KR101707536B1 - 컨트롤 조직 부재 샘플 내 낮은 빈도의 체성 결손 검출 방법 - Google Patents
컨트롤 조직 부재 샘플 내 낮은 빈도의 체성 결손 검출 방법 Download PDFInfo
- Publication number
- KR101707536B1 KR101707536B1 KR1020140162533A KR20140162533A KR101707536B1 KR 101707536 B1 KR101707536 B1 KR 101707536B1 KR 1020140162533 A KR1020140162533 A KR 1020140162533A KR 20140162533 A KR20140162533 A KR 20140162533A KR 101707536 B1 KR101707536 B1 KR 101707536B1
- Authority
- KR
- South Korea
- Prior art keywords
- defect
- somatic
- defects
- candidate
- genetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000000392 somatic effect Effects 0.000 title claims abstract description 112
- 238000000034 method Methods 0.000 title claims abstract description 66
- 238000012217 deletion Methods 0.000 title claims abstract description 25
- 230000037430 deletion Effects 0.000 title claims abstract description 25
- 230000007547 defect Effects 0.000 claims abstract description 172
- 238000001514 detection method Methods 0.000 claims abstract description 53
- 230000009395 genetic defect Effects 0.000 claims abstract description 48
- 238000012163 sequencing technique Methods 0.000 claims abstract description 31
- 208000014644 Brain disease Diseases 0.000 claims abstract description 21
- 230000002950 deficient Effects 0.000 claims abstract description 15
- 230000007812 deficiency Effects 0.000 claims abstract description 14
- 230000006735 deficit Effects 0.000 claims description 47
- 210000001519 tissue Anatomy 0.000 claims description 32
- 239000002773 nucleotide Substances 0.000 claims description 7
- 125000003729 nucleotide group Chemical group 0.000 claims description 7
- 108091081062 Repeated sequence (DNA) Proteins 0.000 claims description 6
- 238000007476 Maximum Likelihood Methods 0.000 claims description 5
- 210000000577 adipose tissue Anatomy 0.000 claims description 2
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 230000037396 body weight Effects 0.000 claims 1
- 239000013068 control sample Substances 0.000 abstract description 2
- 210000005013 brain tissue Anatomy 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 44
- 238000009826 distribution Methods 0.000 description 15
- 206010028980 Neoplasm Diseases 0.000 description 14
- 201000011510 cancer Diseases 0.000 description 14
- 230000035772 mutation Effects 0.000 description 13
- 238000004088 simulation Methods 0.000 description 13
- 239000000523 sample Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 9
- 230000008520 organization Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 7
- 230000004055 genetic distribution Effects 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 238000012795 verification Methods 0.000 description 6
- 238000004422 calculation algorithm Methods 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 210000004602 germ cell Anatomy 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- 210000004958 brain cell Anatomy 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000000698 schizophrenic effect Effects 0.000 description 3
- 208000003174 Brain Neoplasms Diseases 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 1
- 206010065163 Clonal evolution Diseases 0.000 description 1
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000012268 genome sequencing Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000007481 next generation sequencing Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000025366 tissue development Effects 0.000 description 1
- 238000012070 whole genome sequencing analysis Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B30/00—ICT specially adapted for sequence analysis involving nucleotides or amino acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B25/00—ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B5/00—ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B99/00—Subject matter not provided for in other groups of this subclass
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/70—Machine learning, data mining or chemometrics
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/80—Data visualisation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/90—Programming languages; Computing architectures; Database systems; Data warehousing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Theoretical Computer Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- Biotechnology (AREA)
- Databases & Information Systems (AREA)
- Computing Systems (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Data Mining & Analysis (AREA)
- Biophysics (AREA)
- Evolutionary Biology (AREA)
- Public Health (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biomedical Technology (AREA)
- Software Systems (AREA)
- Wood Science & Technology (AREA)
- Epidemiology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Primary Health Care (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Immunology (AREA)
- Physiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
본 발명에 따른 체성 결손 검출 방법은, 정상 세포 및 뇌질환을 포함하는 질병 세포의 혼합 조직을 시퀀싱한 시퀀싱 데이터 입력 단계; 상기 입력된 시퀀싱 데이터에 대해 변칙 맵 판독기법(anomaly mapped read) 기법을 적용하여 결손 후보들을 검출하는 단계; 상기 검출된 결손 후보들 각각에 대해 반복 서열에 의해 발생한 것인지를 판단하여 거짓 양성 검출을 제거하는 단계; 및, 거짓 양성 검출을 제거하고 남은 결손 후보들에 대해, 조직의 전체 지놈 중 유전 결손과 체성 결손을 포함하고 있는 지놈의 비를 정의한 p={pg, ps}와 전체 결손 대비 유전 결손과 체성 결손의 비를 정의한 λ={λg, λs}를 이용한 확률 모델을 기반으로 추정 매개 변수값을 산출하고, 상기 추정 매개 변수값을 이용하여 체성 결손의 존재 여부를 판단하는 단계 (여기서 상기 pg는 유전 결손에 대한 매개 변수이고, 상기 ps는 체성 결손에 대한 매개 변수이며, 상기 λg는 전체 결손 대비 유전 결손의 비이고, 상기 λs는 전체 결손 대비 체성 결손의 비임)를 포함하는 것을 특징으로 한다.
