KR101767899B1 - Method for manufacturing zinc-doped alumina dehydrogenation catalyst - Google Patents
Method for manufacturing zinc-doped alumina dehydrogenation catalyst Download PDFInfo
- Publication number
- KR101767899B1 KR101767899B1 KR1020160012924A KR20160012924A KR101767899B1 KR 101767899 B1 KR101767899 B1 KR 101767899B1 KR 1020160012924 A KR1020160012924 A KR 1020160012924A KR 20160012924 A KR20160012924 A KR 20160012924A KR 101767899 B1 KR101767899 B1 KR 101767899B1
- Authority
- KR
- South Korea
- Prior art keywords
- alumina
- zinc
- heat
- catalyst
- gamma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0018—Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/06—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
-
- B01J35/04—
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
Abstract
본 발명은 구형의 감마-알루미나를 열처리를 통해 열처리된 감마-알루미나 또는 세타-알루미나로 변형시키는 단계; 상기 열처리된 감마-알루미나 및 세타-알루미나를 산화아연(ZnO)의 전구체인 질산아연(Zn(NO3)2 6H2O)이 녹아있는 용액에 넣어 담지시키는 단계; 및 700 내지 1200℃의 온도에서 소성시키는 단계를 포함하는 것을 특징으로 하는 아연이 도핑된 알루미나 탈수소 촉매의 제조 방법을 제공한다.
본 발명에 따른 아연이 도핑된 알루미나 탈수소 촉매는 기공특성을 조절한 알루미나에 아연을 도핑함으로써, 선택도, 안정성, 수명등이 향상되는 효과를 가진다.The present invention relates to a process for the production of gamma-alumina, comprising the steps of: transforming spherical gamma-alumina to heat-treated gamma-alumina or cetal-alumina through heat treatment; Treating the heat-treated gamma-alumina and theta-alumina in a solution of zinc nitrate (Zn (NO 3 ) 2 6H 2 O) as a precursor of zinc oxide (ZnO); And calcining the mixture at a temperature of 700 to 1,200 ° C. The present invention also provides a method for producing a zinc-doped alumina dehydrogenation catalyst.
The zinc-doped alumina dehydrogenation catalyst according to the present invention has an effect of improving selectivity, stability, and service life by doping zinc with alumina having controlled pore characteristics.
Description
본 발명은 아연이 도핑된 알루미나 탈수소 촉매를 제조하는 기술로서, 기공특성을 조절한 알루미나에 아연을 도핑하여 선택도, 안정성, 수명등이 향상된 아연이 도핑된 알루미나 탈수소 촉매의 제조방법에 관한 것이다.The present invention relates to a process for preparing a zinc-doped alumina dehydrogenation catalyst, and more particularly, to a process for preparing a zinc-doped alumina dehydrogenation catalyst having improved purity, stability, and lifetime by doping zinc with alumina having controlled pore characteristics.
탈수소화 촉매는 크롬계 촉매와 백금계 촉매의 두 부류로 나뉜다. 크롬계 촉매는 코크 생성에 따른 촉매의 비활성화 속도가 빠르며 그에 따른 재생 속도가 빠르기 때문에 촉매의 수명이 백금계 촉매에 비해 짧은 편이고 크롬 자체의 독성으로 인한 문제를 내재하고 있다. 그러나 백금계 촉매는 탈수소 촉매 활성 및 안정성도 우수하고 촉매의 수명도 길기 때문에 많이 활용되고 있다. 촉매의 담체로는 대부분 알루미나, 실리카, 제올라이트등을 매우 다양하게 사용되고 있다. 이러한 탈수소 촉매에서 요구되는 특성으로는 활성성분의 함량, 조촉매의 종류, 활성성분의 분산도, 담체의 종류, 담체의 기공 특성, 담체의 산도 등을 고려하여야 하며, 특히 활성성분의 분산도는 촉매의 초기 활성도 매우 중요한 역할을 하며, 공정내에서 장기 사용할 경우 활성금속 성분의 뭉침현상 (sintering)이 진행되어 분산도가 낮아지고 결국에는 활성이 저하되는 특성을 갖게 된다 (Catalysis Today 111 (2006) 133-139). 따라서 높은 활성성분 분산도를 가지는 촉매의 제조방법이 필요로 된다.Dehydrogenation catalysts are divided into two categories: chromium catalysts and platinum catalysts. The chromium-based catalyst has a problem in that the lifetime of the catalyst is shorter than that of the platinum-based catalyst and the toxicity of the chromium itself due to the rapid deactivation of the catalyst due to the generation of coke and the rapid regeneration rate thereof. However, platinum-based catalysts are widely used because of their excellent dehydrogenation catalyst activity and stability and long catalyst lifetime. As the carrier of the catalyst, alumina, silica and zeolite are widely used. The properties required for such a dehydrogenation catalyst should include the content of the active ingredient, the type of promoter, the dispersity of the active ingredient, the type of carrier, the pore characteristics of the carrier, and the acidity of the carrier. Particularly, The initial activity of the catalyst plays a very important role, and when the catalyst is used for a long time in the process, sintering of the active metal component proceeds to lower the dispersibility and eventually decrease the activity (Catalysis Today 111 (2006) 133-139). Therefore, there is a need for a process for preparing a catalyst having a high active ingredient dispersion.
