer was changed to 50 nm.

또한, 프로모터층의 유무에 따라 성장된 이황화몰리브덴 나노 플레이크의 이미지를 도 3에 도시하였으며, 이로부터 프로모터층이 있는 경우에만 이황화몰리브덴 나노 플레이크가 성장되고[도 3의 (i)], 프로모터층이 없는 경우 이황화 몰리브덴 층이 형성되지 않음[도 3의 (ii)]을 확인하였다.3 shows an image of the molybdenum disulfide nanoflake grown according to the presence or absence of the promoter layer. From this, the molybdenum disulfide nanoflakes are grown only when the promoter layer is present (FIG. 3 (i) The molybdenum disulfide layer was not formed (Fig. 3 (ii)).

(실시예 3)(Example 3)

상기 실시예 1과 동일한 방법으로 SiO2 표면에 5 nm 두께의 프로모터층을 증착한 후 다양한 성장 온도, 즉 600, 700, 800 및 900℃의 온도에서 성장시킨 이황화몰리브덴 나노 플레이크의 이미지를 도 4에 도시하였다. 이로부터 700℃의 성장온도에서 성장시킨 경우 이황화몰리브덴 나노 플레이크의 수가 많은 반면에, 900℃에서 성장시킨 경우에는 수직으로 성장되는 이황화몰리브덴 나노 플레이크의 수가 현저하게 감소되었고, 단지 프로모터층 위에 수평으로 성장된 이황화몰리브덴 필름만 관측되었다.An image of molybdenum disulfide nanoflake grown at various growth temperatures, that is, 600, 700, 800 and 900 ° C, after depositing a 5 nm thick promoter layer on the surface of SiO 2 was prepared in the same manner as in Example 1, Respectively. The number of molybdenum disulfide nano-flakes was increased when grown at a growth temperature of 700 ° C., but the number of vertically grown molybdenum disulfide nanoflake was significantly decreased when grown at 900 ° C., Only molybdenum disulfide films were observed.

Claims (7)

a) 기판 표면에 하기 화학식 1 내지 3에서 선택되는 어느 하나 이상의 화합물을 포함하는 프로모터층을 형성하는 단계; 및
b) 상기 프로모터층 표면에 몰리브덴 전구체 및 황 소스를 공급하여 이황화몰리브덴 나노 플레이크를 형성하는 단계;
를 포함하는 이황화몰리브덴 나노 플레이크의 제조방법.
[화학식 1]
Figure 112017065972012-pat00017

[화학식 2]
Figure 112017065972012-pat00018

[화학식 3]
Figure 112017065972012-pat00019

(상기 화학식 1 내지 3에서,
Z는 독립적으로 C-R' 또는 N이며;
R'는 수소, 할로겐, 치환되거나 치환되지 않은 (C1-C20)알킬기 또는 치환되거나 치환되지 않은 (C6-C20)아릴기이고;
R1 내지 R16은 각각 독립적으로 수소, 할로겐, 치환되거나 치환되지 않은 (C1-C20)알킬기 또는 치환되거나 치환되지 않은 (C6-C20)아릴기이다.)
a) forming a promoter layer comprising at least one compound selected from the following formulas (1) to (3) on the surface of a substrate; And
b) forming a molybdenum precursor and a sulfur source on the surface of the promoter layer to form molybdenum disulfide nanoflake;
≪ / RTI >
[Chemical Formula 1]
Figure 112017065972012-pat00017

(2)
Figure 112017065972012-pat00018

(3)
Figure 112017065972012-pat00019

(In the above Formulas 1 to 3,
Z is independently CR ' or N;
R 'is hydrogen, halogen, a substituted or unsubstituted (C1-C20) alkyl group or a substituted or unsubstituted (C6-C20) aryl group;
R 1 to R 16 are each independently hydrogen, halogen, a substituted or unsubstituted (C 1 -C 20) alkyl group or a substituted or unsubstituted (C 6 -C 20) aryl group.
삭제delete 제 1항에 있어서,
상기 프로모터층은 하기 화학식 4의 화합물을 포함하는 것인 이황화몰리브덴 나노 플레이크의 제조방법.
[화학식 4]
Figure 112017065972012-pat00012

