KR101749486B1 - 볼 밀링을 이용한 연료전지용 그래핀 촉매의 제조방법 - Google Patents
볼 밀링을 이용한 연료전지용 그래핀 촉매의 제조방법 Download PDFInfo
- Publication number
- KR101749486B1 KR101749486B1 KR1020140047618A KR20140047618A KR101749486B1 KR 101749486 B1 KR101749486 B1 KR 101749486B1 KR 1020140047618 A KR1020140047618 A KR 1020140047618A KR 20140047618 A KR20140047618 A KR 20140047618A KR 101749486 B1 KR101749486 B1 KR 101749486B1
- Authority
- KR
- South Korea
- Prior art keywords
- graphite oxide
- nitrogen
- ball
- ball milling
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/20—Carbon compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
- H01M4/8842—Coating using a catalyst salt precursor in solution followed by evaporation and reduction of the precursor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9075—Catalytic material supported on carriers, e.g. powder carriers
- H01M4/9083—Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/96—Carbon-based electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0234—Carbonaceous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Catalysts (AREA)
Abstract
Description
도 2는 본 발명의 일 실시예에 따라 제조된 그래파이트 산화물(GO)과 볼 밀링된 그래파이트 산화물(bGO)의 TEM 이미지 사진(도 2의 a), 및 질소 도핑된 그래파이트 산화물(NGr)과 볼 밀링 후 질소 도핑된 그래파이트 산화물(bNGr)의 HRTEM 이미지 사진이고,
도 3은 본 발명의 일 실시예에 따라 제조된 그래파이트 산화물(GO), 볼 밀링된 그래파이트 산화물(bGO), 질소 도핑된 그래파이트 산화물(NGr), 및 볼 밀링 후 질소 도핑된 그래파이트 산화물(bNGr)의 확대된 TEM 이미지 사진이고,
도 4는 본 발명의 일 실시예에 따라 제조된 그래파이트 산화물(GO), 볼 밀링된 그래파이트 산화물(bGO), 질소 도핑된 그래파이트 산화물(NGr), 및 볼 밀링 후 질소 도핑된 그래파이트 산화물(bNGr)의 물성평가 결과(XPS and Raman)를 나타내는 그래프이고,
도 5는 본 발명의 일 실시예에 따라 제조된 질소 도핑된 그래파이트 산화물(NGr)과 볼 밀링 후 질소 도핑된 그래파이트 산화물(bNGr)의 전기화학적 성능평가를 통한 산소환원 활성을 나타내는 그래프이고,
도 6은 발명의 일 실시예에 따라 제조된 질소 도핑된 그래파이트 산화물(NGr)과 볼 밀링 후 질소 도핑된 그래파이트 산화물(bNGr)의 메탄올 내성 실험 결과를 나타내는 그래프이고,
도 7은 발명의 일 실시예에 따라 제조된 질소 도핑된 그래파이트 산화물(NGr)과 볼 밀링 후 질소 도핑된 그래파이트 산화물(bNGr)의 산소환원반응시 발생되는 과산화수소의 양과 산소 분자 하나에 전달되는 전자의 개수를 실험한 결과를 나타내는 그래프이고,
도 8은 발명의 일 실시예에 따라 제조된 볼 밀링 후 질소 도핑된 그래파이트 산화물(bNGr)을 고분자 전해질 연료전지(PEMFC)에 적용한 후, 질량당 활성도와 부피당 활성도를 측정한 결과(도 8의 a) 및 시간에 따른 전류 안정성(도 8의 b)을 측정한 결과를 나타내는 그래프이다.
Claims (10)
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 그래파이트를 황산(H2SO4)과 인산(H3PO4)의 혼합용액에 분산시킨 후 과망간산칼륨(KMnO4)을 넣고 가열한 용액을 얼음에 부어서 희석시킨 다음, 상기 희석시킨 용액에 과산화수소(H2O2)를 첨가한 후 원심분리하며, 원심분리한 용액을 건조시켜서 그래파이트 산화물을 제조하는 단계;
상기 그래파이트 산화물을 증류수와 지르코늄 볼(ball)이 들어있는 볼 밀링 장치에 넣고, 200~400rpm으로 6~18시간 동안 볼 밀링하는 단계;
볼 밀링한 상기 그래파이트 산화물을 멜라민(2-amino-4,6-dichlorotriazine), 염화시아눌(cyanuric chloride), 나트륨아미드(sodium amide) 및 멜렘(2,5,8-triamino-tri-s-triazine)으로 구성된 군으로부터 선택된 1종 이상의 화합물, 2시아노2아마이드(dicyandiamide, C2H4N4), 염화코발트(cobalt chloride, CoCl2-6H2O) 및 염화철(iron chloride, FeCl2-4H2O)이 용해된 증류수에 함침시켜서 질소를 도핑하는 단계; 및
질소가 도핑된 상기 그래파이트 산화물을 진공 오븐에서 건조시킨 후, 아르곤 가스(Argon gas)를 흘려주면서 열처리하는 단계;를 포함하는 볼 밀링을 이용한 직접 메탄올 연료전지용(DMFC) 그래핀 촉매의 제조방법.
