KR101588358B1 - Manufacturing method of lithium titanium composite oxide and lithium titanium composite oxide made by same - Google Patents
Manufacturing method of lithium titanium composite oxide and lithium titanium composite oxide made by same Download PDFInfo
- Publication number
- KR101588358B1 KR101588358B1 KR1020130158861A KR20130158861A KR101588358B1 KR 101588358 B1 KR101588358 B1 KR 101588358B1 KR 1020130158861 A KR1020130158861 A KR 1020130158861A KR 20130158861 A KR20130158861 A KR 20130158861A KR 101588358 B1 KR101588358 B1 KR 101588358B1
- Authority
- KR
- South Korea
- Prior art keywords
- lithium
- composite oxide
- titanium composite
- titanium
- peak intensity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 64
- SWAIALBIBWIKKQ-UHFFFAOYSA-N lithium titanium Chemical compound [Li].[Ti] SWAIALBIBWIKKQ-UHFFFAOYSA-N 0.000 title claims abstract description 64
- 238000004519 manufacturing process Methods 0.000 title description 15
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 20
- 239000004408 titanium dioxide Substances 0.000 claims abstract description 10
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 23
- 229910052744 lithium Inorganic materials 0.000 claims description 22
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 9
- 239000011164 primary particle Substances 0.000 claims description 9
- 239000011163 secondary particle Substances 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- 150000002642 lithium compounds Chemical class 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 238000010298 pulverizing process Methods 0.000 claims description 3
- 238000001694 spray drying Methods 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 2
- 239000012153 distilled water Substances 0.000 claims description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 2
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 claims description 2
- 229910001947 lithium oxide Inorganic materials 0.000 claims description 2
- YNQRWVCLAIUHHI-UHFFFAOYSA-L dilithium;oxalate Chemical compound [Li+].[Li+].[O-]C(=O)C([O-])=O YNQRWVCLAIUHHI-UHFFFAOYSA-L 0.000 claims 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 claims 1
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 claims 1
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 abstract description 4
- 239000002184 metal Substances 0.000 abstract description 4
- 239000012535 impurity Substances 0.000 abstract description 3
- 238000007599 discharging Methods 0.000 abstract description 2
- 230000000052 comparative effect Effects 0.000 description 11
- 239000010936 titanium Substances 0.000 description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 10
- 229910052596 spinel Inorganic materials 0.000 description 7
- 239000011029 spinel Substances 0.000 description 7
- 229910010413 TiO 2 Inorganic materials 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 230000002687 intercalation Effects 0.000 description 3
- 238000009830 intercalation Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910011458 Li4/3 Ti5/3O4 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910012465 LiTi Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- FDLZQPXZHIFURF-UHFFFAOYSA-N [O-2].[Ti+4].[Li+] Chemical compound [O-2].[Ti+4].[Li+] FDLZQPXZHIFURF-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000006713 insertion reaction Methods 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 description 1
- 229910052912 lithium silicate Inorganic materials 0.000 description 1
- 238000003701 mechanical milling Methods 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 150000003839 salts Chemical group 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/387—Tin or alloys based on tin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
본 발명은 리튬 티탄 복합 산화물의 제조 방법 및 이에 의하여 제조된 리튬 티탄 복합 산화물에 관한 것으로서, 더욱 상세하게는 수분 함량이 조절된 리튬 티탄 복합 산화물의 제조 방법 및 이에 의하여 제조된 리튬 티탄 복합 산화물에 관한 것이다.
본 발명에 의한 리튬 티탄 복합 산화물은 이종 금속 도핑에 의하여 흡습성이 제어될 뿐만 아니라, 불순물로서 포함되는 루타일상, 아나타제상 이산화티탄의 함량이 감소하여, 본 발명에 의한 리튬 티탄 복합 산화물을 포함하는 전지의 충방전 특성이 개선된다.The present invention relates to a process for producing a lithium-titanium composite oxide and a lithium-titanium composite oxide produced thereby, and more particularly to a process for producing a lithium-titanium composite oxide whose moisture content is controlled and a process for producing the lithium- will be.
The lithium titanium composite oxide according to the present invention is not only controlled in hygroscopicity due to dissimilar metal doping but also reduced in content of rutile and anatase phase titanium dioxide contained as impurities, Charging and discharging characteristics of the battery are improved.
Description
본 발명은 리튬 티탄 복합 산화물의 제조 방법 및 이에 의하여 제조된 리튬 티탄 복합 산화물에 관한 것으로서, 더욱 상세하게는 수분 함량이 조절된 리튬 티탄 복합 산화물의 제조 방법 및 이에 의하여 제조된 리튬 티탄 복합 산화물에 관한 것이다.
The present invention relates to a process for producing a lithium-titanium composite oxide and a lithium-titanium composite oxide produced thereby, and more particularly to a process for producing a lithium-titanium composite oxide whose moisture content is controlled and a process for producing the lithium- will be.
리튬 이온이 부극과 정극을 이동함으로써 충방전이 행해지는 비수전해질 전지는 고에너지 밀도 전지로서 활발한 연구 개발이 진행되고 있다. 최근, Li 흡장 방출 전위가 높은 리튬 티탄 복합 산화물이 주목받고 있다. 리튬 티탄 복합 산화물은 리튬 흡장 방출 전위에서는 원리적으로 금속 리튬이 석출되지 않아 급속 충전이나 저온 성능이 우수하다는 장점이 있다.