백금 촉매는 일반적으로 다음과 같은 상온/승온 흡착 담지법으로 제조된다. 염화백금산, 염산, 질산을 증류수에 넣어 녹인 후, 일정량의 담체를 추가한다. 상온에서 충분히 교반한 후 건조 및 열처열처리를 수행한다. 이후, 조촉매로 사용되는 성분을 증류수에 녹이고, 백금과 동일한 방법으로 흡착 담지한다.The platinum catalyst is generally prepared by the following room temperature / high temperature adsorption support method. Dissolve chloroplatinic acid, hydrochloric acid, and nitric acid in distilled water and add a certain amount of carrier. After sufficiently stirring at room temperature, drying and heat treatment are performed. Thereafter, the components used as the promoter are dissolved in distilled water and adsorbed and supported in the same manner as in the case of platinum.
염화백금산(H2PtCl6) 용액에 아황산수소나트륨(NaHSO3)을 첨가하여 중화시킨 후 물에 희석시킨 후 희석액에 수산화나트륨을 넣어 pH 5가되도록 조절한다. 이어, 담체를 넣은 다음 수산화나트륨을 넣어 pH 5가 되도록 조절한 다음 환원제를 첨가하여 백금을 환원처리한다. 마지막으로 반응 결과물을 여과 및 세척한 다음 건조시키면 미세한 백금 입자가 담체 분말위에 석출된 백금 촉매 분말이 얻어진다. 그러나 상술한 방법으로 백금계 촉매를 제조할 경우, 백금 입자의 크기 및 분산된 형태가 균일하지 못하고, 염화백금산의 환원이 일시적으로 일어나면서 백금입자가 담체 표면에 급격히 석출되기 때문에 결정 크기의 조절이 어렵다는 문제점이 있다. 또한, 매 단계마다 pH를 조절해야하는 어려움이 있다.To the chloroplatinic acid (H2PtCl6) solution, neutralize with sodium hydrogen sulfite (NaHSO3), dilute with water, add sodium hydroxide to the diluent, and adjust to pH 5. Subsequently, the carrier is added, sodium hydroxide is added to adjust the pH to 5, and then a reducing agent is added to reduce the platinum. Finally, when the reaction product is filtered, washed, and dried, a platinum catalyst powder in which fine platinum particles are precipitated on the support powder is obtained. However, when the platinum-based catalyst is prepared by the above-described method, the size and the dispersed form of the platinum particles are not uniform, and since the reduction of the platinic acid occurs temporarily and the platinum particles precipitate rapidly on the surface of the support, There is a problem that it is difficult. Further, there is a difficulty in controlling pH at each step.
미국특허 제 US 5,068,161에서는 용매로서 과량의 물을 사용하여 염화백금산을 용해시킨 후 환원제로서 포름알데히드를 사용하여 이를 환원시킨 후에 여과하여 용매를 제거하고 진공건조시킴으로써 백금 합금이 담지된 촉매를 제조하는 용매 환원법이 제시되어 있으나 환원제에 따라 촉매 입자의 크기가 급변하며, 30 중량% 이상의 농도가 되면 촉매 입자의 크기가 너무 커진다는 문제점이 있다. U.S. Patent No. 5,068,161 discloses a process for producing a platinum-supported catalyst by dissolving chloroplatinic acid in an excess amount of water as a solvent, reducing it with formaldehyde as a reducing agent, filtering the solvent to remove the solvent, Reduction method, but the size of the catalyst particles rapidly changes according to the reducing agent, and when the concentration is 30 wt% or more, the size of the catalyst particles becomes too large.