(상기 화학식 4에서, R1 내지 R8 및 R17 내지 R20은 각각 독립적으로 수소, 할로겐, 치환되거나 치환되지 않은 (C1-C20)알킬기, 또는 치환되거나 치환되지 않은 (C6-C20)아릴기이다.)
The method according to claim 1,
Wherein the promoter layer comprises a compound represented by the following general formula (4).
[Chemical Formula 4]
Figure 112017065972012-pat00012

(Wherein R 1 to R 8 and R 17 to R 20 each independently represent hydrogen, halogen, a substituted or unsubstituted (C 1 -C 20) alkyl group, or a substituted or unsubstituted (C 6 -C 20) aryl group to be.)
제 1항에 있어서,
상기 a)단계 및 b)단계는 스퍼터링, 물리적 기상 증착, 플라즈마강화 화학증착법, 열화학증착법, 분자층 증착법, 원자층 증착법 및 열진공 증착법에서 선택되는 어느 하나의 증착법에 의해 수행되는 것인 이황화몰리브덴 나노 플레이크의 제조방법.
The method according to claim 1,
Wherein the steps a) and b) are carried out by any one of evaporation methods selected from sputtering, physical vapor deposition, plasma enhanced chemical vapor deposition, thermochemical vapor deposition, molecular layer deposition, atomic layer deposition and thermal vacuum deposition, wherein the molybdenum disulfide nano- Method of manufacturing flakes.
제 1항에 있어서,
상기 몰리브덴 전구체는 사황화몰리브덴산 암모늄((NH4)2MoS4), 칠몰리브덴산 암모늄((NH4)6Mo7O24·4H2O), 사황화몰리브덴산 테트라메틸암모늄 (((CH3)4N)2 MoS4) 및 사황화 몰리브덴산 테트라에틸암모늄 (((C2H5)4N)2MoS4)에서 선택되는 어느 하나 이상인 이황화몰리브덴 나노 플레이크의 제조방법.
The method according to claim 1,
The molybdenum precursor may be at least one selected from the group consisting of ammonium molybdatesurate ((NH 4 ) 2 MoS 4 ), ammonium quorumolybdate ((NH 4 ) 6 Mo 7 O 24 .4H 2 O), tetramethylammonium tetra 3 ) 4 N) 2 MoS 4 ) and tetraethyl ammonium molybdate tetraethylammonium disulfide (((C 2 H 5 ) 4 N) 2 MoS 4 ).
제 1항에 있어서,
상기 황 소스는 기화된 황(sulfur) 또는 황화수소(H2S)인 이황화몰리브덴 나노 플레이크의 제조방법.
The method according to claim 1,
Wherein the sulfur source is vaporized sulfur or hydrogen sulphide (H 2 S).
제 1항에 있어서,
상기 이황화몰리브덴 나노 플레이크는 수직 배열된 이황화몰리브덴 나노 플레이크인 이황화몰리브덴 나노 플레이크의 제조방법.
The method according to claim 1,
Wherein the molybdenum disulfide nanoflake is vertically aligned molybdenum disulfide nanoflake.
KR1020160089088A 2016-07-14 2016-07-14 Manufacturing method of molybdenum disulfide nanoflake Active KR101793515B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160089088A KR101793515B1 (en) 2016-07-14 2016-07-14 Manufacturing method of molybdenum disulfide nanoflake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160089088A KR101793515B1 (en) 2016-07-14 2016-07-14 Manufacturing method of molybdenum disulfide nanoflake

Publications (1)

Publication Number Publication Date
KR101793515B1 true KR101793515B1 (en) 2017-11-03

Family

ID=60383729

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160089088A Active KR101793515B1 (en) 2016-07-14 2016-07-14 Manufacturing method of molybdenum disulfide nanoflake

Country Status (1)