BACKGROUND ART [0002] Non-aqueous electrolyte batteries in which lithium ions are charged and discharged by moving negative and positive electrodes are actively under research and development as high energy density cells. Recently, a lithium-titanium composite oxide having a high lithium intercalation-release potential has attracted attention. The lithium-titanium composite oxide is advantageous in that it does not precipitate metal lithium in principle and exhibits excellent rapid charging performance and low-temperature performance at the lithium intercalation / deintercalation potential.
리튬 티탄 복합 산화물에는 일반식 Li(1+x)Ti(2-x)Oy(x = -0.2 내지 1.0, y = 3 내지 4)로 표시되는 스피넬형 티탄산리튬이 포함되고, 그의 대표적인 예에는 Li4/3Ti5/3O4, LiTi2O4 및 Li2TiO3가 있다. 이 재료는 양극활물질로서 종래로부터 사용되어 왔고, 음극 활물질로서도 활용할 수 있어서, 전지의 양극 및 음극 활성물로서의 장래가 기대된다. 이들은 리튬 기준으로 1.5 V의 전압을 가지고, 수명이 길다. 또한 충전 방전시의 팽창 및 수축을 무시할 수 있으므로 전지의 대형화시 주목되는 전극 재료이다. 특히 상기 스피넬(spinel)형 티탄산리튬(조성식 Li4 +xTi5O12(0≤x≤3))은 충방전시의 부피 변화가 작고, 가역적으로 우수하기 때문에 주목받고 있다.Lithium titanium composite oxides include spinel type lithium titanate represented by the general formula Li (1 + x) Ti (2-x) O y (x = -0.2 to 1.0, y = 3 to 4) Li 4/3 Ti 5/3 O 4 , LiTi 2 O 4, and Li 2 TiO 3 . This material has been conventionally used as a positive electrode active material and can also be utilized as a negative electrode active material, and the future of the positive and negative electrode active materials of the battery is expected. They have a voltage of 1.5 V on a lithium basis and have a long lifetime. In addition, since expansion and contraction during charge discharge can be neglected, it is an electrode material that is noticed when the battery is enlarged. Particularly, the spinel type lithium titanate (the composition formula Li 4 + x Ti 5 O 12 (0? X ? 3)) is attracting attention because it has small volume change during charging and discharging and is reversibly excellent.
Li4Ti5O12의 티탄산리튬 스피넬 타입 구조에서, 티탄의 공식 원자가는, 티탄에 대해 얻을 수 있는 가장 높은 산화 상태인 +4이다(자카우-크리스티안센 등의, 솔리드 스테이트 이오닉스. 40-41 파트 2, 페이지 580-584 (1990)). In the lithium titanate spinel type structure of Li 4 Ti 5 O 12 , the official valence of titanium is +4, the highest oxidation state available for titanium (solid state Ionics, such as Zacau-Christiansen, 40- 41
이론적으로, 애노드에서의 리튬 삽입 반응(인터칼레이션)은 아래와 같다. Theoretically, the lithium insertion reaction (intercalation) at the anode is as follows.
3Li+ + Li4Ti5O12 -> Li7Ti5O12 3Li + + Li 4 Ti 5 O 12 -> Li 7 Ti 5 O 12
이 반응은 금속 리튬에 대해 약 1.5 V에서 발생한다. 티탄은 +4 상태에서 +3 상태로 감소되며, 완전하게 삽입될 때 3.4의 평균 산화 상태(60% Ti3 + 및 40% Ti4+)로 된다.This reaction occurs at about 1.5 V for metal lithium. Titanium is reduced from the +4 state to the +3 state, resulting in an average oxidation state (60% Ti 3 + and 40% Ti 4+ ) of 3.4 when fully inserted.
상기 Li4Ti5O12 재료는 하이브리드 전기 차량(HEV) 응용들에 대해 이상적으로 되는 격자(오주쿠 등, J 일렉트로켐 Soc, 142(5), 페이지 1431-1435 (1995))에 대한 가압 또는 수축을 행하지 않고 리튬 이온을 삽입할 수 있는 것으로 밝혀졌다.The Li 4 Ti 5 O 12 material may be applied to a lattice (Ojuku et al., J Electrochem Soc, 142 (5), pages 1431-1435 (1995)) that is ideal for hybrid electric vehicle (HEV) It has been found that lithium ions can be inserted without shrinking.
그러나, 스피넬형 티탄산리튬의 이론 용량은 175 mAh/g으로, 고용량화에는 한계가 있었다. 또한, 상기 스피넬형 티탄산리튬은 제조 과정 중에서 일부가 루타일(rutile)형 TiO2(r-TiO2)로 상분리되어 버린다. 이들 루타일(rutile)형 TiO2(r-TiO2)는 암염 구조로 전기화학적 활성은 있으나, 반응 속도가 낮고 경사진 전위 곡선을 가지며, 용량이 작기 때문에, 얻어지는 티탄산리튬의 실효 용량을 작게 만드는 문제점이 있었다. However, the theoretical capacity of the spinel type lithium titanate was 175 mAh / g, and there was a limit in increasing the capacity. In addition, the spinel type lithium titanate is phase-separated into rutile type TiO 2 (r-TiO 2 ) during the manufacturing process. These rutile type rutile TiO 2 (r-TiO 2 ) has a salt structure and has electrochemical activity, but has a low reaction rate and a sloping dislocation curve. Since the capacity is small, the effective capacity of the obtained lithium titanate is made small There was a problem.
또한, 티탄산리튬은, 공기 중의 수분을 흡수하는 성질을 가지고 있어 전극 물질 및 전극 제조 과정 중에서 공기 중의 수분을 흡수하고, 이와 같이 흡습된 수분은 분해되어 다량의 기체를 발생시켜서 결과적으로는 전지의 성능을 저하시키는 원인이 되고 있다.