Description
도 2는 종래 기술의 암 연구에서 사용되는 체성 결손 검출 기술의 기본 원리가 도시된 도,
도 3은 종래 기술에 따른 뇌질환에서의 체성 결손 검출의 문제점을 보여주는 도,
도 4는 본 발명의 일 실시예에 따른 체성 결손 검출 방법이 도시된 도,
도 5는 변칙 맵 판독기법(anomaly mapped read) 기반의 결손 후보 검출 과정이 도시된 도,
도 6은 반복 서열에 의한 거짓 양성 후보의 검출 과정이 도시된 도,
도 7은 체성 결손 발생 과정의 확률 모델이 도시된 도,
도 8은 모델 매개 변수 추정 및 체성 결손 후보 선정 과정이 도시된 도,
도 9는 모델의 매개 변수 추정 결과가 도시된 도,
도 10a 내지 도 10c는 본 발명에 따른 방법과 종래 방법들의 정확률, 재현률, 및 F-score를 비교 도시한 그래프들,
도 11은 다수의 하위 군집을 가진 혼합 조직에 대한 체성 검출 성능을 비교 도시한 도,
도 12는 본 발명의 일 실시예에 따른 체성 결손 검출 방법이 도시된 순서도이다.
Claims (10)
- 정상 세포 및 뇌질환을 포함하는 질병 세포의 혼합 조직을 컨트롤 조직 없이 시퀀싱한 시퀀싱 데이터 입력 단계;
상기 입력된 시퀀싱 데이터에 대해 변칙 맵 판독기법(anomaly mapped read) 기법을 적용하여 결손 후보들을 검출하는 단계;
상기 검출된 결손 후보들 각각에 대해 반복 서열에 의해 발생한 것인지를 판단하여 거짓 양성 검출을 제거하는 단계; 및,
거짓 양성 검출을 제거하고 남은 결손 후보들에 대해, 조직의 전체 지놈 중 유전 결손과 체성 결손을 포함하고 있는 지놈의 비를 정의한 p={pg, ps}와 전체 결손 대비 유전 결손과 체성 결손의 비를 정의한 λ={λg, λs}를 이용한 확률 모델을 기반으로 추정 매개 변수값을 산출하고, 상기 추정 매개 변수값을 이용하여 체성 결손의 존재 여부를 판단하는 단계 (여기서 상기 pg는 유전 결손에 대한 매개 변수이고, 상기 ps는 체성 결손에 대한 매개 변수이며, 상기 λg는 전체 결손 대비 유전 결손의 비이고, 상기 λs는 전체 결손 대비 체성 결손의 비임);
를 포함하고,
상기 ps는,
0≤ps≤0.5의 값을 가지는 것을 특징으로 하는 체성 결손 검출 방법.
- 청구항 1에서,
상기 시퀀싱 데이터 입력 단계는,
뇌질환을 포함하는 정상 세포와 질병 세포의 혼합 조직을 페어드-엔드 시퀀싱(paired-end sequencing) 기법으로 시퀀싱하는 것을 특징으로 하는 체성 결손 검출 방법.
- 청구항 1에서,
상기 거짓 양성 검출을 제거하는 단계는,
각각의 결손 후보들에 대해, 예측 결손 지점에서의 염기 서열과 결손이 발생하지 않았을 경우에 해당하는 지점의 염기 서열을 비교하여, 예측된 지점에서 서로 유사한 반복 서열이 발견될 경우, 서로 일치하는 염기 서열의 길이를 측정하여 측정값이 리드(read) 길이의 90%를 넘으면 해당 결손 후보는 반복 서열에 의한 거짓 양성 검출로 판단하여 제거하는 것을 특징으로 하는 체성 결손 검출 방법.
- 청구항 1에서,
상기 체성 결손의 존재 여부를 판단하는 단계에서, 상기 pg는,
homozygous deletion일 경우에 1로 산출하고, heterozygous deletion일 경우에 0.5로 산출하는 것을 특징으로 하는 체성 결손 검출 방법.
- 삭제
- 청구항 1에서,
상기 체성 결손의 존재 여부를 판단하는 단계에서, 상기 λg와 λs는,
유전 결손의 수(Ng)와 체성 결손의 수(Ns)를 나타내는 Ng와 Ns를 둘의 합인 Ng+Ns로 나누어서 산출되는 것을 특징으로 하는 체성 결손 검출 방법.