- 제6항에 따른 제조방법에 의해 제조되어, 볼 밀링에 의해 감소된 입자 크기와 증가된 표면적을 갖는 것을 특징으로 하는 연료전지용 그래핀 촉매.
- 제7항에 있어서,
상기 감소된 입자 크기는 50~500nm 이고,
상기 증가된 표면적은 100~150m2/g 인 것을 특징으로 하는 연료전지용 그래핀 촉매.
- 삭제
- 삭제
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140047618A KR101749486B1 (ko) | 2014-04-21 | 2014-04-21 | 볼 밀링을 이용한 연료전지용 그래핀 촉매의 제조방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140047618A KR101749486B1 (ko) | 2014-04-21 | 2014-04-21 | 볼 밀링을 이용한 연료전지용 그래핀 촉매의 제조방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20150121572A KR20150121572A (ko) | 2015-10-29 |
KR101749486B1 true KR101749486B1 (ko) | 2017-06-22 |
Family
ID=54430536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140047618A Active KR101749486B1 (ko) | 2014-04-21 | 2014-04-21 | 볼 밀링을 이용한 연료전지용 그래핀 촉매의 제조방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101749486B1 (ko) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102108907B1 (ko) * | 2017-07-24 | 2020-05-12 | 충남대학교산학협력단 | 나노스폰지 구조의 그래핀닷-팔라듐 하이브리드의 제조방법 및 그에 의해 제조된 그래핀닷-팔라듐 하이브리드 촉매 |
KR102108910B1 (ko) * | 2017-07-24 | 2020-05-12 | 충남대학교산학협력단 | 나노스폰지 구조의 그래핀닷-백금몰리브덴 하이브리드의 제조방법 및 그에 의해 제조된 그래핀닷-백금몰리브덴 하이브리드 촉매 |
KR102700987B1 (ko) * | 2020-11-25 | 2024-08-29 | 주식회사 엘지에너지솔루션 | 활성탄소 및 이의 제조방법 |
CN112520730B (zh) * | 2020-12-03 | 2022-06-21 | 东华大学 | 一种多原子共掺杂石墨烯、制备方法及应用 |
CN112958092B (zh) * | 2021-02-05 | 2022-12-06 | 暨南大学 | 一种活化过硫酸盐催化剂及其制备方法与应用 |
CN115448286A (zh) * | 2022-10-11 | 2022-12-09 | 天津工业大学 | 一种钴、氮共掺杂γ-石墨单炔碳材料的制备方法 |
-
2014
- 2014-04-21 KR KR1020140047618A patent/KR101749486B1/ko active Active
Non-Patent Citations (1)
Title |
---|
JOURNAL OF MATERIALS CHEMISTRY A (2013.01.18)* |
Also Published As
Publication number | Publication date |
---|---|
KR20150121572A (ko) | 2015-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10910655B2 (en) | Method of making carbon nanotubes doped with iron, nitrogen and sulphur | |
Son et al. | N, S-doped nanocarbon derived from ZIF-8 as a highly efficient and durable electro-catalyst for oxygen reduction reaction | |
JP4656576B2 (ja) | 燃料電池アノード用Pt/Ru合金触媒の製造方法 | |
Chen et al. | Aminothiazole-derived N, S, Fe-doped graphene nanosheets as high performance electrocatalysts for oxygen reduction | |
Zhang et al. | Effective construction of high-quality iron oxy-hydroxides and Co-doped iron oxy-hydroxides nanostructures: towards the promising oxygen evolution reaction application | |
KR101749486B1 (ko) | 볼 밀링을 이용한 연료전지용 그래핀 촉매의 제조방법 | |
KR101679809B1 (ko) | 질소(N)가 도핑된 탄소에 담지된 백금(Pt)촉매의 제조방법 및 이의 이용하여 제조된 질소(N)가 도핑된 탄소에 담지된 백금(Pt)촉매 | |
Wu et al. | Synergistic enhancement of nitrogen and sulfur co-doped graphene with carbon nanosphere insertion for the electrocatalytic oxygen reduction reaction | |
Lee et al. | Low temperature synthesis of new highly graphitized N-doped carbon for Pt fuel cell supports, satisfying DOE 2025 durability standards for both catalyst and support | |
An et al. | Phosphorus-doped graphene support to enhance electrocatalysis of methanol oxidation reaction on platinum nanoparticles | |
Zhou et al. | Soybean-derived mesoporous carbon as an effective catalyst support for electrooxidation of methanol | |
US8518608B2 (en) | Preparation of supported electrocatalyst comprising multiwalled carbon nanotubes | |
Xiao et al. | Confinement of Fe2O3 nanoparticles in the shell of N-doped carbon hollow microsphere for efficient oxygen reduction reaction | |
An et al. | Well-dispersed iron nanoparticles exposed within nitrogen-doped mesoporous carbon nanofibers by hydrogen-activation for oxygen-reduction reaction | |