In addition, lithium titanate has a property of absorbing moisture in the air, absorbing moisture in the air during the electrode material and electrode manufacturing process, and the moisture absorbed thereby decomposes to generate a large amount of gas, And the like.
본 발명은 상기와 같은 종래 리튬 티탄 산화물의 문제점을 해결하기 위하여 흡습성이 낮으면서도 불순물로서의 루타일상의 이산화티탄의 함량이 낮은 새로운 리튬 티탄 복합 산화물의 제조 방법 및 이에 의하여 제조된 리튬 티탄 복합 산화물을 제공하는 것을 목적으로 한다.
The present invention relates to a process for preparing a novel lithium titanium composite oxide having a low hygroscopicity and a low content of rutile titanium dioxide as an impurity in order to solve the problems of the conventional lithium titanium oxide as described above and to provide a lithium titanium composite oxide .
본 발명은 상기와 같은 과제를 해결하기 위하여,In order to solve the above problems,
티탄 산화물, M 함유 화합물, 및 A 함유 화합물을 양론비로 혼합하여 용매에 분산시키는 (ⅰ)단계;(I) mixing the titanium oxide, the M-containing compound, and the A-containing compound in a stoichiometric ratio and dispersing them in a solvent;
상기 혼합물을 평균입자 직경이 0.8 ㎛ 미만이 되도록 분쇄하는 (ⅱ)단계;(Ii) pulverizing the mixture so that the average particle diameter is less than 0.8 占 퐉;
분무 건조하여 1차 입자가 응집된 2차 입자를 제조하는 (ⅲ)단계;(Iii) spray-drying to produce secondary particles having primary particles aggregated;
LiX 로 표시되는 화합물과 혼합하고 에너지를 가하여 교반하는 (ⅳ)단계; (Iv) mixing with a compound represented by LiX and stirring with addition of energy;
리튬 화합물과 혼합하는 (ⅴ)단계; (V) mixing with a lithium compound;
열처리 하는 (ⅵ)단계; 를 포함하고, 아래 화학식으로 표시되는 리튬 티탄 복합 산화물의 제조 방법을 제공한다.(Vi) performing heat treatment; And a process for producing a lithium titanium composite oxide represented by the following chemical formula.
[화학식] Li4 - ZTi5 -(x+y)MxAyO12 - ZXZ Li 4 - Z Ti 5 - (x + y) M x A y O 12 - Z X Z
(상기 화학식에서 M 은 Zr, Mg, Al, Ni, Co, Mn, 및 Cu 로 이루어진 그룹에서 선택되고, A 는 Na, K, V, 및 B 로 이루어진 그룹에서 선택되고, X 는 F, Cl, Br, 및 I 로 이루어진 그룹에서 선택되고, 0.1≤x≤1.5, 0≤y≤1, 0≤Z≤1 임) Wherein M is selected from the group consisting of Zr, Mg, Al, Ni, Co, Mn and Cu, A is selected from the group consisting of Na, K, V and B, X is F, Cl, Br, and I, 0.1? X? 1.5, 0? Y? 1, 0? Z?
본 발명에 의한 리튬 티탄 복합 산화물의 제조 방법에 있어서, 상기 용매는 증류수, 에탄올, 메탄올 및 아세톤 중 어느 하나 또는 이들의 혼합물인 것을 특징으로 한다. In the method for producing a lithium-titanium composite oxide according to the present invention, the solvent is any one of distilled water, ethanol, methanol, and acetone or a mixture thereof.
본 발명에 의한 리튬 티탄 복합 산화물의 제조 방법에 있어서, 상기 (ii)단계의 습식 분쇄는 3000 내지 4000 rpm의 교반 속도에서, 30 내지 60 분간 교반하는 것을 특징으로 한다. In the method for producing a lithium titanium composite oxide according to the present invention, the wet grinding in the step (ii) is characterized by stirring at a stirring speed of 3000 to 4000 rpm for 30 to 60 minutes.
본 발명에 의한 리튬 티탄 복합 산화물의 제조 방법에 있어서, 상기 (ⅳ)단계는 500 내지 700 rpm의 교반 속도로 이루어지는 것을 특징으로 한다.In the method for producing a lithium-titanium composite oxide according to the present invention, the step (iv) may be performed at a stirring speed of 500 to 700 rpm.
본 발명에 의한 리튬 티탄 복합 산화물의 제조 방법에 있어서, 상기 리튬 화합물이 산화 리튬, 수산화 리튬, 탄산 리튬, 리튬의 오르토실리케이트, 메타실리케이트 또는 폴리실리케이트, 황산 리튬, 옥살산(oxalate) 리튬, 아세트산 리튬, 또는 이것들의 혼합물로 구성되는 그룹에서 선택되는 것을 특징으로 한다. In the method for producing a lithium-titanium composite oxide according to the present invention, it is preferable that the lithium compound is lithium oxide, lithium hydroxide, lithium carbonate, orthosilicate, lithium silicate, Or a mixture thereof.
본 발명에 의한 리튬 티탄 복합 산화물의 제조 방법에 있어서, 상기 열처리는 1 ℃/min 내지 5 ℃/min의 승온 속도로, 700 내지 1000 ℃의 온도로 승온 후, 3 내지 25 시간 동안, 1 내지 10 L/min의 속도로 산소, 공기 또는 산소와 공기의 혼합 가스를 주입하는 조건 하에서 수행하는 것을 특징으로 한다. In the method for producing a lithium-titanium composite oxide according to the present invention, the heat treatment is performed at a temperature raising rate of 1 占 폚 / min to 5 占 폚 / min, after raising the temperature to 700 to 1000 占 폚, for 1 to 10 At a rate of L / min, oxygen, air, or a mixed gas of oxygen and air is injected.