H. Wendt (H. Wendt et al., Electrochim. Acta, 43, 1998) 등은 과량의 용매를 사용하여 촉매 원료물질을 용해시킨 후에 이를 탄소담체에 함침시킨 후, 건조과정을 통해 용매를 제거한 후, 수소기체를 이용해 환원시켜 탄소 담지 촉매를 제조하는 방법을 제시하였으나, 건조 단계에서 농도 구배가 발생하기 때문에 모세관현상에 의한 금속염이 담체 표면으로 유출될 수 있으며, 백금의 함량이 증가할수록 입자의 크기가 커진다는 문제점이 있다.H. Wendt (H. Wendt et al., Electrochim. Acta, 43, 1998), after dissolving a catalyst raw material by using an excessive amount of solvent, impregnating the carbon support with a carbon carrier, , A method of preparing a carbon supported catalyst by reducing with hydrogen gas has been proposed. However, since the concentration gradient occurs in the drying step, the metal salt due to the capillary phenomenon may flow out to the surface of the carrier. As the content of platinum increases, Is increased.
본 발명의 목적은 기공특성을 조절한 알루미나에 아연을 도핑하여 선택도, 안정성, 수명등이 향상된 아연이 도핑된 알루미나 탈수소 촉매의 제조방법을 제공하는 것이다.It is an object of the present invention to provide a method of preparing a zinc-doped alumina dehydrogenation catalyst having improved purity, selectivity, stability, and life span by doping alumina with zinc.
상술한 목적을 달성하기 위한 본 발명의 하나의 양상은, 구형의 감마-알루미나를 열처리를 통해 열처리된 감마-알루미나 또는 세타-알루미나로 변형시키는 단계; 상기 열처리된 감마-알루미나 및 세타-알루미나를 산화아연(ZnO)의 전구체인 질산아연(Zn(NO3)2 6H2O)이 녹아있는 용액에 넣어 담지시키는 단계; 및 700 내지 1200℃의 온도에서 소성시키는 단계를 포함하는 것을 특징으로 하는 아연이 도핑된 알루미나 탈수소 촉매의 제조 방법을 제공한다. 이때 상기 소성 온도가 700℃미만이거나, 1200℃를 초과할 경우 촉매의 선택도, 안정성, 수명이 저하될 수 있다In accordance with one aspect of the present invention, there is provided a method of forming a gamma-alumina, comprising: transforming spherical gamma-alumina to heat-treated gamma-alumina or cetal-alumina; Treating the heat-treated gamma-alumina and theta-alumina in a solution of zinc nitrate (Zn (NO 3 ) 2 6H 2 O) as a precursor of zinc oxide (ZnO); And calcining the mixture at a temperature of 700 to 1,200 ° C. The present invention also provides a method for producing a zinc-doped alumina dehydrogenation catalyst. At this time, if the calcination temperature is lower than 700 ° C or higher than 1200 ° C, the selectivity, stability and lifetime of the catalyst may be lowered
또한, 상기 질산아연으로부터 생성된 산화아연의 양은 상기 알루미나의 총량(상기 열처리된 감마-알루미나 또는 세타-알루미나의 총몰량을 의미)에 대하여 0.001 내지 0.1몰비이고, 상기 열처리된 감마-알루미나 및 세타-알루미나는 바이모달(Bimodal) 기공 특성을 지니고 있는 것을 특징으로 하는 아연이 도핑된 알루미나 탈수소 촉매의 제조 방법을 제공한다. 여기서, 상기 산화아연의 양이 상기 알루미나 총량을 기준으로 0.001몰비 미만이거나, 0.1몰비를 초과하면 탈수소 촉매의 선택도, 안정성 및 수명이 저하될 수 있다.Also, the amount of zinc oxide produced from the zinc nitrate is 0.001 to 0.1 mole ratio relative to the total amount of the alumina (which means the total molar amount of the heat-treated gamma-alumina or theta-alumina), and the heat treated gamma- Wherein the alumina has bimodal pore characteristics. The present invention also provides a method for preparing a zinc-doped alumina dehydrogenation catalyst. If the amount of the zinc oxide is less than 0.001 mol or less than 0.1 mol based on the total amount of the alumina, the selectivity, stability and lifetime of the dehydrogenation catalyst may be deteriorated.
