KR101725429B1 - Manufacturing Method of Inorganic Polymer Coagulant and Inorganic Polymer Coagulant thereby - Google Patents
Manufacturing Method of Inorganic Polymer Coagulant and Inorganic Polymer Coagulant thereby Download PDFInfo
- Publication number
- KR101725429B1 KR101725429B1 KR1020150161155A KR20150161155A KR101725429B1 KR 101725429 B1 KR101725429 B1 KR 101725429B1 KR 1020150161155 A KR1020150161155 A KR 1020150161155A KR 20150161155 A KR20150161155 A KR 20150161155A KR 101725429 B1 KR101725429 B1 KR 101725429B1
- Authority
- KR
- South Korea
- Prior art keywords
- species
- content
- aqueous solution
- aluminum
- basicity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000701 coagulant Substances 0.000 title claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 229920000592 inorganic polymer Polymers 0.000 title 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims abstract description 28
- 239000000017 hydrogel Substances 0.000 claims abstract description 26
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000007864 aqueous solution Substances 0.000 claims abstract description 22
- 229920002959 polymer blend Polymers 0.000 claims abstract description 17
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910001388 sodium aluminate Inorganic materials 0.000 claims abstract description 15
- 229910000029 sodium carbonate Inorganic materials 0.000 claims abstract description 14
- 239000003505 polymerization initiator Substances 0.000 claims abstract description 10
- 239000011541 reaction mixture Substances 0.000 claims abstract description 10
- 230000000379 polymerizing effect Effects 0.000 claims abstract description 9
- 239000000178 monomer Substances 0.000 claims abstract description 7
- 238000006116 polymerization reaction Methods 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 19
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 6
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 abstract description 18
- 238000003860 storage Methods 0.000 abstract description 8
- 238000005189 flocculation Methods 0.000 abstract description 3
- 230000016615 flocculation Effects 0.000 abstract description 3
- 241000894007 species Species 0.000 description 37
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 229910052782 aluminium Inorganic materials 0.000 description 13
- 235000017550 sodium carbonate Nutrition 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 238000001556 precipitation Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 235000011121 sodium hydroxide Nutrition 0.000 description 5
- 238000009210 therapy by ultrasound Methods 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000013626 chemical specie Substances 0.000 description 3
- 238000005243 fluidization Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 208000021825 aldosterone-producing adrenal cortex adenoma Diseases 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- BUACSMWVFUNQET-UHFFFAOYSA-H dialuminum;trisulfate;hydrate Chemical compound O.[Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O BUACSMWVFUNQET-UHFFFAOYSA-H 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 244000144992 flock Species 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- -1 for example Substances 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- ZBJWWKFMHOAPNS-UHFFFAOYSA-N loretin Chemical compound C1=CN=C2C(O)=C(I)C=C(S(O)(=O)=O)C2=C1 ZBJWWKFMHOAPNS-UHFFFAOYSA-N 0.000 description 1
- 229950010248 loretin Drugs 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/48—Halides, with or without other cations besides aluminium
- C01F7/56—Chlorides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5236—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
- C02F1/5245—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Geology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Abstract
본 발명에서는 폴리염화알루미늄을 알루민산 나트륨 및 탄산나트륨 수용액과 반응시켜 염기도가 70~90%인 하이드로겔을 생성시키는 제1공정; 상기 생성된 초고염기도 하이드로겔을 포함하는 반응 혼합물에 중합 개시제 수용액을 투입하고 중합하여, 폴리염화알루미늄 중 Al13종의 함량이 50중량% 이상인 중합체 혼합물을 수득하는 제2공정; 및 제2공정 후 반응 혼합물에 초음파를 가하면서 추가로 중합하여, 폴리염화알루미늄 중 Al30종의 함량이 50중량% 이상인 중합체 혼합물을 수득하는 제3공정;을 포함하는 무기응집제의 제조방법 및 그로부터 제조되는 무기응집제를 제공한다. 본 발명의 제조방법에 의하여 Al30종을 주성분으로 하는 무기응집제, 즉, Al30종의 함량이 50중량% 이상, Al13종의 함량이 20중량% 이하, Al 단량체의 함량이 30중량% 이하인 고분자 무기응집제를 제조할 수 있다. 본 발명에 따라 제조되는 Al30종을 주성분으로 하는 무기응집제는 응집성능 및 저장안정성이 우수하다.In the present invention, a first step of reacting poly (aluminum chloride) with an aqueous solution of sodium aluminate and an aqueous solution of sodium carbonate to produce a hydrogel having a basicity of 70 to 90%; Adding a polymerization initiator aqueous solution to the reaction mixture containing the resulting ultra-basic-grade hydrogel and polymerizing to obtain a polymer mixture having a content of Al 13 species in the polychlorinated aluminum of 50 wt% or more; And a third step of further polymerizing the reaction mixture after the second step while applying ultrasonic waves to obtain a polymer mixture having a content of Al 30 species in the polychlorinated aluminum of not less than 50% by weight, and Thereby providing an inorganic coagulant to be produced. According to the production method of the present invention, an inorganic coagulant containing Al 30 species as a main component, that is, an inorganic coagulant having a content of Al 30 species of 50 wt% or more, an Al 13 species content of 20 wt% or less, and an Al monomer content of 30 wt% A polymeric inorganic coagulant can be produced. The inorganic flocculant mainly composed of Al 30 produced according to the present invention has excellent flocculation performance and storage stability.
Description
본 발명은 초고염기도 하이드로겔을 중합한 다음 초음파처리하여, 폴리염화알루미늄의 화학종 중 Al30종의 함량을 50중량% 이상으로 높일 수 있는 고분자 무기응집제의 제조방법 및 그로부터 제조되고, Al30종을 주성분으로 하여 응집성능과 저장 안정성이 향상된 무기응집제에 관한 것이다.The present invention is made of ultra-high basicity by polymerizing a hydrogel and then to sonication, method for producing a polyester that can increase the content of Al 30 kinds of chemical species of aluminum chloride over 50% by weight of polymer inorganic coagulant and from, Al 30 species And an inorganic coagulant having improved coagulation performance and storage stability.
폴리염화알루미늄은 「Al2 (OH)nCl6-n」의 화학식으로 표시되는 물질 또는 그 수용액에 대한 관용명으로, 상수, 공업용수 등의 정화에 있어 응집제로 사용된다.Aluminum polychloride is used as a coagulant in the purification of water, industrial water, etc. in the name of "Al 2 ( OH) n Cl 6-n " or a generic name for its aqueous solution.
상기 폴리염화알루미늄의 염기도는 응집성능 및 제품의 안정성을 결정하는 인자가 될 수 있으므로, 이를 높이기위한 다양한 방법이 공지되어 있다.Since the basicity of the poly (aluminum chloride) can be a factor for determining the cohesion performance and the stability of the product, various methods for increasing the cohesion performance and the stability of the product are known.
예를 들어, KR733286B1에는 염기도 30~55%, Al2O3 농도가 8~18%인 폴리염화알미늄 용액을 알민산소다와 3~60분 간 균질화 반응시킨 후 40~100℃에서 5~15시간 안정화시킴으로써, Al2O3 농도가 7~15%이고, 염기도가 60~70%인 고염기도 염화알미늄계 응집제를 제조하는 방법이 개시되어 있다.For example, in KR733286B1, a poly (aluminum chloride) solution having a basicity of 30 to 55% and an Al2O3 concentration of 8 to 18% is homogenized with sodium aluminate for 3 to 60 minutes and stabilized at 40 to 100 ° C for 5 to 15 hours, Discloses a method for producing a high salt-reducing aluminum chloride flocculant having an Al 2 O 3 concentration of 7 to 15% and a basicity of 60 to 70%.
또한, KR748601B1에는, 염기도가 0 내지 40%인 폴리염화알루미늄과, 주기율표에 따른 1족 및 2족의 금속원소를 포함한 화합물과, 수산화이온을 포함한 화합물 및 물을 첨가하고 혼합반응시킴으로써 형성되는, 65% 이상의 염기도를 갖는 폴리염화알루미늄의 제조방법이 개시되어 있다.KR748601B1 also discloses a composition comprising 65% by mole of a compound having a basicity of 0 to 40%, a compound containing a metal element of Group 1 and Group 2 according to the periodic table, a compound containing a hydroxide ion and water, % ≪ / RTI > of basicity.
한편, KR1113178B1에는 산화알루미늄의 농도가 50~65%인 수화알루미늄을 염산 및 황산 혼합물과 고온, 고압에서 반응시킨 다음, 산화나트륨(Na2O)의 농도가 10~40%인 수산화나트륨(NaOH)과 120-200℃의 온도조건하에서 반응시켜 염기성 폴리염화알루미늄을 제조하는 방법이 개시되어 있다.On the other hand, in KR1113178B1, aluminum hydroxide having a concentration of aluminum oxide of 50 to 65% is reacted with a mixture of hydrochloric acid and sulfuric acid at a high temperature and a high pressure, and sodium hydroxide (NaOH) having a concentration of 10 to 40% -200 < 0 > C to produce a basic poly (aluminum chloride).
또한, KR2008-0046364A에는 50~60%의 산화알루미늄(Al203)을 함유하는 수산화알루미늄과 염산을 혼합한 후 140℃의 고온에서 반응시킨 다음, 탄산나트륨과 황산나트륨을 첨가하고, 다시 산화나트륨(Na2O)의 농도가 20~35%인 수산화나트륨과 반응시킨 다음 숙성시켜 고염기도의 폴리염화알루미늄을 제조하는 방법이 개시되어 있다.In addition, there KR2008-0046364A aluminum oxide of 50 ~ 60% (Al 2 0 3) to a mixture of aluminum hydroxide and hydrochloric acid containing After reaction at a high temperature of 140 ℃ following, addition of sodium carbonate and sodium sulfate, sodium oxide again ( Na 2 O) is reacted with sodium hydroxide having a concentration of 20 to 35% and then aged to prepare polyaluminum chloride of high salt resistance.
또한, KR2006-0029130A에는 Al2O3 고형분 7~17%인 황산알루미늄 5wt%~20wt% 또는 Al2O3 고형분 5~10%인 폴리황산알루미늄 5wt%~20wt% 중에서 선택된 어느 하나와 Al2O3 고형분 11~18%인 폴리염화알루미늄) 50wt%~87wt%를 15~50%의 알카리 수용액 9wt%~30wt%의 존재하에서 반응시킴을 특징으로 하는 폴리수산화염화황산알루미늄의 제조방법이 개시되어 있다.Also, KR2006-0029130A include Al 2 O 3 solid content of 7-17% of aluminum sulfate or 5wt% ~ 20wt% Al 2 O 3 solid content of 5 to 10% of poly aluminum sulphate 5wt% ~ 20wt%, and any one selected from Al 2 O In the presence of 50 wt% to 87 wt% of an aqueous 15-50 wt% alkaline solution in an aqueous solution of an alkaline solution of 3 to 11 wt% ( 3 to 11 wt%) of polychlorinated aluminum .
마지막으로, KB1472562B1에는 입도 100㎛이하의 미분 수산화알루미늄을 알루미늄 공급원으로 사용함으로써 낮은 온도와 압력의 온화한 조건에서도 고염기도들 달성할 수 있으면서도 미반응 수산화알루미늄을 저감할 수 있는 폴리염화알루미늄의 제조방법이 개시되어 있다.Finally, KB1472562B1 discloses a method for producing polychlorinated aluminum that can achieve high salt fluxes even under mild conditions of low temperature and pressure, while reducing unreacted aluminum hydroxide by using fine aluminum hydroxide having a particle size of 100 占 퐉 or less as an aluminum source Lt; / RTI >
그러나, 상술한 방법으로는 폴리염화알루미늄의 염기도가 70~90%인 초고염기도를 달성하는 것이 용이하지 않으며, 무엇보다도, 상술한 문헌들에 의하여 제조된 폴리염화 알루미늄을 구성하는 Al-화학종은 Al13종이 주성분이어서(예를 들어, 특허문헌 KB1472562B1의 경우, Al13 종의 구성 분율이 85%), 안정성이 매우 낮아 2개월 내에 백탁현상이 발생하고, 그에 따라, 응집성능이 저하되는 문제점이 있다. However, in the above-mentioned method, it is not easy to achieve an ultra-basicity of 70 to 90% in the basicity of poly-aluminum chloride. Above all, the Al-chemical species constituting the polychlorinated aluminum produced by the above- Al 13 paper mainly composed then (for example, in the case of Patent Document KB1472562B1, this configuration fraction of Al 13 jong 85%) the problem that the white turbidity occurs in the very low stability, 2 months, and thus, the aggregated performance have.
본 발명의 목적은 폴리염화알루미늄의 화학종 중 Al30종의 함량을 높일 수 있는 무기응집제의 제조방법을 제공하는 것이다.An object of the present invention is to provide a method for producing an inorganic coagulant which can increase the content of Al 30 species among chemical species of polyaluminum chloride.
본 발명의 다른 목적은 상기 방법을 이용하여 제조됨으로써, Al30종의 함량이 50중량% 이상이 되고, 응집성능과 저장 안정성이 향상된 무기응집제를 제공하는 것이다.Another object of the present invention is to provide an inorganic coagulant which has a content of Al 30 species of not less than 50% by weight and is improved in cohesion performance and storage stability.
본 발명의 고분자 무기응집제의 제조방법은 Al30종을 주성분으로 포함하는 고분자 무기응집제를 제조하는 방법으로서, 폴리염화알루미늄을 알루민산 나트륨 및 탄산나트륨 수용액과 반응시켜 염기도가 70~90%인 하이드로겔을 생성시키는 제1공정; 상기 생성된 초고염기도 하이드로겔을 포함하는 반응 혼합물에 중합 개시제 수용액을 투입하고 중합하여, 폴리염화알루미늄 중 Al13종의 함량이 50중량% 이상인 중합체 혼합물을 수득하는 제2공정; 및 제2공정 후 반응 혼합물에 초음파를 가하면서 추가로 중합하여, 폴리염화알루미늄 중 Al30종의 함량이 50중량% 이상인 중합체 혼합물을 수득하는 제3공정;을 포함한다.The method for producing a polymeric inorganic coagulant of the present invention is a method for producing a polymeric inorganic coagulant containing, as a main component, an Al 30 species, comprising reacting a polyaluminum chloride with sodium aluminate and an aqueous solution of sodium carbonate to prepare a hydrogel having a basicity of 70 to 90% ; Adding a polymerization initiator aqueous solution to the reaction mixture containing the resulting ultra-basic-grade hydrogel and polymerizing to obtain a polymer mixture having a content of Al 13 species in the polychlorinated aluminum of 50 wt% or more; And a third step of further polymerizing the reaction mixture after the second step while applying ultrasonic waves to obtain a polymer mixture having a content of Al 30 species in the polychlorinated aluminum of 50 wt% or more.
상기 제1공정은 인-라인 믹서를 이용하여 수행되는 것을 특징으로 하는 Al30종을 포함하는 고분자 무기응집제의 제조방법.The first step is a method of preparing a polymeric inorganic coagulant containing 30 Al species being performed using a line mixer.
상기 폴리염화알루미늄은 Al2O3 10~20%, 염기도 40~60%인 것이 바람직하다.The polychlorinated aluminum is preferably 10-20% Al 2 O 3 and 40-60% basicity.
상기 폴리염화알루미늄에 대한 알루민산 나트륨 및 탄산나트륨 수용액의 비율은 1:0.8~1.5인 것이 바람직하다.The ratio of the sodium aluminate to the sodium carbonate aqueous solution to the polychlorinated aluminum is preferably 1: 0.8 to 1.5.
상기 무기응집제에서 Al13종의 함량은 20중량% 이하, 바람직하게는 10중량% 이하이고; Al 단량체의 함량은 30중량% 이하, 바람직하게는 15중량% 이하이다.The content of Al 13 species in the inorganic flocculant is 20 wt% or less, preferably 10 wt% or less; The content of the Al monomer is 30% by weight or less, preferably 15% by weight or less.
상기 중합은 50~130℃의 온도에서 수행되는 것이 바람직하다.The polymerization is preferably carried out at a temperature of 50 to 130 캜.
본 발명의 제조방법에 의하여 Al30종을 주성분으로 하는 무기응집제, 즉, Al30종의 함량이 50중량% 이상, Al13종과 Al 단량체의 함량이 50중량% 미만인 고분자 무기응집제를 제조할 수 있다.According to the production method of the present invention, it is possible to produce an inorganic coagulant containing Al 30 species as a main component, that is, a polymer inorganic coagulant having a content of Al 30 species of 50 wt% or more and an Al 13 species and an Al monomer content of less than 50 wt% have.
본 발명에 따라 제조되는 Al30종을 주성분으로 하는 무기응집제는 응집성능 및 저장안정성이 우수하다.The inorganic flocculant mainly composed of Al 30 produced according to the present invention has excellent flocculation performance and storage stability.
도 1은 본 발명에 따르는 무기응집제의 제조방법의 각 공정을 개략적으로 설명하는 공정도이다.
도 2는 일정 염기도에서 알루미늄 함량에 따른 하이드로겔의 유동화 정도를 측정한 그래프이다.
도 3은 중합도에 따른 폴리염화알루미늄 내의 Al종 변화를 보여주는 모식도이다.
도 4는 본 발명에 따르는 제조방법의 실시에에서, 제3공정을 실시하기 전과 후의 중합체 혼합물에 포함된 알루미늄 종 분포의 변화를 보여주는 도표이다.
도 5는 상기 실시예서 제3공정을 실시하기 전과 후의 중합체 혼합물에 대하여 자-테스트(Jar-test)를 실시하여 플록(floc)의 크기를 비교평가한 사진이다.
도 6은 본 발명의 실시예에 따라 제조된 고분자 무기응집제와 상용의 제품들에 대하여 50℃에서, 12일을 보관한 샘플들에 대한 사진이다.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a process diagram schematically illustrating each step of the method for producing an inorganic coagulant according to the present invention. FIG.
2 is a graph showing the degree of fluidization of the hydrogel according to the aluminum content at a constant basicity.
3 is a schematic diagram showing Al species changes in polychlorinated aluminum according to degree of polymerization.
4 is a chart showing changes in the distribution of aluminum species contained in the polymer mixture before and after the third step in the practice of the manufacturing method according to the present invention.
FIG. 5 is a photograph comparing the size of floc by performing a Jar-test on the polymer mixture before and after the third step of the embodiment.
FIG. 6 is a photograph of samples stored at 50 ° C. for 12 days for polymeric inorganic coagulants and commercial products prepared according to an embodiment of the present invention.
본 발명에서는 Al30종을 주성분으로 포함하는 고분자 무기응집제를 제조하는 방법을 제공한다. 본 발명에서 특정 성분을 "주성분으로" 포함한다 함은 해당 성분이 전체 성분 중 50중량% 이상으로 포함됨을 의미한다. The present invention provides a method for producing a polymeric inorganic coagulant containing, as a main component, Al 30 species. The inclusion of a particular ingredient as "main ingredient " in the present invention means that the ingredient is contained in an amount of at least 50% by weight of the total ingredients.
도 1은 본 발명에 따르는 무기응집제의 제조방법의 각 공정을 개략적으로 설명하는 공정도이다. 도 1을 참조할 때, 본 발명에 따르는 무기응집제의 제조방법은, 폴리염화알루미늄을 알루민산 나트륨 및 탄산나트륨 수용액과 반응시켜 염기도가 70~90%인 하이드로겔을 생성시키는 제1공정; 상기 생성된 초고염기도 하이드로겔을 포함하는 반응 혼합물에 중합 개시제 수용액을 투입하고 중합하여, 폴리염화알루미늄 중 Al13종의 함량이 50중량% 이상인 중합체 혼합물을 수득하는 제2공정; 및 제2공정 후 반응 혼합물에 초음파를 가하면서 추가로 중합하여, 폴리염화알루미늄 중 Al30종의 함량이 50중량% 이상인 중합체 혼합물을 수득하는 제3공정;을 포함하는 것을 특징으로 한다.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a process diagram schematically illustrating each step of the method for producing an inorganic coagulant according to the present invention. FIG. Referring to FIG. 1, a method for producing an inorganic coagulant according to the present invention comprises: a first step of reacting polyaluminum chloride with sodium aluminate and an aqueous solution of sodium carbonate to produce a hydrogel having a basicity of 70 to 90%; Adding a polymerization initiator aqueous solution to the reaction mixture containing the resulting ultra-basic-grade hydrogel and polymerizing to obtain a polymer mixture having a content of Al 13 species in the polychlorinated aluminum of 50 wt% or more; And a third step of further polymerizing the reaction mixture after the second step while applying ultrasonic waves to obtain a polymer mixture having a content of Al 30 species in the polychlorinated aluminum of 50 wt% or more.
[제1공정][First Step]
본 발명의 제조방법에서, 제1공정은 염기도가 70~90%인 초고염기도 하이드로겔을 생성시키는 공정이다. 상기 초고염기도 하이드로겔은 염기도 40~60%의 폴리염화알루미늄을 알루민산 나트륨 및 탄산나트륨 수용액과 반응시켜 수득될 수 있다. In the production method of the present invention, the first step is a step of producing an ultra-basic-grade hydrogel having a basicity of 70 to 90%. The ultra high basicity hydrogel can be obtained by reacting polychlorinated aluminum having a basicity of 40 to 60% with sodium aluminate and sodium carbonate aqueous solution.
상기 제1공정은 바람직하게는 인-라인 믹서(In-Line Mixer)를 이용하여 수행된다. 본 발명의 제조방법에서 폴리염화알루미늄을 알루민산 나트륨 및 탄산나트륨 수용액과 반응시키는 수단으로 채택한 인라인 믹서는, 튜브 또는 파이프와 같은 관상의 통로로 액체를 통과시키면서, 유통상태에서 둘 이상의 성분을 혼합시키는 장치이다. 인라인 믹서의 관상 통로 내에는 유체의 유동이 난류가 되도록 하는 수단들이 부가될 수 있다. The first process is preferably performed using an in-line mixer. An inline mixer adopted as a means for reacting poly aluminum chloride with an aqueous solution of sodium aluminate and sodium carbonate in the production method of the present invention is a device for mixing two or more components in a circulating state while passing a liquid through a tubular passage such as a tube or a pipe to be. Means may be added in the tubular passageway of the inline mixer to make the fluid flow turbulent.
폴리염화알루미늄의 염기도를 높이는 통상의 공정은, 저염기도 폴리염화알루미늄에 염기성 물질인 가성소다(NaOH), 알루민산나트륨(NaAlO2), 소다회(Na2CO3) 등을 고속의 호모믹서로 반응시켜 숙성하는 것이 일반적이다. 그러나, 이와 같은 종래의 방법은 전기 사용량이 많고, 마모로 인한 유지관리가 어려운 호모믹서를 사용해야 한다는 단점이 있으며, 무엇보다도, 제1공정의 반응으로 생성되는 하이드로겔은 호모믹서의 팬이 겉돌게 하는 원인이 되어, 균일한 혼합의 장애가 된다. 따라서, 종래의 호모믹서를 이용해서는 염기도가 70% 이상인 고염기도의 제품을 얻는 것은 실질적으로 불가능하다.A common process for increasing the basicity of polychlorinated aluminum is to react basic materials such as caustic soda (NaOH), sodium aluminate (NaAlO 2 ), soda ash (Na 2 CO 3 ), etc. with a low- It is common to mature. However, such a conventional method has disadvantages of using a homo-mixer which consumes a large amount of electricity and is difficult to maintain due to abrasion. Among other things, the hydrogel produced by the reaction of the first step is a fan of the homo- Causing a problem of uniform mixing. Therefore, it is practically impossible to obtain a highly salt-resistant product having a basicity of 70% or more by using a conventional homomixer.
이에 반하여, 혼합 수단으로서 인-라인 믹서를 채택하는 경우 산과 알칼리성 물질이 만날 때 발생하는 침전을 없애기 위한 고속의 호모 믹서의 사용이 필요 없고, 또한, 혼합 방식이 팬의 회전에 의한 것이 아니라, 관상의 통로를 유동하는 중에 발생하는 난류에 으하여 혼합이 담보되기 때문에, 제1공정의 진행중에 하이드로겔이 형성되어도 균일한 혼합이 보장될 수 있다.On the other hand, when adopting an in-line mixer as a mixing means, there is no need to use a high-speed homomixer for eliminating precipitation that occurs when an acid and an alkaline substance are encountered, and also, It is possible to ensure uniform mixing even if the hydrogel is formed during the course of the first step.
혼합 수단으로서 인-라인 믹서를 채택하는 경우 유동화의 조절이 가능한 하이드로겔을 생성하기 위해서는 동일한 염기도에서 알루미늄과 물의 양 조절이 필수적이다. 도 2는 일정 염기도에서 알루미늄 함량에 따른 하이드로겔의 유동화 정도를 측정한 그래프이다.When adopting an in-line mixer as a mixing means, it is necessary to control the amount of aluminum and water at the same basicity in order to produce a hydrogel capable of controlling fluidization. 2 is a graph showing the degree of fluidization of the hydrogel according to the aluminum content at a constant basicity.
상기 폴리염화알루미늄은 Al2O3 10~20%의 것이 통상이다. 한편, 염기도는 40~60%의 것을 투입하는 것이 바람직하다. 염기도는 40% 미만의 제품을 사용하는 경우 하이드로겔 생성의 유도가 어렵다. 알칼리성 물질을 만날 때의 폴리염화알루미늄이 염기도가 어느 정도 있어서 물질 내에 Cl- 보다는 OH-를 갖고 있어 물을 생성시킬 수 있는 음이온이 일정량 이상 필요하기 때문이다. 한편, 60% 이상은 고염기도 제조 공정이 아닌 일반 공정으로 제조가 불가능한 범위이므로 경제적 효율성을 추구할 수 없다. 염기도는 40~60%의 폴리염화알루미늄은 공지의 방법에 따라 얻어질 수 있으며, 예를 들어, 대한민국 특허 제1472562호에 개시된 바에 따라 제조된 것이 사용될 수 있다.The polychlorinated aluminum is generally 10 to 20% of Al 2 O 3 . On the other hand, it is preferable to add 40 ~ 60% of basicity. When a product with a basicity of less than 40% is used, it is difficult to induce hydrogel formation. This is because the polychlorinated aluminum at the time of encountering an alkaline substance has a certain basicity and therefore needs a certain amount of anion capable of generating water because it has OH - rather than Cl - in the material. On the other hand, more than 60% can not be economically efficient because it can not be manufactured by a general process, rather than a high salt production process. Aluminum polychloride having a basicity of 40 to 60% can be obtained according to a known method, for example, those produced according to the method disclosed in Korean Patent No. 1472562 can be used.