본 발명에 의한 리튬 티탄 복합 산화물의 제조 방법에 있어서, 상기 티탄 산화물은 아나타제형, 또는 함수 산화티탄인 것을 특징으로 한다.
In the method for producing a lithium titanium composite oxide according to the present invention, the titanium oxide is an anatase type or a hydrated titanium oxide.
본 발명은 또한, 본 발명에 의한 제조 방법에 의하여 제조되고, 아래 화학식으로 표시되고, 1차 입자가 응집하여 2차 입자를 형성하고, 상기 1차 입자의 직경이 0.3 ㎛ 내지 0.8 ㎛이고, 상기 2차 입자의 직경이 5 ㎛ 내지 25 ㎛인 것을 특징으로 하는 리튬 티탄 복합 산화물을 제공한다.The present invention also provides a process for producing a secondary particle, which is produced by the production method according to the present invention and is represented by the following chemical formula, wherein primary particles are agglomerated to form secondary particles, the diameter of the primary particles is 0.3 탆 to 0.8 탆, Wherein the secondary particles have a diameter ranging from 5 占 퐉 to 25 占 퐉.
[화학식] Li4 - ZTi5 -(x+y)MxAyO12 - ZXZ, [Formula] Li 4 - Z Ti 5 - (x + y) M x A y O 12 - Z X Z,
(상기 화학식에서 M 은 Zr, Mg, Al, Ni, Co, Mn, 및 Cu 로 이루어진 그룹에서 선택되고, A 는 Na, K, V, 및 B 로 이루어진 그룹에서 선택되고, X 는 F, Cl, Br, 및 I 로 이루어진 그룹에서 선택되고, 0.1≤x≤1.5, 0≤y≤1, 0≤Z≤1 임) Wherein M is selected from the group consisting of Zr, Mg, Al, Ni, Co, Mn and Cu, A is selected from the group consisting of Na, K, V and B, X is F, Cl, Br, and I, 0.1? X? 1.5, 0? Y? 1, 0? Z?
본 발명에 의한 리튬 티탄 복합 산화물에 있어서, 상기 리튬 티탄 복합 산화물은 루타일형 이산화티탄의 피크 강도가 리튬 티탄 복합 산화물의 주피크 강도 대비 1 % 이하인 것을 특징으로 한다. In the lithium titanium composite oxide according to the present invention, the lithium titanium composite oxide is characterized in that the peak intensity of the rutile titanium dioxide is 1% or less of the main peak intensity of the lithium titanium composite oxide.
본 발명에 의한 리튬 티탄 복합 산화물에 있어서, 상기 리튬 티탄 복합 산화물은 아나타제형 이산화티탄의 피크 강도가 리튬 티탄 복합 산화물의 주피크 강도 대비 1 % 이하인 것을 특징으로 한다. In the lithium-titanium composite oxide according to the present invention, the lithium-titanium composite oxide is characterized in that the peak intensity of the anatase-type titanium dioxide is 1% or less of the main peak intensity of the lithium-titanium composite oxide.
본 발명에 의한 리튬 티탄 복합 산화물에 있어서, 상기 리튬 티탄 복합 산화물은 Li2TiO3 의 피크 강도가 리튬 티탄 복합 산화물의 주피크 강도 대비 5 % 이하인 것을 특징으로 한다. In the lithium-titanium composite oxide according to the present invention, the lithium-titanium composite oxide is characterized in that the peak intensity of Li 2 TiO 3 is 5% or less of the main peak intensity of the lithium-titanium composite oxide.
스피넬형 리튬 티탄 복합 산화물의 주피크는 X선 회절 패턴에서 격자 간격 d가 4.83 Å인 경우의 피크를 나타낸다. 또한, 아나타제형 이산화티탄의 주피크, 루타일형 이산화티탄의 주피크 및 Li2TiO3의 주피크는 격자 간격 d가 각각 3.51 Å, 3.25 Å 및 2.07 Å인 경우에서의 피크를 나타낸다. 스피넬형 리튬 티탄 복합 산화물의 주피크는 2θ가 약 18.4° 부근에서 나타나고, 루타일형 이산화티탄의 경우 2θ가 약 27.5°에서 110 피크가 나타난다. 또한 아나타제형 이산화티탄은 2θ가 약 25.3°에서 101 피크가 나타나고, Li2TiO3는 2θ가 약 23.3°및 43.6°에서 021 피크와 200 피크가 나타난다.The main peak of the spinel type lithium titanium composite oxide shows a peak when the lattice spacing d in the X-ray diffraction pattern is 4.83 Å. The main peaks of the anatase type titanium dioxide, the main peak of the rutile type titanium dioxide and the main peak of the Li 2 TiO 3 show peaks in the case where the lattice spacing d is 3.51 Å, 3.25 Å and 2.07 Å, respectively. The main peak of the spinel-type lithium titanium composite oxide appears at about 2θ of about 18.4 °, and in the case of rutile-type titanium dioxide, the peak at 2θ of about 27.5 ° shows 110 peaks. The anatase type titanium dioxide shows 101 peaks at 2θ of about 25.3 ° and Li 2 TiO 3 shows peaks of 021 peaks and 200 peaks at 2θ of about 23.3 ° and 43.6 °.
본 발명에 의한 리튬 티탄 복합 산화물에 있어서, 상기 리튬 티탄 복합 산화물은 1g 당 400 ppm 이하의 수분을 함유하고 있는 것을 특징으로 한다. In the lithium-titanium composite oxide according to the present invention, the lithium-titanium composite oxide contains not more than 400 ppm of water per g.
