[go: up one dir, main page]

KR101722984B1 - A Method for production of cadaverin by immobilization of lysine decarboxylase-overexpressing recombinant E. coli using barium-alginate - Google Patents

A Method for production of cadaverin by immobilization of lysine decarboxylase-overexpressing recombinant E. coli using barium-alginate Download PDF

Info

Publication number
KR101722984B1
KR101722984B1 KR1020150166441A KR20150166441A KR101722984B1 KR 101722984 B1 KR101722984 B1 KR 101722984B1 KR 1020150166441 A KR1020150166441 A KR 1020150166441A KR 20150166441 A KR20150166441 A KR 20150166441A KR 101722984 B1 KR101722984 B1 KR 101722984B1
Authority
KR
South Korea
Prior art keywords
coli
alginate
lysine
barium
cadaverine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020150166441A
Other languages
Korean (ko)
Inventor
양영헌
서형민
박경문
김현중
김정호
사시 칸트 바티아
이주희
박성희
사시아나라야난 가네산
송헌석
김용현
이상현
김준영
전종민
Original Assignee
건국대학교 산학협력단
홍익대학교세종캠퍼스산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단, 홍익대학교세종캠퍼스산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020150166441A priority Critical patent/KR101722984B1/en
Application granted granted Critical
Publication of KR101722984B1 publication Critical patent/KR101722984B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0084Guluromannuronans, e.g. alginic acid, i.e. D-mannuronic acid and D-guluronic acid units linked with alternating alpha- and beta-1,4-glycosidic bonds; Derivatives thereof, e.g. alginates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01018Lysine decarboxylase (4.1.1.18)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2511/00Cells for large scale production

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Plant Pathology (AREA)
  • Polymers & Plastics (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 대장균(Escherichia coli) 유래의 라이신 디카르복실라아제(lysine decarboxylase) 유전자를 도입한 재조합 대장균, 및 상기 재조합 단백질을 이용하여 고농도 카다베린(cadaverine) 생산에서도 용해되지 않는 고정화된 전세포 효소의 제조와 이를 이용한 고농도의 카다베린(cadaverine)을 생산하는 방법에 관한 것이다. 본 발명은 기존의 칼슘-알지네이트(Calcium-alginate) 고정화 방법의 문제점을 해결한 바륨-알지네이트(Barium-alginate) 고정화 방법을 도입하였고 이를 활용하여 고농도 라이신(L-lysine)으로부터 카다베린(cadaverine)을 생산함에 있어 높은 효율성과 안정성 그리고 재사용 문제를 극복하여 반복적인 활용이 가능한 공정으로 경제성을 확보할 수 있다. The present invention relates to Escherichia coli coli), lysine decarboxylase (lysine decarboxylase derived) recombinant E. coli the gene introduction, and high concentration with the manufacture and this in the whole cell enzyme-immobilized insoluble even by using the recombinant protein high concentration cadaverine (cadaverine) production ≪ / RTI > of cadaverine. The present invention introduces a barium-alginate immobilization method that solves the problems of the conventional calcium-alginate immobilization method and utilizes the same to remove cadaverine from high-concentration lysine (L-lysine) It is possible to obtain economical efficiency by overcoming the problems of high efficiency, stability, and reuse in production and making it possible to use it repeatedly.

Description

바륨-알지네이트 담체를 이용한 라이신 디카르복실라아제 과발현 재조합 대장균의 고정화를 통한 고농도 카다베린 생산방법{A Method for production of cadaverin by immobilization of lysine decarboxylase-overexpressing recombinant E. coli using barium-alginate}FIELD OF THE INVENTION [0001] The present invention relates to a method for producing high-concentration cadaverine by immobilization of recombinant E. coli overexpressing lysine decarboxylase using a barium-alginate carrier,

본 발명은 나일론 전구체로 사용되는 카다베린(cadaverine) 생산에 사용되는 전세포의 고정화 방법에 관한 것으로서, 보다 상세하게는 대장균(Escherichia coli) 유래의 라이신 탈탄산화 효소(cadA,lysine decarboxylase) 유전자를 도입한 재조합 대장균 균주를 바륨-알지네이트(Barium-alginate) 담체에 고정화하여, 고농도의 카다베린(cadaverine) 생전환하는 방법에 관한 것이다.The present invention relates to a method for immobilizing whole cells used in the production of cadaverine which is used as a nylon precursor and more particularly to a method for immobilizing lysine decarboxylase gene derived from Escherichia coli And a method of immobilizing a recombinant Escherichia coli strain on a barium-alginate carrier to convert a high concentration of cadaverine.

석유 유래의 플라스틱의 대체를 목적으로 생산되는 바이오 기반 플라스틱 생산을 위한 산업 균주 개발이 많이 연구되어 왔다. 이와 관련하여, 카다베린(cadverine), 퓨트레신(putrescine)과 같은 나일론 단량체를 대장균(Escherichia coli)이나 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)과 같은 산업 균주에 대사공학적인 방법을 적용하여 포도당이나 자일로스로부터 발효(fermentation)하는 연구들이 진행되어 왔다(유럽 특허공개번호 제 2540836호; Qian ZG, et al., Biotechnol Bioeng . 2009 Nov 1;104(4):651-62; Qian ZG, et al., Biotechnol Bioeng . 2011 Jan;108(1):93-103). 하지만, 이와 같은 방법을 이용할 경우 생산성이나 농도에 있어서 상대적으로 효율이 떨어지기 때문에 산업적으로 활용하는데 어려움이 있었다.Development of industrial strains for the production of bio-based plastics produced for the purpose of replacing petroleum-derived plastics have been studied extensively. In this connection, nylon monomers, such as cadverine, putrescine, may be used as an active ingredient in Escherichia coli or Corynebacterium (European Patent Publication No. 2540836; Qian ZG, et al., Biotechnol (2002)), which has been applied to industrial strains such as glutamic acid and glutamicum by fermentation from glucose or xylose by applying a metabolic engineering method Bioeng . 2009 Nov 1; 104 (4): 651-62; Qian ZG, et al., Biotechnol Bioeng . 2011 Jan; 108 (1): 93-103). However, when such a method is used, productivity and concentration are relatively inefficient and thus it has been difficult to utilize it industrially.

최근 이를 극복하기 위해, 여러 회사에서 대량 생산되고 있는 전구체인 라이신(L-lysine)으로부터 전세포 반응을 통해 고농도의 카다베린(cadaverine) 생산을 한 사례가 보고되었다(Ma W, et al., Biotechnol Lett . 2015 Apr;37(4):799-806). 그러나 이러한 방법은 활성이 좋고 고농도 반응을 진행할 수는 있지만, 효소의 활성이 쉽게 잃어버리게 되는 경향이 있기 때문에 효소를 재사용 해야하는 데 있어서 문제점이 있었다.Recently, in order to overcome this problem, a case has been reported in which a high concentration of cadaverine is produced by a whole-cell reaction from lysine (L-lysine), which is a mass-produced precursor in several companies (Ma W, et al., Biotechnol Lett . 2015 Apr; 37 (4): 799-806). However, this method has a problem in reusing the enzyme because it tends to lose activity of the enzyme easily although the activity is good and the reaction can be carried out at a high concentration.

한편, 고농도 반응에서 디카르복실라아제(lysine decarboxylase) 과발현 대장균 전세포가 한두 번의 반응으로 인하여 활성이 저해되는 현상이 있으며, 이를 극복하기 위하여 디카르복실라아제(lysine decarboxylase) 과발현 대장균 전세포를 여러 번 활용할 수 있는 시스템을 만들어야 하며, 이를 위하여 고정화 방법을 사용할 수 있다.On the other hand, in a high concentration reaction, the activity of the whole cell of E. coli overexpressing lysine decarboxylase is inhibited by one or two reactions. In order to overcome this phenomenon, the whole cell of lysine decarboxylase-overexpressing E. coli You need to create a system that can be used many times, and you can use the immobilization method.

이와 관련하여, 효소 고정화를 위해서 일반적으로 쓰이는 방법으로는 칼슘-알지네이트(Ca-alginate) 담체를 이용하는 경우가 많다. 하지만, 라이신(L-lysine)에서 카다베린(cadaverine) 전환 반응의 경우, 칼슘-알지네이트(Ca-alginate)로 고정화를 하였을 때, 고농도의 라이신(L-lysine) 또는 카다베린(cadaverine)에 의한 고정화 담체의 용해에 의해 고정화 담체의 재사용이 거의 불가능하였다.In this connection, a calcium-alginate carrier is often used as a generally used method for enzyme immobilization. However, when cadaverine conversion reaction is carried out in L-lysine, when Ca-alginate is immobilized, immobilization with high concentration of lysine or cadaverine Reuse of the immobilized carrier by the dissolution of the carrier was almost impossible.

따라서, 본 발명자들은 고농도의 카다베린 대량생산을 목적으로 고농도의 기질로부터 효소의 활성을 유지하고 안정성 및 반복적인 재사용을 가능하게 하기 위해 전세포 효소를 바륨-알지네이트(Barium-alginate) 담체에 고정화하는 방법을 개발함으로써 본 발명을 완성하였다.Therefore, the present inventors have found that, in order to maintain the activity of the enzyme from a high concentration of substrate for the purpose of mass production of cadaverine at a high concentration and to enable stability and repeated reuse, the whole cell enzyme is immobilized on a barium-alginate carrier The present invention has been completed.

본 발명의 목적은 기존의 전세포 반응을 통해 카다베린 생산 방법의 낮은 효율성 및 효소의 재사용의 어려운 점을 극복하기 위해, 디카르복실라아제(lysine decarboxylase) 과발현 대장균 전세포를 바륨-알지네이트(Barium-alginate) 담체에 고정화시키는 방법 및 이를 이용하여 카다베린을 대량으로 생산하는 방법을 제공하는 것이다. It is an object of the present invention to overcome the difficulties of low efficiency of the production method of cadaverine and reuse of enzymes through the existing whole cell reaction and to overcome the difficulty of reusing the enzymes by using whole cells of lysine decarboxylase overexpressing barium-alginate -alginate carrier, and a method for mass-producing cadaverine using the same.

상기 목적을 달성하기 위하여, 본 발명은 라이신 디카르복실라아제(lysine decarboxylase, cadA) 유전자가 대장균에 도입되어 제조된, 카다베린(cadaverine) 생산용 재조합 대장균를 제공한다.In order to achieve the above object, the present invention provides a recombinant Escherichia coli for producing cadaverine, which is produced by introducing a lysine decarboxylase (cadA) gene into E. coli.

또한, 본 발명은 In addition,

1) 대장균(Escherichia coli)에서 유래된 라이신 디카르복실라아제(lysine decarboxylase, cadA) 유전자를 포함하는 발현벡터를 제조하는 단계; 및1) Escherichia coli) the lysine decarboxylase (lysine decarboxylase, cadA) derived from the step of producing an expression vector comprising the gene; And

2) 상기 단계 1)의 발현벡터를 대장균에 형질전환시키는 단계를 포함하는, 카다베린(cadaverine) 생산용 재조합 대장균의 제조방법을 제공한다.2) a step of transforming the expression vector of step 1) into E. coli, which comprises preparing a recombinant E. coli for producing cadaverine.

또한, 본 발명은 본 발명에 따른 라이신 디카르복실라아제 과발현 재조합 대장균을 바륨-알지네이트(Barium-alginate) 담체에 고정화시키는 방법을 제공한다.The present invention also provides a method for immobilizing lysine dicarboxylase overexpressing recombinant Escherichia coli on a barium-alginate carrier according to the present invention.

또한, 본 발명은 본 발명에 따른 라이신 디카르복실라아제 과발현 재조합 대장균이 바륨-알지네이트(Barium-alginate) 담체에 고정화된, 고정화 재조합 대장균을 제공한다.The present invention also provides immobilized recombinant Escherichia coli, wherein the lysine dicarboxylase overexpressing recombinant Escherichia coli according to the present invention is immobilized on a barium-alginate carrier.

아울러, 본 발명은 In addition,

1) 본 발명에 따른 라이신 디카르복실라아제 과발현 재조합 대장균을 바륨-알지네이트(Barium-alginate) 담체에 고정화시키는 단계; 및1) immobilizing lysine dicarboxylase overexpressing recombinant Escherichia coli according to the present invention on a barium-alginate carrier; And

2) 상기 단계 1)의 고정화된 재조합 대장균을 배양한 배양액으로부터 카다베린을 회수하는 단계;를 포함하는 카다베린 대량생산 방법을 제공한다.2) recovering the cadaverine from the culture medium in which the immobilized recombinant E. coli of step 1) has been cultured.

본 발명을 통해 라이신 디카르복실라아제(lysine decarboxylase, cadA) 유전자를 대장균에 도입한 재조합 대장균을 이용하여 라이신(L-lysine)으로부터 고농도의 카다베린(cadaverine)을 생산할 수 있다. In accordance with the present invention, a high concentration of cadaverine can be produced from L-lysine using recombinant Escherichia coli obtained by introducing lysine decarboxylase (cadA) gene into E. coli.

또한, 본 발명을 활용하면 기존의 칼슘-알지네이트(Calcium-alginate) 담체를 이용한 고정화 방법을 적용할 시, 고농도의 라이신(L-lysine)과 카다베린(cadaverine)에 의해 담체가 용해되어 재사용성에 문제가 있었던 고정화 방법을 개선할 수 있으므로 카다베린(cadaverine)의 생산성을 높일 수 있다.In addition, when the present invention is applied, when the immobilization method using a conventional calcium-alginate carrier is applied, the carrier dissolves due to high concentrations of lysine and cadaverine, Can be improved, so that the productivity of cadaverine can be increased.

도 1은 대장균(Escherichia coli) 유래의 라이신 디카르복실라아제(lysine decarboxylase, cadA)를 포함하는 pET-24ma(+) 벡터 맵(Vector map)을 나타내는 그림이다.
도 2는 대장균(Escherichia coli) 유래 라이신 디카르복실라아제(lysine decarbpxylase)의 발현 및 크기를 SDS-PAGE로 확인한 결과를 보여주는 그림이다.
도 3은 BaCl2 또는 CaCl2로 고정화한 담체를 1M 라이신(lysine) 반응을 진행하였을 때, CaCl2의 경우 담체의 용해 현상이 일어나는 것에 비해 BaCl2를 담체로 사용하였을 경우 용해 현상이 일어나지 않음을 보여주는 그림이다.
도 4는 고정화되지 않은 세포와 BaCl2 또는 CaCl2로 고정화된 세포의 시간에 따른 카다베린(cadaverine) 전환율을 보여주는 그래프이다.
도 5는 고정화되지 않은 세포와 BaCl2 또는 CaCl2로 고정화된 세포의 18번 반복실험을 진행하였을 시, 각 회차에 따른 카다베린(cadaverine) 전환율을 보여주는 그래프이다.
도 6은 다양한 농도의 BaCl2로 고정화했을 때, 상대적인 효소 활성을 비교한 그래프이다.
도 7은 다양한 크기의 담체를 고정화했을 때, 상대적인 효소 활성을 비교한 그래프이다.
Figure 1 is a schematic representation of an Escherichia coli (+) vector map including a lysine decarboxylase (cadA) derived from E. coli .
Fig. 2 is a graph The lysine decarbpylase expression and size of E. coli- derived lysine decarbpylase were confirmed by SDS-PAGE.
FIG. 3 shows that when the carrier immobilized with BaCl 2 or CaCl 2 is subjected to a 1M lysine reaction, dissolution of the carrier occurs in the case of CaCl 2 , but dissolution does not occur when BaCl 2 is used as the carrier It is a picture showing.
FIG. 4 is a graph showing the cadaverine conversion rates of immobilized cells and cells immobilized with BaCl 2 or CaCl 2 with time. FIG.
FIG. 5 is a graph showing the conversion of cadaverine according to each cycle when 18 immobilized cells and cells immobilized with BaCl 2 or CaCl 2 were subjected to repeated experiments.
FIG. 6 is a graph comparing relative enzyme activities when immobilized with various concentrations of BaCl 2. FIG.
Figure 7 is a graph comparing relative enzyme activities when immobilizing carriers of various sizes.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 라이신 디카르복실라아제(lysine decarboxylase, cadA) 단백질 과발현 재조합 대장균을 바륨-알지네이트(Barium-alginate) 담체에 고정화시키는 방법을 제공한다.The present invention provides a method for immobilizing a lysine decarboxylase (cadA) protein overexpressing recombinant Escherichia coli on a barium-alginate carrier.

또한, 본 발명은 라이신 디카르복실라아제 과발현 재조합 대장균이 바륨-알지네이트 담체에 고정화된, 고정화 재조합 대장균을 제공한다.The present invention also provides immobilized recombinant Escherichia coli having lysine dicarboxylase overexpressing recombinant Escherichia coli immobilized on a barium-alginate carrier.

상기 재조합 대장균은 라이신 디카르복실라아제를 암호화하는 유전자(cadA 유전자)가 도입된 벡터로 숙주 대장균에 형질전환시켜 제조된 균주이다.The recombinant E. coli is a gene encoding lysine decarboxylase ( cadA Gene) into a host E. coli strain.

상기 cadA 유전자는 대장균(Escherichia coli)에서 유래된 유전자인 것이 바람직하다.The cadA gene is expressed by Escherichia It is preferable that the gene is derived from E. coli .

상기 cadA 유전자는 서열번호 1의 염기서열로 구성되는 것이 바람직하나 이에 한정되는 것은 아니며, 상기 서열번호 1에서 하나 또는 둘 이상의 유전자가 추가, 결실 또는 치환된 염기서열로 구성될 수 있다.The cadA gene is preferably composed of the nucleotide sequence of SEQ ID NO: 1, but is not limited thereto. In the nucleotide sequence of SEQ ID NO: 1, one or two or more genes may be added, deleted or substituted.

상기 숙주 대장균은 E. coli BL21인 것이 바람직하나 이에 한정되지 않으며 대장균 종은 모두 가능하다.The host E. coli preferably is E. coli BL21, but is not limited thereto, and E. coli species are all possible.

상기 고정화시 사용되는, 바륨-알지네이트 담체의 농도는 0.1 내지 0.6 M로 사용이 가능지만, 담체 농도가 0.1 M일 경우 약한 외부 충격에도 담체의 파손이 되는 경우가 있기 때문에 담체 재사용성에 영향을 주게 된다. 따라서 바륨-알지네이트 담체의 농도는 0.2 M 내지 0.6 M로 사용하는 것이 바람직하고, 0.2 M인 것이 더욱 바람직 하다.The concentration of the barium-alginate carrier used in the immobilization may be 0.1 to 0.6 M. However, when the carrier concentration is 0.1 M, the carrier may be damaged even in the presence of a weak external impact, thereby affecting the reusability of the carrier . Therefore, the concentration of the barium-alginate carrier is preferably 0.2 M to 0.6 M, more preferably 0.2 M.

상기 고정화시 사용되는, 바륨-알지네이트 담체의 크기는 직경 1 내지 5 mm인 것이 바람직하고, 2 mm인 것이 더욱 바람직하다.The size of the barium-alginate carrier used in the immobilization is preferably 1 to 5 mm in diameter, and more preferably 2 mm.

상기 고정화 방법은 재조합 대장균을 배양하여 라이신 디카르복실라아제를 발현시킨 후, 세포를 희석한 세포 용액과 알긴산나트륨 용액을 혼합한 다음, 고정화 담체인 BaCl2을 첨가시키는 것으로 수행될 수 있다.The immobilization method can be performed by culturing the recombinant E. coli to express lysine decarboxylase, mixing the diluted cell solution with the sodium alginate solution, and then adding BaCl 2 as the immobilization support.

또한, 본 발명은 바륨-알지네이트 담체에 고정화된 라이신 디카르복실라아제 단백질 과발현 재조합 대장균을 이용하여 카다베린을 대량 생산하는 방법을 제공한다.The present invention also provides a method for mass-producing cadaverine using recombinant E. coli overexpressing lysine decarboxylase protein immobilized on a barium-alginate carrier.

상기 카다베린 생산은 재조합 대장균을 배치(batch) 또는 연속 공정(Continuous process)을 통해 생산할 수 있다.The production of the cadaverine can be produced by batch or continuous process of recombinant E. coli.

구체적으로, 상기 카다베린 생산 방법은Specifically, the cadaverine production method

1) 본 발명에 따른 재조합 대장균을 배양하여 라이신 디카르복실라아제 단백질을 과발현하는 단계; 1) culturing the recombinant E. coli according to the present invention to overexpress the lysine decarboxylase protein;

2) 상기 단계 1)에서 배양된 라이신 디카르복실라아제(lysine decarboxylase) 단백질이 과발현된 재조합 대장균을 바륨-알지네이트(Barium-alginate) 담체에 고정화시키는 단계; 및2) immobilizing the recombinant Escherichia coli overexpressing the lysine decarboxylase protein cultured in the step 1) on a barium-alginate carrier; And

3) 상기 단계 2)에서 고정화된 재조합 대장균을 배양한 배양액으로부터 카다베린을 회수하는 단계;로 구성될 수 있다.3) recovering the cadaverine from the culture solution in which the immobilized recombinant E. coli has been cultured in the step 2).

상기 방법에 있어서, 단계 1)의 배양은 호기성 조건에서 20 ~ 40℃의 온도로 2일 ~ 5일 동안 배양하는 것이 바람직하고, 호기성 조건에서 30℃의 온도로 24 ~ 72시간 동안 배양하는 것이 더욱 바람직하나 이에 한정되는 것은 아니다.In this method, the culture of step 1) is preferably carried out under aerobic conditions at a temperature of 20 to 40 DEG C for 2 to 5 days, and it is more preferable to culture for 24 to 72 hours at a temperature of 30 DEG C under an aerobic condition But is not limited thereto.

상기 방법에 있어서, 단계 2)의 고정화시 사용되는 BaCl2의 농도는 0.1 내지 0.6 mM인 것이 바람직하다. In the above method, the concentration of BaCl 2 used in the immobilization of step 2) is preferably 0.1 to 0.6 mM.

상기 방법에 있어서, 단계 2)의 고정화 담체의 크기는 직경 1 내지 5 mm인 것이 바람직하고, 2 mm인 것이 더욱 바람직하다.In the above method, the size of the immobilization support of step 2) is preferably 1 to 5 mm in diameter, more preferably 2 mm.

또한, 본 발명은 라이신 디카르복실라아제 유전자가 대장균에 도입된, 카다베린 생산용 재조합 대장균을 제공한다.The present invention also provides a recombinant Escherichia coli for producing cadaverine, wherein a lysine decarboxylase gene is introduced into E. coli.

아울러, 본 발명은In addition,

1) 라이신 디카르복실라아제 유전자를 포함하는 발현벡터를 제조하는 단계; 및1) preparing an expression vector containing a lysine decarboxylase gene; And

2) 상기 단계 1)의 발현벡터를 대장균에 형질전환시키는 단계를 포함하는, 카다베린 생산용 재조합 대장균의 제조방법을 제공한다.2) transforming the expression vector of step 1) into Escherichia coli. The present invention also provides a method for producing recombinant Escherichia coli for cadaverine production.

상기 방법에 있어서, 단계 1)의 cadA 유전자는 서열번호 1의 염기서열로 구성되는 것이 바람직하나 이에 한정되는 것은 아니며, 상기 서열번호 1에서 하나 또는 둘 이상의 유전자가 추가, 결실 또는 치환된 염기서열로 구성될 수 있다.In the above method, the cadA gene of step 1) is preferably composed of the nucleotide sequence of SEQ ID NO: 1, but not limited thereto, and the nucleotide sequence in which one or two or more genes of SEQ ID NO: 1 are added, deleted or substituted Lt; / RTI >

상기 방법에 있어서, 단계 1)의 발현벡터는 pET-24ma 플라스미드를 이용하는 것이 바람직하나 이에 한정되는 것은 아니며, 대장균에서 발현하는 모든 바이러스 벡터 또는 비바이러스 벡터가 모두 사용가능하다.In this method, the expression vector of step 1) is preferably a pET-24ma plasmid, but not limited thereto, and all viral vectors or non-viral vectors expressing in E. coli can be used.

상기 방법에 있어서, 단계 2)의 대장균은 E. coli BL21인 것이 바람직하나 이에 한정되지 않으며 대장균 종은 모두 가능하다.In the above method, the E. coli of step 2) is preferably E. coli BL21, but is not limited thereto, and all E. coli species are possible.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. Advantages and features of the present invention and methods of achieving them will become apparent with reference to the embodiments described in detail below.

그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있을 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.The present invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art. It is provided to fully inform the category of invention to a knowledgeable person.

라이신Lysine 디카르복실라아제(lysine  Dicarboxylase (lysine decarboxylasedecarboxylase ) 과발현 재조합 대장균의 제조) Production of Overexpressed Recombinant Escherichia coli

<1-1> 형질전환체의 제조&Lt; 1-1 > Preparation of transformant

Echerichia coli K12 MG1655 (KCCM 41310)에서 게놈(genome)을 분리한 후, 라이신 디카르복실라아제(lysine decarboxylase, cadA)를 암호화하는 유전자를 분리 및 정제하였다. 이때, 상기 유전자는 다음과 같은 염기서열로 구성되었다. Echerichia After isolating the genome from E. coli K12 MG1655 (KCCM 41310), a gene encoding lysine decarboxylase (cadA) was isolated and purified. At this time, the gene was composed of the following base sequences.

ATGAACGTTATTGCAATATTGAATCACATGGGGGTTTATTTTAAAGAAGAACCCATCCGTATGAACGTTATTGCAATATTGAATCACATGGGGGTTTATTTTAAAGAAGAACCCATCCGT

GAACTTCATCGCGCGCTTGAACGTCTGAACTTCCAGATTGTTTACCCGAACGACCGTGAC GAACTTCATCGCGCGCTTGAACGTCTGAACTTCCAGATTGTTTACCCGAACGACCGTGAC

GACTTATTAAAACTGATCGAAAACAATGCGCGTCTGTGCGGCGTTATTTTTGACTGGGAT GACTTATTAAAACTGATCGAAAACAATGCGCGTCTGTGCGGCGTTATTTTTGACTGGGAT

AAATATAATCTCGAGCTGTGCGAAGAAATTAGCAAAATGAACGAGAACCTGCCGTTGTAC SEARCH

GCGTTCGCTAATACGTATTCCACTCTCGATGTAAGCCTGAATGACCTGCGTTTACAGATT Gt;

AGCTTCTTTGAATATGCGCTGGGTGCTGCTGAAGATATTGCTAATAAGATCAAGCAGACC AGCTTCTTTGAATATGCGCTGGGTGCTGCTGAAGATATTGCTAATAAGATCAAGCAGACC

ACTGACGAATATATCAACACTATTCTGCCTCCGCTGACTAAAGCACTGTTTAAATATGTT ACTGACGAATATATCAACACTATTCTGCCTCCGCTGACTAAAGCACTGTTTAAATATGTT

CGTGAAGGTAAATATACTTTCTGTACTCCTGGTCACATGGGCGGTACTGCATTCCAGAAA CGTGAAGGTAAATATACTTTCTGTACTCCTGGTCACATGGGCGGTACTGCATTCCAGAAA

AGCCCGGTAGGTAGCCTGTTCTATGATTTCTTTGGTCCGAATACCATGAAATCTGATATT AGCCCGGTAGGTAGCCTGTTCTATGATTTCTTTGGTCCGAATACCATGAAATCTGATATT

TCCATTTCAGTATCTGAACTGGGTTCTCTGCTGGATCACAGTGGTCCACACAAAGAAGCA TCCATTTCAGTATCTGAACTGGGTTCTCTGCTGGATCACAGTGGTCCACACAAAGAAGCA

GAACAGTATATCGCTCGCGTCTTTAACGCAGACCGCAGCTACATGGTGACCAACGGTACT GAACAGTATATCGCTCGCGTCTTTAACGCAGACCGCAGCTACATGGTGACCAACGGTACT

TCCACTGCGAACAAAATTGTTGGTATGTACTCTGCTCCAGCAGGCAGCACCATTCTGATT TCCACTGCGAACAAAATTGTTGGTATGTACTCTGCTCCAGCAGGCAGCACCATTCTGATT

GACCGTAACTGCCACAAATCGCTGACCCACCTGATGATGATGAGCGATGTTACGCCAATC GACCGTAACTGCCACAAATCGCTGACCCACCTGATGATGATGAGCGATGTTACGCCAATC

TATTTCCGCCCGACCCGTAACGCTTACGGTATTCTTGGTGGTATCCCACAGAGTGAATTC TATTTCCGCCCGACCCGTAACGCTTACGGTATTCTTGGTGGTATCCCACAGAGTGAATTC

CAGCACGCTACCATTGCTAAGCGCGTGAAAGAAACACCAAACGCAACCTGGCCGGTACAT CAGCACGCTACCATTGCTAAGCGCGTGAAAGAAACACCAAACGCAACCTGGCCGGTACAT

GCTGTAATTACCAACTCTACCTATGATGGTCTGCTGTACAACACCGACTTCATCAAGAAA Gt

ACACTGGATGTGAAATCCATCCACTTTGACTCCGCGTGGGTGCCTTACACCAACTTCTCA ACACTGGATGTGAAATCCATCCACTTTGACTCCGCGTGGGTGCCTTACACCAACTTCTCA

CCGATTTACGAAGGTAAATGCGGTATGAGCGGTGGCCGTGTAGAAGGGAAAGTGATTTAC CCGATTTACGAAGGTAAATGCGGTATGAGCGGTGGCCGTGTAGAAGGGAAAGTGATTTAC

GAAACCCAGTCCACTCACAAACTGCTGGCGGCGTTCTCTCAGGCTTCCATGATCCACGTT GAAACCCAGTCCACTCACAAACTGCTGGCGGCGTTCTCTCAGGCTTCCATGATCCACGTT

AAAGGTGACGTAAACGAAGAAACCTTTAACGAAGCCTACATGATGCACACCACCACTTCT AAAGGTGACGTAAACGAAGAAACCTTTAACGAAGCCTACATGATGCACACCACCACTTCT

CCGCACTACGGTATCGTGGCGTCCACTGAAACCGCTGCGGCGATGATGAAAGGCAATGCA CCGCACTACGGTATCGTGGCGTCCACTGAAACCGCTGCGGCGATGATGAAAGGCAATGCA

GGTAAGCGTCTGATCAACGGTTCTATTGAACGTGCGATCAAATTCCGTAAAGAGATCAAA GGTAAGCGTCTGATCAACGGTTCTATTGAACGTGCGATCAAATTCCGTAAAGAGATCAAA

CGTCTGAGAACGGAATCTGATGGCTGGTTCTTTGATGTATGGCAGCCGGATCATATCGAT CGTCTGAGAACGGAATCTGATGGCTGGTTCTTTGATGTATGGCAGCCGGATCATATCGAT

ACGACTGAATGCTGGCCGCTGCGTTCTGACAGCACCTGGCACGGCTTCAAAAACATCGAT ACGACTGAATGCTGGCCGCTGCGTTCTGACAGCACCTGGCACGGCTTCAAAAACATCGAT

AACGAGCACATGTATCTTGACCCGATCAAAGTCACCCTGCTGACTCCGGGGATGGAAAAA AACGAGCACATGTATCTTGACCCGATCAAAGTCACCCTGCTGACTCCGGGGATGGAAAAAA

GACGGCACCATGAGCGACTTTGGTATTCCGGCCAGCATCGTGGCGAAATACCTCGACGAA GACGGCACCATGAGCGACTTTGGTATTCCGGCCAGCATCGTGGCGAAATACCTCGACGAA

CATGGCATCGTTGTTGAGAAAACCGGTCCGTATAACCTGCTGTTCCTGTTCAGCATCGGT CATGGCATCGTTGTTGAGAAAACCGGTCCGTATAACCTGCTGTTCCTGTTCAGCATCGGT

ATCGATAAGACCAAAGCACTGAGCCTGCTGCGTGCTCTGACTGACTTTAAACGTGCGTTC ATCGATAAGACCAAAGCACTGAGCCTGCTGCGTGCTCTGACTGACTTTAAACGTGCGTTC

GACCTGAACCTGCGTGTGAAAAACATGCTGCCGTCTCTGTATCGTGAAGATCCTGAATTC GACCTGAACCTGCGTGTGAAAAACATGCTGCCGTCTCTGTATCGTGAAGATCCTGAATTC

TATGAAAACATGCGTATTCAGGAACTGGCTCAGAATATCCACAAACTGATTGTTCACCAC TATGAAAACATGCGTATTCAGGAACTGGCTCAGAATATCCACAAACTGATTGTTCACCAC

AATCTGCCGGATCTGATGTATCGCGCATTTGAAGTGCTGCCGACGATGGTAATGACTCCG AATCTGCCGGATCTGATGTATCGCGCATTTGAAGTGCTGCCGACGATGGTAATGACTCCG

TATGCTGCATTCCAGAAAGAGCTGCACGGTATGACCGAAGAAGTTTACCTCGACGAAATG TATGCTGCATTCCAGAAAGAGCTGCACGGTATGACCGAAGAAGTTTACCTCGACGAAATG

GTAGGTCGTATTAACGCCAATATGATCCTTCCGTACCCGCCGGGAGTTCCTCTGGTAATG GTAGGTCGTATTAACGCCAATATGATCCTTCCGTACCCGCCGGGAGTTCCTCTGGTAATG

CCGGGTGAAATGATCACCGAAGAAAGCCGTCCGGTTCTGGAGTTCCTGCAGATGCTGTGT CCGGGTGAAATGATCACCGAAGAAAGCCGTCCGGTTCTGGAGTTCCTGCAGATGCTGTGT

GAAATCGGCGCTCACTATCCGGGCTTTGAAACCGATATTCACGGTGCATACCGTCAGGCT GAAATCGGCGCTCACTATCCGGGCTTTGAAACCGATATTCACGGTGCATACCGTCAGGCT

GATGGCCGCTATACCGTTAAGGTATTGAAAGAAGAAAGCAAAAAATAA(서열번호: 1) GATGGCCGCTATACCGTTAAGGTATTGAAAGAAGAAAGCAAAAAATAA (SEQ ID NO: 1)

그런 다음, 상기 정제한 cadA 유전자를 pET-24ma 플라스미드 (히로시 사카모토, 파리)에 클로닝하였다(도 1). 그런 다음, 상기 클로닝된 pET-24ma 플라스미드를 E.coli BL21(λDE3) (Novagen®)에 형질전환시켰다. Then, the purified cadA gene was cloned into pET-24ma plasmid (Hiroshi Sakamoto, Paris) (Fig. 1). The cloned pET-24ma plasmid was then transformed into E. coli BL21 (lambda DE3) (Novagen®).

<1-2> <1-2> 라이신Lysine 디카르복실라아제의 발현 확인 Expression of dicarboxylase

상기 형질전환된 E.coli를 LB 플레이트(plate)에 스트리킹하였다. 그런 다음, 24시간 동안 37℃의 인큐베이터에서 배양한 후 단일 콜로니(single colony)를 획득하여 LB 배지 5 ml에 전배양하였다(호기성 조건, 37℃, 200 rpm, 24시간 배양). 그런 다음, 카나마이신(50μl/ml)이 들어 있는 LB 50ml에 전배양액 500μl를 접종한 후, 30℃, 200rpm에서 균체량이 OD600nm 0.6일 때, IPTG의 최종 농도가 0.1 mM이 되게끔 IPTG를 첨가한 후, 30℃, 200rpm에서 오버 나잇으로 본배양을 하였다. 그런 다음, 24시간 후 세포를 1 ml 채취하여, 13000 g에서 원심분리 후 상등액을 버린 후에, 100 μl Bugbuster(Novagen®)를 처리한 후, 37℃에 1시간 배양하였다.The transformed E. coli was streaked on an LB plate. Then, after culturing in an incubator at 37 ° C for 24 hours, a single colony was obtained and pre-cultured in 5 ml of LB medium (aerobic condition, 37 ° C, 200 rpm, 24 hours culture). Then, 500 μl of the preculture was inoculated in 50 ml of LB containing kanamycin (50 μl / ml), IPTG was added to the final concentration of IPTG at 0.1 mM at 30 ° C. and 200 rpm at OD 600 nm 0.6 , 30 ° C, 200 rpm overnight. After 24 hours, 1 ml of cells were collected. After centrifugation at 13000 g, the supernatant was discarded, and then treated with 100 μl of Bugbuster (Novagen®), followed by incubation at 37 ° C for 1 hour.

세포 용해액을 13000g에서 원심분리한 후, 상등액 16 μl과 5x SDS-PAGE 로딩 버퍼 4 μl를 섞어준 후, 100℃에서 5분간 끓여 주어 시료 전처리를 하였다. 상기 전처리 된 시료를 12% SDS-PAGE에 로딩하여 120V 700mA의 전류를 2시간 동안 흘려 주어 전개를 한 후, SDS-PAGE 겔을 염색 용액(0.1% Coomassie Brilliant Blue R-250, 50% 메탄올 및 10% 빙초산(glacial acetic acid)에 1시간 동안 염색시켰다.After centrifuging the cell lysate at 13000 g, 16 μl of the supernatant and 4 μl of 5x SDS-PAGE loading buffer were mixed and boiled for 5 minutes at 100 ° C for sample pretreatment. The pretreated sample was loaded on a 12% SDS-PAGE and developed with 120V 700 mA current for 2 hours. SDS-PAGE gel was then stained with a staining solution (0.1% Coomassie Brilliant Blue R-250, 50% Gt; glacial &lt; / RTI &gt; acetic acid for 1 hour.

그 후 염색된 SDS-PAGE 겔을 탈색(50% 메탄올 및 10% 빙초산 용액에 2시간 동안 탈색을 하여 80 kDa 세포 용해액을 13000g에서 원심분리한 후, 상등액 16μl과 5x SDS-PAGE 로딩 버퍼 4 μl를 섞어준 후, 100℃에서 5분간 끓여 주어 시료 전처리를 하였다. 상기 전처리된 시료를 12% SDS-PAGE에 로딩하여 120V 700mA의 전류를 2시간 동안 흘려 주어 전개를 한 후, SDS-PAGE 겔을 염색 용액(0.1% Coomassie Brilliant Blue R-250, 50% 메탄올 및 10% 빙초산(glacial acetic acid)에 1시간 동안 염색시켰다.The stained SDS-PAGE gel was then decolorized (50% methanol and 10% glacial acetic acid decolorized for 2 hours, centrifuged at 13000 g for 80 kDa cell lysate, and then 16 μl of supernatant and 4 μl of 5x SDS-PAGE loading buffer The pre-treated sample was loaded on 12% SDS-PAGE, developed by flowing 120V 700 mA current for 2 hours, and then subjected to SDS-PAGE gel The staining solution was stained with 0.1% Coomassie Brilliant Blue R-250, 50% methanol and 10% glacial acetic acid for 1 hour.

그 후 염색된 SDS-PAGE 겔을 탈색(50% 메탄올 및 10% 빙초산 용액에 2시간 동안 탈색을 하여 80 kDa 부근에서 단백질 밴드를 확인하여 상기 균주가 라이신 디카르복실라아제를 과발현하는 것을 확인하였다(도 2).Then, the stained SDS-PAGE gel was discolored (decolorized in 50% methanol and 10% glacial acetic acid solution for 2 hours to confirm the protein band near 80 kDa, confirming that the strain overexpressed lysine decarboxylase (Fig. 2).

제조합My combination 대장균의 바륨  Barium of E. coli 알지네이트Alginate 담체를The carrier 이용한 고정화 Immobilization using

<2-1> 바륨 <2-1> Barium 알지네이트Alginate 담체를The carrier 이용한 고정화 Immobilization using

상기 <실시예 1>에서 제조된 형질전환된 E. coli를 LB 플레이트(plate)에 스트리킹하였다. 그런 다음, 24시간 동안 37℃의 인큐베이터에서 배양한 후 단일 콜로니(single colony)를 획득하여 LB 배지 5 ml에 전배양하였다(호기성 조건, 37℃, 200 rpm, 24시간 배양). 그런 다음, 전배양한 세포를 LB 배지 50 ml에 0.5 ml 접종한 후 배양하여 단백질을 발현시켰다(호기성 조건, 37℃, 200 rpm, 24시간 배양, 초기접종 3시간 후 1 M IPTG 5 μl 첨가). 세포를 증류수로 2번 배지를 세척한 후, 세포의 농도가 15 mg/mL dcw이 되게끔 희석하였다. 그런 다음 2.5 %의 알긴산나트륨(sodium alginate) 용액이 되게끔, 2.5 ml 세포 용액과 2.5ml의 5% 알긴산나트륨 용액을 혼합하여 주었다. 그런 다음 30 ml 주사기(한국백신, korea)에 옮겨 담은 후, 고정화 담체의 형성을 위해 주사기 펌프(LSP01, Longer)를 이용하여 0.2 M의 CaCl2 또는 BaCl2에 한 방울씩 떨어뜨려 주었다. 고정화 담체의 크기는 2 mm가 되게끔 펌프의 속도를 조절하여 제조하였다. The transformed E. coli prepared in Example 1 was streaked on an LB plate. Then, after culturing in an incubator at 37 ° C for 24 hours, a single colony was obtained and pre-cultured in 5 ml of LB medium (aerobic condition, 37 ° C, 200 rpm, 24 hours culture). Then, the pre-cultured cells were inoculated with 0.5 ml of LB medium (50 ml) and cultured to express the protein (aerobic condition, 37 ° C, 200 rpm, culture for 24 hours, added with 5 μl of 1 M IPTG after 3 hours of inoculation) . Cells were washed twice with distilled water and diluted to a cell concentration of 15 mg / mL dcw. Then 2.5 ml of the cell solution and 2.5 ml of the 5% sodium alginate solution were mixed to make a 2.5% solution of sodium alginate. Then, it was transferred to a 30 ml syringe (Korean vaccine, korea), and dropped to 0.2 M of CaCl 2 or BaCl 2 by using a syringe pump (LSP01, Longer) to form an immobilized carrier. The size of the immobilized carrier was adjusted by adjusting the pump speed to 2 mm.

각각 생성된 칼슘 알지네이트 고정화 담체와 바륨 알지네이트 담체를 전세포의 무게가 0.3 mg 에 해당하는 양이 되게끔 사용하였고, 각각의 성분의 최종 농도가 0.1 mM Pyridoxal 5'-phosphate, 1M lysine, 500 mM pH 6.0을 맞춘 후, 1.7 ml 마이크로 튜브(Axygen, USA)에 최종 부피 500 μl을 만들어 주었다.The resulting calcium alginate-immobilized carrier and barium alginate carrier were used so that the total cell weight was equivalent to 0.3 mg. The final concentration of each component was 0.1 mM Pyridoxal 5'-phosphate, 1 M lysine, 500 mM pH 6.0, and a final volume of 500 μl was made in 1.7 ml microtube (Axygen, USA).

그런 다음, 37℃ 항온수조(BioFree, korea)에서 1시간 동안 반응을 시켰고, 반응이 끝난 후, 증류수로 2번 고정화 담체에 묻어있는 기질들을 세척한 후, 위의 조성대로 다시 조합하여, 반복적으로 반응을 진행하였다.Subsequently, the reaction was carried out in a constant temperature water bath (BioFree, Korea) at 37 ° C. for 1 hour. Subsequently, the substrates immersed in the immobilized carrier twice with distilled water were washed, The reaction proceeded.

그 결과, 고농도의 라이신 존재하에 고정화된 담체를 9번 이상 반복 사용하였을 때, 칼슘 알지네이트의 경우 비드가 용해되는 현상을 확인할 수 있었다. 하지만, 바륨-알지네이트 담체의 경우, 9 이상의 반복적인 고농도 전환 반응에도 고정화 담체의 용해 현상이 일어나지 않아, 회수가 용이하였다(도 3). As a result, when the carrier immobilized in the presence of a high concentration of lysine was repeatedly used 9 times or more, it was confirmed that the bead was dissolved in the case of calcium alginate. However, in the case of the barium-alginate carrier, dissolution of the immobilization support did not occur even at a high concentration of 9 or more conversion reaction, and recovery was easy (FIG. 3).

또한, 고정화 담체에 따른 효소 활성 영향을 보기 위해, 상기 방법을 통해 생성된 칼슘 알지네이트 고정화 담체와 바륨 알지네이트 담체 그리고 고정화되지 않은 전세포 이용하여 시간에 따른 카다베린 생성 농도를 비교하였다.In order to examine the effect of the enzyme activity on the immobilized carrier, the concentration of the calcium alginate-immobilized carrier, barium alginate carrier, and unimmobilized whole cell produced through the above method were compared with each other to determine the concentration of cadaverine over time.

모든 반응은 전세포의 무게가 0.3 mg 에 해당하는 양이 되게끔 사용하였고, 각각의 성분의 최종 농도가 0.1 mM Pyridoxal 5'-phosphate, 1M lysine, 500 mM pH 6.0을 맞춘 후, 1.7 ml 마이크로 튜브(Axygen, USA)에 최종 부피 500 μl을 만든 후 37℃ 항온수조(BioFree, korea)에서 반응을 진행하였다. 0분, 30분, 60분, 120분, 180분 마다 샘플링을 하여 카다베린 생성 농도를 HPLC를 통해 분석을 하였다. All reactions were carried out so that the total cell weight was equivalent to 0.3 mg. After the final concentration of each component was adjusted to 0.1 mM Pyridoxal 5'-phosphate, 1 M lysine, 500 mM pH 6.0, (Axygen, USA), and the reaction was carried out at 37 ° C in a constant temperature bath (BioFree, Korea). The samples were collected at 0, 30, 60, 120, and 180 minutes to analyze the concentration of the produced catarrhine by HPLC.

그 결과, 칼슐-알지네이트 고정화 담체의 경우, 고정화되지 않은 원래 전세포에 대비해 61%의 상대적 카다베린 전환률을 보여 라이신 디카르복실라아제(lysine decarboxylase)의 활성이 39% 낮아진 것을 확인할 수 있었다. 이에 반해, 바륨-알지네이트 고정화 담체의 경우, 고정화되지 않은 전세포에 대비해 78%의 상대적 카다베린 전환률을 보여 라이신 디카르복실라아제(lysine decarboxylase)의 활성 감소가 칼슘-알지네이트 담체 대비 17% 정도 덜 저감된 것을 확인하였다(도 4).As a result, it was confirmed that the activity of the lysine decarboxylase was reduced by 39% in the case of the capsule-alginate-immobilized carrier, as compared with that of the original immobilized cell. On the other hand, in the case of the barium-alginate-immobilized support, the relative conversion of cadaverine to 78% relative to immobilized whole cells was observed, indicating that the decrease in activity of lysine decarboxylase was 17% less than that of calcium-alginate carrier (FIG. 4).

또한, 고정화 방법에 따라 효소 활성 감소가 어떻게 차이가 나는지 확인하기 위해, 상기 방법을 통해 생성된 칼슘 알지네이트 고정화 담체와 바륨 알지네이트 담체 그리고 고정화되지 않은 전세포 이용하여 재사용 횟수에 따른 라이신 디카르복실라아제(lysine decarboxylase)의 활성 저감 정도를 확인하였다.Further, in order to confirm how the enzyme activity decreases depending on the immobilization method, the calcium alginate-immobilized carrier and barium alginate carrier produced through the above method, and the lysine decarboxylase according to the number of re- (lysine decarboxylase).

모든 반응은 전세포의 무게가 0.3 mg에 해당하는 양이 되게끔 사용하였고, 각각의 성분의 최종 농도가 0.1 mM Pyridoxal 5'-phosphate, 1M lysine, 500 mM pH 6.0을 맞춘 후, 1.7 ml 마이크로 튜브(Axygen, USA)에 최종 부피 500 μl을 만들어 주었다. 그런 다음, 37℃ 항온수조(BioFree, korea)에서 1시간 동안 반응을 시켰고, 반응이 끝난 후, 증류수로 2번 고정화 담체에 묻어있는 기질들을 세척한 후, 위의 조성대로 다시 조합하여, 반복적으로 반응을 진행하였다.All reactions were carried out so that the total cell weight was equivalent to 0.3 mg. After the final concentration of each component was adjusted to 0.1 mM Pyridoxal 5'-phosphate, 1 M lysine, 500 mM pH 6.0, (Axygen, USA) to a final volume of 500 μl. Subsequently, the reaction was carried out in a constant temperature water bath (BioFree, Korea) at 37 ° C. for 1 hour. Subsequently, the substrates immersed in the immobilized carrier twice with distilled water were washed, The reaction proceeded.

그 결과, 고정화되지 않은 전세포 와 칼슘 알지네이트 고정화 담체의 경우, 고농도 반응이 10번 이상 반복되었을 때, 라이신 디카르복실라아제(lysine decarboxylase)의 활성을 보이지 않는 것을 확인할 수 있었다.As a result, it was confirmed that the lysine decarboxylase activity was not observed when the immobilized whole cells and the calcium alginate-immobilized carrier were repeated 10 times or more at a high concentration.

반면, 바륨-알지네이트 고정화 담체의 경우, 19번의 반복적인 고농도 전환 반응에서도 라이신 디카르복실라아제 활성이 50% 정도로 유지가 되는 것을 확인할 수 있었다(도 5).On the other hand, in the case of the barium-alginate-immobilized carrier, it was confirmed that the lysine decarboxylase activity was maintained at about 50% even at the high-concentration conversion reaction repeated 19 times (FIG. 5).

따라서, 고농도 카다베린 전환 반응에 있어서, 바륨-알지네이트를 이용한 전세포 고정화 방법이 상대적으로 좋은 고정화 방법임을 확인하였다.Therefore, it was confirmed that the whole cell immobilization method using barium-alginate was a relatively good immobilization method in the high concentration cadaverine conversion reaction.

<2-2> 바륨-&Lt; 2-2 > 알지네이트Alginate (Barium-alginate) (Barium-alginate) 담체carrier 제조의 최적화 Optimization of manufacturing

바륨-알지네이트(Barium-alginate) 담체의 제조시, 효소 활성에 영향을 줄 수 있는 요소 중의 한가지로는 고정화 담체 형성에 사용되는 BaCl2 농도가 있다. 그래서 다양한 농도의 BaCl2를 이용하여 고정화를 진행한 후, 상대적인 효소활성을 비교하였다. One of the factors that may influence the enzyme activity in the preparation of barium-alginate carriers is the BaCl 2 concentration used for immobilization support formation. After immobilization with various concentrations of BaCl 2 , relative enzyme activities were compared.

상기 <실시예 1>에서 제조된 형질전환된 E. coli를 LB 플레이트(plate)에 스트리킹하였다. 그런 다음, 24시간 동안 37℃의 인큐베이터에서 배양한 후 단일 콜로니(single colony)를 획득하여 LB 배지 5 ml에 전배양하였다(호기성 조건, 37℃, 200 rpm, 24시간 배양). 그런 다음, 전배양한 세포를 LB 배지 50 ml에 0.5 ml 접종한 후 배양하여 단백질을 발현시켰다(호기성 조건, 37℃, 200 rpm, 24시간 배양, 초기접종 3시간 후 1 M IPTG 5 μl 첨가). 세포를 증류수로 2번 배지를 세척한 후, 세포의 농도가 15 mg/mL dcw이 되게끔 희석하였다. 그런 다음 2.5 %의 알긴산나트륨(sodium alginate) 용액이 되게끔, 2.5 ml 세포 용액과 2.5 ml의 5% 알긴산나트륨 용액을 혼합하여 주었다. 그런 다음 30 ml 주사기(한국백신,korea)에 옮겨 담은 후, 고정화 담체의 형성을 위해 주사기 펌프(LSP01, Longer)를 이용하여 0.1, 0.2, 0.4, 0.6, 0.8 M에 해당하는 BaCl2에 한 방울씩 떨어뜨려 주었다. 고정화 담체의 크기는 2 mm가 되게끔 펌프의 속도를 조절하여 제조하였다. The transformed E. coli prepared in Example 1 was streaked on an LB plate. Then, after culturing in an incubator at 37 ° C for 24 hours, a single colony was obtained and pre-cultured in 5 ml of LB medium (aerobic condition, 37 ° C, 200 rpm, 24 hours culture). Then, the pre-cultured cells were inoculated with 0.5 ml of LB medium (50 ml) and cultured to express the protein (aerobic condition, 37 ° C, 200 rpm, culture for 24 hours, added with 5 μl of 1 M IPTG after 3 hours of inoculation) . Cells were washed twice with distilled water and diluted to a cell concentration of 15 mg / mL dcw. Then 2.5 ml of cell solution and 2.5 ml of 5% sodium alginate solution were added to make a 2.5% solution of sodium alginate. After transferring to a 30-ml syringe (Korean vaccine, korea), a drop of 0.1, 0.2, 0.4, 0.6, and 0.8 M BaCl 2 was applied to the immobilized carrier using a syringe pump (LSP01, Longer) I dropped it. The size of the immobilized carrier was adjusted by adjusting the pump speed to 2 mm.

E. coli K12 MG1655 유래의 라이신 디카르복실라아제(lysine decarboxylase)가 과발현된 대장균체 용액은 얼음에서 해동한 후 0.3 mg에 해당하는 양을 사용하였고, 각각의 성분의 최종 농도가 0.1 mM Pyridoxal 5'-phosphate, 1M lysine, 500 mM pH 6.0을 맞춘 후, 1.7 ml 마이크로 튜브(Axygen, USA)에 최종 부피 500 μl을 만들어 주었다. 그런 다음, 37℃, water bath(BioFree, korea)에서 2시간 동안 반응을 시킨 후 HPLC를 이용하여 분석하였다. E. coli The E. coli solution overexpressing the lysine decarboxylase derived from K12 MG1655 was dissolved in ice to a concentration of 0.3 mg, and the final concentration of each component was 0.1 mM Pyridoxal 5'-phosphate , 1 M lysine, 500 mM pH 6.0, and then a final volume of 500 μl was made in 1.7 ml microtube (Axygen, USA). Then, the reaction was carried out at 37 ° C in a water bath (BioFree, Korea) for 2 hours and analyzed using HPLC.

그 결과, 고정화 담체 형성에 영향을 주는 BaCl2 농도가 증가함에 따라, 라이신 디카르복실라아제(lyisne decarboxylase)의 상대적인 활성이 감소하는 것을 확인 할수 있었고, 0.8 M부터는 상대적인 활성이 26 % 정도로 급감하는 것을 확인 할 수 있었다. 그리고, BaCl2의 농도가 낮아짐에 따라 이신 디카르복실라아제(lyisne decarboxylase)의 상대적인 활성 감소가 줄어드는 양상을 보였다. 하지만, BaCl2 농도가 0.2 M 미만일 경우 약한 충격에도 고정화 담체가 쉽게 손상이 되어, 고정화 담체의 회수가 쉽지 않았다(도 6).As a result, it was confirmed that the relative activity of lysine decarboxylase decreased with increasing BaCl 2 concentration affecting immobilization support formation, and relative activity decreased rapidly to about 26% at 0.8 M . As the concentration of BaCl 2 decreased, the relative activity of lysine decarboxylase decreased. However, when the BaCl 2 concentration is less than 0.2 M, the immobilization support is easily damaged even under a slight impact, and recovery of the immobilization support is not easy (FIG. 6).

또한, 효소 활성에 영향을 줄 수 있는 또 다른 요소로는 담체의 크기가 될 수 있다. 그래서 다양한 크기의 고정화 담체를 제조하여 동일 무게당 상대적인 효소 활성을 비교하였다. In addition, another factor that may affect enzyme activity may be the size of the carrier. Thus, immobilized carriers of various sizes were prepared and the relative enzyme activity per weight was compared.

상기 <실시예 1>에서 제조된 형질전환된 E. coli를 LB 플레이트(plate)에 스트리킹하였다. 그런 다음, 24시간 동안 37℃의 인큐베이터에서 배양한 후 단일 콜로니(single colony)를 획득하여 LB 배지 5 ml에 전배양하였다(호기성 조건, 37℃, 200 rpm, 24시간 배양). 그런 다음, 전배양한 세포를 LB 배지 50 ml에 0.5 ml 접종한 후 배양하여 단백질을 발현시켰다(호기성 조건, 37℃, 200 rpm, 24시간 배양, 초기접종 3시간 후 1 M IPTG 5 μl 첨가). 세포를 증류수로 2번 배지를 세척한 후, 세포의 농도가 15 mg/mL dcw이 되게끔 희석하였다. 그런 다음 2.5 %의 알긴산나트륨(sodium alginate) 용액이 되게끔, 2.5 ml 세포 용액과 2.5 ml의 5% 알긴산나트륨 용액을 혼합하여 주었다. 그런 다음 30 ml 주사기(한국백신, korea)에 옮겨 담은 후, 고정화 담체의 형성을 위해 주사기 펌프(LSP01, Longer)를 이용하여 0.2 M의 BaCl2에 한 방울씩 떨어뜨려 주었다. 고정화 담체의 크기는 1, 2, 3, 4, 5 mm 가 되게끔 펌프의 속도를 조절하여 제조하였다.The transformed E. coli prepared in Example 1 was streaked on an LB plate. Then, after culturing in an incubator at 37 ° C for 24 hours, a single colony was obtained and pre-cultured in 5 ml of LB medium (aerobic condition, 37 ° C, 200 rpm, 24 hours culture). Then, the pre-cultured cells were inoculated with 0.5 ml of LB medium (50 ml) and cultured to express the protein (aerobic condition, 37 ° C, 200 rpm, culture for 24 hours, added with 5 μl of 1 M IPTG after 3 hours of inoculation) . Cells were washed twice with distilled water and diluted to a cell concentration of 15 mg / mL dcw. Then 2.5 ml of cell solution and 2.5 ml of 5% sodium alginate solution were added to make a 2.5% solution of sodium alginate. Then, it was transferred to a 30 ml syringe (Korean vaccine, korea), and dropped to 0.2 M of BaCl 2 by using a syringe pump (LSP01, Longer) to form an immobilized carrier. The size of immobilized carrier was 1, 2, 3, 4, 5 mm.

각각 생성된 바륨 알지네이트 담체를 전세포의 무게가 0.3 mg 에 해당하는 양이 되게끔 사용하였고, 각각의 성분의 최종 농도가 0.1 mM Pyridoxal 5'-phosphate, 1M lysine, 500 mM pH 6.0을 맞춘 후, 1.7 ml 마이크로 튜브(Axygen, USA)에 최종 부피 500μl을 만들어 주었다. 그런 다음, 37℃ 항온수조(BioFree, korea)에서 1시간 동안 반응을 시켰고, 반응이 끝난 후 HPLC를 이용하여 분석하였다.The resulting barium alginate carrier was used in an amount corresponding to 0.3 mg of total cells. The final concentration of each component was adjusted to 0.1 mM Pyridoxal 5'-phosphate, 1 M lysine, 500 mM pH 6.0, A final volume of 500 μl was made in a 1.7 ml microtube (Axygen, USA). Then, the reaction was carried out in a constant temperature water bath (BioFree, korea) at 37 ° C for 1 hour and analyzed by HPLC after completion of the reaction.

그 결과, 고정화 담체 사이즈에 따라 라이신 디카르복실라아제(lysine decarboxylase)의 차이가 최대 21%까지 차이가 났고, 고정화 담체의 사이즈가 2 mm일 때 가장 좋은 상대적 효소활성을 보이는 것으로 나타났다. 하지만, 이 결과는 사이즈가 효소 활성에는 막대한 영향을 미치는 것으로 생각이 되어 다양한 사이즈의 고정화 담체에서도 활용이 가능할 것으로 생각된다(도 7).As a result, the difference in lysine decarboxylase was found to differ by up to 21% depending on the immobilized carrier size, and the best relative enzyme activity was shown when the immobilized carrier size was 2 mm. However, this result suggests that the size may have a great influence on the enzyme activity, so that it can be utilized in immobilized carriers of various sizes (FIG. 7).

<2-3> 카다베린 활성측정을 위한 분석 방법&Lt; 2-3 > Analytical Method for Measurement of Cadaviner Activity

고정화된 전세포의 활성을 비교하기 위해서, 디아민(diamine) 혹은 아미노산 분석에 활용이 가능한 DEEMM(diethyl ethoxy methyl malonate) 유도체화를 수행하였다. In order to compare the activity of immobilized whole cells, the derivatization of diethyl ethoxy methyl malonate (DEEMM), which can be used for diamine or amino acid analysis, was performed.

디에틸에톡시메틸말론산 3 ㎕를 1.7 ml 마이크로 튜브(Axygen, USA)로 옮긴 후, 메탄올 100 ㎕, 50 mM pH9의 보레이트 버퍼(borate buffer) 300 ㎕, 증류수 47 ㎕를 혼합한 후, 10 mM의 디아민 또는 아미노산 표준용액 50 ㎕를 혼합물이 들어 있는 1.7 ml 마이크로 튜브(Axygen, USA)로 옮긴 후, 70℃에서 두 시간 동안 반응시켰다.3 μl of diethylethoxymethylmalonic acid was transferred to a 1.7 ml microtube (Axygen, USA), and then 100 μl of methanol, 300 μl of a borate buffer of 50 mM pH 9 and 47 μl of distilled water were mixed, and 10 mM Of diamine or amino acid standard solution was transferred to a 1.7 ml microtube (Axygen, USA) containing the mixture and reacted at 70 ° C for 2 hours.

시료 분리 및 검출의 향상을 위하여, 다음과 같은 HPLC(YL9100 system, 영린기기, Korea) 조건으로 분석을 수행하였다. 컬럼은 Capcell Pack®(5μ C18 UG 120, 4.6 x 250 mm; Shiseido Co.,Ltd., Japan)을 사용하였고, 컬럼의 온도는 35℃로, 유속은 1 ml/min 조건으로 셋팅하였으며, 다양한 유기용매들 중에서 극성도가 가장 낮은 아세토니트릴(acetonitrile)을 사용함과 동시에, 25 mM 소듐 아세테이트 (sodium acetate)를 완충 용액으로 사용하였고, 초산을 이용하여 pH를 4.8로 조절하였다.For the improvement of sample separation and detection, the following HPLC (YL9100 system, Youngin Instrument, Korea) conditions were analyzed. The temperature of the column was set to 35 ° C and the flow rate was set to 1 ml / min, and various organic compounds were added to the column. Among the solvents, acetonitrile having the lowest polarity was used, and 25 mM sodium acetate was used as a buffer solution, and the pH was adjusted to 4.8 using acetic acid.

폴리아마이드계 나일론 단량체인 디아민의 성분들의 피크들이 겹치지 않고, 최적으로 분리될 수 있는 조건을 고정상과 이동상 및 성분들의 극성 차이를 고려하여 하기 표 1과 같이 설정하였다.The peaks of the diamine components of the polyamide-based nylon monomer do not overlap, and conditions for optimum separation are set as shown in Table 1 in consideration of the polarity difference between the fixed phase, the moving phase and the components.

시간(분)Time (minutes) 아세토니트릴(%)Acetonitrile (%) 25 mM 소디움 아세테이트(%)25 mM sodium acetate (%) 00 2020 8080 22 2525 7575 3232 6060 4040 3535 2020 8080

본 발명에 의해 생산한 라이신 디카르복실라아제(lysine decarboxylase)의 경우 향후 라이신(L-lysine)으로부터 나일론 단량체인 카다베린(cadaverine) 전환에 적용시킬 수 있으며, 고농도 반응의 가능성으로 인해 정제나 생산성에 있어서 상당한 효율성을 가지게 된다. 또한, 이렇게 생성된 담체는 전환 반응 이후 회수가 용이하고, 여러 차례의 반응을 하여도 효소활성을 일정 수준으로 유지할 수 있기 때문에, 나일론 단량체인 카다베린의 생산비용 절감에 큰 영향을 줄 것으로 기대 된다. Lysine decarboxylase produced by the present invention can be applied to the conversion of cadaverine, a nylon monomer, from L-lysine in the future. Due to the possibility of high concentration of the lysine decarboxylase, And thus has a considerable efficiency. In addition, since the carrier thus produced is easy to recover after the conversion reaction and the enzyme activity can be maintained at a constant level even after several times of reaction, it is expected that the production cost of the nadyl monomer, cadaverine, will be greatly reduced .

<110> Konkuk University Industrial Cooperation Corp Sejong Industry-Academia Cooperation Foundation Hongik University <120> A Method for production of cadaverin by immobilization of lysine decarboxylase-overexpressing recombinant E. coli using barium-alginate <130> 10-2015-0166441 <160> 1 <170> KoPatentIn 3.0 <210> 1 <211> 2148 <212> DNA <213> Artificial Sequence <220> <223> lysine decarboxylase(cadA) of Echerichia coli K12 MG1655 <400> 1 atgaacgtta ttgcaatatt gaatcacatg ggggtttatt ttaaagaaga acccatccgt 60 gaacttcatc gcgcgcttga acgtctgaac ttccagattg tttacccgaa cgaccgtgac 120 gacttattaa aactgatcga aaacaatgcg cgtctgtgcg gcgttatttt tgactgggat 180 aaatataatc tcgagctgtg cgaagaaatt agcaaaatga acgagaacct gccgttgtac 240 gcgttcgcta atacgtattc cactctcgat gtaagcctga atgacctgcg tttacagatt 300 agcttctttg aatatgcgct gggtgctgct gaagatattg ctaataagat caagcagacc 360 actgacgaat atatcaacac tattctgcct ccgctgacta aagcactgtt taaatatgtt 420 cgtgaaggta aatatacttt ctgtactcct ggtcacatgg gcggtactgc attccagaaa 480 agcccggtag gtagcctgtt ctatgatttc tttggtccga ataccatgaa atctgatatt 540 tccatttcag tatctgaact gggttctctg ctggatcaca gtggtccaca caaagaagca 600 gaacagtata tcgctcgcgt ctttaacgca gaccgcagct acatggtgac caacggtact 660 tccactgcga acaaaattgt tggtatgtac tctgctccag caggcagcac cattctgatt 720 gaccgtaact gccacaaatc gctgacccac ctgatgatga tgagcgatgt tacgccaatc 780 tatttccgcc cgacccgtaa cgcttacggt attcttggtg gtatcccaca gagtgaattc 840 cagcacgcta ccattgctaa gcgcgtgaaa gaaacaccaa acgcaacctg gccggtacat 900 gctgtaatta ccaactctac ctatgatggt ctgctgtaca acaccgactt catcaagaaa 960 acactggatg tgaaatccat ccactttgac tccgcgtggg tgccttacac caacttctca 1020 ccgatttacg aaggtaaatg cggtatgagc ggtggccgtg tagaagggaa agtgatttac 1080 gaaacccagt ccactcacaa actgctggcg gcgttctctc aggcttccat gatccacgtt 1140 aaaggtgacg taaacgaaga aacctttaac gaagcctaca tgatgcacac caccacttct 1200 ccgcactacg gtatcgtggc gtccactgaa accgctgcgg cgatgatgaa aggcaatgca 1260 ggtaagcgtc tgatcaacgg ttctattgaa cgtgcgatca aattccgtaa agagatcaaa 1320 cgtctgagaa cggaatctga tggctggttc tttgatgtat ggcagccgga tcatatcgat 1380 acgactgaat gctggccgct gcgttctgac agcacctggc acggcttcaa aaacatcgat 1440 aacgagcaca tgtatcttga cccgatcaaa gtcaccctgc tgactccggg gatggaaaaa 1500 gacggcacca tgagcgactt tggtattccg gccagcatcg tggcgaaata cctcgacgaa 1560 catggcatcg ttgttgagaa aaccggtccg tataacctgc tgttcctgtt cagcatcggt 1620 atcgataaga ccaaagcact gagcctgctg cgtgctctga ctgactttaa acgtgcgttc 1680 gacctgaacc tgcgtgtgaa aaacatgctg ccgtctctgt atcgtgaaga tcctgaattc 1740 tatgaaaaca tgcgtattca ggaactggct cagaatatcc acaaactgat tgttcaccac 1800 aatctgccgg atctgatgta tcgcgcattt gaagtgctgc cgacgatggt aatgactccg 1860 tatgctgcat tccagaaaga gctgcacggt atgaccgaag aagtttacct cgacgaaatg 1920 gtaggtcgta ttaacgccaa tatgatcctt ccgtacccgc cgggagttcc tctggtaatg 1980 ccgggtgaaa tgatcaccga agaaagccgt ccggttctgg agttcctgca gatgctgtgt 2040 gaaatcggcg ctcactatcc gggctttgaa accgatattc acggtgcata ccgtcaggct 2100 gatggccgct ataccgttaa ggtattgaaa gaagaaagca aaaaataa 2148 <110> Konkuk University Industrial Cooperation Corp          Sejong Industry-Academia Cooperation Foundation Hongik University <120> A method for production of cadaverin by immobilization of lysine          decarboxylase-overexpressing recombinant E. coli using          barium-alginate <130> 10-2015-0166441 <160> 1 <170> KoPatentin 3.0 <210> 1 <211> 2148 <212> DNA <213> Artificial Sequence <220> <223> lysine decarboxylase (cadA) of Echerichia coli K12 MG1655 <400> 1 atgaacgtta ttgcaatatt gaatcacatg ggggtttatt ttaaagaaga acccatccgt 60 gaacttcatc gcgcgcttga acgtctgaac ttccagattg tttacccgaa cgaccgtgac 120 gacttattaa aactgatcga aaacaatgcg cgtctgtgcg gcgttatttt tgactgggat 180 aaatataatc tcgagctgtg cgaagaaatt agcaaaatga acgagaacct gccgttgtac 240 gcgttcgcta atacgtattc cactctcgat gtaagcctga atgacctgcg tttacagatt 300 agcttctttg aatatgcgct gggtgctgct gaagatattg ctaataagat caagcagacc 360 actgacgaat atatcaacac tattctgcct ccgctgacta aagcactgtt taaatatgtt 420 cgtgaaggta aatatacttt ctgtactcct ggtcacatgg gcggtactgc attccagaaa 480 gt; tccatttcag tatctgaact gggttctctg ctggatcaca gtggtccaca caaagaagca 600 gaacagtata tcgctcgcgt ctttaacgca gaccgcagct acatggtgac caacggtact 660 tccactgcga acaaaattgt tggtatgtac tctgctccag caggcagcac cattctgatt 720 gccgtaact gccacaaatc gctgacccac ctgatgatga tgagcgatgt tacgccaatc 780 tatttccgcc cgacccgtaa cgcttacggt attcttggtg gtatcccaca gagtgaattc 840 cagcacgcta ccattgctaa gcgcgtgaaa gaaacaccaa acgcaacctg gccggtacat 900 gctgtaatta ccaactctac ctatgatggt ctgctgtaca acaccgactt catcaagaaa 960 acactggatg tgaaatccat ccactttgac tccgcgtggg tgccttacac caacttctca 1020 ccgatttacg aaggtaaatg cggtatgagc ggtggccgtg tagaagggaa agtgatttac 1080 gaaacccagt ccactcacaa actgctggcg gcgttctctc aggcttccat gatccacgtt 1140 aaaggtgacg taaacgaaga aacctttaac gaagcctaca tgatgcacac caccacttct 1200 ccgcactacg gtatcgtggc gtccactgaa accgctgcgg cgatgatgaa aggcaatgca 1260 ggtaagcgtc tgatcaacgg ttctattgaa cgtgcgatca aattccgtaa agagatcaaa 1320 cgtctgagaa cggaatctga tggctggttc tttgatgtat ggcagccgga tcatatcgat 1380 acgactgaat gctggccgct gcgttctgac agcacctggc acggcttcaa aaacatcgat 1440 aacgagcaca tgtatcttga cccgatcaaa gtcaccctgc tgactccggg gatggaaaaa 1500 gcggcacca tgagcgactt tggtattccg gccagcatcg tggcgaaata cctcgacgaa 1560 catggcatcg ttgttgagaa aaccggtccg tataacctgc tgttcctgtt cagcatcggt 1620 atcgataaga ccaaagcact gagcctgctg cgtgctctga ctgactttaa acgtgcgttc 1680 gacctgaacc tgcgtgtgaa aaacatgctg ccgtctctgt atcgtgaaga tcctgaattc 1740 tatgaaaaca tgcgtattca ggaactggct cagaatatcc acaaactgat tgttcaccac 1800 aatctgccgg atctgatgta tcgcgcattt gaagtgctgc cgacgatggt aatgactccg 1860 tatgctgcat tccagaaaga gctgcacggt atgaccgaag aagtttacct cgacgaaatg 1920 gtaggtcgta ttaacgccaa tatgatcctt ccgtacccgc cgggagttcc tctggtaatg 1980 ccgggtgaaa tgatcaccga agaaagccgt ccggttctgg agttcctgca gatgctgtgt 2040 gaaatcggcg ctcactatcc gggctttgaa accgatattc acggtgcata ccgtcaggct 2100 gatggccgct ataccgttaa ggtattgaaa gaagaaagca aaaaataa 2148

Claims (10)

라이신 디카르복실라아제(lysine decarboxylase) 단백질 과발현 재조합 대장균을 바륨-알지네이트(Barium-alginate) 담체에 고정화시키는 방법.
A method for immobilizing recombinant E. coli overexpressing lysine decarboxylase protein on a barium-alginate carrier.
제 1항에 있어서, 상기 라이신 디카르복실라아제는 대장균으로부터 유래된 것을 특징으로 하는 방법.
The method according to claim 1, wherein the lysine decarboxylase is derived from E. coli.
제 1항에 있어서, 상기 라이신 디카르복실라아제는 서열번호 1의 염기서열에 의해 암호화되는 것을 특징으로 하는 방법.
2. The method of claim 1, wherein the lysine decarboxylase is encoded by the nucleotide sequence of SEQ ID NO: 1.
제 1항에 있어서, 바륨-알지네이트 담체의 농도는 0.2 내지 0.6 M인 것을 특징으로 하는 방법.
The method according to claim 1, wherein the concentration of the barium-alginate carrier is 0.2 to 0.6 M.
제 1항에 있어서, 바륨-알지네이트 담체의 크기는 직경 1 내지 5 mm인 것을 특징으로 하는 방법.
The method of claim 1 wherein the size of the barium-alginate carrier is 1 to 5 mm in diameter.
삭제delete 바륨-알지네이트 담체에 고정화된 라이신 디카르복실라아제 단백질 과발현 재조합 대장균을 이용하여 카다베린을 대량 생산하는 방법.
A method for mass production of cadaverine using recombinant Escherichia coli overexpressing lysine dicarboxylase protein immobilized on a barium-alginate carrier.
제 7항에 있어서, 상기 카다베린은 재조합 대장균을 배치(batch) 또는 연속 공정(Continuous process)을 통해 생산하는 것을 특징으로 하는 방법.
8. The method according to claim 7, wherein the cadaverine is produced through a batch process or a continuous process.
삭제delete 삭제delete
KR1020150166441A 2015-11-26 2015-11-26 A Method for production of cadaverin by immobilization of lysine decarboxylase-overexpressing recombinant E. coli using barium-alginate Active KR101722984B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150166441A KR101722984B1 (en) 2015-11-26 2015-11-26 A Method for production of cadaverin by immobilization of lysine decarboxylase-overexpressing recombinant E. coli using barium-alginate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150166441A KR101722984B1 (en) 2015-11-26 2015-11-26 A Method for production of cadaverin by immobilization of lysine decarboxylase-overexpressing recombinant E. coli using barium-alginate

Publications (1)

Publication Number Publication Date
KR101722984B1 true KR101722984B1 (en) 2017-04-07

Family

ID=58583306

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150166441A Active KR101722984B1 (en) 2015-11-26 2015-11-26 A Method for production of cadaverin by immobilization of lysine decarboxylase-overexpressing recombinant E. coli using barium-alginate

Country Status (1)

Country Link
KR (1) KR101722984B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102788164B1 (en) 2023-12-29 2025-04-01 국민대학교산학협력단 Genetically recombinant hafnia alvei and cadaverine production method using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120021491A (en) * 2010-08-03 2012-03-09 한국과학기술원 Varient microorganism having cadaverine producing ability and method for preparing cadaverine using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120021491A (en) * 2010-08-03 2012-03-09 한국과학기술원 Varient microorganism having cadaverine producing ability and method for preparing cadaverine using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IRANIAN JOURNAL of BIOTECHNOLOGY, Vol. 6, No. 1, pp. 16-21 (2008.01.)* *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102788164B1 (en) 2023-12-29 2025-04-01 국민대학교산학협력단 Genetically recombinant hafnia alvei and cadaverine production method using the same

Similar Documents

Publication Publication Date Title
Pérez-García et al. Fermentative production of L‐pipecolic acid from glucose and alternative carbon sources
KR101940647B1 (en) The novel Lysine Decarboxylase and Process for producing cadeverine using the same
ES2949045T3 (en) New lysine decarboxylase and method to produce cadaverine using the same
EP3712262B1 (en) Transaminase mutant and application thereof
CN113278569A (en) Plasmid-free and inducer-free gene engineering bacterium for producing D-pantothenic acid and construction method
US20250043323A1 (en) Biocatalysts and methods for the synthesis of pregabalin intermediates
KR101722984B1 (en) A Method for production of cadaverin by immobilization of lysine decarboxylase-overexpressing recombinant E. coli using barium-alginate
CN110951664A (en) A kind of recombinant Corynebacterium glutamicum and its application in producing 2-pyrrolidone
WO2023035527A1 (en) Engineered microorganism for production olivetol and olivetolic acid
WO2023035396A1 (en) Olivetol synthetase variant and engineered microorganism expressing same
CN111088203B (en) Recombinant corynebacterium glutamicum capable of producing lysine and construction method and application thereof
CN113462669A (en) Ketone pantoate hydroxymethyltransferase mutant, coding gene and application thereof
KR101807775B1 (en) Producing method of cadaverin by recycling of pyridoxal-5-phosphate with pyridoxal kinase
US20240318166A1 (en) Method for producing plasmid dna using escherichia coli
KR101873541B1 (en) A Method for continuedly production of large volume cadaverine using immobilized carrier and lysine decarboxylase―overexpressing recombinant E.coli
CN117004547A (en) Genetically engineered bacterium for synthesizing cis, cis-muconic acid from glucose as substrate and application thereof
JP6837014B2 (en) New transaminase and deamination method of amino compounds using it
CN119570708B (en) Application of L-amino acid transporter or its encoding gene in improving the ability of Escherichia coli to produce L-amino acids
CN118291557B (en) Coenzyme A transferase, screening method thereof and application thereof in P34HB synthesis
CN111793615B (en) Engineered polypeptides and their use in the synthesis of tyrosine or tyrosine derivatives
CN114276970B (en) Genetically engineered bacterium for producing 1, 3-propylene glycol
US20240240210A9 (en) Recombinant microorganism and a method for itaconic acid production
US20250215470A1 (en) Genetically modified microorganism producing black dyes and method for producing black dyes
CN118325802A (en) Construction method and application of recombinant escherichia coli for synthesizing melanin
CN118374429A (en) Coenzyme Q10-producing genetically engineered bacterium and application thereof

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20151126

PA0201 Request for examination
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20160920

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20170308

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20170329

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20170330

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20201223

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20220328

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20240807

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20250430

Start annual number: 9

End annual number: 9