한편, 폴리염화알루미늄에 대한 알루민산 나트륨 및 탄산나트륨 수용액의 비율은 중량비로 1:0.8~1.5인 것이 바람직하다. 알루민산 나트륨 및 탄산나트륨 수용액의 비율이 0.8 미만이면 최종적으로 얻어지는 물질의 염기도를 원하는 만큼 끌어 올릴 수가 없는 문제점이 있고, 1.5를 초과하면 알칼리성 물질의 량이 과다하여 hydrogel의 생성이 어렵고 침전 발생이 심해져서 제조가 불가능하다.On the other hand, the ratio of sodium aluminate to sodium carbonate aqueous solution to polyaluminum chloride is preferably 1: 0.8 to 1.5 by weight. If the ratio of sodium aluminate and sodium carbonate aqueous solution is less than 0.8, there is a problem that the basicity of the finally obtained material can not be increased as much as desired. If the ratio is more than 1.5, the amount of alkaline substance is excessive and hydrogel is hardly produced, Is impossible.
한편, 상술한 초고염기도 하이드로겔 생성반응에 있어 반응온도에는 특별한 제한이 없어, 예를 들어, 온도 30~60℃의 조건에서 수행될 수 있다.On the other hand, there is no particular limitation on the reaction temperature in the ultrahydro-alkaline hydrogel formation reaction described above. For example, the reaction can be carried out at a temperature of 30 to 60 ° C.
[제2공정][Second Step]
제2공정은 생성된 초고염기도 하이드로겔을 포함하는 반응 혼합물에 중합 개시제를 투입하고 교반하여, 하이드로겔을 깨면서 중합하는 공정이다. 중합 개시제는 예를 들어, 과산화수소수나 황산암모늄 아스코빈산 등을 사용할 수 있다. 상기 중합 개시제는 수용액 상태로 투입된다 (중합개시제의 농도는 예를 들어 35wt% 수용액).In the second step, a polymerization initiator is added to a reaction mixture containing the resulting ultra-basic-grade hydrogel and stirred to polymerize the hydrogel while breaking it. As the polymerization initiator, for example, hydrogen peroxide or ammonium ascorbic acid can be used. The polymerization initiator is put into an aqueous solution (the concentration of the polymerization initiator is, for example, 35 wt% aqueous solution).
제1공정 통해 경제적 및 안정적으로 생성된 하이드로겔은 유동성이 매우 떨어져 이를 직접 수처리제로서 사용하는 것은 접합하지 않다. 또한, 물질의 염기도는 70% 이상으로 비교적 높지만 중합도가 높지 않아 응집의 효율성도 높지 않다. 따라서, 제2공정에서는 유동성을 향상시키고 중합도를 높이기 위하여 중합 개시제를 투입하고 교반한다.Hydrogels produced economically and stably through the first step are very unstable in terms of fluidity and are not directly used as a water treatment agent. In addition, the basicity of the material is relatively high at 70% or more, but the degree of polymerization is not high and the efficiency of flocculation is not high. Therefore, in the second step, a polymerization initiator is added and stirred to improve fluidity and increase polymerization degree.
상기 중합은 50~130℃에서 수행되는 것이 바람직하다. 상기와 같은 온도조건에서, 하이드로겔 내의 물 분자를 제거하면서 동시에 중합이 이루어지게 될 수 있다. 이와 같은 온도조건하에서, 속도 200~1,000rpm의 조건으로 1~8 시간 동안 교반하면 중합이 완료될 수 있는 것으로 확인되었다.The polymerization is preferably carried out at 50 to 130 ° C. Under the above-described temperature conditions, polymerization can be simultaneously performed while removing water molecules in the hydrogel. Under such temperature conditions, it was confirmed that the polymerization could be completed by stirring for 1 to 8 hours at a speed of 200 to 1,000 rpm.
상기 중합반응에 의하여 제2공정에서 얻어지는 것은 다음의 혼합물들이다: The following compounds are obtained in the second step by the polymerization reaction:
Alm : Al의 단량체Al m : Monomer of Al
Al13:[AlO4Al12(OH)24(H2O)12]7+, Al 13 : [AlO 4 Al 12 (OH) 24 (H 2 O) 12 ] 7+ ,
Al 집합체(aggregate): Al 여러 종이 뭉쳐진 집합체Al aggregate: Al aggregate of various paper
Al30:[(AlO4)2Al28(OH)56(H2O)26]18+ Al 30: [(AlO 4) 2 Al 28 (OH) 56 (H 2 O) 26] 18+
도 3은 중합도에 따른 폴리염화알루미늄 내의 Al종 변화를 보여주는 모식도이다. 도를 참조할 때, 중합반응 초기에 형성된 Al13종은 중합도가 높아지면서 Al 단량체 외 여러 종들과 뭉쳐지면서 Al종의 집합체(Al aggregates)를 형성하게 되고, 추가의 중합반응을 통해 얻고자 하는 최종 산물인 Al30종이 형성된다.3 is a schematic diagram showing Al species changes in polychlorinated aluminum according to degree of polymerization. As shown in the figure, the Al 13 species formed at the beginning of the polymerization reaction become aggregated with other species such as Al monomer as the degree of polymerization becomes higher, and aggregates of Al species (Al aggregates) are formed. The product Al 30 is formed.
발명자들의 반복실험에 따르면, 제2단계에서 수득되는 중합체 혼합물은 상기 Al종 중에서 Al13종의 함량이 50중량% 이상인 Al13종 주성분의 혼합물로서, Al30종의 함량은 30중량% 이하의 소량이고, 중합 시간을 연장하게나 온도조건을 변화하는 방법만으로는 그 함량을 30중량% 이상이 되도록 하는 것은 가능하지 않았다. 또한, Al종 역시 15~20중량% 수준으로 상당량이 존재하는 것으로 확인되었다.According to the inventors' repeated experiments, the polymer mixture obtained in the second step is a mixture of the main components of the Al 13 species having a content of Al 13 species of not less than 50 wt% among the Al species, and the content of the Al 30 species is not more than 30 wt% , It was not possible to increase the polymerization time or change the temperature condition so that the content could be 30 wt% or more. In addition, it was confirmed that a considerable amount of Al species was present at a level of 15 to 20 wt%.