본 발명은 또한, 본 발명에 의한 리튬 티탄 복합 산화물을 포함하는 리튬 이차 전지용 양극을 제공한다. The present invention also provides a positive electrode for a lithium secondary battery comprising the lithium titanium composite oxide according to the present invention.
본 발명은 또한, 본 발명에 의한 리튬 티탄 복합 산화물을 포함하는 리튬 이차 전지용 음극을 제공한다. The present invention also provides a negative electrode for a lithium secondary battery comprising the lithium titanium composite oxide according to the present invention.
본 발명은 또한, 본 발명에 의한 양극을 함유하는 리튬 이차 전지를 제공한다. The present invention also provides a lithium secondary battery containing a positive electrode according to the present invention.
본 발명은 또한, 본 발명에 의한 음극을 함유하는 리튬 이차 전지를 제공한다.
The present invention also provides a lithium secondary battery containing a negative electrode according to the present invention.
본 발명에 의한 리튬 티탄 복합 산화물의 제조 방법 및 이에 의하여 제조된 리튬 티탄 복합 산화물은 이종 금속 도핑에 의하여 흡습성이 제어될 뿐만 아니라, 불순물로서 포함되는 루타일상, 아나타제상 이산화티탄의 함량이 감소하여, 본 발명에 의한 리튬 티탄 복합 산화물을 포함하는 전지의 충방전 특성이 개선된다.
The method for producing a lithium-titanium composite oxide according to the present invention and the lithium-titanium composite oxide produced thereby are not only controlled in hygroscopicity due to dissimilar metal doping but also reduced in the content of rutile and anatase-phase titanium dioxide contained as impurities, The charge / discharge characteristics of the battery including the lithium-titanium composite oxide according to the present invention are improved.
도 1은 본 발명의 실시예에서 제조된 리튬 티탄 복합 산화물의 SEM 사진을 측정한 결과를 나타낸다.
도 2는 본 발명의 실시예 및 비교예에서 제조된 리튬 티탄 복합 산화물의 XRD를 측정한 결과를 나타낸다.
도 3은 본 발명의 실시예 및 비교예에서 제조된 리튬 티탄 복합 산화물의 수분량을 측정한 결과를 나타낸다.
도 4 및 도 5는 본 발명의 실시예 및 비교예에서 제조된 리튬 티탄 복합 산화물을 포함하는 전지의 율특성을 측정한 결과를 나타낸다.Fig. 1 shows SEM photographs of the lithium-titanium composite oxide prepared in the examples of the present invention.
2 shows the results of XRD measurement of the lithium titanium composite oxide prepared in Examples and Comparative Examples of the present invention.
3 shows the results of measurement of the moisture content of the lithium titanium composite oxide produced in the examples and comparative examples of the present invention.
FIG. 4 and FIG. 5 show the results of measuring the rate characteristics of the battery containing the lithium-titanium composite oxide produced in the examples and comparative examples of the present invention.
이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited by the following examples.
<< 실시예Example > 리튬 티탄 복합 산화물의 제조> Preparation of lithium titanium composite oxide
티탄 산화물로서 TiO2, M 함유 화합물로서 Zr을 양론비로 혼합하여 용매에 분산시키고 지르코늄 비드를 이용하여 상기 혼합물을 평균입자 직경이 0.8 ㎛ 미만이 되도록 분쇄하였다. 투입 열풍온도를 250 ℃, 배기 열풍 온도를 100 ℃ 로 분무 건조하여 1차 입자가 응집된 2차 입자를 제조한 후, LiF 화합물을 아래 표 1에서와 같은 비율로 혼합하고, 500 rpm으로 교반하였다. 여기에 다시 리튬 화합물과 혼합한 후, 기계적 밀링으로 교반하고, 공기 분위기 하에서, 750 ℃에서, 10 시간 동안 열처리하여 리튬 티탄 복합 산화물을 제조하였다. TiO 2 as titanium oxide and Zr as M-containing compound were mixed in a stoichiometric ratio and dispersed in a solvent, and the mixture was pulverized to have an average particle diameter of less than 0.8 μm by using zirconium beads. Secondary particles having primary particles agglomerated were prepared by spray-drying at an input hot air temperature of 250 ° C and an exhaust hot air temperature of 100 ° C. Then, LiF compounds were mixed at the ratios shown in Table 1 below and stirred at 500 rpm . Then, the mixture was mixed with a lithium compound, stirred by mechanical milling, and heat-treated at 750 ° C for 10 hours in an air atmosphere to prepare a lithium titanium composite oxide.
<< 실험예Experimental Example > > SEMSEM 측정 Measure
상기 실시예 1 내지 4에서 제조된 리튬 티탄 복합 산화물의 SEM 사진을 측정하고 그 결과를 도 1에 나타내었다. 도 1 및 표 2를 통해 F의 함량이 증가할수록 1차 입자의 크기가 증가하는 것을 알 수 있다. SEM photographs of the lithium-titanium composite oxides prepared in Examples 1 to 4 were measured and the results are shown in FIG. 1 and Table 2, it can be seen that as the content of F increases, the size of primary particles increases.
<< 실험예Experimental Example > 입자의 물리적 특성 측정> Measurement of physical properties of particles
상기 실시예 4에서 제조된 리튬 티탄 복합 산화물의 탭밀도, BET 표면적 및 수분 함량을 측정하고 아래 표 3에 나타내었다. The tap density, BET surface area and moisture content of the lithium-titanium composite oxide prepared in Example 4 were measured and shown in Table 3 below.