이에 더하여, 상기 아연이 도핑된 알루미나 탈수소 촉매는 선택도가 94.0 내지 95.0 중량%이고, 평균 코크 생성량이 0.6 내지 1.3 중량%/hr 인 것을 특징으로 하는 아연이 도핑된 알루미나 탈수소 촉매의 제조 방법을 제공한다.In addition, the zinc-doped alumina dehydrogenation catalyst has a selectivity of 94.0 to 95.0 wt% and an average coke production of 0.6 to 1.3 wt% / hr. do.
본 발명에 따른 아연이 도핑된 알루미나 탈수소 촉매는 기공특성을 조절한 알루미나에 아연을 도핑함으로써, 선택도, 안정성, 수명등이 향상되는 효과를 가진다.The zinc-doped alumina dehydrogenation catalyst according to the present invention has an effect of improving selectivity, stability, and service life by doping zinc with alumina having controlled pore characteristics.
본 발명에 따른 아연이 도핑된 알루미나 탈수소 촉매는 구형 알루미나(감마-알루미나)를 최적화 열처리를 통해 바이모달(Bimodal) 기공 특성(Meso and Macro)을 지닌 열처리된 감마-알루미나 또는 세타-알루미나로 상변이를 시킨 후, 제조 된 감마-알루미나 또는 세타-알루미나 담체 위에 아연을 담지시켜 흡착답지법으로 제조한다. 이때, 상기 담지과정에서 상기 질산아연으로부터 생성된 산화아연의 양은 상기 알루미나의 총량(상기 열처리된 감마-알루미나 또는 세타-알루미나의 총몰량을 의미)에 대하여 0.001 내지 0.1몰비이고,The zinc-doped alumina dehydrogenation catalyst according to the present invention can be obtained by phase-transforming spherical alumina (gamma-alumina) with heat-treated gamma-alumina or cetal-alumina having bimodal pore characteristics (Meso and Macro) Followed by carrying zinc on the prepared gamma-alumina or theta-alumina support by adsorption-assisted method. At this time, the amount of zinc oxide produced from the zinc nitrate in the loading process is 0.001 to 0.1 mole ratio relative to the total amount of the alumina (which means the total molar amount of the heat-treated gamma-alumina or theta-alumina)
상기 알루미나 담체는 알루미나의 감마상 또는 세타상이며 결성성이 90% 이상 인 것이 바람직하다. 그리고, 감마-알루미나의 경우 알루미나 자체의 산점으로 인한 부반응성이 크고, 반응 중 알루미나 결정성이 변화하며 비표면적이 감소하는 구조적 특성 변화를 가져오게 되지만 아연의 담지로 자체의 산점을 감소시킬 수 있으며 부정적인 효과를 방지할 수 있다. 알파-알루미나의 경우 낮은 비표면적으로 인해 금속의 분산도를 낮추고 전체적인 금속의 활성면적을 감소시켜 낮은 촉매활성을 나타낸다. 상기 알루미나 담체는 열처리 온도 및 시간에 따라 감마상 또는 세타상을 사용할 수 있다.The alumina carrier is preferably a gamma-phase or a ceta-phase of alumina and has a formability of 90% or more. In the case of gamma-alumina, there is a large negative reaction due to the acid sites of alumina itself, a change in structural characteristics such as alumina crystallinity and reduced specific surface area during the reaction, It is possible to prevent a negative effect. In the case of alpha-alumina, the low specific surface area lowers the dispersibility of the metal and reduces the overall active area of the metal, thereby exhibiting low catalytic activity. The alumina support may use a gamma phase or a ceta phase depending on the heat treatment temperature and time.
상기 알루미나 담체는 비표면적이 70~170㎡/g이고, 5~100㎚의 메조 기공과 100~20,000㎚의 매크로 기공을 갖는다. 이때 담체의 비표면적이 70㎡/g 미만이면 금속 활성 성분의 분산도가 낮아지고, 170㎡/g을 초과하면 알루미나의 감마 결정성이 높게 유지되어 부반응성이 증대된다.The alumina support has a specific surface area of 70 to 170 m 2 / g, a mesopore of 5 to 100 nm and a macropore of 100 to 20,000 nm. If the specific surface area of the support is less than 70 m < 2 > / g, the dispersibility of the metal active component is lowered. When the specific surface area exceeds 170 m2 / g, the gamma crystallinity of alumina is maintained to be high.
담체 기공의 부피와 기공의 크기는 반응물과 생성물의 물질 전달 계수를 결정짓는 주요 인자이며, 화학반응 속도가 빠른 상황에서 물질의 확산 저항은 전체적인 반응속도를 결정짓기 때문에 기공의 크기가 큰 구조체가 촉매의 활성을 높게 유지하는데 유리하다. 또한, 기공의 크기가 큰 담체를 사용하는 것이 코크의 축척에 둔감하게 작용하여 촉매활성 유지에 유리하다.The volume and pore size of the carrier pore are the main factors that determine the mass transfer coefficient of reactants and products. In the case of rapid chemical reaction rate, the diffusion resistance of the material determines the overall reaction rate, Which is advantageous in maintaining high activity of the enzyme. Further, the use of a carrier having a large pore size is insensitive to the scale of the coke, which is advantageous for maintaining the catalytic activity.
촉매는 활성성분의 담지 시 높은 분산도를 가지며, 메조 및 매크로 기공의 발달은 물질전달 속도를 높이는 효과를 갖는다. 즉, 촉매 내에 존재하는 기공의 크기가 큰 경우, 촉매 상에 발생되는 코크에 의한 활성 감소에 둔감하게 되고, 물질 전달 속도가 높아 액체 공간 속도가 증가할 경우에도 높은 반응 활성을 보이게 된다.The catalyst has a high degree of dispersion when the active ingredient is supported, and the development of meso and macropores has the effect of increasing the mass transfer rate. That is, when the size of the pores existing in the catalyst is large, it is insensitive to reduction of the activity due to the coke generated on the catalyst, and exhibits high reaction activity even when the liquid space velocity increases due to the high mass transfer rate.
이하 실시예 및 비교예를 통하여 본 발명을 보다 상세히 설명하기로 한다. 단, 이하의 실시예는 본 발명의 바람직한 구현예를 설명하기 위한 것으로 본 발명의 범위가 하기 실시예에 의하여 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the following examples are intended to illustrate preferred embodiments of the present invention, and the scope of the present invention is not limited by the following examples.
실시예Example 1 One
촉매 합성에 사용된 담체로 감마 결정성을 갖고, 평균 지름이 1.65mm이며, 충진 밀도가 0.56 g/ml인 구형의 상용 알루미나를 구입하여, 공기 분위기에서 1050℃의 온도로 6시간 동안 열변형하여 세타상으로 변형시켰다. Xray 분석법을 이용하여 이 세타 알루미나의 결정성을 측정한 결과, 90% 이상의 세타 결정성을 가지고 있었다. A spherical commercial alumina having a gamma crystallinity and an average diameter of 1.65 mm and a packing density of 0.56 g / ml was purchased from the carrier used for the catalyst synthesis, and was thermally deformed at a temperature of 1050 ° C for 6 hours in an air atmosphere Phase. Crystallinity of theta alumina was measured by Xray analysis and found to be 90% or higher.
상기 열변형된 열처리된 세타-알루미나 담체를 사용하여 상온/승온 흡착 담지법으로 촉매를 제조하였다. 산화아연(ZnO)의 전구체인 Zn nitrate(Zn(NO3)2 6H2O)을 증류수에 넣어 녹인 후, 열변형된 세타-알루미나를 넣어 담지하였다. 담지액은 회전증발기를 이용하여 건조하였으며, 상온에서 1.5시간 동안 25rpm으로 교반한 후, 감압 상태 80℃에서 1.5시간 동안 25rpm으로 회전시켜 건조하였다. 완전한 건조를 위하여 105℃ 오븐에서 15시간 동안 건조하고, 700℃ 가열로에서 2시간동안 소성하였다. 이때, 상기 질산아연으로부터 생성된 산화아연의 양은 상기 알루미나의 총량(상기 열변형된 세타-알루미나의 총몰량을 의미)에 대하여 0.001몰비이다.The catalyst was prepared by using the heat-treated heat-treated theta-alumina support at room temperature / temperature adsorption support. Zn nitrate (Zn (NO 3 ) 2 6H 2 O), which is a precursor of zinc oxide (ZnO), was dissolved in distilled water and then heat-deformed theta-alumina was added thereto. The supported liquid was dried using a rotary evaporator, stirred at room temperature for 1.5 hours at 25 rpm, and then dried at 80 ° C. for 1.5 hours at 25 rpm under reduced pressure. For complete drying, it was dried in an oven at 105 ° C for 15 hours and then calcined in a heating furnace at 700 ° C for 2 hours. At this time, the amount of zinc oxide produced from the zinc nitrate is 0.001 mole ratio relative to the total amount of the alumina (which means the total molar amount of the heat-deformed theta-alumina).
실시예Example 2 2
담체로 열변형된 감마-알루미나를 사용하고 질산아연으로부터 생성된 산화아연의 양은 알루미나의 총량(상기 열변형된 감마-알루미나의 총몰량을 의미)에 대하여 0.1몰비인 것을 제외하고는 실시예 1과 동일하게 촉매를 제조하였다.The amount of zinc oxide produced from zinc nitrate using gamma-alumina thermally deformed with the carrier was 0.1 molar ratio with respect to the total amount of alumina (which means the total molar amount of the heat-deformed gamma-alumina) The same catalyst was prepared.
비교예Comparative Example 1 One
주석염화물(SnCl2), 염산(HCl), 질산(HNO3)을 증류수에 넣어 녹인 후, 열변형된 알루미나를 넣어 담지하였다. 담지액은 회전증발기를 이용하여 건조하였으며, 상온에서 1.5시간 동안 25rpm으로 교반한 후, 감압 상태 80℃에서 1.5시간 동안 25rpm으로 회전시켜 건조하였다. 완전한 건조를 위하여 105℃ 오븐에서 15시간 동안 건조하고, 700℃ 가열로에서 2시간동안 열처리하였다. 이후, 주석이 담지된 알루미나를 염화백금산(H2PtCl66H2O), 염산(HCl), 질산(HNO3)이 녹아있는 증류수에 넣어 담지하였다. 담지액은 회전증발기를 이용하여 건조하였으며, 상온에서 1.5시간 동안 25rpm으로 교반한 후, 감압상태 80℃에서 1.5시간 동안 25rpm으로 회전시켜 건조하였다. 완전한 건조를 위하여 105℃ 오븐에서 15시간 동안 건조하고, 700℃ 가열로에서 2시간동안 열처리하였다. Tin chloride (SnCl2), hydrochloric acid (HCl), and nitric acid (HNO3) were dissolved in distilled water and then heat-deformed alumina was added to the solution. The supported liquid was dried using a rotary evaporator, stirred at room temperature for 1.5 hours at 25 rpm, and then dried at 80 ° C. for 1.5 hours at 25 rpm under reduced pressure. For complete drying, it was dried in an oven at 105 ° C for 15 hours and heat-treated at 700 ° C for 2 hours. Thereafter, the alumina bearing the tin was loaded in distilled water containing chloroplatinic acid (H2PtCl66H2O), hydrochloric acid (HCl), and nitric acid (HNO3). The supported liquid was dried using a rotary evaporator, stirred at room temperature for 1.5 hours at 25 rpm, and then dried at 80 ° C. for 1.5 hours at 25 rpm under reduced pressure. For complete drying, it was dried in an oven at 105 ° C for 15 hours and heat-treated at 700 ° C for 2 hours.
실험예Experimental Example
-탈수소화 촉매의 성능 실험-- Performance test of dehydrogenation catalyst -
본 발명에 따른 탈수소화 촉매의 성능을 확인하기 위하여, 하기와 같은 실험을 수행하였다.In order to confirm the performance of the dehydrogenation catalyst according to the present invention, the following experiment was conducted.
상기 실시예 1 및 2, 비교예 1에서 제조된 촉매 2.4ml를 부피가 7ml인 석영반응기 내에 각각 충진 한 후, 프로판과 수소의 혼합기체를 공급하여 탈수소 반응을 각각 수행하였다. 이때, 수소와 프로판의 비율은 1:1로 고정하였으며, 단열조건 하에서 반응온도는 620℃, 절대압력은 1.5atm, 액체공간속도는 15hr-1로 유지하면서 탈수소 반응을 수행하였다. 반응 후의 기체 조성은 반응 장치와 연결된 기체 크로마토그래피로 분석하여 프로판 전환율과 반응 후 생성물 중의 프로필렌 선택도를 구하였다.2.4 ml of the catalyst prepared in Examples 1 and 2 and Comparative Example 1 were packed in a quartz reactor having a volume of 7 ml, respectively, and a dehydrogenation reaction was carried out by supplying a mixed gas of propane and hydrogen. At this time, the ratio of hydrogen to propane was fixed at 1: 1, and the dehydrogenation reaction was carried out under adiabatic conditions while maintaining the reaction temperature at 620 ° C., the absolute pressure at 1.5 atm, and the liquid space velocity at 15 hr -1. The gas composition after the reaction was analyzed by gas chromatography coupled with the reactor to determine propane conversion and propylene selectivity in the product after reaction.
반응 시작 후, 5시간째의 전활율과 선택도 및 수율을 표에 나타내었다.The rates, selectivity and yields at 5 hours after the start of the reaction are shown in the table.
표 1에 나타난 바와 같이, 본 발명의 실시예 1, 2는 비교예에 비하여 반응 선택도가 우수하다. 프로판 전환율은 비교예와 비교해 보았을 때 비슷한 수준으로 유지하였다. 또한, 5시간 평균 코크 생성량은 비교예 대비 실시예에서 감소한 것을 볼 수 있었다.As shown in Table 1, Examples 1 and 2 of the present invention are superior in reaction selectivity to the Comparative Examples. The propane conversion was maintained at a similar level when compared with the comparative example. In addition, the 5-hour average coke production amount was found to be decreased in the embodiment as compared with the comparative example.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였으나, 본 발명은 상술한 실시예에 국한되는 것은 아니고, 본 발명의 취지 또는 범위를 벗어나지 않고 본 발명을 다양하게 변경하고 변형할 수 있다는 사실은 당업자에게 자명할 것이다. 따라서, 본 발명의 보호범위는 첨부한 특허청구범위 및 그와 균등한 범위로 정해져야 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, Will be apparent to those skilled in the art. Accordingly, the scope of protection of the present invention should be defined in the appended claims and their equivalents.
Claims (3)
상기 열처리된 세타-알루미나를 산화아연(ZnO)의 전구체인 질산아연(Zn(NO3)2 6H2O)이 녹아있는 용액에 넣어 담지시키는 단계; 및
700 내지 1200℃의 온도에서 소성시키는 단계;를 포함하며,
상기 질산아연으로부터 생성된 산화아연의 양은 상기 열처리된 세타-알루미나의 총몰량에 대하여 0.001 내지 0.1몰비이고,
상기 열처리된 세타-알루미나는 바이모달(Bimodal) 기공 특성을 지니고 있으며,
선택도가 94.0 내지 95.0 중량%이고, 평균 코크 생성량이 0.6 내지 1.3 중량%/hr 인 것을 특징으로 하는 아연이 도핑된 알루미나 탈수소 촉매의 제조 방법.Transforming spherical gamma-alumina into heat-treated theta-alumina through heat treatment;
Treating the heat-treated theta-alumina in a solution containing zinc nitrate (Zn (NO 3 ) 2 6H 2 O) as a precursor of zinc oxide (ZnO); And
And firing at a temperature of 700 to 1200 DEG C,
The amount of zinc oxide produced from the zinc nitrate is 0.001 to 0.1 mole ratio relative to the total molar amount of the heat-treated theta-alumina,
The heat-treated theta-alumina has bimodal pore characteristics,
Wherein the selectivity is 94.0 to 95.0 wt%, and the average amount of coke produced is 0.6 to 1.3 wt% / hr.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160012924A KR101767899B1 (en) | 2016-02-02 | 2016-02-02 | Method for manufacturing zinc-doped alumina dehydrogenation catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160012924A KR101767899B1 (en) | 2016-02-02 | 2016-02-02 | Method for manufacturing zinc-doped alumina dehydrogenation catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170091969A KR20170091969A (en) | 2017-08-10 |
KR101767899B1 true KR101767899B1 (en) | 2017-08-14 |
Family
ID=59652265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160012924A Active KR101767899B1 (en) | 2016-02-02 | 2016-02-02 | Method for manufacturing zinc-doped alumina dehydrogenation catalyst |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101767899B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102035471B1 (en) * | 2017-12-27 | 2019-10-23 | 효성화학 주식회사 | Preparation of dehydrogenation catalysts having superior selectivity |
JP7509764B2 (en) | 2018-12-13 | 2024-07-02 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | Transition metal doped alumina for improved OSC and TWC performance - Patents.com |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000037626A (en) * | 1998-07-24 | 2000-02-08 | Chiyoda Corp | Dehydrogenation catalyst |