[제3공정][Third Step]
본 발명 제조방법의 마지막 공정은 반응 혼합물에 초음파 처리를 하는 공정이다. 초음파 처리는 예를 들어, 온도 30~100℃, 속도 100~500rpm의 조건으로 0.5~5 시간 동안 교반하면서, 진동주파수 10~50KHz, 진동출력 100~1,200W의 초음파를 가해준다.The final step of the method of the present invention is a step of subjecting the reaction mixture to ultrasonic treatment. The ultrasonic treatment is performed by, for example, applying ultrasonic waves having a vibration frequency of 10 to 50 KHz and a vibration output of 100 to 1,200 W while being stirred at a temperature of 30 to 100 캜 and a speed of 100 to 500 rpm for 0.5 to 5 hours.
본 공정은, 초음파 처리에 의하여 Al 집합체를 분산 제거됨과 동시에 추가적인 중합을 유도하여, Al30종을 주성분으로 하는 고분자 응집제를 얻는 공정이다. Al종의 집합체는 단분자에서부터 고분자 물질까지 다양한 분자들의 뭉침인데, 여기에 속해 있는 단분자들이 빠른 침전을 유도하여 반응용액의 안정성을 매우 저하시키는 원인이 된다. 제3공정에서는 초음파 처리를 통하여 Al종의 집합체를 분산, 제거하고 나아가, 추가적인 중합을 유도하여, Al30종을 주성분으로 하는 고분자 응집제를 얻을 수 있다. This step is a step of obtaining a polymer flocculant containing Al 30 species as a main component by inducing additional polymerization while dispersing and removing Al aggregates by ultrasonic treatment. The aggregate of Al species is a lump of various molecules ranging from single molecule to high molecular substance, and the monomolecules contained therein induce rapid precipitation, which causes the stability of the reaction solution to be greatly degraded. In the third step, the aggregation of Al species is dispersed and removed through ultrasonic treatment, and further polymerization is induced to obtain a polymer flocculant containing Al 30 species as a main component.
한편, 제2공정에서는 하이드로겔 상태에서 중합을 하자면 물리적 물성이 많이 바뀌는 과정이라 (고점도 --> 일반적인 유동성 물질) 중합개시제가 필요하지만, 제3공정에서는 중합개시제의 추가 투입은 없으면서도 또한, 제2공정에 비하여 상대적으로 20~30℃ 낮은 온도조건에서도 중합반응이 진행될 수 있다.On the other hand, in the second step, polymerization is carried out in a hydrogel state to change the physical properties much (high viscosity - > general fluid material). In the third step, no addition of a polymerization initiator is required, The polymerization reaction can proceed even at a relatively low temperature of 20 to 30 ° C compared to the second step.
즉, 제3공정이 완료된 후에 얻어지는 고분자 무기응집제에서 Al30종의 함량을 50중량% 이상으로, 60 중량%, 또는 70중량% 이상으로, 나아가서는 80중량% 이상으로 조절하는 것이 가능하다. 한편, Al13종의 함량을 20중량% 이하로, 바람직하게는 10중량% 이하로; 및 Alm 함량을 30중량%이하로, 바람직하게는 15중량% 이하로 줄일 수 있다.That is, it is possible to control the content of Al 30 species in the polymeric inorganic coagulant obtained after completion of the third step to 50 wt% or more, 60 wt% or 70 wt% or more, and further 80 wt% or more. On the other hand, the content of Al 13 species is 20 wt% or less, preferably 10 wt% or less; And the Al m content to 30 wt% or less, preferably 15 wt% or less.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 본 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. The present invention is intended to more specifically illustrate the present invention, and the scope of the present invention is not limited by these examples.
[제1공정] 먼저, 대한민국 특허 제1472562호에 개시된 방법에 따라, Al2O3 14.15%, 염기도 54.30%인 폴리염화알루미늄 513.0g을 준비하였다. 이와는 별도로 Na2CO3 5.1g을 368.1g의 공정수에 녹이고, Al2O3 26.23%, Na2O 22.09%인 알루민산나트륨 113.8g과 교반하여, 알루민산나트륨 및 탄산 나트륨 수용액을 준비하였다.[First Step] First, according to the method disclosed in Korean Patent No. 1472562, 513.0 g of poly (aluminum chloride) having 14.15% Al 2 O 3 and 54.30% basicity was prepared. Separately, 5.1 g of Na 2 CO 3 was dissolved in 368.1 g of the process water, and 113.8 g of sodium aluminate, which was 26.23% of Al 2 O 3 and 22.09% of Na 2 O, was stirred to prepare an aqueous solution of sodium aluminate and sodium carbonate.
이상에서 준비된 폴리염화알루미늄과, 알루민산나트륨 및 탄산 나트륨 수용액을 특수 제작한 인-라인 믹서(Divisions 820)에 정량펌프를 이용하여 1:0.95의 중량비로 혼합하였다. 이때, 온도 조건은 56℃로 유지하였으며, 10분 정도의 시간으로 반응시켜 , Al2O3 10.27%, 염기도 80.95%인 997.88g의 하이드로겔을 수득하였다.The above-prepared polychlorinated aluminum and sodium aluminate and sodium carbonate aqueous solutions were mixed in a special ratio of 1: 0.95 by using a metering pump to an in-line mixer (Divisions 820). At this time, the temperature condition was maintained at 56 ° C., and the reaction was performed for about 10 minutes to obtain 997.88 g of hydrogel having 10.27% Al 2 O 3 and 80.95% basicity.
[제2공정] 제1공정 생성된 하이드로겔 980g에 35% 과산화수소 20g을 투입하여 온도 95℃, 500rpm의 교반속도로 6시간 동안 반응시키면 중합을 실시하였다.[Second Step] First Step 20 g of 35% hydrogen peroxide was added to 980 g of the resulting hydrogel, and polymerization was carried out by stirring at a stirring rate of 500 rpm for 6 hours at a temperature of 95 캜.
이 수득물은 O2가 발생하여 날아가고, Al2O3 10.09%, 염기도 79.59%인 996.71g의 중합체 혼합물을 수득하였다. 상기 중합체 혼합물에 대하여 페론 테스트(Ferron Test) 결과 Alm 18%, Al13 59%, Al30 23%의 알루미늄 종 분포를 보였다.The obtained water is blown away by O 2 is generated, to obtain the polymer mixture of Al 2 O 3 10.09%, 79.59% basicity 996.71g. Ferron test of the polymer mixture showed Al species distribution of Al m 18%, Al 13 59% and Al 30 23%.
[제3공정] 제2공정에서 수득한 중합체 혼합물에 진동주파수 25KHz, 진동출력 120W의 초음파를 가해주고, 온도 80℃, 250rpm의 교반속도로 2시간 동안 반응시키는 방법으로 추가로 중합을 수행하여, Al30종을 주성분으로 하는 Al2O3 10.09%, 염기도 79.59%인 초고염기도 응집제를 제조하였다. 이 중합체 혼합물에 대하여 페론 테스트를 수행한 결과, Alm 12%, Al13 7%, Al30 81%의 알루미늄 종 분포를 보였다.[Third step] Further polymerization was carried out by applying ultrasonic waves with a vibration frequency of 25 KHz and a vibration output of 120 W to the polymer mixture obtained in the second step and reacting at a stirring speed of 250 rpm at 80 캜 for 2 hours, A high basicity coagulant having 10.09% Al 2 O 3 and a basicity of 79.59% containing Al 30 as a main component was prepared. A result of the Peron tested for the polymer mixture showed a distribution of aluminum species in the 12% Al m, Al 13 7 %,
도 4는 상기 실시예서 제3공정을 실시하기 전과 후의 중합체 혼합물에 포함된 알루미늄 종 분포의 변화를 보여주는 도표이다. 도 4로부터, 초음파 처리를 포함하는 추가적인 중합단계를 거침으로서 혼합물 내에 포함된 Al30 종의 함량이 23%에서 81%로 증가한 반면, Al13종 및 단량체인 Alm종의 함량은 현저하게 감소됨을 확인할 수 있다.4 is a chart showing the variation of the aluminum species distribution included in the polymer mixture before and after the third step of the embodiment. From FIG. 4, the content of Al 30 species included in the mixture increased from 23% to 81%, while the content of Al 13 species and Al m species as a monomer was remarkably decreased through the additional polymerization step including ultrasonic treatment Can be confirmed.
도 5는 상기 실시예서 제3공정을 실시하기 전과 후의 중합체 혼합물에 대하여 자-테스트(Jar-test)를 통하여 플록(flock)의 크기를 비교평가한 사진이다. 사진으로부터, 제3공정 전에는 아직 Al 집합체의 양이 많아 자-테스트를 실시하면 플록이 크지만, 제3공정을 수행한 후에는 플록이 오히려 작아지는 것을 육안으로 관찰할 수 있다 FIG. 5 is a photograph comparing the size of a flock through a jar-test with respect to a polymer mixture before and after the third step of the embodiment. From the photograph, it can be observed with naked eyes that floc is large when the self-test is performed because the amount of Al aggregate is still large before the third step, but floc becomes rather small after the third step is performed
제조한 응집제의 저장 안정성을 상용의 고염기도 제품 및 상용의 일반제품과 비교 평가하였다. 저장안정성은 50℃에서 방치하여 침전발생일과 침전량 증가를 측정하는 방법으로 수행하였으며, 그 결과를 아래에 정리하였다.The storage stability of the prepared coagulants was compared with that of conventional high salt resistance products and commercial products. The storage stability was determined by measuring the increase in sedimentation day and sedimentation amount at 50 ° C. The results are summarized below.
(이영화학주식회사, APACⅡ1070,
염기도 65%, Al2O3농도 10%) Commercial high salt water
(Lee Young Chemical Co., Ltd., APAC II 1070,
Basicity 65%, Al 2 O 3 concentration 10%)
6
6
11
11
(이영화학주식회사, PAC10%, 염기도 40%)Commercial products (decontamination)
(Lee Young Chemical Co., Ltd.,
저장 안정성의 실험은 저장 기간동안 Al(OH)3의 침전이 발생하는데 몇 일이 걸리는가를 알아보는 실험으로, 용기에 담아서 상온해 보관하는 것이 원칙이지만 시간이 너무 오래 걸리는 문제로 50℃ 정도의 약간의 열을 주어 실험을 속성으로 진행하였다. 본 실험결과에서 침전 발생일은 50℃에서 보관할 때, 용기의 바닥에 침전이 발생하기까지의 일수이고, 침전량 증가일은 침전량이 눈에 띄게 급격히 늘어나서 용액의 전체적인 색깔이 뿌옇게 변하기 시작하는지 일수를 기록한 것이다.The experiment of storage stability tests to see how many days it takes for the precipitation of Al (OH) 3 to occur during the storage period. It is a principle to keep it in the container at room temperature. However, And the experiment was carried out as a property. In the results of this experiment, the day of precipitation was the number of days until the precipitation occurred at the bottom of the vessel when stored at 50 ° C, and the number of days when the amount of precipitation increased sharply and the total color of the solution began to change sharply.
도 6은 본 발명의 실시예에 따라 제조된 고분자 무기응집제와 상용의 제품들에 대하여 50℃에서, 12일을 보관한 샘플들에 대한 사진이다.FIG. 6 is a photograph of samples stored at 50 ° C. for 12 days for polymeric inorganic coagulants and commercial products prepared according to an embodiment of the present invention.
표 1과 도 6으로부터, 본 발명의 방법에 따라 제조된 고분자 무기응집제는 침전발생일이 두 배 이상 증가하고, 침전량 증가일도 35%이상 증가하는 결과를 보여, 저장안정성 및 응집성능이 종래의 제품에 비하여 현저하게 향상되었음을 확인할 수 있었다.From Table 1 and FIG. 6, it can be seen that the polymeric inorganic coagulant prepared according to the method of the present invention exhibited a precipitation increase of more than two times and an increase of the precipitation amount by 35% or more, Compared to the control group.