<< 실험예Experimental Example > > XRDXRD 특성 측정 Characterization
상기 실시예 1 내지 4 및 비교예에서 제조된 리튬 티탄 복합 산화물의 XRD를 측정하고 그 결과를 도 2에 나타내었다. The XRD of the lithium titanium composite oxide prepared in Examples 1 to 4 and Comparative Examples was measured and the results are shown in FIG.
도 2에서 보이는 바와 같이 F의 함량이 증가할수록 F가 첨가되지 않은 비교예에 비하여 루타일형 이산화티탄의 피크 강도, 아나타제형 이산화티탄의 피크 강도 및 Li2TiO3 피크 강도가 감소하는 것을 확인할 수 있다.
As shown in FIG. 2, the peak intensity of rutile-type titanium dioxide, the peak intensity of anatase-type titanium dioxide, and the peak intensity of Li 2 TiO 3 decrease as compared with the comparative example in which F is not added as the content of F increases .
<< 실험예Experimental Example > 수분 방치 실험> Experiment to leave moisture
상기 실시예 1 내지 4 및 비교예에서 제조된 리튬 티탄 복합 산화물을 200 ℃ 온도에서 1시간 건조 후 온도가 35 ℃이고 습도가 75 %로 유지되는 챔버에서 보관하면서 시간에 따른 (0분, 30분, 60분, 120분, 180분, 240분, 300분) 수분량을 칼피셔법으로 측정하고 그 결과를 도 3에 나타내었다.The lithium-titanium composite oxides prepared in Examples 1 to 4 and Comparative Examples were dried at 200 ° C. for 1 hour, stored in a chamber maintained at a temperature of 35 ° C. and a humidity of 75% , 60 minutes, 120 minutes, 180 minutes, 240 minutes and 300 minutes). The water content was measured by Karl Fischer method and the results are shown in FIG.
도 3에서 보는 바와 같이 본 발명에 의하여 F를 포함하는 리튬 티탄 복합 산화물의 경우 비교예에 비하여 잔류 수분량이 감소하며, F의 포함량에 따라 수분함량이 감소하는 것을 알 수 있다.
As shown in FIG. 3, in the case of the lithium titanium composite oxide containing F according to the present invention, the residual water content is decreased and the water content is decreased according to the F content, as compared with the comparative example.
<< 제조예Manufacturing example > 코인 전지의 제조> Manufacture of Coin Cell
상기 실시예 1 내지 4 및 비교예에서 제조된 리튬 티탄 복합 산화물을 양극활물질로 하고, 리튬 호일을 상대 전극으로 하며, 다공성 폴리에틸렌막(셀가르드 엘엘씨 제, Celgard 2300, 두께: 25 ㎛)을 세퍼레이터로 하고, 에틸렌 카보네이트와 디메틸 카보네이트가 부피비로 1:2로 혼합된 용매에 LiPF6가 1 몰 농도로 녹아 있는 액체 전해액을 사용하여 통상적으로 알려져 있는 제조공정에 따라 코인 전지를 제조하였다.
A porous polyethylene membrane (Celgard 2300, thickness: 25 占 퐉) made of a porous polyethylene membrane (Celgard 2300, thickness: 25 占 퐉) was prepared as a separator by using the lithium-titanium composite oxide prepared in Examples 1 to 4 and Comparative Example as a cathode active material, , And a coin cell was manufactured according to a conventional known manufacturing process using a liquid electrolyte in which LiPF 6 was dissolved in a molar ratio of 1: 2 in a solvent mixture of ethylene carbonate and dimethyl carbonate in a volume ratio of 1: 2.
<< 실험예Experimental Example > > 율특성Rate characteristic 평가 evaluation
상기 실시예 1 내지 4 및 비교예의 리튬 티탄 복합 산화물을 포함하는 테스트셀의 전기화학적 특성을 평가하기 위하여 전기화학 분석장치(TOSCAT 3100, Toyo 사 제품)을 이용하여 율특성을 측정하고 그 결과를 도 4 및 도 5에 나타내었다. In order to evaluate the electrochemical characteristics of the test cell comprising the lithium-titanium composite oxide of Examples 1 to 4 and Comparative Examples, the rate characteristics were measured using an electrochemical analyzer (TOSCAT 3100, manufactured by Toyo Co., Ltd.) 4 and Fig.
Claims (15)
상기 양론비로 혼합하여 용매에 분산시킨 혼합물을 평균입자 직경이 0.8 ㎛ 미만이 되도록 분쇄하는 (ⅱ)단계;
분무 건조하여 1차 입자가 응집된 2차 입자를 제조하는 (ⅲ)단계;
LiX 로 표시되는 화합물과 혼합하고 에너지를 가하여 교반하는 (ⅳ)단계;
리튬 화합물과 혼합하는 (ⅴ)단계;
열처리 하는 (ⅵ)단계; 를 포함하고, 아래 화학식으로 표시되는 리튬 티탄 복합 산화물의 제조 방법.
[화학식] Li4-ZTi5-(x+y)MxAyO12-ZXZ
(상기 화학식에서 M 은 Zr, Mg, Al, Ni, Co, Mn, 및 Cu 로 이루어진 그룹에서 선택되고, A 는 Na, K, V, 및 B 로 이루어진 그룹에서 선택되고, X 는 F, Cl, Br, 및 I 로 이루어진 그룹에서 선택되고, 0.1≤x≤1.5, 0≤y≤1, 0<Z≤1 임)
(I) a mixture in which a titanium oxide, an M-containing compound, and an A-containing compound are mixed in a stoichiometric ratio and dispersed in a solvent;
(Ii) pulverizing the mixture obtained by mixing in the stoichiometric ratio and dispersed in a solvent so as to have an average particle diameter of less than 0.8 mu m;
(Iii) spray-drying to produce secondary particles having primary particles aggregated;
(Iv) mixing with a compound represented by LiX and stirring with addition of energy;
(V) mixing with a lithium compound;
(Vi) performing heat treatment; Wherein the lithium titanium composite oxide is represented by the following chemical formula.
Li 4-Z Ti 5- (x + y) M x A y O 12-Z X Z
Wherein M is selected from the group consisting of Zr, Mg, Al, Ni, Co, Mn and Cu, A is selected from the group consisting of Na, K, V and B, X is F, Cl, Br, and I, 0.1? X? 1.5, 0? Y? 1, 0 <Z? 1)
상기 용매는 증류수, 에탄올, 메탄올 및 아세톤 중 어느 하나 또는 이들의 혼합물인 것을 특징으로 하는 리튬 티탄 복합 산화물의 제조 방법.
The method according to claim 1,
Wherein the solvent is any one of distilled water, ethanol, methanol, and acetone or a mixture thereof.
상기 분쇄하는 (ii) 단계에서는 3000 내지 4000 rpm 의 교반 속도에서, 30 내지 60 분간 교반하는 것을 특징으로 하는 리튬 티탄 복합 산화물의 제조 방법.
The method according to claim 1,
Wherein the step (ii) of pulverizing is carried out at a stirring speed of 3000 to 4000 rpm for 30 to 60 minutes.
상기 리튬 화합물이 산화 리튬, 수산화 리튬, 탄산 리튬, 리튬의 오르토실리케이트, 메타실리케이트 또는 폴리실리케이트, 황산 리튬, 옥살산(oxalate) 리튬, 아세트산 리튬, 또는 이들의 혼합물로 구성되는 그룹에서 선택되는 것을 특징으로 하는 리튬 티탄 복합 산화물의 제조 방법.
The method according to claim 1,
Characterized in that the lithium compound is selected from the group consisting of lithium oxide, lithium hydroxide, lithium carbonate, orthosilicate of lithium, metasilicate or polysilicate, lithium sulfate, lithium oxalate, lithium acetate, By weight based on the total weight of the lithium titanium composite oxide.
상기 (ⅵ)단계의 열처리는 1 ℃/min 내지 5 ℃/min 의 승온 속도로, 700 내지 1000 ℃ 의 온도로 승온 후, 3 내지 25 시간 동안, 1 내지 10 L/min 의 속도로 산소, 공기, 또는 산소와 공기의 혼합 가스를 주입하는 조건 하에서 수행하는 것인 리튬 티탄 복합 산화물의 제조 방법.
The method according to claim 1,
The heat treatment in the step (vi) may be carried out at a temperature raising rate of 1 ° C / min to 5 ° C / min, after raising the temperature to 700 to 1000 ° C, for 3 to 25 hours at a rate of 1 to 10 L / , Or a mixed gas of oxygen and air is injected.
상기 티탄 산화물은 아나타제형, 또는 함수 산화티탄인 것을 특징으로 하는 리튬 티탄 복합 산화물의 제조 방법.
The method according to claim 1,
Wherein the titanium oxide is an anatase type or a hydrous titanium oxide.
[화학식] Li4 - ZTi5 -(x+y)MxAyO12 - ZXZ
(상기 화학식에서 M 은 Zr, Mg, Al, Ni, Co, Mn, 및 Cu 로 이루어진 그룹에서 선택되고, A 는 Na, K, V, 및 B 로 이루어진 그룹에서 선택되고, X 는 F, Cl, Br, 및 I 로 이루어진 그룹에서 선택되고, 0.1≤x≤1.5, 0≤y≤1, 0≤Z≤1 임)
A process for producing a secondary particle by a process according to any one of claims 1 to 6, characterized in that the primary particles are aggregated to form secondary particles, the diameter of the primary particles is 0.3 to 0.8 mu m, Wherein the secondary particles have a diameter of 5 占 퐉 to 25 占 퐉.
Li 4 - Z Ti 5 - (x + y) M x A y O 12 - Z X Z
Wherein M is selected from the group consisting of Zr, Mg, Al, Ni, Co, Mn and Cu, A is selected from the group consisting of Na, K, V and B, X is F, Cl, Br, and I, 0.1? X? 1.5, 0? Y? 1, 0? Z?
상기 리튬 티탄 복합 산화물은 루타일형 이산화티탄의 피크 강도가 리튬 티탄 복합 산화물의 주피크 강도 대비 1 % 이하인 것을 특징으로 하는 리튬 티탄 복합 산화물.
8. The method of claim 7,
Wherein the lithium titanium composite oxide is characterized in that the peak intensity of the rutile titanium dioxide is 1% or less of the main peak intensity of the lithium titanium composite oxide.
상기 리튬 티탄 복합 산화물은 아나타제형 이산화티탄의 피크 강도가 리튬 티탄 복합 산화물의 주피크 강도 대비 1 % 이하인 것을 특징으로 하는 리튬 티탄 복합 산화물.
8. The method of claim 7,
Wherein the lithium titanium composite oxide is characterized in that the peak intensity of the anatase type titanium dioxide is 1% or less of the main peak intensity of the lithium titanium composite oxide.
상기 리튬 티탄 복합 산화물은 Li2TiO3 의 피크 강도가 리튬 티탄 복합 산화물의 주피크 강도 대비 5 % 이하인 것을 특징으로 하는 리튬 티탄 복합 산화물.
8. The method of claim 7,
Wherein the lithium-titanium composite oxide has a peak intensity of Li 2 TiO 3 of not more than 5% of the main peak intensity of the lithium-titanium composite oxide.