Guo et al. | Fe/Ni bimetal and nitrogen co-doped porous carbon fibers as electrocatalysts for oxygen reduction reaction | |
Vinayan et al. | Iron encapsulated nitrogen and sulfur co-doped few layer graphene as a non-precious ORR catalyst for PEMFC application | |
Varga et al. | One step synthesis of chlorine-free Pt/Nitrogen-doped graphene composite for oxygen reduction reaction | |
Shiva Kumar et al. | Palladium supported on phosphorus–nitrogen dual-doped carbon nanoparticles as cathode for hydrogen evolution in PEM water electrolyser | |
Zhang et al. | Porous carbon electrocatalyst with exclusive metal-coordinate active sites for acidic oxygen reduction reaction | |
Nechiyil et al. | Optimizing metal-support interphase for efficient fuel cell oxygen reduction reaction catalyst | |
Ozdemir | A novel method to produce few layers of graphene as support materials for platinum catalyst | |
Kim et al. | Cobalt encapsulated in the nitrogen and sulfur co-doped carbon nanotube supported platinum for the oxygen reduction reaction catalyst | |
KR20170127167A (ko) | 백금-티타늄 금속간 나노입자의 제조방법 | |
WO2006090907A1 (ja) | 燃料電池用触媒、膜電極複合体、および固体高分子電解質型燃料電池 | |
Park et al. | Improving the durability and anti-poisoning properties of platinum catalysts by carbon shell encapsulation: A promising approach for both cathode and anode catalysts for polymer electrolyte membrane fuel cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20140421 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20150520 Patent event code: PE09021S01D |
|
AMND | Amendment | ||
PG1501 | Laying open of application | ||
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20151228 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20150520 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |
|
AMND | Amendment | ||
PX0901 | Re-examination |
Patent event code: PX09011S01I Patent event date: 20151228 Comment text: Decision to Refuse Application Patent event code: PX09012R01I Patent event date: 20150819 Comment text: Amendment to Specification, etc. |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20160222 Patent event code: PE09021S01D |
|
AMND | Amendment | ||
E90F | Notification of reason for final refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Final Notice of Reason for Refusal Patent event date: 20160830 Patent event code: PE09021S02D |
|
AMND | Amendment | ||
PX0701 | Decision of registration after re-examination |
Patent event date: 20170329 Comment text: Decision to Grant Registration Patent event code: PX07013S01D Patent event date: 20160901 Comment text: Amendment to Specification, etc. Patent event code: PX07012R01I Patent event date: 20160317 Comment text: Amendment to Specification, etc. Patent event code: PX07012R01I Patent event date: 20160115 Comment text: Amendment to Specification, etc. Patent event code: PX07012R01I Patent event date: 20151228 Comment text: Decision to Refuse Application Patent event code: PX07011S01I Patent event date: 20150819 Comment text: Amendment to Specification, etc. Patent event code: PX07012R01I |
|
X701 | Decision to grant (after re-examination) | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20170615 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20170615 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20200525 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20210616 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20220704 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20240527 Start annual number: 8 End annual number: 8 |