-
2016
- 2016-02-02 KR KR1020160012924A patent/KR101767899B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000037626A (en) * | 1998-07-24 | 2000-02-08 | Chiyoda Corp | Dehydrogenation catalyst |
Also Published As
Publication number | Publication date |
---|---|
KR20170091969A (en) | 2017-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4448896A (en) | Hydrogenation catalyst for desulfurization and removal of heavy metals | |
US5395812A (en) | Silver catalyst for production of ethylene oxide and method for production of the catalyst | |
EP3222347B1 (en) | Catalyst for oxidative dehydrogenation reaction and method for producing same | |
KR101921407B1 (en) | Dehydrogenation catalysts and preparation method thereof | |
KR20180079178A (en) | Composite catalyst support, dehydrogenation catalysts and preparation method thereof | |
JPH0513704B2 (en) | ||
CN107282080B (en) | Catalyst for hydrofining crude terephthalic acid and preparation method thereof | |
CN107486195B (en) | Preparation method of low-carbon alkane dehydrogenation catalyst | |
KR20120077688A (en) | Metal catalyst for dehydrogenation having improved selectivity | |
CN107486197B (en) | Preparation method of low-carbon alkane dehydrogenation microsphere catalyst | |
JP4753724B2 (en) | Novel platinum-based catalyst and method for producing the same | |
KR102162079B1 (en) | Method of preparing catalyst support and dehydrogenation catalysts | |
KR101767899B1 (en) | Method for manufacturing zinc-doped alumina dehydrogenation catalyst | |
KR101951537B1 (en) | Composite catalyst support, dehydrogenation catalysts and preparation method thereof | |
JPH05329368A (en) | Silver catalyst for ethylene oxide production and its preparation | |
KR101208152B1 (en) | Dehydrogenation aerogel catalyst | |
KR20130048716A (en) | Catalysts and processes for the hydrogenolysis of glycerol and other organic compounds for producing polyols and propylene glycol | |
KR101562458B1 (en) | Preparation of dehydrogenation catalysts having superior selectivity | |
JP4148775B2 (en) | Catalyst with bimodal pore radius distribution | |
KR102046771B1 (en) | Dehydrogenation catalyst | |
KR101678225B1 (en) | Preparation of the catalysts Platinum System | |
KR102035470B1 (en) | Dehydrogenation catalyst | |
KR100830726B1 (en) | Catalyst for cycloolefin production and process for production | |
CN113877560A (en) | Synthesis method of methyl acrylate and solid base catalyst thereof | |
KR102113122B1 (en) | Method of preparing dehydrogenation catalysts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20160202 |
|
PA0201 | Request for examination | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20161118 Patent event code: PE09021S01D |
|
AMND | Amendment | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20170530 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20161118 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |
|
AMND | Amendment | ||
PX0901 | Re-examination |
Patent event code: PX09011S01I Patent event date: 20170530 Comment text: Decision to Refuse Application Patent event code: PX09012R01I Patent event date: 20170118 Comment text: Amendment to Specification, etc. |
|
PX0701 | Decision of registration after re-examination |
Patent event date: 20170807 Comment text: Decision to Grant Registration Patent event code: PX07013S01D Patent event date: 20170629 Comment text: Amendment to Specification, etc. Patent event code: PX07012R01I Patent event date: 20170530 Comment text: Decision to Refuse Application Patent event code: PX07011S01I Patent event date: 20170118 Comment text: Amendment to Specification, etc. Patent event code: PX07012R01I |
|
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20170808 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20170808 End annual number: 3 Start annual number: 1 |
|
PG1501 | Laying open of application | ||
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20200713 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20210712 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20230712 Start annual number: 7 End annual number: 7 |