Country Link
KR (1) KR101793515B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156399A1 (en) * 2018-02-09 2019-08-15 전북대학교산학협력단 Hydrogen gas barrier film using molybdenum disulfide and manufacturing method therefor
US10854445B2 (en) 2018-06-08 2020-12-01 Electronics And Telecommunications Research Institute Infrared optical sensor and manufacturing method thereof
CN115347083A (en) * 2022-09-19 2022-11-15 陕西科技大学 Morphology-controllable molybdenum disulfide nano material and preparation method and application thereof
CN115404460A (en) * 2022-09-02 2022-11-29 西北工业大学宁波研究院 One-dimensional MoS 2 Nanotube material and method for preparing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156399A1 (en) * 2018-02-09 2019-08-15 전북대학교산학협력단 Hydrogen gas barrier film using molybdenum disulfide and manufacturing method therefor
KR20190096600A (en) * 2018-02-09 2019-08-20 전북대학교산학협력단 Hydrogen gas barrier film using molybdenum disulfide and preparing method thereof
KR102040217B1 (en) * 2018-02-09 2019-11-06 전북대학교산학협력단 Hydrogen gas barrier film using molybdenum disulfide and preparing method thereof
US10854445B2 (en) 2018-06-08 2020-12-01 Electronics And Telecommunications Research Institute Infrared optical sensor and manufacturing method thereof
CN115404460A (en) * 2022-09-02 2022-11-29 西北工业大学宁波研究院 One-dimensional MoS 2 Nanotube material and method for preparing same
CN115404460B (en) * 2022-09-02 2023-08-08 西北工业大学宁波研究院 One-dimensional MoS 2 Nanotube material and method for preparing same
CN115347083A (en) * 2022-09-19 2022-11-15 陕西科技大学 Morphology-controllable molybdenum disulfide nano material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Hu et al. Two‐dimensional semiconductors grown by chemical vapor transport
Choi et al. Recent development of two-dimensional transition metal dichalcogenides and their applications
Cohen et al. Growth-etch metal–organic chemical vapor deposition approach of WS2 atomic layers
Lim et al. Wafer‐scale, homogeneous MoS2 layers on plastic substrates for flexible visible‐light photodetectors
Niu et al. Controlled synthesis of organic/inorganic van der Waals solid for tunable light-matter interactions
Mandyam et al. Large area few-layer TMD film growths and their applications
KR101500944B1 (en) Method for growing 2d layer of chacogenide compound, method for preparing cmos type structure, layer of chacogenide compound, electronic device including layer of chacogenide compound and cmos type structure
Servet et al. Polymorphism and charge transport in vacuum-evaporated sexithiophene films
KR101793515B1 (en) Manufacturing method of molybdenum disulfide nanoflake
CN103069544B (en) p-doped silicon layer
KR101703814B1 (en) Method for controlling thickness of two dimensional material thin film using seeding promoter and solvent
Shi et al. Synthesis and structure of two-dimensional transition-metal dichalcogenides
KR101800363B1 (en) METHOD OF MAMUFACTURING Transition Metal Dichalcogenide THIN FILM
Kratzer et al. Adsorption and epitaxial growth of small organic semiconductors on hexagonal boron nitride
Minakata et al. Electrical properties of highly ordered and amorphous thin films of pentacene doped with iodine
Li et al. Space‐confined synthesis of monolayer graphdiyne in MXene interlayer
KR20180011899A (en) Method for preparing thin film of two-dimensional transition metal dichalcogenide having high uniformity
CN108666358A (en) Preparation method of transition metal chalcogenide and boron nitride or graphene heterojunction
Ghiyasi et al. Organic-component dependent crystal orientation and electrical transport properties in ALD/MLD grown ZnO–organic superlattices
WO2019142035A1 (en) Large-scale synthesis of 2d semiconductors by epitaxial phase conversion
CN109437124B (en) A kind of method for synthesizing monolayer transition metal chalcogenides
KR101818847B1 (en) Method of transition metal chalcogenides by using liquid mixture precursor
Wu et al. Iodine-assisted ultrafast growth of high-quality monolayer MoS2 with sulfur-terminated edges
KR101655757B1 (en) Manufacturing method of molybdenum disulphide thin film
US9029190B2 (en) Method for manufacturing graphene film and graphene channel of transistor

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20160714

PA0201 Request for examination
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20170515

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20171016

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20171030

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20171031

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20200925

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20210916

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20230921

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee