KR101748286B1 - Method for Preparing Poly Aluminum Sulfate Silicate Using Waste Catalysts of Aluminum Oxide and Silicon Oxide - Google Patents
Method for Preparing Poly Aluminum Sulfate Silicate Using Waste Catalysts of Aluminum Oxide and Silicon Oxide Download PDFInfo
- Publication number
- KR101748286B1 KR101748286B1 KR1020150108805A KR20150108805A KR101748286B1 KR 101748286 B1 KR101748286 B1 KR 101748286B1 KR 1020150108805 A KR1020150108805 A KR 1020150108805A KR 20150108805 A KR20150108805 A KR 20150108805A KR 101748286 B1 KR101748286 B1 KR 101748286B1
- Authority
- KR
- South Korea
- Prior art keywords
- aluminum
- catalyst
- aluminum oxide
- silicon dioxide
- silicate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/68—Aluminium compounds containing sulfur
- C01F7/74—Sulfates
- C01F7/76—Double salts, i.e. compounds containing, besides aluminium and sulfate ions, only other cations, e.g. alums
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5236—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
- C02F1/5245—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Geology (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Abstract
본 발명은 산화알루미늄과 이산화규소 폐촉매를 이용한 폴리황산규산알루미늄의 제조방법을 개시한다. 구체적으로 본 발명은 산화알루미늄과 이산화규소 폐촉매를 이용함으로써, 현재 사용되는 상용 응집제의 제조비용보다 저렴한 가격에 제조가 가능하고 환경부가 고시하는 수처리제 기준을 만족하며 상용 응집제 이상의 응집 성능을 보이는 폴리황산규산알루미늄의 제조할 수 있는 방법을 개시한다.The present invention discloses a process for preparing aluminum polysulfate silicate using aluminum oxide and a silicon dioxide scavenging catalyst. More particularly, the present invention relates to a process for producing polyphosphoric acid, which can be produced at a cost lower than the production cost of a currently used commercial coagulant by using aluminum oxide and a silicon dioxide scavenging catalyst, satisfying the criteria of a water treatment agent notified by the Ministry of Environment, Discloses a process for producing aluminum silicate.
Description
본 발명은 산화알루미늄과 이산화규소 폐촉매를 이용한 폴리황산규산알루미늄의 제조방법에 관한 것이다.The present invention relates to a process for preparing aluminum polysulfate silicate using aluminum oxide and a silicon dioxide scavenging catalyst.
산화알루미늄(Al2O3)과 이산화규소(SiO2) 촉매(실리카 알루미나 촉매)는 산화알루미늄과 이산화규소의 혼합 촉매로서 전형적 고체산 촉매이며 석유의 접촉분해 촉매(Catalytic Cracking Catalyst)로 가장 널리 사용되고 있는 촉매이다. Aluminum oxide (Al 2 O 3 ) and silicon dioxide (SiO 2) catalysts (silica alumina catalysts) are a typical solid acid catalyst as a mixed catalyst of aluminum oxide and silicon dioxide and are most widely used as catalytic cracking catalysts for petroleum Catalyst.
FCC(유동접촉분해, Fluidized Catalytic Cracking)로 대표되는 접촉분해는 주로 감압경유, 중질유로부터 가솔린 및 경유를 제조하는 프로세스이다. 최근 유류 소비의 증가로 인해 발생하는 FCC 폐촉매는 날로 증가 추세에 있다. 현재 국내 정유회사 중 접촉분해 공정을 보유하고 있는 회사는 SK주식회사, LG Caltex 정유, 그리고 S-Oil인데, 이들 회사의 접촉분해 공정에서 나오는 폐촉매는 하루 약 40 톤 달한다.Catalytic cracking, represented by FCC (Fluidized Catalytic Cracking), is a process mainly for the production of gasoline and light oil from reduced pressure diesel, heavy oil. Recently, FCC waste catalysts due to the increase of oil consumption have been increasing day by day. SK Corporation, LG Caltex Oil, and S-Oil are among the domestic refining companies that have catalytic cracking processes, and their catalytic cracking process produces about 40 tons of waste catalyst per day.
FCC 폐촉매는 중금속의 함유량이 낮아(약 3,000∼8,000p pm), 중금속의 용출에 의한 환경오염문제는 크게 문제가 되지는 않지만, 매립지의 부족, 매립 비용 상승으로 인하여, 매립이 점차 곤란해지고 있어, FCC의 폐촉매의 재활용에 대한 연구가 매우 중요하다고 할 수 있다.FCC waste catalysts have a low content of heavy metals (about 3,000 ~ 8,000ppm), and the problem of environmental pollution caused by the elution of heavy metals is not a serious problem. However, due to the shortage of landfills and the increase of landfill costs, , And research on the recycling of waste catalyst of FCC is very important.
FCC 폐촉매의 재활용과 관련하여 제오라이트의 제조 용도나 정원에 쓰는 토양, 천장에 사용되는 건자재, 아스팔트 충진제 등의 용도로 연구가 이루어져 왔으나, 소량만이 다시 촉매로 재활용되고 대부분은 시멘트 원료 등 부가가치가 낮은 용도로 사용되고 있다.As for the recycling of FCC waste catalysts, studies have been conducted on the use of zeolite, the use of building materials used in the garden, the use of building materials used in ceilings, the use of asphalt fillers, etc. However, only a small amount is recycled as a catalyst, It is used for low usage.
FCC 폐촉매의 주성분이 산화알루미늄과 이산화규소로 구성되어 있기 때문에 이를 재활용할 수 있다면, 자원 재활용을 통한 경제적 이익 창출이란 측면에서 바람직할 뿐만 아니라 산업폐기물의 오염문제를 극소화할 수 있다는 측면에서도 바람직하다.Since the main component of the FCC waste catalyst is composed of aluminum oxide and silicon dioxide, if it can be recycled, it is preferable not only in terms of economic profit creation through recycling of resources but also in minimizing pollution problem of industrial waste .
한편 환경부는 공공수역의 수질개선과 부영양화 방지를 위해 하수도법을 개정하여 2012년부터 하수처리장 방류수의 총인 허용 기준을 2.0ppm에서 0.2~0.5ppm으로 강화하였다(하수도법 시행규칙 별표 1 참조). 이에 따라 현재 하수 및 폐수처리시설에서는 다양한 물리학적, 화학적 및 생물학적 단위 공정을 배치하여 유입되는 하수 및 폐수를 처리하여 최종적으로 방류수의 법적 총인 허용 기준에 맞춰 방류수를 배출하고 있다. Meanwhile, the Ministry of Environment revised the sewage law in order to improve the quality of water in the public waters and prevent eutrophication. From 2012, the total allowance of sewage treatment effluent water was increased from 2.0ppm to 0.2ppm to 0.5ppm (see Table 1 of the Enforcement Regulations of the Sewerage Act). Accordingly, the sewage and wastewater treatment facilities dispose of sewage and wastewater by arranging various physical, chemical and biological unit processes and finally discharge the discharged water according to the legal total allowance of discharged water.
이러한 하수처리장 방류수의 총인은 주로 황산알루미늄이나 폴리염화알루미늄(PAC), 폴리황산규산알루미늄 등의 화학적 응집제에 의해 침전·제거된다. 이 중 폴리황산규산알루미늄은 음이온 활성규산을 안정화 알루민산 소다에 반응시킨 음이온 결합체를 양이온성 물질과 합성한 다전하성 고분자 화합물로 적용 pH 범위가 4~12까지 넓으면서도, 처리수의 pH가 거의 변화하지 않고, 광물질이나 유리성 물질에 대한 탈색 및 응집 성능이 뛰어나며 유해성의 유기물이나 염소 성분이 없다는 장점이 있다. 폴리황산규산알루미늄은 다른 상용 응집제인 황산알루미늄 용액과 비교했을 때, 70%의 사용량으로 동일한 응집 성능이 확보될 수 있으므로 처리시설 운영자 입장에서는 응집제 구입 비용을 감소시키면서 뛰어난 응집 성능으로 안정적으로 인을 제거할 수 있는 고부가가치 약품이라 할 수 있다.The total phosphorus of the effluent discharged from the sewage treatment plant is mainly precipitated and removed by a chemical coagulant such as aluminum sulfate, polychlorinated aluminum (PAC), and aluminum polysulfate. Of these, aluminum polysulfate is used as a polyelectrolytic polymer compound in which an anionic complex reacted with stabilized anionic active silicic acid and a cationic substance is reacted with an anionic active silicic acid. While the pH range is wide from 4 to 12, And has excellent decolorization and flocculation performance for minerals and free materials, and has no harmful organic or chlorine components. The aluminum polysulfate aluminum silicate can achieve the same flocculation performance with the use amount of 70% as compared with the other aluminum flocculant solution. Therefore, for the operator of the treatment plant, it is possible to reliably remove phosphorus Can be said to be a high value-added drug.
2013년 환경부에서 제공한 공공하수처리시설 운영관리실태 분석결과에 따르면, 하수처리에 사용된 응집제 총량은 176,089톤/년이었으며, 응집제 구입에 사용된 전체 금액은 약 826억원으로 확인되었다. 이와 같은 응집제 원가 중 50% 이상이 응집제 제조의 원료가 되는 수산화알루미늄의 구매 비용으로, 수산화알루미늄을 대체할 수 있는 원료 개발의 필요성이 대두되고 있다. 또한 하수처리장 운영 비용에서 응집제 구매 비용이 차지하는 비율을 점차 줄여나가기 위해서는 동일한 응집 성능이 확보되면서도 상대적으로 사용량이 적은 응집제가 필요한 실정이다.According to the results of analysis on the operation and management status of the public sewage treatment facilities provided by the Ministry of Environment in 2013, the total amount of coagulant used in sewage treatment was 176,089 tons / year, and the total amount used in the purchase of coagulants was about 82.6 billion won. In view of the cost of purchasing aluminum hydroxide, which accounts for 50% or more of the coagulant cost, it is necessary to develop a material capable of replacing aluminum hydroxide. In order to gradually reduce the proportion of the cost of purchasing the flocculant from the sewage treatment plant operation cost, a flocculant having a relatively small amount of use is required while maintaining the same flocculation performance.
본 발명은 이러한 기술적 배경 하에서 폴리황산규산알루미늄의 제조에 산화알루미늄과 이산화규소 폐촉매를 재활용할 수 있는 방법을 개시한다. The present invention discloses a process by which aluminum oxide and silicon dioxide spent catalyst can be recycled in the production of aluminum polysulfate under such technical background.
본 발명의 목적은 산화알루미늄과 이산화규소 폐촉매를 이용한 폴리황산규산알루미늄의 제조방법을 제공하는 데 있다.It is an object of the present invention to provide a process for producing aluminum polysulfosilicate using aluminum oxide and a silicon dioxide scavenging catalyst.
본 발명의 다른 목적이나 구체적인 목적은 이하에서 제시될 것이다.Other and further objects of the present invention will be described below.
본 발명자들은 아래의 실시예에서 확인되는 바와 같이, FCC(Fluid Catalytic Cracking) 공정에서 발생하는 산화알루미늄과 이산화규소 폐촉매와 황산용액을 반응시켜 폴리황산규산알루미늄을 제조할 경우, 그 제조된 폴리황산규산알루미늄이 환경부고시 제2008-69호의 「수처리제의 기준과 규격 및 표시기준」상의 폴리황산규산알루미늄에 대한 수처리제 기준을 만족하고, 응집 성능에 있어서도 상용 응집제인 황산알루미늄, 폴리염화알루미늄, 폴리황산규산알루미늄과 유사하거나 더 높음을 확인할 수 있었다. The present inventors have found that when aluminum aluminum silicate is produced by reacting aluminum oxide, a silicon dioxide scavenging catalyst and a sulfuric acid solution generated in a FCC (Fluid Catalytic Cracking) process, as shown in the following examples, Aluminum silicate satisfies the water treatment agent standard for aluminum polysulfate in the "Standard, Specification and Marking Standards for Water Treatment Chemicals" of the Ministry of Environment Notification No. 2008-69, and also satisfies the water flocculant standards of aluminum sulfate, aluminum polychloride, It was confirmed that aluminum was similar or higher than aluminum.
본 발명은 이러한 실험 결과에 기초하여 제공되는 것으로, 본 발명의 산화알루미늄과 이산화규소 폐촉매를 이용한 폴리황산규산알루미늄의 제조방법은 (a) 산화알루미늄과 이산화규소 폐촉매를 준비하는 단계 및 (b) 상기 폐촉매를 황산과 반응시키는 단계를 포함하여 구성된다.The present invention provides a process for producing aluminum polysulfosilicate using aluminum oxide and a silicon dioxide scavenging catalyst, comprising the steps of: (a) preparing aluminum oxide and a silicon dioxide scavenging catalyst; and (b) ) Reacting the spent catalyst with sulfuric acid.
본 발명에서 산화알루미늄과 이산화규소 폐촉매와 황산이 반응하여 폴리황산규산알루미늄이 제조되는 반응식은 아래와 같다.In the present invention, the reaction formula in which aluminum oxide and silicon dioxide spent catalyst react with sulfuric acid to produce aluminum polysulfate aluminum silicate is as follows.
Al2O3 + SiO2 + 2H2SO4 → Al2(OH)2(SO4)2(SiO2)1 + H2OAl 2 O 3 + SiO 2 + 2H 2 SO 4 ? Al 2 (OH) 2 (SO 4 ) 2 (SiO 2 ) 1 + H 2 O
본 발명의 방법에 있어서, 상기 산화알루미늄과 이산화규소 폐촉매는 FCC 공정 등에 사용된 후의 산화알루미늄과 이산화규소 촉매로서 촉매 기능이 저하되어 폐기되는 것이라면 임의의 것이 모두 사용될 수 있다. 상기 폐촉매는 성분 구성에 있어 산화알루미늄과 이산화규소를 주성분으로 포함하고 촉매로서의 사용 중에 흡착·축적된 바나듐(V), 니켈(Ni) 등 미량의 불순물을 포함한다. 구체적으로 상기 폐촉매는 산화알루미늄과 이산화규소를 통상 8:2 내지 2:8의 중량비(산화알루미늄:이산화규소)로 하여, 80%(w/w) 이상, 바람직하게는 90%(w/w) 이상, 더 바람직하게는 95%(w/w) 이상 포함하고 나머지 중금속 등 미량의 불순물을 포함한다. In the method of the present invention, the aluminum oxide and the silicon dioxide spent catalyst may be used as the aluminum oxide and the silicon dioxide catalyst after being used in the FCC process or the like, as long as the catalyst function is degraded and discarded. The spent catalyst contains aluminum oxide and silicon dioxide as its main components in the constitution of the component, and includes trace amounts of impurities such as vanadium (V) and nickel (Ni) adsorbed and accumulated during use as a catalyst. Specifically, the spent catalyst is an aluminum oxide and a silicon dioxide in an amount of 80% (w / w) or more, preferably 90% (w / w) or more, of aluminum oxide and silicon dioxide in a weight ratio of 8: 2 to 2: ) Or more, more preferably 95% (w / w) or more, and a trace amount of impurities such as heavy metals.
상기 폐촉매는 분말상, 입상 등의 형태로 회수될 수 있으며 분말상으로 회수될 경우 별도의 가공 없이 그대로 사용할 수 있으나, 입상으로 회수될 경우나 분말상으로 회수되더라도 입자의 크기가 큰 경우는 분쇄·선별하여 입도를 106㎛ 이하의 분말로 하여 사용하는 것이 바람직하다. 106㎛보다 입도가 크면 황산용액과 충분히 반응하기 힘들고, 생성되는 폴리황산규산알루미늄 역시 물에 대한 용해도가 떨어지게 된다. 여기서 분쇄는 습식 분쇄 또는 건식 분쇄 등 당업계에 공지된 임의의 분쇄 방식을 채택하여 이루어질 수 있다.The waste catalyst may be recovered in the form of powder or granules. When recovered in powder form, the waste catalyst can be used as it is without any additional processing. However, if the granular catalyst is recovered in granular form or recovered in powder form, It is preferable to use a powder having a particle size of 106 탆 or less. If the particle size is larger than 106 탆, it is difficult to sufficiently react with the sulfuric acid solution, and the resulting aluminum polysulfate aluminum silicate also has a low solubility in water. The pulverization may be carried out by employing any pulverizing method known in the art such as wet pulverization or dry pulverization.
또한 폐촉매에 유기성 물질과 같은 불순물이 함유되어 있을 경우는 500℃ 이상의 온도에서 15분 이상의 강열 처리와 같은 전처리를 통해 불순물을 제거하여 사용하는 것이 바람직하다. 유기성 물질 역시 황산용액과의 반응에 있어 방해물질로 작용하여 폴리황산규산알루미늄의 수율을 떨어뜨릴 수 있고 생성된 폴리황산규산알루미늄의 탁도를 높여 응집제로의 사용에 방해가 될 수 있다.When impurities such as an organic substance are contained in the waste catalyst, it is preferable to remove impurities through pretreatment such as ignition treatment at a temperature of 500 ° C or more for 15 minutes or longer. The organic material also acts as an obstacle in the reaction with the sulfuric acid solution, which may lower the yield of the aluminum polysulfate aluminum silicate and increase the turbidity of the produced aluminum polysulfate aluminum silicate, which may interfere with its use as a coagulant.
본 발명의 방법에 있어서, 상기 (b) 단계는 반응용매로서 물을 사용하며, 폐촉매에 물을 먼저 주입하고 교반하면서 황산용액을 주입한 후에 150℃ 이상, 4기압 이상의 조건에서 30분 이상 폐촉매와 황산 용액을 반응시킴으로써 이루어질 수 있다. 이때 물은 원료와 원활히 혼합하고 반응성을 높이기 위해서 황산용액의 최종 순도가 50%(v/v) 되도록 먼저 주입하는 것이 바람직하고 황산용액은 운송비 절감 및 황산과 물의 혼합시 발생하는 수화열을 이용하기 위하여 70~79%(w/v) 농도의 황산용액을 사용하는 것이 바람직하며, 폐촉매의 이산화알루미늄과 이산화규소와 반응물인 황산과의 혼합 몰비는 상기 반응식을 고려할 때 1:1:2(이산화알루미늄:이산화규소:황산)가 되도록 하는 것이 바람직하다. In step (b) of the present invention, water is used as a reaction solvent, water is first injected into the spent catalyst, sulfuric acid solution is injected while stirring, and then, And reacting the catalyst with a sulfuric acid solution. In this case, it is preferable to inject the water so that the final purity of the sulfuric acid solution is 50% (v / v) in order to smoothly mix with the raw material and increase the reactivity. In order to reduce the transportation cost and utilize the hydration heat generated when the sulfuric acid and water are mixed It is preferable to use a sulfuric acid solution having a concentration of 70 to 79% (w / v). The mixing molar ratio of the aluminum dioxide and silicon dioxide in the spent catalyst and the sulfuric acid as the reactant is 1: 1: 2 : Silicon dioxide: sulfuric acid).
폐촉매와 황산의 반응은 전술한 바와 같이 150℃ 이상, 4기압 이상의 조건에서 30분 이상인 것이 바람직한데, 그것은 반응온도, 압력 및 반응시간이 상기 반응 조건보다 낮으면 반응성이 떨어져 폴리황산규산알루미늄 내 산화알루미늄(Al2O3) 농도가 낮아지게 되어 최종적으로 순도가 낮은 폴리황산규산알루미늄이 제조될 가능성이 높고, 반대로 반응온도, 압력 및 반응시간이 상기 언급된 조건보다 너무 높이거나 길게 유지하게 되면, 폴리황산규산알루미늄 내 산화알루미늄(Al2O3) 농도가 너무 높아지게 되어 반응조 내부에서 고형화될 가능성이 높다. 따라서 본 발명에서 제공하는 상기 언급된 운전 조건에서 크게 벗어나지 않는 범위에서 반응 단계를 유지하는 것이 바람직하다.The reaction between the spent catalyst and the sulfuric acid is preferably at least 30 minutes at a temperature of 150 ° C or higher and 4 atmospheres or higher as described above. If the reaction temperature, pressure, and reaction time are lower than the above- The concentration of aluminum oxide (Al 2 O 3 ) is lowered, and thus the possibility of producing polysulfuric aluminum silicate having a low purity is high. On the other hand, if the reaction temperature, pressure and reaction time are kept too high or longer than the above- , The concentration of aluminum oxide (Al 2 O 3 ) in the aluminum polysulfate aluminum silicate becomes too high, and the possibility of solidification in the reaction tank is high. Therefore, it is preferable to maintain the reaction step within a range not greatly departing from the above-mentioned operating conditions provided by the present invention.
본 발명의 방법은 상기 (b) 단계 후에 폴리황산규산알루미늄 내 산화알루미늄(Al2O3) 농도가 적어도 8%가 되도록 조정하는 단계가 추가될 수 있다. 이러한 조정 단계는 환경부고시 제2008-69호의 「수처리제의 기준과 규격 및 표시기준」가 폴리황산규산알루미늄의 규격 기준으로 산화알루미늄 함량을 8% 이상으로 정해놓고 있기 때문에(아래의 [표 1] 참조) 이러한 규격 기준을 충족시키기 위한 것인데, 이러한 조정 단계는 폴리황산알루미늄 내 산화알루미늄(Al2O3) 농도가 높을 경우는 물을 첨가하여 반응물을 희석시킴으로써 이루어질 수 있다. 이때 폴리황산규산알루미늄 내 산화알루미늄(Al2O3) 농도를 8.5% 이상으로 높일 경우는 고형화 방지를 위해 전분과 같은 안정제를 주입하는 것이 바람직하다.The method of the present invention may further comprise the step of adjusting the aluminum polysilicate aluminum silicate (Al 2 O 3 ) concentration to be at least 8% after step (b). These adjustment steps are based on the "Standard, Specification and Labeling Standards for Water Treatment Chemicals" of the Ministry of the Environment Notice 2008-69, which set the aluminum oxide content to 8% or more on the basis of aluminum polysulfate aluminum silicate (see Table 1 below). ) To meet these specification standards, this adjustment step can be achieved by diluting the reactants by adding water when the aluminum oxide (Al 2 O 3 ) concentration in the aluminum polysulfate is high. In this case, when the aluminum oxide (Al 2 O 3 ) concentration in the aluminum polysulfate aluminum silicate is increased to 8.5% or more, it is preferable to inject a stabilizer such as starch to prevent solidification.
본 발명의 방법에 있어서 상기 (b) 단계 후에 그 (b) 단계로 얻어진 반응물을 정치시키는 단계가 추가될 수 있다. 상기 (b) 단계 후에는 미반응된 폐촉매가 부유하고 있어 탁도가 높기 때문에 폴리황산규산알루미늄의 성상을 "투명한 액체"로 규정하고 있는 환경부고시 제2008-69호의 「수처리제의 기준과 규격 및 표시기준」에 부합하지 않을 수 있다. 이러한 성상 기준을 충족시키기 위해서 상기 정치 단계를 통하여 미반응된 부유하는 폐촉매를 침전시켜 폴리황산규산알루미늄이 존재하는 상등액을 회수하는 것이 바람직하다. 이때 정치는 상등액이 투명한 성상이 될 때까지 이루어질 수 있는데, 통상 10시간 내지 20시간, 바람직하게는 10시간 내지 15시간 동안 이루어질 수 있다. In the method of the present invention, a step of allowing the reactant obtained in the step (b) to stand after the step (b) may be added. Since the unreacted spent catalyst is floating after the step (b), the quality of the aluminum polysulfate aluminum silicate is defined as "transparent liquid " Standards ". In order to meet this property criterion, it is preferable to recover the supernatant in the presence of aluminum polysulfate by precipitating the unreacted suspended spent catalyst through the settling step. At this time, the temperature may be adjusted until the supernatant liquid becomes clear, and it may be generally 10 to 20 hours, preferably 10 to 15 hours.
전술한 바와 같이, 본 발명의 방법에 따르면 산화알루미늄과 이산화규소 폐촉매를 이용함으로써, 현재 사용되는 상용 응집제의 제조비용보다 저렴한 가격에 제조가 가능하고 환경부가 고시하는 수처리제 기준을 만족하며 상용 응집제 이상의 응집 성능을 보이는 폴리황산규산알루미늄의 제조할 수 있는 효과가 있다. As described above, according to the method of the present invention, by using the aluminum oxide and the silicon dioxide scavenging catalyst, it is possible to manufacture at a cost lower than the production cost of the currently used commercial coagulant, satisfy the water treatment agent standard notified by the Ministry of Environment, It is possible to produce aluminum polysulfate aluminosilicate exhibiting cohesive performance.
또한 본 발명은 폐촉매를 재활용함으로써 매립과 같은 페촉매의 처리에 소요되는 비용을 절감할 수 있는 효과를 아울러 가진다In addition, the present invention has the effect of reducing the cost of treating waste catalysts such as landfill by recycling waste catalysts
도 1은 상용 응집제인 황산알루미늄과의 응집 성능 비교 평가 결과이다.Fig. 1 shows the result of the comparative evaluation of cohesion performance with a commercially available coagulant, aluminum sulfate.
이하 본 발명의 실시예를 참조하여 설명한다. 그러나 본 발명의 범위가 이러한 실시예에 한정되는 것은 아니다.Hereinafter, embodiments of the present invention will be described. However, the scope of the present invention is not limited to these embodiments.
<실시예 1> 산화알루미늄과 이산화규소 폐촉매로부터의 폴리황산규산알루미늄 제조 ≪ Example 1 & gt ; Manufacture of aluminum polysulfate silicate
본 실시예에서 산화알루미늄과 이산화규소 폐촉매는 울산광역시 소재 S사 정유공장의 FCC(Fluid Catalytic Cracking) 공정에서 발생하는 폐촉매를 사용하였다. 알루미늄과 규소의 함량을 파악하기 위해 원자 분석을 수행하여 아래의 표 1과 같은 폐촉매 원소 구성을 확인하였다. 원자 분석을 통해 본 실시예에서 사용되는 폐촉매는 산화알루미늄과 이산화규소가 주성분임을 확인하였다.In this embodiment, the aluminum oxide and silicon dioxide spent catalysts are waste catalysts generated in the FCC (Fluid Catalytic Cracking) process of an oil refinery of S company, Ulsan Metropolitan City. Atomic analysis was performed to determine the contents of aluminum and silicon, and the constituents of the spent catalyst were identified as shown in Table 1 below. The atomic analysis confirmed that the spent catalyst used in this example was mainly composed of aluminum oxide and silicon dioxide.
상기 폐촉매는 분말 형태로 발생하였기 때문에 원료 주입을 위한 별도의 전처리 과정은 생략되었다. 폐촉매를 반응기에 주입하고 물을 주입한 후 교반을 하면서 70~99%(v/v)의 황산용액을 주입하였다. 이때 황산용액의 최종 농도가 50%(v/v)가 되도록 상기 주입되는 물의 양을 처음부터 조절하였다. 반응온도를 150℃이상, 압력을 4기압 이상으로 유지한 상태에서 30분간 반응을 진행하여 폴리황산규산알루미늄이 제조되도록 유도하였다. 그 후 반응조에 희석수를 주입하여 산화알루미늄(Al2O3) 함량이 8% 이상이 되도록 조정한 후 상온에서 12시간 동안 정치시켜 미반응된 폐촉매를 침전시키고 상등액을 취해 최종적으로 폴리황산규산알루미늄을 제조하였다. Since the waste catalyst is generated in powder form, a separate pretreatment process for injecting the raw material is omitted. The waste catalyst was injected into the reactor, water was injected, and 70 ~ 99% (v / v) sulfuric acid solution was injected while stirring. At this time, the amount of water to be injected was adjusted from the beginning so that the final concentration of the sulfuric acid solution was 50% (v / v). The reaction was continued for 30 minutes while maintaining the reaction temperature at 150 ° C or higher and the pressure at 4 atm or higher to induce the production of aluminum polysulfate silicate. Thereafter, dilute water was injected into the reaction tank to adjust the aluminum oxide (Al 2 O 3 ) content to be at least 8%, and the mixture was allowed to stand at room temperature for 12 hours to precipitate unreacted spent catalyst. The supernatant liquid was taken, Aluminum.
<실시예 2> 수처리제 기준 부합 여부 분석 ≪ Example 2 > Analysis of conformity with water treatment agent
상기 <실시예 1>에서 제조된 폴리황산규산알루미늄을 공인기관(한국건설생활환경시험연구원)에 의뢰하여 환경부고시 제2008-69호의 「수처리제의 기준과 규격 및 표시기준」상의 폴리황산규산알루미늄에 대한 수처리제 기준에 부합하는 지를 분석하였다.The aluminum polyphosphoric acid silicate produced in Example 1 was submitted to a public institution (Korea Construction & Living Environment Test Research Institute), and the aluminum polyphosphoric acid aluminum silicate on the " Standards, Specification and Labeling Standards for Water Treatment Chemicals " And whether they meet the criteria for water treatment.
분석 결과, 상기 표 2에서 보듯이 상기 <실시예 1>에서 제조된 폴리황산규산알루미늄은 수처리제 기준의 전 항목에 대해서 모두 만족함을 확인하였다.As a result of the analysis, as shown in Table 2, it was confirmed that the aluminum polysulfate manufactured in Example 1 was satisfactory for all items of the water treatment agent standard.
<실시예 3> 상용 응집제인 황산알루미늄과의 응집 성능 비교 평가 ≪ Example 3 > Comparative evaluation of flocculation performance with a commercially available coagulant, aluminum sulfate
상기 <실시예 1>에서 제조된 폴리황산규산알루미늄과 상용 응집제와의 응집 성능 비교 평가를 수행하였다. 폐수 시료는 K시 H 하수처리장의 호기조 슬러지에 인 제거 성능을 효과적으로 확인하기 위하여 K2HPO4를 20L 기준 1.12g 첨가한 합성 폐수를 사용하였다. 비교 평가를 위한 상용 응집제로서는 황산알루미늄 용액(Alum, 산화알루미늄(Al2O3) 함량 7.47%)을 사용하였다. The coagulation performance of the aluminum polysulfate aluminum silicate prepared in Example 1 and the conventional coagulant was evaluated. The wastewater samples used synthetic wastewater with K 2 HPO 4 of 1.12 g per 20 L to effectively identify the phosphorus removal performance of aerobic sludge of the K City sewage treatment plant. The comparative evaluation commercial aluminum sulfate solution as the coagulant for the (Alum, aluminum oxide (Al 2 O 3) content 7.47%) was used.
비교 평가는 상기 폐수 시료에 대해 아래의 표 3과 같이 황산알루미늄 용액 또는 상기 폴리황산규산알루미늄 용액 각각 주입한 후 120RPM으로 급속 3분간, 40RPM으로 완속 30분간 교반한 후, 30분간 정치하였다가 PO4-P 농도를 측정(Jar-test)하였고, 이 결과를 아래의 표 3 및 도 1에 나타내었다.Comparative evaluation is then the waste water sample of aluminum sulfate as shown in Table 3 below for the solution or the poly sulfate aluminum silicate solution after each injection rapidly as 120RPM 3 minutes and slow stirred for 30 minutes at 40RPM, was for 30 minutes PO 4 -P concentration was measured (Jar-test), and the results are shown in Table 3 and FIG. 1 below.
상기 표 3에서 보듯이, 상기 <실시예 1>에서 제조된 폴리황산규산알루미늄을 상용 응집제인 황산알루미늄 주입량인 0.73mg/L 대비 약 70%인 0.51mg/L를 주입했을 때에도 더 높은 PO4-P 제거율 및 동일한 SVI(Sludge Volume Index) 값을 확인할 수 있었다. 이를 통해 제조된 폴리황산규산알루미늄은 상용 황산알루미늄 대비 더 적은 주입량 및 더 높은 응집 성능이 확보된다고 판단할 수 있다.As shown in Table 3, the <Example 1> The poly PO higher even when the aluminum silicate sulfate infusion for about 70% of 0.51mg / L of 0.73mg / L compared to the aluminum sulphate dosage commercial flocculants prepared from 4 - P removal rate and the same Sludge Volume Index (SVI) value. It can be concluded that the polysulfuric aluminum silicate produced by this method has a lower injection amount and higher flocculation performance than commercial aluminum sulfate.
<실시예 4> 상용 응집제인 폴리황산규산알루미늄과 폴리염화알루미늄과의 응집 성능 비교 평가 Example 4 Comparative Evaluation of Cohesion Performance of Polyphosphoric Acid Aluminum Silicate as a Coagulant for Commercial Use and Poly Aluminum Chloride
다음으로는 다른 상용 응집제로서 동일한 폴리황산규산알루미늄(PASS) 및 폴리염화알루미늄(PAC)과의 비교 평가를 수행하였다. 폐수 시료는 K시 H 하수처리장의 호기조 슬러지에 인 제거 성능을 효과적으로 확인하기 위하여 K2HPO4를 20L 기준 1.12g 첨가한 합성 폐수를 사용하였다. 동일한 Al/P몰 비에 대해 아래의 표 4와 같은 결과를 얻을 수 있었다.Next, comparative evaluation with the same aluminum polysulfate aluminum silicate (PASS) and aluminum polychloride (PAC) was conducted as another commercial flocculant. The wastewater samples used synthetic wastewater with K 2 HPO 4 of 1.12 g per 20 L to effectively identify the phosphorus removal performance of aerobic sludge of the K City sewage treatment plant. Table 4 shows the results for the same Al / P molar ratio.
상기 표 4에서 보듯이, 상기 <실시예 1>에서 제조된 폴리황산규산알루미늄은 상용으로 사용되고 있는 폴리황산규산알루미늄(PASS)과 유사한 응집 성능 및 침전 성능이 확인되었으며, 폴리염화알루미늄(PAC)보다 더 높은 응집 성능 및 침전 성능이 확인되었다. As shown in Table 4, the aluminum polysulfate produced in Example 1 had similar flocculation performance and sedimentation performance as aluminum polysulfate (PASS), which is commonly used. Higher coagulation performance and sedimentation performance were confirmed.
Claims (5)
산화알루미늄과 이산화규소 폐촉매를 이용한, 폴리황산규산알루미늄을 포함하는 수처리시의 인 제거용 응집제의 제조방법.
(a) preparing aluminum oxide and a silicon dioxide spent catalyst, and (b) reacting the spent catalyst with sulfuric acid, and (c) removing unreacted spent catalyst.
A method for producing a coagulant for removing phosphorus during water treatment comprising aluminum polysulfate and aluminum silicate using aluminum oxide and silicon dioxide scavenging catalyst.
상기 폐촉매는 입도가 106㎛ 이하의 분말상으로 준비하는 것을 특징으로 하는 제조방법.
The method according to claim 1,
Wherein the waste catalyst is prepared in the form of a powder having a particle size of 106 mu m or less.
상기 (b) 단계는 반응용매로서 물을 폐촉매에 먼저 주입하고 교반하면서 황산용액을 주입한 후에 150℃ 이상, 4기압 이상의 조건에서 30분 이상 폐촉매와 황산 용액을 반응시킴으로써 이루어지는 것을 특징으로 하는 제조방법.
The method according to claim 1,
Wherein the step (b) comprises injecting sulfuric acid solution with stirring and water, and then reacting the spent catalyst with the sulfuric acid solution for at least 30 minutes at a temperature of 150 ° C or more and 4 atm or more. Gt;
상기 (b) 단계 후에 폴리황산규산알루미늄 내 산화알루미늄(Al2O3) 농도가 적어도 8%가 되도록 조정하는 단계가 추가되는 것을 특징으로 하는 제조방법.
The method according to claim 1,
Wherein the step (b) further comprises the step of adjusting the concentration of aluminum oxide (Al 2 O 3 ) in aluminum polysulfate aluminum silicate to be at least 8%.
상기 (b) 단계 후에 그 (b) 단계로 얻어진 반응물을 정치시키는 단계가 추가되는 것을 특징으로 하는 제조방법.
The method according to claim 1,
Wherein the step (b) is followed by the step of allowing the reactant obtained in the step (b) to stand.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150108805A KR101748286B1 (en) | 2015-07-31 | 2015-07-31 | Method for Preparing Poly Aluminum Sulfate Silicate Using Waste Catalysts of Aluminum Oxide and Silicon Oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150108805A KR101748286B1 (en) | 2015-07-31 | 2015-07-31 | Method for Preparing Poly Aluminum Sulfate Silicate Using Waste Catalysts of Aluminum Oxide and Silicon Oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170014846A KR20170014846A (en) | 2017-02-08 |
KR101748286B1 true KR101748286B1 (en) | 2017-06-19 |
Family
ID=58155094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150108805A Active KR101748286B1 (en) | 2015-07-31 | 2015-07-31 | Method for Preparing Poly Aluminum Sulfate Silicate Using Waste Catalysts of Aluminum Oxide and Silicon Oxide |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101748286B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220010973A (en) | 2020-07-20 | 2022-01-27 | 주식회사 케이씨씨 | A preparing method of coagulant for water treatment |
-
2015
- 2015-07-31 KR KR1020150108805A patent/KR101748286B1/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220010973A (en) | 2020-07-20 | 2022-01-27 | 주식회사 케이씨씨 | A preparing method of coagulant for water treatment |
KR102466346B1 (en) * | 2020-07-20 | 2022-11-15 | 주식회사 케이씨씨 | A preparing method of coagulant for water treatment |
Also Published As
Publication number | Publication date |
---|---|
KR20170014846A (en) | 2017-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Effect of silicon content on preparation and coagulation performance of poly-silicic-metal coagulants derived from coal gangue for coking wastewater treatment | |
Lal et al. | Effectiveness of synthesized aluminum and iron based inorganic polymer coagulants for pulping wastewater treatment | |
US3484837A (en) | Process for removal of inorganic and organic matter from waste water systems | |
Du et al. | Coagulation performance and floc characteristics of poly-ferric-titanium-silicate-chloride in coking wastewater treatment | |
CN101905898B (en) | Utilization method for polymeric aluminium reaction residues | |
KR102097362B1 (en) | Inorganic coagulant for waste water treatment with trace of hydrogen peroxide using low concentration sulfuric acid solution discharged from semiconductor manufacturing process, and use of the same as treatment agent of waste water | |
US4364773A (en) | Waste metal conversion process and products | |
Zhou et al. | Preparation and Characteristics of Polyaluminium Chloride by Utilizing Fluorine‐Containing Waste Acidic Mother Liquid from Clay‐Brine Synthetic Cryolite Process | |
CN104512951A (en) | Method for co-production of ploysilicate aluminium ferric sulphate and waste water treatment powder by PAC (poly aluminum chloride) residues | |
Li et al. | Synthesis and optimization of a novel poly‐silicic metal coagulant from coal gangue for tertiary‐treatment of coking wastewater | |
KR20210007063A (en) | Method of manufacturing coagulant composition for water treatment | |
Zhan et al. | Coagulation behavior of polyferric chloride for removing NOM from surface water with low concentration of organic matter and its effect on chlorine decay model | |
KR101101333B1 (en) | Wastewater treatment agent | |
Moyo et al. | Recovering phosphorus as struvite from anaerobic digestate of pig manure with ferrochrome slag as a magnesium source | |
Molina et al. | Treatment of an agrochemical wastewater by combined coagulation and Fenton oxidation | |
CN101734772A (en) | Composite flocculant for treating industrial waste water and preparation method | |
KR102154483B1 (en) | Preparation method for flocculant composition for treating wastewater with improved water treatment efficiency and stability | |
KR101748286B1 (en) | Method for Preparing Poly Aluminum Sulfate Silicate Using Waste Catalysts of Aluminum Oxide and Silicon Oxide | |
CN105731691A (en) | Coupled stabilizing treatment method for acid wastewater and incineration ash | |
KR101297435B1 (en) | The preparing method of aluminium sulfate from waste water | |
Liu et al. | A novel method for preparation of polyaluminum phosphoric sulfate (PAPS) coagulant using SAPO-34 mother liquor: Characterization and coagulation performance | |
Zhou et al. | Effect of recycling filter backwash water on characteristic variability of dissolved organic matter in coagulation sedimentation process | |
CN101665289B (en) | A kind of treatment method of oilfield polymer flooding produced water | |
KR102466346B1 (en) | A preparing method of coagulant for water treatment | |
Kulishenko et al. | The use of products of recycling waste of aluminum manufacturing as a coagulant when purifying highly colored natural water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20150731 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20160428 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20170310 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20170612 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20170613 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20210614 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20220609 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20230531 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20240610 Start annual number: 8 End annual number: 8 |