Claims (8)
폴리염화알루미늄을 알루민산 나트륨 및 탄산나트륨 수용액과 반응시켜 염기도가 70~90%인 하이드로겔을 생성시키는 제1공정;
상기 생성된 초고염기도 하이드로겔을 포함하는 반응 혼합물에 중합 개시제 수용액을 투입하고 중합하여, 폴리염화알루미늄 중 Al13종의 함량이 50중량% 이상인 중합체 혼합물을 수득하는 제2공정; 및
제2공정 후 반응 혼합물에 초음파를 가하면서 추가로 중합하여, 폴리염화알루미늄 중 Al30종의 함량이 50중량% 이상인 중합체 혼합물을 수득하는 제3공정;을 포함하는 고분자 무기응집제의 제조방법.A method for producing a polymeric inorganic coagulant comprising 30 Al species,
A first step of reacting polyaluminum chloride with an aqueous solution of sodium aluminate and an aqueous solution of sodium carbonate to produce a hydrogel having a basicity of 70 to 90%;
Adding a polymerization initiator aqueous solution to the reaction mixture containing the resulting ultra-basic-grade hydrogel and polymerizing to obtain a polymer mixture having a content of Al 13 species in the polychlorinated aluminum of 50 wt% or more; And
And a third step of further polymerizing the reaction mixture after the second step while applying ultrasonic waves to obtain a polymer mixture having a content of Al 30 species in the polychlorinated aluminum of 50% by weight or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150161155A KR101725429B1 (en) | 2015-11-17 | 2015-11-17 | Manufacturing Method of Inorganic Polymer Coagulant and Inorganic Polymer Coagulant thereby |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150161155A KR101725429B1 (en) | 2015-11-17 | 2015-11-17 | Manufacturing Method of Inorganic Polymer Coagulant and Inorganic Polymer Coagulant thereby |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101725429B1 true KR101725429B1 (en) | 2017-04-11 |
Family
ID=58580714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150161155A Active KR101725429B1 (en) | 2015-11-17 | 2015-11-17 | Manufacturing Method of Inorganic Polymer Coagulant and Inorganic Polymer Coagulant thereby |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101725429B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102017114B1 (en) * | 2018-04-02 | 2019-09-02 | 한국건설기술연구원 | Manufacturing method of polyaluminum chloride |
KR102017116B1 (en) * | 2018-04-02 | 2019-09-03 | 한국건설기술연구원 | Polyaluminum chloride and water treatment method using same |
KR102038830B1 (en) * | 2019-05-02 | 2019-10-31 | 넥스테크(주) | Manufacture method of polysulfuric acid aluminium for wastewater treatment using waste sulfuric acid generated in semiconductor process |
KR20200142294A (en) * | 2019-06-12 | 2020-12-22 | 한국건설기술연구원 | Method for preparing high basicity aluminum chlorohydrate |
JP7017283B1 (en) * | 2021-09-30 | 2022-02-08 | 浅田化学工業株式会社 | Aqueous solution of highly basic aluminum chloride and its manufacturing method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080046364A (en) * | 2006-11-22 | 2008-05-27 | 미주엔비켐 주식회사 | Method for producing polybasic aluminum chloride |
KR20150115291A (en) * | 2014-04-02 | 2015-10-14 | (주)코솔텍 | Preparation process of high basic polyaluminium chloride coagulants |
-
2015
- 2015-11-17 KR KR1020150161155A patent/KR101725429B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080046364A (en) * | 2006-11-22 | 2008-05-27 | 미주엔비켐 주식회사 | Method for producing polybasic aluminum chloride |
KR20150115291A (en) * | 2014-04-02 | 2015-10-14 | (주)코솔텍 | Preparation process of high basic polyaluminium chloride coagulants |
Non-Patent Citations (1)
Title |
---|
water research 46 (2012) 53-62 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102017114B1 (en) * | 2018-04-02 | 2019-09-02 | 한국건설기술연구원 | Manufacturing method of polyaluminum chloride |
KR102017116B1 (en) * | 2018-04-02 | 2019-09-03 | 한국건설기술연구원 | Polyaluminum chloride and water treatment method using same |
KR102038830B1 (en) * | 2019-05-02 | 2019-10-31 | 넥스테크(주) | Manufacture method of polysulfuric acid aluminium for wastewater treatment using waste sulfuric acid generated in semiconductor process |
KR20200142294A (en) * | 2019-06-12 | 2020-12-22 | 한국건설기술연구원 | Method for preparing high basicity aluminum chlorohydrate |
KR102212913B1 (en) * | 2019-06-12 | 2021-02-05 | 한국건설기술연구원 | Method for preparing high basicity aluminum chlorohydrate |
JP7017283B1 (en) * | 2021-09-30 | 2022-02-08 | 浅田化学工業株式会社 | Aqueous solution of highly basic aluminum chloride and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101725429B1 (en) | Manufacturing Method of Inorganic Polymer Coagulant and Inorganic Polymer Coagulant thereby | |
Tzoupanos et al. | Coagulation-flocculation processes in water/wastewater treatment: the application of new generation of chemical reagents | |
Gao et al. | Evaluation of aluminum-silicate polymer composite as a coagulant for water treatment | |
KR101374191B1 (en) | Preparing method of poly aluminum chloride inorganic coagulant with high basicity for water treatment | |
KR101409870B1 (en) | Method of Preparation for High basicity polyaluminum chloride coagulant and Treating Method of water/wastewater using the same | |
CA2950328C (en) | Method for making sulfated polyaluminum chloride (pacs) or polyaluminum chloride (pac) and pacs or pac made by same | |
AU2014290034B2 (en) | Stable salt-free polyaluminum chlorosulfates | |
CN105523620B (en) | Polysilicate ferric sulfate based inorganic-organic composite flocculant and preparation method thereof | |
CN106669633A (en) | Adsorption preparation for wastewater treatment and preparation method thereof | |
Wang et al. | The disinfection by-products precursors removal efficiency and the subsequent effects on chlorine decay for humic acid synthetic water treated by coagulation process and coagulation–ultrafiltration process | |
AU2012367236B2 (en) | A process for lime slurry production | |
CN106395917B (en) | A kind of PAFC fluid product and preparation method thereof | |
KR101612513B1 (en) | Method for preparing polyaliminium chloride-based inorganic coagulants having high basicity | |
US7718085B1 (en) | High-solids lime slurry | |
US7959800B2 (en) | Method for preparing acidic solutions of activated silica for water treatment | |
CN103964554B (en) | Polyaluminum sulfate titanium-polydimethyldiallylachloride chloride composite coagulant and preparation and application method thereof | |
DE60304203T2 (en) | PRODUCT FOR THE TREATMENT OF WATER AND WASTE WATER AND METHOD FOR THE PRODUCTION OF THE PRODUCT | |
KR101611369B1 (en) | Cohesive agents manufacture method for wastewater treatment | |
US7897062B1 (en) | High-solids lime slurry | |
KR20090024711A (en) | Process for preparing iron-silica water treatment flocculant | |
CN102633335A (en) | Sewage treatment method | |
KR101119623B1 (en) | Inorganic cohesive agents for water-treatment and Preparing method thereof | |
CN105152294A (en) | Preparation method and application of flocculant for treating urban sewage | |
JP4860201B2 (en) | Method and apparatus for treating wastewater containing boron | |
KR102017114B1 (en) | Manufacturing method of polyaluminum chloride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20151117 |
|
PA0201 | Request for examination | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20160723 Patent event code: PE09021S01D |
|
PN2301 | Change of applicant |
Patent event date: 20160906 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20170104 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20170405 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20170406 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20200131 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20210129 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20220318 Start annual number: 6 End annual number: 6 |