- 청구항 8에서,
상기 비교 결과, 상기 우도값((L(θ)g))이 상기 추정 매개 변수값(L(θ)mixed)보다 더 큰 경우, 상기 거짓 양성 검출 제거한 후, 남은 결손 후보들에는 체성 결손이 존재하지 않는다고 판단하는 것을 특징으로 하는 체성 결손 검출 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140162533A KR101707536B1 (ko) | 2014-11-20 | 2014-11-20 | 컨트롤 조직 부재 샘플 내 낮은 빈도의 체성 결손 검출 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140162533A KR101707536B1 (ko) | 2014-11-20 | 2014-11-20 | 컨트롤 조직 부재 샘플 내 낮은 빈도의 체성 결손 검출 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20160060361A KR20160060361A (ko) | 2016-05-30 |
KR101707536B1 true KR101707536B1 (ko) | 2017-02-16 |
Family
ID=57124549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140162533A Expired - Fee Related KR101707536B1 (ko) | 2014-11-20 | 2014-11-20 | 컨트롤 조직 부재 샘플 내 낮은 빈도의 체성 결손 검출 방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101707536B1 (ko) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006508632A (ja) * | 2002-03-01 | 2006-03-16 | ラブジェン, インコーポレイテッド | 遺伝子疾患の検出法 |
-
2014
- 2014-11-20 KR KR1020140162533A patent/KR101707536B1/ko not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006508632A (ja) * | 2002-03-01 | 2006-03-16 | ラブジェン, インコーポレイテッド | 遺伝子疾患の検出法 |
Also Published As
Publication number | Publication date |
---|---|
KR20160060361A (ko) | 2016-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109767810B (zh) | 高通量测序数据分析方法及装置 | |
US12247259B2 (en) | Using nucleic acid size range for noninvasive cancer detection | |
CN109689891A (zh) | 用于无细胞核酸的片段组谱分析的方法 | |
CN107480470B (zh) | 基于贝叶斯与泊松分布检验的已知变异检出方法和装置 | |
Lynch et al. | Quantifying chromosomal instability from intratumoral karyotype diversity using agent-based modeling and Bayesian inference | |
JP2005531853A (ja) | Snp遺伝子型クラスタリングのためのシステムおよび方法 | |
CN105404793B (zh) | 基于概率框架和重测序技术快速发现表型相关基因的方法 | |
CN111304308A (zh) | 一种审核高通量测序基因变异检测结果的方法 | |
CN113674803A (zh) | 一种拷贝数变异的检测方法及其应用 | |
CN108304694B (zh) | 基于二代测序数据分析基因突变的方法 | |
EP4474485A2 (en) | Microsatellite instability detection | |
KR101936933B1 (ko) | 염기서열의 변이 검출방법 및 이를 이용한 염기서열의 변이 검출 디바이스 | |
CN114566211A (zh) | 基于生物网络与机器学习的合成致死基因组合预测系统 | |
Baladandayuthapani et al. | Bayesian random segmentation models to identify shared copy number aberrations for array CGH data | |
CN116348957A (zh) | 检测测序数据中的交叉污染 | |
CN116364179A (zh) | 结直肠癌预后标志物筛选系统及方法、结直肠癌预后风险评估系统 | |
Wiens et al. | triangulaR: An R package for identifying AIMs and building triangle plots using SNP data from hybrid zones | |
Huang et al. | Cause of gene tree discord? Distinguishing incomplete lineage sorting and lateral gene transfer in phylogenetics | |
CN115620812A (zh) | 基于重采样的特征选择方法、装置、电子设备和存储介质 | |
CN109461473B (zh) | 胎儿游离dna浓度获取方法和装置 | |
US20180247019A1 (en) | Method for determining whether cells or cell groups are derived from same person, or unrelated persons, or parent and child, or persons in blood relationship | |
CN105512510A (zh) | 一种通过基因组数据对遗传力进行评估的算法 | |
KR101707536B1 (ko) | 컨트롤 조직 부재 샘플 내 낮은 빈도의 체성 결손 검출 방법 | |
JP2014530629A5 (ko) | ||
CN103279690A (zh) | 一种医学信息排序方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20141120 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20160621 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20161221 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20170210 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20170213 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20200129 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20200129 Start annual number: 4 End annual number: 4 |
|
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20211110 |
|
PR0401 | Registration of restoration |
Patent event code: PR04011E01D Patent event date: 20211110 Comment text: Registration of Restoration |
|
PR1001 | Payment of annual fee |
Payment date: 20211111 Start annual number: 5 End annual number: 5 |
|
R401 | Registration of restoration | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20241121 |