상기 리튬 티탄 복합 산화물은 1 g 당 400 ppm 이하의 수분을 함유하고 있는 것인 리튬 티탄 복합 산화물.
8. The method of claim 7,
Wherein the lithium-titanium composite oxide contains not more than 400 ppm of water per g of the lithium-titanium composite oxide.
A positive electrode for a lithium secondary battery comprising the lithium titanium composite oxide of claim 7.
An anode for a lithium secondary battery comprising the lithium titanium composite oxide of claim 7.
A lithium secondary battery containing the positive electrode of claim 12.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130158861A KR101588358B1 (en) | 2013-12-19 | 2013-12-19 | Manufacturing method of lithium titanium composite oxide and lithium titanium composite oxide made by same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130158861A KR101588358B1 (en) | 2013-12-19 | 2013-12-19 | Manufacturing method of lithium titanium composite oxide and lithium titanium composite oxide made by same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20150071831A KR20150071831A (en) | 2015-06-29 |
KR101588358B1 true KR101588358B1 (en) | 2016-01-25 |
Family
ID=53517971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130158861A Active KR101588358B1 (en) | 2013-12-19 | 2013-12-19 | Manufacturing method of lithium titanium composite oxide and lithium titanium composite oxide made by same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101588358B1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102090572B1 (en) * | 2018-03-12 | 2020-03-18 | (주)포스코케미칼 | Lithium-titanium composite oxide comprising primary particle doped by aluminum |
KR102724456B1 (en) | 2018-11-30 | 2024-11-01 | 주식회사 엘지에너지솔루션 | Positive electrode active material, positive electrode and lithium secondary battery including the same |
CN111710848A (en) * | 2020-06-30 | 2020-09-25 | 贝特瑞新材料集团股份有限公司 | Silica composite negative electrode material, preparation method thereof and lithium ion battery |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001192208A (en) | 1999-06-03 | 2001-07-17 | Titan Kogyo Kk | Lithium-titanium multiple oxide, its manufacturing method and its use |
JP2012030989A (en) | 2010-07-28 | 2012-02-16 | Hitachi Chem Co Ltd | Titanium dioxide, method of manufacturing the same, electrode for lithium ion battery using the same, and lithium ion battery |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013081231A1 (en) * | 2011-11-30 | 2013-06-06 | 주식회사 휘닉스소재 | Method for preparing hetero-metal doped lithium titanium complex oxide and hetero-metal doped lithium titanium complex oxide prepared from same |
-
2013
- 2013-12-19 KR KR1020130158861A patent/KR101588358B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001192208A (en) | 1999-06-03 | 2001-07-17 | Titan Kogyo Kk | Lithium-titanium multiple oxide, its manufacturing method and its use |
JP2012030989A (en) | 2010-07-28 | 2012-02-16 | Hitachi Chem Co Ltd | Titanium dioxide, method of manufacturing the same, electrode for lithium ion battery using the same, and lithium ion battery |
Also Published As
Publication number | Publication date |
---|---|
KR20150071831A (en) | 2015-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102649190B1 (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
US8535832B2 (en) | Metal oxide coated positive electrode materials for lithium-based batteries | |
KR101650230B1 (en) | Cathod active material for lithium rechargeable battery, preparing method thereof and lithium rechargeable battery containing the same | |
CN106395920B (en) | A kind of codoping modified ternary anode material for lithium-ion batteries of element and preparation method | |
KR102713885B1 (en) | Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery | |
KR101925105B1 (en) | Positive active material, method of preparing the same, and rechargeable lithium battery including the same | |
KR20180063849A (en) | Nickel-based active material for lithium secondary battery, preparing method thereof, and lithium secondary battery including the same | |
CA2913121C (en) | Manufacturing method of lithium-titanium composite doped with different metal, and lithium-titanium composite doped with different metal made by same | |
CN102770990A (en) | Positive electrode active material precursor particle powder and positive electrode active material particle powder, and nonaqueous electrolyte secondary battery | |
EP2626945B1 (en) | Lithium titanium oxide, method of preparing the same, negative electrode including the same, and lithium battery including the negative electrode | |
KR101600476B1 (en) | Solid electrolyte coated cathode materials for lithium ion battery | |
Ye et al. | Al, B, and F doped LiNi1/3Co1/3Mn1/3O2 as cathode material of lithium-ion batteries | |
KR101588358B1 (en) | Manufacturing method of lithium titanium composite oxide and lithium titanium composite oxide made by same | |
KR102447005B1 (en) | A cathode active material for a lithium secondary battery and a lithium secondary battery comprising the same | |
JP5810752B2 (en) | Lithium titanate particle powder, negative electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery | |
KR101634088B1 (en) | Negative electrode active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same | |
JP5708939B2 (en) | Lithium titanate particle powder and method for producing the same, negative electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery | |
KR102533325B1 (en) | Lithium transition metal composite oxide and manufacturing method | |
JP2023009361A (en) | lithium ion secondary battery | |
KR20250053071A (en) | Sodium layered oxide, uses thereof and methods of preparation thereof | |
KR102390956B1 (en) | Spinel complex-oxide, method for preparing the same, positive active material, and rechargeable lithium battery comprising the same | |
CN111106330B (en) | Positive electrode material and secondary battery using same | |
KR20220072464A (en) | Lithium-titanium composite oxide coated with boron and method for manufacturing the same | |
CN107204432B (en) | Positive electrode active material, method for producing same, and lithium secondary battery comprising same | |
KR20160043862A (en) | Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20131219 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20150420 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20151021 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20160119 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20160120 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20200110 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20200110 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20210106 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20211210 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20240109 Start annual number: 9 End annual number: 9 |